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COMPARISON OF THE JOINT DOS AND THE
HHG SPECTRA FOR BULK ALAS

In order to show that our conclusions are valid not
only for cubic silicon, we also performed calculations for
bulk AlAs, which has a zinc-blende crystal structure.
We used a real-space spacing of 0.344 atomic units and
an optimized 32×32×32 grid shifted four times to sam-
ple the BZ. The peak intensity inside matter is taken
to be I0 = 1011W cm−2, and the carrier wavelength λ
is 3000 nm, corresponding to a carrier photon energy of
0.43 eV. The comparison between the joint DOS and the
HHG spectra of AlAs is presented in Fig. 1.

As expected, we obtain that when the JDOS is low, the
HHG exhibits clean harmonics, whereas higher JDOS is
associated with noisy harmonics. Similarly to the case of
bulk silicon, we see that the noisy region (orange shaded
area) is suppressed, thus recovering clean odd and even
harmonics (green shaded area), when the JDOS is very
low.

HHG SPECTRA AT HIGHER INTENSITY

We performed calculations at higher intensity I0 =
1012W cm−2. In order to get converged results, we em-
ployed a denser 38×38×38 grid shifted four times to sam-
ple the BZ.

As electrons explore a larger part of the Brillouin zone,
the joint DOS is higher and no clean odd-harmonic struc-
ture is observed above the band gap, see Fig. 2.

We also note that the increase of the cutoff photon
energy is consistent with a linear scaling in the electric
field strength, as observed experimentally [1].

EFFECT OF THE MATERIAL BAND GAP

In order to study the effect of the material band gap,
we added in our time-dependent Kohn-Sham Hamilto-
nian a scissor operator, allowing us to artificially open
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FIG. 1. HHG spectra for the ΓX polarization direction (red
line). The bottom panel shows the corresponding joint DOS.
The red and blue dashed lines indicate the position of the
cutoff energy (Ec) for ΓX. The shaded areas are guides to
the eye.

the band gap by any value by shifting the conduction
bands to higher energy. We have then simulated an ar-
tificial bulk silicon, increasing the band gap by 3.0 eV.
We observe in Fig. 3 a region of clean odd-harmonics be-
low the band gap, which is increased while increasing the
band gap. This confirms once again that the interband
contribution is suppressed for photon energies below the
band gap. We also observe that the cutoff photon energy
increases by the value of the bap opening (∆ = 3.0 eV).

COMPARISON BETWEEN ΓX, ΓK AND ΓL

On Fig. 4, we compare the HHG spectra obtained
for I0 = 1011W cm−2, and the carrier wavelength λ is
3000 nm, for polarization along the ΓX, ΓK, and ΓL di-
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FIG. 2. Top panel: HHG spectra from bulk silicon computed within the local-density approximation, with laser polarization
along the ΓX direction for I0 = 1011W cm−2 (black line) and I0 = 1012W cm−2 (red line). Bottom panel: Comparison of the
joint DOS computed for the region explored by the electron for I0 = 1011W cm−2 (black line) and I0 = 1012W cm−2 (red line).

FIG. 3. HHG spectra from bulk silicon computed within the local-density approximation, with laser polarization along the ΓX
direction for I0 = 1012W cm−2, without scissor operator (red line) and including a scissor correction (∆) of 3.0 eV (blue line).

rections.

DERIVATION OF THE ANALYTICAL MODEL

We consider a general interacting many-electron
Hamiltonian Ĥ of the form

Ĥ(t) = T̂ + V̂ (t) + Ŵ , (1)

where T̂ is the kinetic energy, V̂ (t) is the time-dependent
external laser potential, and Ŵ is the electron-electron
Coulomb interaction (the ionic motion is not considered
here for the sake of simplicity).
In second quantization, we have [2, 3]

T̂ = −1

2

∫
d3rψ̂†(r)∇2ψ̂(r), (2)

V̂ (t) =

∫
d3rψ̂†(r)v(r, t)ψ̂(r), (3)

Ŵ =

∫
d3r

∫
d3r′w(|r− r′|)ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r).(4)

The current operator is defined by

ĵ(r) =
1

2i
{ψ̂†(r)∇ψ̂(r)− (∇ψ̂†(r))ψ̂(r)}. (5)

Its equation of motion is given by [2]

∂

∂t
j(r, t) = −i〈Ψ(t)|[̂j(r), Ĥ(t)]|Ψ(t)〉, (6)

where |Ψ(t)〉 is the state evolving from the initial state
|Ψ0〉 under the influence of Ĥ(t). Following Refs. [2, 3],
the equation of motion for the total microscopic current
can be rewritten as

∂

∂t
j(r, t) = −n(r, t)∇v(r, t) + Πkin(r, t) + Πint(r, t), (7)

where Πkin(r, t) and Πint(r, t) are the kinetic and the
interaction contributions to the momentum-stress ten-
sor [2, 3]. In second quantization, the k-component of
Πkin(r, t) and Πint(r, t) are given respectively by

Πkin
k (r, t) = 〈Ψ(t)|1

2

∑
i

∂i{∂iψ̂†(r)∂kψ̂(r) + ∂kψ̂
†(r)∂iψ̂(r)
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FIG. 4. HHG spectra from bulk silicon computed within the
local-density approximation, for I0 = 1011W cm−2, and the
carrier wavelength λ is 3000 nm, with laser polarization along
the ΓX (red line), ΓK (green line), and ΓL (blue line) direc-
tions.

−1

2
∂i∂k[ψ̂†(r)ψ̂(r)]}|Ψ(t)〉

and

Πint
k (r, t) = 〈Ψ(t)|

∫
d3r′ψ̂†(r)ψ̂†(r′)∂k w(|r− r′|)

×ψ̂(r′)ψ̂(r)|Ψ(t)〉.

Also, n(r, t) is the time-dependent electronic density of
the system driven by the external strong laser pulse E(t),
which is given by

n(r, t) = 〈Ψ(t)|n̂(r)|Ψ(t)〉, (8)

with n̂(r) = ψ̂†(r)ψ̂(r).
This equation just represents the local momentum con-
servation law, and shows that only external forces con-
tribute to the total momentum, in accordance to New-
ton’s third law. As these two contributions to the mo-
mentum stress-tensor are internal forces [3], Eq. (7) re-
duces to

∂

∂t

∫
Ω

d3r j(r, t) = −
∫

Ω

d3rn(r, t)∇v(r, t), (9)

where Ω denotes the volume of the physical system. In
here the external potential v(r, t) accounts for both the
electron-nuclei potential (v0(r)) and the externally ap-
plied time-dependent laser field. In the velocity gauge,
we have

v(r, t) = v0(r) + φ(r, t) +
1

2c2
A2(r, t)

− 1

2c

(
∇.A(r, t) + A(r, t).∇

)
, (10)

where φ and A are respectively the scalar and vector
potentials, related to the electric field by

E(r, t) =
1

c

∂

∂t
A(r, t)− ∂

∂r
φ(r, t). (11)

The simplification of the equation of motion of the mi-
croscopic current to the Lorentz force is shown in detail
in Ref. [3] and is therefore not reproduced here.
Using the current expression for the HHG spectra,

namely HHG(ω) =
∣∣FT

{∫
Ω
d3r ∂

∂t j(r, t)
}∣∣2, and plug-

ging now Eq. (9), we obtain, a general expression for
the HHG spectra

HHG(ω)∝

∣∣∣∣∣FT

{∫
Ω

d3r
(
n(r, t)∇v0(r)

+n(r, t)E(r, t) +
j(r, t)×B(r, t)

c

)}∣∣∣∣∣
2

, (12)

where the last two terms correspond to the Lorentz force
exerted by the external laser on the electronic system [3].
If we now make the dipole approximation, Eq. (12) fur-
ther simplifies and we finally get

HHG(ω) ∝

∣∣∣∣∣FT

{∫
Ω

d3rn(r, t)∇v0(r)

}
+NeE(ω)

∣∣∣∣∣
2

.

(13)
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