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Abstract

In order to address the hierarchy problem and to simultaneously explain small
neutrino masses, we study conformal extensions of the Standard Model (SM),
which realize an inverse seesaw mechanism. Furthermore, we give a systematic
discussion of the neutrino mass matrix in a generalized type-I seesaw set-up.

We study the conformal inverse seesaw mechanism (CISS), in which the con-
formal symmetry is spontaneously broken via the Coleman-Weinberg mechanism
at a few TeV. We confirm that in this set-up the electroweak vacuum expectation
value and the Higgs mass are obtained within experimental uncertainties. The
scalar sector in the broken phase contains, besides the Higgs, a massive scalar
with a mass in the TeV-range and the pseudo-Goldstone boson of broken scale
invariance with a mass of the order of hundreds of GeV. The CISS also fea-
tures a hidden Abelian gauge symmetry. We show that the CISS generates active
neutrino masses and mixings in agreement with oscillation data. Additionally,
the neutrino spectrum contains a warm dark matter (DM) candidate with mass
in the keV-range and tiny mixing of the order of 107! or smaller to the active
neutrinos. Furthermore the CISS comprises sterile neutrinos with pseudo-Dirac
masses, which can be as large as several TeV. The active-sterile mixing obtained
in the model is naturally sizable.

In the extended conformal inverse seesaw (ECISS), the new gauge group is
identified with U(1)g_1. The scalar and neutrino sectors of the CISS are altered
to allow for a large Majorana mass for the right-handed neutrinos leading to ample
lepton number violation (LNV). Besides LNV, the phenomenology of the CISS is
maintained. We show that the contributions of the heavy sterile neutrinos to the
effective Majorana mass of neutrinoless double beta decay can saturate current
limits on the half-life. In both the CISS and ECISS the new particles lead to
collider signatures above SM backgrounds, which should leave a clear signal in
Run 2 at the Large Hadron Collider (LHC). In particular, the Z’ associated with
U(1)p_r and the sterile neutrinos in the ECISS produce LNV signals. For a
luminosity of 300 fb™' at a center-of-mass energy of 14 TeV the ECISS predicts
a signal at the LHC of about 400 events in the same-sign di-lepton channel plus
two hadronic jets, which is induced by sterile neutrinos with a mass of 500 GeV.

In the last part of the thesis we systematically analyze the neutrino mass
matrix obtained in a generalized type-I seesaw. The set-up contains two different
neutrino species with arbitrary numbers of generations that are connected via
a Dirac mass. One species is assumed to possess an arbitrary Majorana mass
term. This includes Majorana masses much larger or much smaller than the
Dirac mass, vanishing Majorana mass or a singular structure. In this set-up, a
general prediction for the number of vanishing eigenvalues is derived. We discover
that many scenarios are related to others, thereby, simplifying the analysis. The
eigenvalue spectra of the mass matrices for all non-singular scenarios and for one
scenario with a singular set-up are obtained.
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Zusammenfassung

Um uns des Hierarchieproblems anzunehmen und gleichzeitig kleine Neutrinomassen zu
erkléren, studieren wir konforme Erweiterungen des Standardmodells (SM), die einen
inversen Seesaw realisieren. Aufterdem legen wir eine systematische Auseinandersetzung
mit der Neutrinomassenmatrix in einer verallgemeinerten Typ-I Seesaw-Anordnung dar.

Wir studieren den konformen inversen Seesaw (CISS)-Mechanismus, in dem die kon-
forme Symmetrie bei einigen TeV spontan durch den Coleman-Weinberg-Mechanismus
gebrochen wird. Wir bestétigen, dass der elektroschwache Vakuumerwartungswert und
die Higgsmasse in diesem Aufbau innerhalb der experimentellen Ungenauigkeiten er-
halten werden. Der skalare Sektor enthélt in der gebrochenen Phase neben dem Higgs
einen massiven Skalar mit einer Masse im TeV-Bereich und das Pseudo-Goldstone-Boson
der gebrochenen Skaleninvarianz mit einer Masse in der Grofienordung von hunderten
von GeV. Der CISS fiihrt auch eine versteckte Abelsche Eichsymmetrie mit sich. Wir
zeigen, dass der CISS aktive Neutrinomassen und -mischungen im Einklang mit Oszilla-
tionsdaten erzeugt. Zusétzlich beinhaltet das Neutrinospektrum einen warmen Dunkle-
Materie(DM)-Kandidaten mit einer Masse im keV-Bereich und winziger Mischung in
einer Grofenordnung von 10710 oder weniger zu den aktiven Neutrinos. Dariiber hin-
aus umfasst der CISS sterile Neutrinos mit Pseudo-Dirac-Massen, die bis zu einigen TeV
groft sein konnen. Die im Modell erhaltene aktiv-sterile Mischung ist naturgeméf grof.

Im erweiterten konformen inversen Seesaw (ECISS) wird die neue Eichgruppe mit
U(1)p—r, identifiziert. Der Skalar- und Neutrinosektor des CISS werden veradndert,
um eine groke Majorana-Masse fiir die rechtshandigen Neutrinos zu erlauben, was zu
einer reichhaltigen Leptonzahlverletzung (LNV) fiihrt. Bis auf die LNV bleibt die
Phénomenologie des CISS erhalten. Wir zeigen, dass die Beitrige der schweren sterilen
Neutrinos zur effektiven Majorana-Masse des neutrinolosen Doppel-Beta-Zerfalls die
derzeitigen Grenzen fiir die Lebensdauer séttigen konnen. Sowohl im CISS wie auch im
ECISS fithren die neuen Teilchen zu Kollidierer-Signaturen iiber dem SM-Hintergrund,
die ein deutliches Signal in Run 2 am Large Hadron Collider (LHC) hinterlassen soll-
ten. Insbesondere das der U(1)p_y zugehorige Z’' und die sterilen Neutrinos erzeugen
LNV Signale. Fiir eine Luminositéit von 300 fb~! und bei einer Energie im Ruhesystem
von 14 TeV sagt der ECISS ein Signal am LHC voraus von etwa 400 Ereignissen im
same-sign di-lepton Kanal mit zwei hadronischen Jets, das von sterilen Neutrinos mit
einer Masse von 500 GeV hervorgerufen wird.

Im letzten Teil der Arbeit analysieren wir die aus einem verallgemeinerten Typ-I
Seesaw erhaltene Neutrinomassenmatrix systematisch. Der Aufbau enthéilt zwei ver-
schiedene Neutrinoarten mit beliebigen Anzahlen von Generationen, die iiber eine Dirac-
Masse verbunden sind. Von einer Art wird angenommen, dass sie einen willkiirlichen
Majorana-Massenterm besitzt. Das schliefit Majorana-Massen mit ein, die viel grofer
oder viel kleiner als die Dirac-Masse sind, verschwindende Majorana-Massen oder eine
singuldre Struktur. In dieser Anordnung wird eine allgemeine Vorhersage iiber die An-
zahl der verschwindenden Eigenwerte hergeleitet. Wir entdecken, dass viele Szenarios
mit anderen in Verbindung stehen, was die Analyse vereinfacht. Die Eigenwertspektren
der Massenmatrizen fiir alle nicht-singuléren Szenarios und fiir ein Szenario mit einem
singularen Aufbau werden gewonnen.
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Disclaimer

The results of this work presented in Chapters 3 and 4 have already been published
and were done in collaboration with others: Chapter 3 is based on Reference [1] in
collaboration with M. Lindner and J. Smirnov; Chapter 4 is based on Reference
2] together with M. Lindner, S. Patra and J. Smirnov. The research presented in
Chapter 5 has not been published yet and represents original work by the author.
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CHAPTER 1

INTRODUCTION

.. after all, our purpose in theoretical physics
is not just to describe the world as we find it,
but to explain — in terms of a few fundamental
principles — why the world is the way it is.

Steven Weinberg

The triumphal march of the Standard Model of particle physics was finally com-
pleted by the discovery of the theory’s last missing piece, the Higgs boson, in the
year 2012 [3, 4]. However, the smallness of that particle’s mass requires a severe
fine-tuning known as the gauge hierarchy problem [5-9]. In essence, the problem
states that if the Standard Model is embedded into another gauge theory, whose
symmetry is spontaneously broken at some high energy scale, the Higgs mass,
due to quantum effects, will receive corrections, which are quadratically sensitive
to the scale of the high-energy quantum field theory. This high energy scale and,
accordingly, the Higgs mass are expected to be extremely large. Typical exam-
ples for such large scales are the scale of grand unification, or the Planck scale
associated with gravity. In contradiction to this expectation the observed value
of the Higgs mass is of the order of the relatively small electroweak scale of the
Standard Model [10]. So how can the hierarchy problem be solved?

The most famous attempt to overcome the gauge hierarchy problem is super-
symmetry [11, 12]. In that framework each Standard Model particle possesses
a superpartner with opposite statistics. In presence of the superpartners the
quadratic corrections are systematically cancelled and the hierarchy problem can-
not emerge. But, as to date no supersymmetric particles have been discovered
at the Large Hadron Collider [13, 14|, an increasing tension is placed on the vi-
able parameter space of supersymmetric models with a symmetry breaking scale
close to the electroweak scale. Supersymmetry breaking at a certain distance to
the electroweak scale, however, reintroduces the hierarchy problem. Other theo-
ries that are able to solve the hierarchy problem include technicolor [15-17] and
composite-Higgs models [18-20], extra-dimensions [21, 22|, and theories based on
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a scale-invariant Lagrangian [23|. In this thesis we will focus on the latter class
of theories, which we will (in slight abuse of terminology) refer to as conformal
theories.

In a conformal theory no dimensional couplings and, in particular, no masses
are allowed in the Lagrangian by the conformal symmetry. However, in a generic
quantum field theory the conformal symmetry is anomalous. As argued by
Bardeen, this conformal anomaly can only lead to logarithmic divergences, but
not to quadratic ones [23]. A further justification for Bardeen’s argument was
given in [24] in the context of the Wilsonian approach to renormalization theory
[25]. Consequently, the gauge hierarchy problem does not appear in conformal
theories.

The spontaneous breaking of the electroweak symmetry [26-28| within the
Higgs mechanism [29-31] represents one of the cornerstones of the Standard
Model. But, actually, it has to face several difficulties besides the aforemen-
tioned hierarchy problem. First, the assumption that the mass parameter of the
Higgs potential in the unbroken phase is negative in order to create a non-trivial
minimum is merely of technical nature. The origin of spontaneous symmetry
breaking, however, remains obscure. Second, studies related to triviality [32] and
the stability [33-35] of the Higgs potential, which are sensitive to the Higgs mass
and the top-quark mass, suggest that the ground state of the Universe happens
to reside in a very special region of the available parameter space that allows for
a renormalization group evolution of the Standard Model up to the Planck scale
without encountering Landau poles or instabilities. As the particles’ masses are
not predicted by the theory, the Standard Model gives no explanation for such a
‘convenient’ parameter choice. Third, the electroweak theory cannot incorporate
the emergence of the Planck scale. Nevertheless, the future Standard Model of
high-energy physics ultimately needs to include the effects of gravity. Because
of these shortcomings, we argue that it is vital to investigate alternatives to the
electroweak symmetry breaking in the Standard Model. The fact that the Stan-
dard Model with a vanishing Higgs mass parameter becomes scale invariant may
be interpreted as a hint at an underlying conformal symmetry in Nature.

The spontaneous breakdown of a conformal symmetry can be triggered by ra-
diative corrections as described in the Coleman-Weinberg mechanism [36]. Soon,
it was realized that the Coleman-Weinberg mechanism does not work for the
scalar sector of the Standard Model, since the Coleman-Weinberg effective po-
tential is unbounded from below, when the top quark is heavier than the Z boson
[37]. Consequently, the scalar sector in the Standard Model needs to be extended
by new degrees of freedom in order to allow for spontaneous conformal symmetry
breaking. This necessity can be turned into a merit. If more scalar particles are
included in the theory, this naturally allows for a richer phenomenology. With
the additional particles one always obtains new couplings in the scalar potential.
The couplings, however, are not arbitrary, but possess a strong interdependence,
which is caused by spontaneous symmetry breaking. This gives conformal the-
ories considerable predictive power. In this context, the aforementioned conve-
nient values that allow for a consistent extrapolation up to the Planck scale of



the parameters in the scalar potential may be understood as a consequence of
the requirements for successful spontaneous conformal symmetry breaking. An-
other prediction of the Coleman-Weinberg mechanism is that there can be only
one symmetry breaking scale, which must lie close to the electroweak scale. This
means that the new particles required by the conformal symmetry are in principle
accessible at the Large Hadron Collider. As was pointed out in [38], the Planck
scale might emerge from a non-renormalizable theory of quantum gravity, which
gives rise to an effective conformal theory at energies below the Planck scale. We
note that similar ideas (but without the explicit referral to conformal theories)
were discussed in [39]. The positive prospects of conformal theories have drawn
a substantial amount of attention in recent years [40-69].

A different issue of the Standard Model is how to accommodate small but
finite neutrino masses in the theory. Almost a century after Pauli “... postulated
a particle that cannot be detected”! [71], and 60 years after its first detection
due to Cowan et al. [72], the neutrino still remains an elusive particle at the
present day. Originally, neutrinos were assumed to be massless and, consequently,
there was no need to include right-handed neutrinos into the particle content of
the Standard Model. However, the observation of neutrino oscillations in solar,
atmospheric, reactor and accelerator beam neutrino experiments [73-76] have
shown that neutrinos are in fact massive. Hence, neutrino oscillations constitute
a first direct evidence for physics beyond the Standard Model. However, compared
to the other fermions the neutrinos must have extremely small masses. This raises
two questions: How do neutrinos become massive? And why are their masses so
small?

As for the other fermions, the masses for neutrinos could also be generated in
the Higgs mechanism provided the Standard Model’s particle content is extended
by right-handed neutrino fields. This, however, does not answer the second ques-
tion as it would require neutrino Yukawa couplings many orders of magnitude
smaller than those for the charged leptons. A different possibility was realized
by Weinberg [77]. He suggested that neutrino masses could be obtained from
an effective dimension-5 operator (now called the Weinberg operator), which can
already be constructed using Standard Model fields only. The interaction behind
this operator is assumed to be mediated by a super-heavy particle, whose mass
effectively suppresses the neutrino mass, thereby, explaining the smallness of the
latter. Note that the neutrino mass generated in this way violates lepton number.

The most popular way of generating naturally small neutrino masses is the
seesaw mechanism, which was first formulated in [78-81|. The basic idea of the
seesaw relies on augmenting the theory by right-handed neutrinos, which do not
participate in the interactions of the Standard Model. As these new neutrinos
are gauge singlets they can possess a bare Majorana mass. Since this mass has
no connection to the electroweak symmetry breaking scale, it can in principle be
arbitrarily large. Eventually, the seesaw mechanism leads to a suppression of the
Standard Model neutrino masses, which is found to be inversely proportional to

L As quoted by F. Reines in the foreword to [70].
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the potentially large Majorana mass. As the seesaw mechanism represents a tree-
level realization of the Weinberg operator, the small neutrino masses generated
this way violate lepton number.

It was pointed out in [60] that the inverse seesaw mechanism [82-84] in the
context of a conformal theory could possibly lead to an interesting phenomenology
including electroweak precision tests, collider signatures and dark matter. In
order to address the hierarchy problem and to explain small neutrino masses
we are led to study the conformal inverse seesaw mechanism. Additionally, we
will systematically analyze the neutrino mass matrix in a generalized seesaw
mechanism set-up to gain further insight into neutrino masses.

The outline of this thesis is as follows. In Chapter 2 we briefly review elec-
troweak symmetry breaking in the Standard Model. There, we will also discuss
physics beyond the Standard Model in correlation with this work. The model
of the conformal inverse seesaw mechanism is introduced in Chapter 3. After
deriving the neutrino mass spectrum and mixing pattern as well as the sponta-
neous conformal symmetry breaking of the model, we will discuss the predicted
phenomenology in connection with electroweak precision test, collider signatures
and dark matter. In Chapter 4 the so-called conformal inverse seesaw is extended
in order to allow for large lepton number violation. We will discuss how this can
be achieved without altering the established phenomenology of active neutrino
masses and mixing, of electroweak precision tests and of dark matter. Then, we
will examine the possibilities for neutrinoless double beta decay and same-sign
di-lepton signals in the extended conformal seesaw. The systematic examination
of the neutrino mass matrix in the generalized seesaw scenario is presented in
Chapter 5. There, we will predict how many vanishing eigenvalues exist in the
generalized set-up of the neutrino mass matrix. Furthermore, we will derive the
eigenvalue spectra of several different structures of the neutrino mass matrix.
Finally, we will summarize our results and provide an outlook in Chapter 6.



CHAPTER 2

THE STANDARD MODEL AND
BEYOND

The Standard Model (SM) of particle physics is the quantum field theory (QFT)
of the strong, weak and electromagnetic interactions. The description of the latter
two is combined in the electroweak theory [26-28|. Within the Higgs mechanism
[29-31] the electroweak gauge symmetry is spontaneously broken by the vacuum,
leaving only the strong and electromagnetic gauge groups as remaining symme-
tries of the theory. The mechanism of electroweak symmetry breaking (EWSB)
is induced when the potential of a scalar particle, the Higgs boson, develops a
non-trivial minimum at a finite vacuum expectation value (vev). The vev, in
turn, generates masses for the SM fermions, for the weak gauge bosons associ-
ated with the spontaneously broken symmetry groups and, finally, for the Higgs
itself. The dynamics of the fermions in the broken phase of the electroweak theory
are described by the charged- and neutral-current interactions, and by quantum
electrodynamics.

We will briefly review EWSB in the SM in Section 2.1. Afterwards, in Sec-
tion 2.2, we will take up the aspects of physics beyond the SM (BSM) in correla-
tion with this work, namely, neutrino masses and the seesaw mechanism, lepton
number violation, dark matter and conformal theories.

2.1 The Standard Model of particle physics

The outline of this section is as follows. First, the SM gauge group and particle
content will be introduced. Then we will discuss the spontaneous breaking of
the electroweak gauge symmetry in the SM by the vev of the Higgs. Following
this, we will see how, by virtue of EWSB, gauge-invariant fermion mass terms
are obtained. Finally we will discuss the charged-current interactions between the
charged weak gauge bosons and the fermions in the presence of neutrino masses.
There, the lepton mixing matrix will be introduced. The information, on which
this section is based on, can be found in any introductory QFT textbook, see

e.g. 85, 86.
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Table 2.1: The fermion and scalar field content of the Standard Model. The SU(3).
and SU(2); rows show to which representation of the corresponding gauge group the
fields belong, and the U(1)y row specifies the Abelian hypercharge quantum number of
the fields. The indices o and 8 label the flavor of the quarks and leptons, respectively.
Note the absence of a right-handed neutrino field in the Standard Model.

[ B H+
fielld | Q¢ = (Z%) wg | de | P = (Zg) lr | H= ( HO)
L

SU(3). 3| 3 3 1| 1 1
SU(2)L 2| 1 1 2| 1 2
U(1)y 1/6 | 2/3 | —1/3 —1/2 | -1 1/2

The SM is a gauged QFT with the local symmetry group
Gsu = SU(3), x SU(2);, x U(1)y,

where the indices label the groups as color, weak isospin, and hypercharge, re-
spectively. The gauge bosons belonging to the groups are called gluons for SU(3).
and electroweak gauge bosons for SU(2); x U(1)y. We will denote them by

SUB), : ¢, i=1,...,8;
SU@2), : W i=1,2,3;
U(l)y : B,.
The properties of the SM scalar and fermionic particles with respect to the gauge
groups are listed in Table 2.1.

2.1.1 Electroweak symmetry breaking

In the SM the Higgs possesses a mass parameter u? and quartic self-interactions
A. Accordingly, the SM scalar potential is given by

V(H) = p*H H + N HTH)?, (2.1)

where the Higgs doublet H = (H™, H°)T has been introduced in Table 2.1. In
order to be stable, the potential in Eq. (2.1) must be bounded from below for large
field values, which requires A > 0. Then for 2 > 0 it only possesses a trivial
minimum. However, under the assumption that the mass parameter is negative,
u? = —|p?| < 0, the potential develops a non-trivial minimum at the field value

Vew = V| 12|/ (2.2)

This field value defines the vev in the SM.! We illustrate the Higgs or “Mexican
hat” potential, which is obtained for a negative mass parameter ;2, in Figure 2.1.

INote that in theories with more involved symmetry breaking patterns, as is the case in
conformal theories, which are the subject of this study, there can emerge vevs that are distinct
from the one in the SM. To make this distinction apparent we denote the vev of EWSB in the
SM by Vew. The numerical value of vey, is given in Eq. (2.13).

10
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Figure 2.1: Higgs potential in the complex plane of the Higgs boson’s neutral com-
ponent HY in the SM obtained for a negative mass parameter. The subspace of the
charged component is suppressed. The minimum of the potential lies at a non-zero field
value. Note the angular degeneracy of the potential’s minimum.

In the figure the potential is restricted to the complex plane of the Higgs boson’s
neutral component H°. Note that the Mexican hat potential possesses a rota-
tional symmetry with respect to the phase of H°, which in particular holds for
the minimum. Accordingly, a possible phase of the vev can always be absorbed
and is not physical. Furthermore, we can use the three gauge degrees of freedom
of the generators that get spontaneously broken by the Higgs vev to gauge away
the Goldstone modes of the Higgs. A particularly convenient choice is the unitary
gauge, in which only physical particles remain in the Lagrangian. In this gauge
the Higgs takes on the following simple form

HT 1 (hy+ihg\ uwe 1 [0
H = = — i = — 2.3
(i) =5 (i) ™ 75 () 2%
where the last expression is obtained after imposing the unitary gauge. We can

expand the Higgs field around its minimum, which was given in Eq.(2.2), by
replacing

h3(x) = Vew + hs(z) . (2.4)

When we insert the above expansion into the kinetic term for the Higgs, we obtain
the expressions and masses for the physical gauge bosons in the broken phase of
electroweak theory. The weak gauge bosons are defined as

WE = (W) Fi?) (25)
gW3 — g/B .
/
sin By = g cos thy = J (2.7)

(92 +g/2)1/2 ’ <92 +g/2)1/2 '

11
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In the last of the above equations we have introduced the Weinberg angle Oyy.
The other linear combination of the gauge fields, namely

_ gWi+gB,

= o) 3
G o sin Ow W, + cos Ow B, , (2.8)

is the photon field. Since the physical Higgs is electrically neutral, the photon does
not couple to it and remains massless. In fact, the charged degrees of freedom
of the Higgs, which would in principle couple to the photon, get eaten by the
W= bosons and become their longitudinal degree of freedom. A third degree of
freedom of the Higgs gets eaten by the Z boson. Note that we can express W/f
and B, through Z,, and A, according to

W:’ _ cgs Ow  sinfOy Z, . (2.9)
B, —sinfw costw /) \ A,
After EWSB, the weak gauge bosons and the Higgs become massive. From the

kinetic term and the potential of the Higgs their masses can be derived according
to

2,2
m2, = 2 ZGW , (2.10)
2,2 2
2 9 Vew my

= = 2.11
M2 = Y eos? Ow  cos? by’ (2.11)
Mg = 2AUZ, - (2.12)

The value of the SM vev is related to Fermi’s constant G according to

2 2

Vi, = LGpt = (246221 GV)? with G = V29 (2.13)

5 -
8 miy

The numerical value for Fermi’s constant is given by Gy = 1.1663787x 107> GeV 2
[87] to very good precision. We also quote the numerical value of the Weinberg
angle, which at m in the MS scheme is given by sin? 6y = 0.23126 [87].

2.1.2 Fermion mass terms

So far we have not considered mass terms for the fermions. We define the Dirac
mass term for a spinor ¥ = ¢{* + ¥), where « is a flavor index, according to

mass

LOTC — s Jgd;ﬁ +h.c. with map =mj, . (2.14)

For the charge conjugation of a left-handed spinor field we first define the unitary
charge conjugation matrix C' through the following relation with the Dirac -
matrices

Oy, C = =71 (2.15)

o

12
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and then choose as convention

W= () = PCY, (2.16)

where Pr denotes the right-handed projection operator. Note that with this
convention the index L/R of a particle, at first, is to be understood as a label and
not as an indicator of the chirality. In particular, the charge conjugate of a field
has opposite chirality as indicated by the label. However, we naturally preserve
the relations Py, = ¢, and Priyp, = 0 for the original spinor. A particle ¢ is
called a Majorana particle if it satisfies the Majorana condition given by

Y =y° (2.17)

up to a complex phase. Note that the above equation implies that ) = 1, + 1§ is
a Majorana particle. We define the Majorana mass term for a left-handed spinor
as [88]

/:Majorana — _%maﬁ w_ng,C + h.c. with Mag = Mgy - (218)

mass

Note, however, that in the SM the bare mass terms in Egs. (2.14) and (2.18) are
not gauge-invariant and hence forbidden. Then again, the Yukawa interactions
with the Higgs

Lyukawa = —yg‘;) Q_ﬁfluﬁ - ygg Qe Hd}, — y((j;L_fHEg +h.c. | (2.19)

where H = iooH *, are gauge-invariant. When the Higgs develops its vev ve,, and
breaks the electroweak symmetry as described in Section 2.1.1, it generates Dirac
mass terms of the form of Eq. (2.14) for the quarks and the charged leptons from
Eq. (2.19) according to

Lyukawa = —mgﬁ) uFup — m&‘g dody — m&% 0% +hee. (2.20)
where
f) y(fﬁ)
m'y = "= v with f=u,d, (. 2.21
af \/5 f ( )

Note that there is no mass term for the neutrinos in the SM due to the absence
of right-handed neutrino fields.

2.1.3 Charged-current interactions

The interactions of the weak gauge bosons and of the photon with the fermions
is contained in the covariant derivatives of the latter. Here we will focus on the
interactions of the W bosons with the fermionic charged current. These are the
charged-current (CC) interactions, which in the electroweak theory are given by

9

V2

Loo = Wi Lagyag + vivel} +ne. (2.22)
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CHAPTER 2. THE STANDARD MODEL AND BEYOND

Note that they are diagonal with respect to the fermion flavors. We take this
property of the CC interactions to define the flavor basis of the fermions. Ac-
cordingly, the Yukawa couplings and mass terms in Eqs. (2.19) - (2.21) have been
written in the flavor basis. The fermion mass matrices m'/) defined in Eq. (2.21)
are in general not diagonal. In order to find the physical masses of the SM
fermions we need to diagonalize these matrices. This can always be done with a
bi-unitary transformation

mé{ig = diag(mgf), méf), méf)) = Uéf)Tm(f)Ul({f) : (2.23)

where UIEf ) and Ulgf ) denote unitary matrices. The new basis obtained after this
transformation

=00 fe, (2.24)
f=Ur fs, (2.25)

with f = u, d, £, is called the mass basis.? To keep the discussion compressed, we
will also allow for the possibility of neutrino masses in the following. Accordingly,
we define the unitary transformation relating the flavor and mass bases of the
neutrinos according to

o= U e (2.26)

as for the other fermions. With the unitary transformations defined via Egs. (2.23) -
(2.26) we can express the charged-current interactions of Eq. (2.22) in terms of
the mass basis as

ﬁCC = %Wj {a_L’Y'u Ve CiL + ﬂ_L UPTMNS ’V#EL} +h.c. ) (2'27>
The matrices Vioyy and Upyys introduced above denote the quark mixing or CKM
matrix (for Cabibbo, Kobayashi, Maskawa) and, respectively, the lepton mixing
or PMNS matrix (for Pontecorvo, Maki, Nakagawa, Sakata). They are defined as

Ve = UM and Upnins = ULTU) (2.28)

From Egs. (2.27) and (2.28) we see that in the mass basis the CC interactions for
the quarks are no longer diagonal. Finally, we remark that if neutrinos were mass-
less, the degrees of freedom for the unitary transformation defined in Eq. (2.26)
could be used to obtain Upyns = 1. Note that the inequality between the neu-
trino flavor and mass bases leads to flavor oscillations during the propagation of
a neutrino. Accordingly, the observation of neutrino oscillations is interpreted as
a sign of neutrino masses.

2We use Greek indices (a, 3, ...) for the flavor basis and Latin indices (i, j, ...) for the
mass basis.
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2.2. BEYOND THE STANDARD MODEL

2.2 Beyond the Standard Model

In this section we will discuss BSM physics, which will be addressed in this work.
First, we will briefly review the seesaw mechanism and the current status of
neutrino phenomenology. Other BSM phenomenology addressed here includes
baryon and lepton number violation (LNV) and, in particular, neutrinoless beta
decay as well as dark matter (DM). At the end of this section we will present
the Gildener-Weinberg formalism, which is used to systematically minimize the
scalar potential in conformal theories.

2.2.1 Neutrino masses and leptonic mixing

Neutrino masses

In the introduction we have already mentioned that naturally small neutrino
masses can be generated by the Weinberg operator and also in the seesaw mecha-
nism. In the following we will elaborate on the second option. For completeness,
we note that, to this day, Dirac neutrinos with Yukawa couplings of the order of
below 107!, as would be required for neutrino masses generated via the Higgs
mechanism, do not contradict any experimental observation made and also are
considered in the literature (see e.g. [89] for a leptogenesis model with Dirac neu-
trinos).

In the canonical or type-I seesaw mechanism [78-81] the SM is extended by
three right-handed neutrino fields Ng with a large Majorana mass term (typically
above the order of 10!* GeV), which can be introduced as consequence of e.g. some
symmetry or by hand. The neutrino mass Lagrangian of the type-I seesaw in the
Majorana basis ny, = (v, Ng)T is given by

ﬁgs:;l = —N_RMDI/L - %N_FC{MRNR + h.c. = —%TL_EM ni, + h.c. s (229)
where Mp and Mg denote the 3 x 3 Dirac and Majorana mass terms, respectively.
Accordingly, the neutrino mass matrix in the above equation is defined as

0 M
M = (MD ME) : (2.30)

After diagonalization, the neutrino mass matrix possesses three very heavy eigen-
states mainly given by the right-handed neutrino fields, and three very light eigen-
states, which mainly consist of the left-handed neutrino fields. While the mass
matrix of the heavy eigenstates is approximately given by Mg, the mass matrix
of the light eigenstates is obtained in the seesaw formula [90], which to leading
order reads

m, = —MJ My" M. (2.31)
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The above equations shows that the light neutrino mass m,, is suppressed by the
large Majorana mass introduced for the right-handed neutrinos.

The type-II seesaw extends the canonical mechanism in order to include Ma-
jorana mass terms also for the left-handed neutrinos. Type-II seesaw models are
usually based on higher symmetry groups, which are eventually broken down to
the SM gauge group (see e.g. [91] based on an SO(10) GUT, and [92] for a left-
right-symmetric model). Typically, a scalar SU(2);, triplet A is introduced with
Yukawa couplings to the lepton doublet according to

Ll 5 Ly L€ ioy A Ly, + hec. (2.32)

mass

When the triplet upon spontaneous symmetry breaking develops a vev, it can
induce a Majorana mass term for the left-handed neutrinos. The left-handed
Majorana mass terms to leading order do not change the diagonalizing transfor-
mation for the neutrino mass matrix [90] and lead to an additional contribution to
the light neutrino masses. Interestingly, this contribution can be suppressed and
of the same order of magnitude as the type-I contribution from the heavy right-
handed Majorana masses. However, the suppression of the left-handed Majorana
masses has its origin in the minimization of the scalar potential. In particular,
the suppression resides in the vev of the neutral component of the scalar, A°,
which generates the left-handed Majorana masses. Note that, in principle, the
Majorana mass for the left-handed neutrinos alone could already suffice to obtain
phenomenologically correct neutrino masses.

Yet another version of neutrino mass generation is the type-III seesaw mech-
anism [93]. In this seesaw mechanism a fermionic SU(2);, triplet ¥ with heavy
Majorana mass and Yukawa coupling to the lepton doublet and the Higgs dou-
blet is introduced. Its neutral component XY plays the role of the right-handed
SU(2)y, singlet neutrinos Ng of the type-I seesaw and in consequence yields light
neutrino masses suppressed by the heavy Majorana mass of the triplet.

We remark that according to [94] the three different seesaw types described
above are the only renormalizable, tree-level realizations of the effective Weinberg
operator. We illustrate the corresponding Feynman diagrams for the tree-level
seesaw types in Figure 2.2. Besides these three canonical seesaws a wide spectrum
of altered seesaw mechanisms has been proposed, which include the inverse [82—
84], double [95], singular [96-98], linear [99-101|, schizophrenic [102| and split
[103] seesaw. For completeness, we mention that neutrino masses can also be
generated radiatively (see e.g. [94, 104] for discussions of loop-generated neutrino
masses).

After this discussion of the seesaw mechanism, let us now describe the known
phenomenology of neutrino masses and mixing.

Absolute mass scale and mass ordering

Until today three different kinds of neutrinos, namely, v., v, and v, have been
observed |72, 105, 106]. The number of light neutrino species coupled to the Z
boson has been measured in high-precision experiments at LEP as N, = 2.9840+
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2.2. BEYOND THE STANDARD MODEL

Figure 2.2: Feynman diagrams for the different tree-level seesaw types. Left: Type-I
mediated by a heavy fermionic SU(2)y, singlet (N) and type-III by the neutral compo-
nent of a heavy fermionic SU(2), triplet (X°). Right: Type-II mediated by the neutral
component of a heavy scalar SU(2)y, triplet (A?).

(H% (H%
(H% (H?% X X
X X

; I \YIO
A A
Y w——Mu

0.0082 in agreement with the expected number of neutrinos [107]. The effective
number of relativistic neutrinos related to the radiation energy density in the early
universe has been measured as Neg = 3.30702] at 95% confidence level [108]. All
mentioned observations are consistent with the three neutrino generations of the
SM. For completeness, we remark that the collected oscillation data can also be
consistently fitted to oscillations with more than three neutrino flavors, but the
fit suffers from tension between data sets from different experiments [109].

The absolute mass scale of neutrinos has not been measured, yet. However,
upper limits on the neutrino mass can be obtained from Kurie plot experiments,
neutrinoless double beta decay and from cosmological considerations. The best
limit from a direct mass measurement comes from tritium beta spectroscopy and
is given by the Mainz experiment as mg < 2.3 €V at 95% confidence level [110].
The mass observed in the experiment can theoretically be expressed as

3 1/2
mg = (Z |Ueil2m§> . (2.33)
i=1

In the future the current limit from the Mainz experiments is expected improve
down to neutrino masses of about 0.2 eV by the KATRIN experiment [111, 112].
Aside from this direct mass measurement, there are two further observables which
are sensitive to the absolute mass scale, namely, the effective Majorana mass in
neutrinoless double beta decay, m%, and the sum of relativistic neutrino species
Y,. The discussion of the effective Majorana mass will be postponed until Sec-
tion 2.2.3. The sum of relativistic neutrino species defined as

S,=) m (2.34)

=1

can be constrained by cosmological observables. If the temperature fluctuations
in the spectrum of the cosmic microwave background (CMB) radiation measured
by the Planck satellite and baryon acoustic oscillations are taken into account,
the mass sum is limited as ¥, < 0.23 eV at 95% confidence level [108]. If data
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from the Lyman-« forest power spectrum is included, the limit can be tightened
down to ¥, < 0.12 eV at 95% confidence level [113, 114].

Even though there are only upper limits for the absolute neutrino mass scale,
the differences of the mass-squares have been measured to quite some precision.
The mass-squared differences for the neutrino masses are defined as

Am2 =m? —m? with 4, j=1,2,3. (2.35)

Note that there exist only two independent mass-squared differences, which usu-
ally are chosen to be Am2, and Am?,. Since the sign of the latter is still unknown,
there exist two possible orderings for the neutrino masses called the “normal or-
dering” (NO) and “inverted ordering” (IO). They correspond to the following
relations between the neutrino masses

_ _ 2
NO: M3 > Mg > 1 = Mijghtest , ATn’Sl > 07

10: my >my > myg = Miightess, Amz; <0, (2.36)

where Myigntest denotes the lightest neutrino mass. The mass-squared differences
can be derived from neutrino oscillation experiments [73-76|. Their best-fit values
with one standard deviation are given by [115]

Am3, = (7.507017) x 107%eV?, (2.37)
|Am3,| = (2.45770047) x 107%eV?. '

Note that the presence of two individual non-vanishing mass-squared differences
implies that at least two of the three neutrinos in the SM are massive. The
individual neutrino masses can be expressed through migntest and the two mass-
squared differences according to

NO: AmZ, >0 10: Am3, <0
M1 = Miightest ; M3 = Miightest »

— 2 2 . _ 2 2.
ma = \/mlightest + A,'/n21 ) my = \/mlightest + |Am31| )

— 2 2 . — 2 2 2
ms = \/ Miightest + DM31; My = \/ Mightest + [AME, | + Am3, .

(2.38)

In the limit that mg,, .. is much larger than |[Am3,| one enters the “quasi-
degenerate” regime (QD), in which the above equations for both mass orderings
yield my &= my &= mg3. From Eq. (2.38) we see that the limit on the sum of neu-
trino masses of about 0.12 eV reported above is getting closer to the region of the
inverted ordering, for which the largest neutrino mass is bounded from below as
ms 2 0.05 eV, where we have inserted the values of the mass-squared differences
given in Eq. (2.37).

Neutrino mixing and oscillations

Neutrino oscillations were first considered by Pontecorvo [116], and Maki, Nak-
agawa and Sakata [117]. Three-flavor neutrino oscillations (in vacuum) are de-
scribed by eight parameters. These are the two independent mass-squared dif-

ferences Am?j, three mixing angles 6;;, one Dirac phase dcp and two Majorana
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phases o and 5. In the following we will abbreviate ¢;; = cos 6;; and s;; = sin 0;;.
Then the lepton mixing matrix can be parametrized by three rotations and a
phase matrix as

U= R23(9237 0) . R13(9137 (SCP) : R12(912> O) P

C12 C13 512 C13 S13 €7 10cP
= | —S12C3 — C12 523 513 €7 €13 Ca3 — 12 Sog 513 €1CP 523 C13 S
S12 S23 — C12 Cog S13€°CP  —Cyg So3 — S12 o3 S13€9F 3013
(2.39)

where P = diag(1, €, ¢'”) in the case that neutrinos are Majorana particles, and
P = 1 in the case that neutrinos are Dirac particles. The Majorana phases a and
B do not enter neutrino oscillations. They are, however, present in the effective
Majorana mass of neutrinoless double beta decay as we will see in Section 2.2.3.
We remark that the matter or MSW effect [118-121] leads to a change in the
neutrino oscillation pattern. It describes the effect of the electrons present in
matter on the electron neutrino in form of an effective potential due to neutral
current interactions.

2.2.2 Inverse seesaw mechanism

To conclude the discussion of neutrino masses we will give an example of neu-
trino mass generation within the inverse seesaw mechanism [82-84]. Note that
in Chapters 3 and 4 we will study an inverse seesaw scenario in the context of
conformal theories. In the inverse seesaw mechanism (ISS) the SM is extended
by right-handed neutrinos Ng and an equal number of left-handed neutrinos Sy,
of another species. Both are introduced as singlets of the SM gauge group. Fur-
thermore, it is assumed that the additional left-handed singlets have a relatively
small Majorana mass term p. On the other hand, a Majorana mass for the right-
handed neutrinos is forbidden, e.g. due to a suitable symmetry or due to the
absence of a scalar that could lead to a mass term after spontaneous symmetry
breaking. In the described scenario the Lagrangian containing the neutrino mass
terms is given by

LS — —Nampug, — NaMTS, — 158 1S + hee (2.40)

where we have defined the Majorana basis as ny, = (v, N§, Sp)T. According to
the above equation the neutrino mass matrix reads

0 mL 0
M=|mp 0 MT|. (2.41)
0 M pu

If we assume a hierarchy M > mp, p between the mass scales, the light neutrino
masses are given by the inverse seesaw formula

m, ~mL (MT) " u M mp . (2.42)
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In order to obtain sub-eV neutrino masses one typically chooses M of the order
of a few TeV and p in the keV range. Then again, it is apparent from Eq. (2.42)
that the neutrino mass is only sensitive to the ratio mp/M. Hence, there is no
problem in having M in the GeV range if the Yukawa couplings in the Dirac
mass term mp are sufficiently small. The remaining eigenvalues of the neutrino
mass matrix are heavy pseudo-Dirac masses of the order of £M + p. The main
difference between the type-I and the inverse seesaw is that, in the former, a huge
Majorana mass is required for the successful suppression of the neutrino masses.
On the contrary, in the inverse seesaw, suppressed masses can be obtained with
a small LNV Majorana mass @ and GeV to TeV-scale Dirac mass terms in the
heavy neutrino sector.

2.2.3 Baryon and lepton number violation

Baryon and lepton numbers B and L are accidental global symmetries of the SM
Lagrangian. Consequently, these quantum numbers are conserved in all pertur-
bative SM particle reactions.® Conversely, in our Universe we observe a striking
asymmetry between the amount of matter and anti-matter present. The baryon
asymmetry of the Universe (BAU) is given by [124]
ng = 2B —6.2x10710, (2.43)
Ny

where np and n, denote the number density of baryons and photons, respec-
tively. A theory that successfully explains the generation of the BAU is called
baryogenesis. Standard scenarios of baryogenesis satisfy the three Sakharov con-
ditions [125]: The interactions responsible for baryogenesis must violate baryon
number; they have to violate C and CP conjugation; and they need to be out of
equilibrium. It is also possible to generate the BAU via LNV, which is dubbed
leptogenesis [126]. The idea of this mechanism goes as follows. If LNV effects
generate a lepton asymmetry in the Universe (with accordingly adapted Sakharov
conditions for lepton number), this asymmetry can be converted into a BAU by
a suitable interaction violating a linear combination of baryon and lepton num-
ber. A prominent example are the non-perturbative sphalerons [122|, which are
efficient only at high temperatures and violate the combination B + L. Also the
combination B — L is typically spontaneously broken in leptogenesis. Discussing
the opportunities of leptogenesis lies beyond the scope of this work. We will, how-
ever, investigate a model, in which a gauged U(1)p_ symmetry is spontaneously
broken in Chapter 4.

Apart from cosmology, LNV effects also can show up in low-energy and high-
energy physics. In the following we will discuss one representative of the former
class. Later, in Chapter 4, we will also examine LNV collider signatures.

3The non-perturbative sphalerons [122] or, respectively, instantons [123], however, violate
B + L while at the same time conserving the difference B — L.
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Neutrinoless double beta decay

Neutrinoless double beta decay (Ovf5f) is the simultaneous decay of two neutrons
in a nucleus of an isotope (A, Z) into two protons and two electrons without the
emission of neutrinos according to

0wBp: (A, Z) — (A, Z+2)+2e . (2.44)

The non-observation of Ov3( can be interpreted as a lower limit on the half-life
of the isotope under investigation. Besides a claim of a positive signal of O3/ in
the isotope ®Ge by a fraction of the Heidelberg-Moscow collaboration [127, 128,
which, however, has received quite some criticism [129], no observation of the
decay has been reported to the present day. Recent data collected by the GERDA
collaboration strongly disfavors the claim of [127, 128] and sets the currently best
lower limit on the half-life of "*Ge as T10/l/2 > 3 x 10% y at 90% confidence level
[130]. Note that the double beta decay mode with the emission of neutrinos

WHB: (A, Z) — (A, Z +2) + 2~ + 27, (2.45)

has already been observed in several isotopes (see [131] for a calculation of the
values of the half-lives). From a particle physicist’s point of view the observa-
tion of Ovff would prove the existence of an (effective) operator that violates
lepton number by two units. The interpretation of the observation in terms of
the Schechter-Valle theorem [132], which states that an observation of the de-
cay would imply that the electron neutrino is massive, is correct but a rather
academic one [133].

Theoretically, the half-life of an isotope (A, Z) that might undergo Ovf33 can
be expressed in terms of a phase-space factor G%(Q, Z), a nuclear matrix element

M (OX 7 and a dimensionless effective parameter 7.4 according to

(Tlo/VQ)(Al’Z) = GOV(Q? Z) ‘M(OZ,Z) neﬁ‘Q : (246>
The phase-space factor is responsible for the kinematics of the decay and typically
scales with the fifth power of the endpoint energy () or (Q-value of the double-beta
spectrum. Accordingly, isotopes with a high @Q-value (typically of O (1) MeV) are
particularly suitable in order to search for Ov33. We have plotted the spectrum for
the two decay modes given in Eqs. (2.44) and (2.45) in Figure 2.3. It schematically
illustrates the distinct characteristics of the two spectra. Note, however, that
the OvfBB spectrum is strongly exaggerated in this figure. The nuclear matrix
element (NME) in Eq. (2.46) implements the transition of the nucleus into its
daughter nucleus. Since it describes a multi-particle process, the NME represents
the largest source of uncertainties in deriving particle physics constraints from the
experimental bounds on the half-life. Finally, the effective parameter 7. contains
the particle physics of the transition 2d — 2u+2e~ inside of the involved nucleons.
Note that an effective Majorana mass of Ov3 can be defined by converting the
dimensionless effective parameter into a mass according to

Ml = Meet (2.47)
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Figure 2.3: Schematic energy spectrum of the two electrons emitted in double beta
decay with (2v33, black line) and without neutrinos (Ov3s, red line). Note that the
peak of the OvfB3 curve at the endpoint energy @ is plotted strongly exaggerated to
make it visible in the graph.

2v6p
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OvBps
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Figure 2.4: Neutrinoless double beta decay (at the constituent-quark level) mediated
by neutrino exchange and charged-current interactions. The internal neutrino line im-
plies a sum over all mass eigenstates v; with mixing to the electron neutrino given by
the mixing matrix elements Uy;.

dL U,
WZL%
U, {——— .

dL u,

where m, denotes the electron mass. The effective Majorana mass is conveniently
used to transfer the half-life of O3/ into particle physics parameters.

The simplest theoretical explanation for Ov3g is referred to as mass mecha-
nism (see e.g. [134]), which was first considered in [135, 136]. It assumes that the
neutrinos we observe in oscillation experiments mediate the decay as illustrated
in Figure 2.4. For the mass mechanism the effective parameter introduced in
Eq. (2.46) is given by

3
m 1
vo— ce _ - U2~ ;
Neoft m, m. ( E ei T )

i=1

(2.48)

1 . .
2 2 2 2 2ia 2 2i
e

m3) 3

where the effective light Majorana mass m., is normalized to the electron mass m.,
and U,; denotes the elements of the neutrino mixing matrix. In the last step we
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have assumed the parametrization of the mixing matrix as presented in Eq. (2.39).
If the only contribution to Ov3/3 comes from the above equation the effective
Majorana mass defined in Eq. (2.47) is simply given by m% = m.n% = me.. To
understand the origin of Eq. (2.48) we can evaluate the leptonic fermion line of
the diagram in Figure 2.4 according to

+m m;
AOVﬁ,B ~ ZPL ezZ; UezPL =R Z &Zﬁ ) (2‘49)

i=1 v

where we have used the properties of the projection operators P? = P, PLPg =0
and PLy"* = 7" Pr. The summation is performed over all neutrino states that
mediate the decay. The typical momentum transfer in OvSf is given by p? =
—|p|*> = —(100 MeV)%* If we approximate Eq. (2.49) for light neutrinos, i.e. for
m; < |p|, we obtain an expression proportional to Eq.(2.48). If, however, the
internal neutrinos are heavy particles meaning m; > |p|, we can approximate
Eq. (2.49) to obtain the effective parameter for heavy neutrino exchange, which

is defined as
( U ) . (2.50)
i€heavy

The effective parameter in the above equation is normalized to the proton mass
m,, by convention, which is extracted from the NME.

Finally, we remark that massive Majorana neutrinos are not the only way to
realize OvGS3. In principle any new physics that violates lepton number (effec-
tively) by two units can lead to OvfSf (see [137] and [138| for a thorough cate-
gorization and analysis of the long-range and short-range interactions in Ov3s5.).
Additionally, it is possible that not only one but several mechanisms give signif-
icant contributions to the amplitude of Ov53, which can lead to constructive or
destructive interference effects (see e.g. [139-144)).

2.2.4 Dark matter

Evidence for DM has been found in the velocity dispersion of galaxies (first noted
in the Coma cluster [145]), in rotation curves of galaxies [146, 147], and in grav-
itational lensing effects (see e.g. [148] and in particular the evidences from bullet
clusters [149, 150]). The measurements of the CMB spectrum [108] and of large-
scale structures [151] have shown that ordinary (visible baryonic) matter makes
up only about 5 % of the energy budget of the universe. The larger fraction of
matter in the Universe’s of about 27 % consists of a yet unknown form of stable
matter, which is called DM. Finally, the bulk of about 68 % of the energy in the
universe exists in yet another unknown form called dark energy.

4The momentum transfer is estimated from the typical distances between nucleons in a
nucleus of 2 ~ O (1 fm?).
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For a long time, now, it has been suggested that DM is made of weakly in-
teracting massive particles (WIMPs) (see [152] for an overview of particle DM
candidates). The freeze-out density of a thermal relic X can generally be esti-
mated as [153]

2
1 m4

(Can. V) g%

Ox x (2.51)
where (0an, v) denotes the thermally averaged annihilation cross section. If the
particle’s mass myx is chosen at the electroweak scale (at about 100 GeV) and the
coupling gy is associated with the typical weak coupling strength of gyear = 0.65,
the WIMP happens to be abundant in exactly the right amount in order to match
the experimentally observed DM relic density. This natural concurrence of just
the right parameters is known as the WIMP miracle. With the latest results from
the DM searches of the XENON100 experiment [154] and the LUX experiment
[155] a large area of the available parameter region has been excluded for the spin-
independent WIMP-nucleon cross section down to the order of og; ~ 10™% cm?,
thus, disfavoring WIMP masses between the orders of 10 GeV to 1 TeV. In the
next two years the XENONIT DM search will reach its ultimate sensitivity of
os1 ~ 2 x 107% c¢m? [156]. If no DM signal is found by XENONIT, the WIMP
miracle’s appeal of naturally generating the right DM abundance will probably
fade away.

A viable alternative to DM constituted by WIMPs is found in warm DM,
which is usually characterised by a mass scale in the keV range [157|. A partic-
ularly suitable candidate for warm DM is represented by a neutrino, which does
not possess SM charges [158]. In Chapter 3 we will present a model that features
such a warm DM candidate. There we will explore how the right DM abundance
can be obtained in the context of the model.

2.2.5 The Coleman-Weinberg mechanism

In this section we will discuss spontaneous symmetry breaking in conformal theo-
ries within the Coleman-Weinberg (CW) mechanism [36]. As already anticipated
in the introduction, the concept of the CW mechanism lies in the spontaneous
breaking of the scale invariance by higher-order processes: Quantum effects lead
to the development of a non-trivial minimum in the effective scalar potential
which, in turn, induces spontaneous conformal symmetry breaking. In order to
study spontaneous conformal symmetry breaking, we will work in the Gildener-
Weinberg (GW) formalism presented in [159], which is especially suitable for
scalar sectors with many particles, as it systematizes the minimization of the
CW potential. We will present the details of the GW formalism in the following.

Let us assume that the scalar particle spectrum of the theory consists of the
real degrees of freedom ¢;. Then the most general conformal tree-level potential
can be written as

V(@) = f;jf Di0j PP (2.52)
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where ® = (¢1, ¢o, ...)T denotes the vector containing all scalar degrees of free-
dom. The dimensionless coupling constants f = f(A) depend on the renormal-
ization scale A. The tree-level potential is assumed to possess a flat direction
denoted by ®gq,., along which it vanishes. Now, quantum corrections, while nor-
mally being sub-leading effects, give a relevant contribution to the potential along
the flat direction. Accordingly, it is assumed that at a certain energy scale Agy,
called Gildener-Weinberg scale, the quantum effects induce a bent in the flat
direction. In consequence, a non-trivial minimum is generated in the potential,
which spontaneously breaks the conformal symmetry.

A necessary condition in order for the potential to develop a minimum is that
its first derivative with respect to each real scalar degree of freedom vanishes at
the minimum,

ov
a(bl min

=0 forall 7. (2.53)

If we assume a regular potential, in which all real scalar degrees of freedom appear
at least squared, the above equation is trivially satisfied for all components ¢;
that do not develop a finite vev. Consequently, the minimum condition imposes
as many conditions on the scalar couplings as there are non-vanishing vevs in
the scalar spectrum. A further condition is that the scalar tree-level potential
vanishes at the minimum. These conditions, referred to as Gildener-Weinberg
conditions, can be collectively denoted as

R(f)lA:AGW =0 (2.54)

and are required to hold at the scale of symmetry breaking Acyw. It turns out
that one of the mentioned conditions is always redundant. Next we will discuss
how we can determine the ground state of a conformal theory.

Suppose that the potential vanishes along a ray in scalar space, which is
identified as the flat direction ®g,;. Then we can characterize the flat direction
by a unit vector n pointing in the direction along the ray and the position ¢ on
the ray according to

Do =mnop. (2.55)

At tree level the flat direction represents a continuous spectrum of degenerate
vacua. As already mention, quantum effects, however, lead to a bent of the flat
direction thereby singling out the true vacuum at (®g..) = n{p). At one-loop
level the effective potential along the flat direction is given by

2
V%P (@hat) = Ap® + Bp'log ( L > , (2.56)

2
AGW

where Agyw has been chosen as the renormalization scale, and A and B denote

25



CHAPTER 2. THE STANDARD MODEL AND BEYOND

the loop functions

=S 42 D2 d; -t (nfi)) (logm—ci), 2.57)

1 2s; 4
= a2 (o) zi:(—l) di - m; (n(p)). (2.58)
The sums in Egs. (2.57) and (2.58) run over all particles in the theory, where s;,
d; and m; denote the spin, the real degrees of freedom and the tree-level mass
of the particle, respectively. The coefficients ¢; depend on the renormalization
scheme. In the MS scheme (applied here) they are given by ¢; = 2 for gauge
bosons and ¢; = % for scalars and fermions. Note that the particle’s masses in the
loop functions are understood to be evaluated at the minimum of the potential
and implicitly depend on the renormalization scale Agy through the couplings.
At this point it is important to notice that it is reasonable to take Agy as the
renormalization scale because, due to dimensional transmutation, all dimensional
quantities will be proportional to the scale of symmetry breaking.

The minimum of the one-loop effective potential defined in Eq. (2.56) is given
by

1 A

(p) = Agw - exp (Z - ﬁ> : (2.59)

which finally yields the true vacuum of the theory. This equation shows that
the GW scale Agw and the scale of the vacuum (p) are of the same order of
magnitude unless B is anomalously small. This is a necessity to guarantee the

validity of the loop expansion as perturbative series in the logarithm log ( <§\>N>.

The vacuum breaks the anomalous scale invariance also spontaneously. As
consequence, the theory contains a pseudo-Goldstone boson (PGB), which is
massless at tree level, but obtains a mass through loop corrections. In particular,
the PGB is the scalar excitation along the flat direction and its mass-squared
at one-loop level is given by the curvature of the effective potential Eq. (2.56)
according to

) 62 lloop )
MpeB = — 5 35 =8B(p)". (2.60)

As the above equation is the second derivative of the one-loop effective potential,
the extremum of the potential is a minimum only if the PGB mass-squared turns
out to be positive. In the SM, the loop function B is negative since it is dominated
by the top-quark contribution. To render B positive it is necessary to introduce
new bosonic degrees of freedom that can counteract the top-quark mass. In the
following Chapters 3 and 4 we will study two different conformal theories, which
realize this possibility.
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CHAPTER 3

CONFORMAL INVERSE SEESAW
MECHANISM

As laid out in the introduction, the hierarchy problem of the electroweak theory
demands for a modification of EWSB. We have also mentioned that the SM needs
to be extended in order to allow for neutrino masses. Following the argument of
Bardeen, we have discussed that in conformally invariant theories the hierarchy
problem is solved naturally by the absence of a physically meaningful cutoff scale.
Furthermore, we have seen how the seesaw mechanism can account for naturally
small neutrino masses in Section 2.2.1. The general picture of EWSB and neu-
trino masses in the context of conformal invariance was discussed in much detail
in [60]. In that work it was pointed out that in a conformal theory the inverse
seesaw mechanism can have an interesting phenomenology, including electroweak
precision observables, collider signatures and dark matter. Motivated by this
prospect we will study the model of the conformal inverse seesaw (CISS) mech-
anism in this chapter. The research presented in this chapter is based on the
publis