
Algorithmica
DOI 10.1007/s00453-016-0205-0

Efficient Sampling Methods for Discrete Distributions

Karl Bringmann1 · Konstantinos Panagiotou2

Received: 29 July 2014 / Accepted: 20 August 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We study the fundamental problem of the exact and efficient generation of
random values from a finite and discrete probability distribution. Suppose that we are
given n distinct events with associated probabilities p1, . . . , pn . First, we consider
the problem of sampling from the distribution where the i-th event has probability
proportional to pi . Second, we study the problem of sampling a subset which includes
the i-th event independently with probability pi . For both problems we present on two
different classes of inputs—sorted and general probabilities—efficient data structures
consisting of a preprocessing and a query algorithm.Varying the allotted preprocessing
time yields a trade-off between preprocessing and query time, which we prove to be
asymptotically optimal everywhere.

Keywords Sampling algorithm · Subset sampling · Distribution · Proportional
sampling · Data structures

1 Introduction

Generating random variables from finite and discrete distributions has long been an
important building block in many applications. For example, in computer simulations
usually a huge number of random decisions based on prespecified or dynamically
changing distributions is made. In this work we consider two fundamental compu-

A preliminary version of this paper with worse upper and lower bounds appeared at ICALP’12.

B Karl Bringmann
kbringma@mpi-inf.mpg.de

1 Max Planck Institute for Informatics, Saarbrücken, Germany

2 University of Munich, Munich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0205-0&domain=pdf

Algorithmica

tational problems, namely sampling from a distribution and sampling independent
events. We consider these problems on general probabilities as well as restricted to
sorted probabilities. The latter case is motivated by the fact that many natural distrib-
utions, such as the geometric or binomial distribution, are unimodal, i.e., they change
monotonicity at most once. After splitting up such a distribution at its only extremum,
we obtain two sorted sequences of probabilities, see Sect. 5 for a thorough discussion.
As we will see, there is a rich interplay in designing efficient algorithms that solve
these different problem variants.

We present our results on the classical Real RAM model of computation [1,13].
In particular, we will assume that the following operations take constant time: (1)
accessing the content of any memory cell, (2) generating a uniformly distributed
real number in the interval [0, 1], and (3) performing basic arithmetical operations
involving real numbers like addition, multiplication, division, comparison, trunca-
tion, and evaluating any fundamental function like exp and log. We argue in Sect. 5
that our algorithms can also be adapted to work on the Word RAM model of
computation.

1.1 Proportional Sampling

We first focus on the classic problem of sampling from a given distribution. Given
p = (p1, . . . , pn) ∈ R

n≥0, we define a random variable Y = Yp that takes values
in1 [n] such that Pr[Y = i] = pi/μ, where μ = ∑n

i=1 pi is assumed to be positive.
Note that if μ = 1 then p is indeed a probability distribution, otherwise we need
to normalize first. We concern ourselves with the problem of sampling Y. We study
this problem on two different classes of input sequences, sorted and general (i.e., not
necessarily sorted) sequences; depending on the class under consideration we call the
problem SortedProportionalSampling or UnsortedProportionalSampling.

A single-sample algorithm for SortedProportionalSampling or Unsorted-
ProportionalSampling gets input p and outputs a number s ∈ [n] that has the
same distribution as Y . When we speak of “input p” we mean that the algorithm gets
to know n and can access every pi in constant time. This can be achieved by stor-
ing all pi ’s in an array, but also, e.g., by having access to an algorithm computing
any pi in constant time. In particular, the algorithm does not know the number of i’s
with pi = 0. Moreover, the input format is not sparse. For this problem we prove the
following result.

Theorem 1.1 There is a single-sample algorithm for SortedProportionalSam-
pling with expected time O(log n

log log n

)
and for UnsortedProportionalSampling

with expected time O(n). Both bounds are asymptotically tight.

We remark that all our lower bounds only hold for algorithms that work for all
n and all (sorted) sequences p1, . . . , pn . They are worst-case bounds over the input
sequence p and asymptotic in n. For particular instances p there can be faster algo-
rithms. To avoid any confusion, note that we mean worst-case bounds whenever we

1 Throughout the paper, we abbreviate [n] = {1, . . . , n}.

123

Algorithmica

speak of (running) time and expected boundswheneverwe speak of expected (running)
time.

To obtain faster sampling times, we consider sampling data structures that support
ProportionalSampling as a query. We view building the data structure as pre-
processingof the input.Moreprecisely, in this preprocessing-queryvariantweconsider
the interplay of two algorithms. First, the preprocessing algorithm P getsp as input and
computes some auxiliary data D = D(p). Second, the query algorithm Q gets input p
and D, and samples Y , i.e., for any s ∈ [n] we have Pr[Q(p, D) = s] = Pr[Y = s].
For Pr[Q(p, D) = s] the probability goes only over the random choices of Q, so
that, after running the preprocessing once, running the query algorithmmultiple times
generates multiple independent samples. In this setting we prove the following tight
result.

Theorem 1.2 For any 2 ≤ β ≤ O(
log n

log log n), SortedProportionalSampling can
be solved in preprocessing time O(logβ n) and expected query time O(β). This is

optimal, as there is a constant ε > 0 such that for all 2 ≤ β ≤ O(
log n

log log n) Sort-

edProportionalSampling has no data structure with preprocessing time ε logβ(n)

and expected query time ε β.

Note that if we can afford a preprocessing time of O(log n) then the query time is
already O(1), which is optimal. Thus, larger preprocessing times cannot yield better
query times.Moreover, forβ = �(

log n
log log n) the preprocessing time is equal to the query

time. Thus, we may skip the preprocessing phase and run both the preprocessing and
query algorithm for every sample. We obtain a single-sample algorithm with runtime
O(

log n
log log n). This shows that β � log n

log log n makes no sense and explains why we allow

preprocessing timeO(logβ n) with 2 ≤ β ≤ O(
log n

log log n). Varying β yields a trade-off
between preprocessing and query time; if onewants to have a large number of samples,
one should set β = 2 to minimize query time, while a large β yields superior runtimes
if one wants only a small number of samples. Note that we prove a matching lower
bound for this trade-off for all β.

For general input sequences, ProportionalSampling can be solved by the tech-
nique known as pairing or aliasing [8,17]; see also Mihai Pătraşcu’s blog [14] for an
excellent exposition. Basically, we useO(n) preprocessing to distribute the probabili-
ties of all elements over n urns such that any urn contains exactly 1/n probabilitymass,
stemming from at most two elements. For querying we first choose an urn uniformly
at random. Then we choose one of the two included elements randomly according to
their probability mass in the urn, resulting in an O(1) (worst-case) query time. This
result is not new, but will be used in the proofs of Theorem 1.5 and Theorem 1.6 below,
so we include it for completeness.

Theorem 1.3 UnsortedProportionalSampling can be solved in preprocessing
timeO(n) and query timeO(1). This is optimal, as there is a constant ε > 0 such that
UnsortedProportionalSampling has no data structure with preprocessing time
εn and expected query time εn.

Note that any data structure with preprocessing time tp and query time tq can be
transformed into a single-sample algorithm with expected time tp + tq , so the single-

123

Algorithmica

sample variant of the problem is also solved by the preprocessing-query variant. This
argument proves that Theorem 1.1 follows from Theorems 1.2 and 1.3.

Related work The fundamental problem of the exact and efficient generation of ran-
dom values from discrete and continuous distributions has been studied extensively in
the literature. The seminal work [9] examines the power of several restricted devices,
like finite-state machines; the articles [6,18] provide a further refined treatment of the
topic. However, their results are not directly comparable to ours, since on the one hand
they do not make any assumption on the sequence of probabilities and use unbiased
coin flips as the only source of randomness, but on the other hand they cannot guaran-
tee efficient precomputation on general sequences. Furthermore, [7] and [10] provided
algorithms for a dynamic version of UnsortedProportionalSampling, where the
probabilities may change over time. In particular, under certain mild conditions their
results guarantee the same bounds as in Theorem 1.3. Finally, there is a solution to
UnsortedProportionalSampling [3] that can be implemented on a WordRAM
(i.e., the pi ’s are each represented by w bits, and the usual arithmetic operations on
w-bit integers take constant time) that improves upon Walker’s technique and has
optimal space and time requirements.

1.2 Subset Sampling

In the previous section we considered the problem of sampling from a distribution. In
this section we give an algorithm to randomly pick a subset S of {1, . . . , n}, where the
values pi = Pr[i ∈ S] are given as an input, and the events “i ∈ S” are independent.
In other words, we are given p = (p1, . . . , pn) as input and we want to sample a
random variable X ⊆ [n] with

Pr[X = S] =
(∏

i∈S
pi

)

·
(∏

i∈[n]\S
(1 − pi)

)

.

For shortcutwewriteμ = μp = ∑n
i=1 pi = E[X].We call the problemof sampling X

SortedSubsetSampling orUnsortedSubsetSampling, if we consider it on sorted
or general input sequences, respectively.

The motivation for this problems comes from sampling certain random graphs.
Consider for instance the Chung-Lu random graph model [4]: We are given weights
w1 ≥ · · · ≥ wn and sample a graph on vertex set [n] where the edge {i, j} is inde-
pendently present with probability min{1, wiw j∑

k wk
}. Note that for any fixed vertex i , the

edge probabilities to vertices j > i are descendingly sorted. Thus, sampling the set
of neighbors of vertex i is an instance of SortedSubsetSampling. Solving these
instances for all vertices i yields a Chung-Lu random graph, and our algorithms from
this paper do this in total time O(n log n + m), where m is the expected number of
edges. This does not match the optimalO(n+m) [11], because we ignore the structure
connecting the different arising instances. However, it serves as a motivating example.

As previously, we consider two variations of SubsetSampling. In the single-
sample variant we are given p and we want to compute an output that has the same

123

Algorithmica

distribution as X . Moreover, in the preprocessing-query variant we have a precom-
putation algorithm that is given p and computes some auxiliary data D, and a query
algorithm that is given p and D and has an output with the same distribution as X ;
where the results of multiple calls to the query algorithm are independent.

Any query algorithm cannot run faster than O(1 + μ), as its expected output size
is μ and any algorithm requires a running time of �(1). Whether this query time
is achievable depends on μ and the allotted preprocessing time, as our results below
make precise. Note that the single-sample variant of UnsortedSubsetSampling can
be solved trivially in timeO(n); we just toss a biased coin for every pi . This algorithm
is optimal, as shown by the following tight result.

Theorem 1.4 There is a single-sample algorithm for SortedSubsetSampling with
expected time

t (n, μ) =
⎧
⎨

⎩

O(μ), if μ ≥ 1
2 log n,

O
(

1 + log n

log(log n
μ

)

)

, otherwise,

and for UnsortedProportionalSampling with expected time O(n). Both bounds
are asymptotically tight for any fixed μ = μ(n).

Let us discuss what we mean by “asymptotically tight for any fixedμ = μ(n)”. Fix
any μ = μ(n). Consider any single-sample algorithm for SortedSubsetSampling
that, given any p (not necessarily with μp = μ), correctly samples from the desired
distribution. Then there exists an input p with μp = μ such that the expected time of
the algorithm on input p is �(t (n, μ)), where t (n, μ) is defined in Theorem 1.4. This
holds even if we allow the algorithm to have a very large runtime for all instances with
μp �= μ. In particular, our runtime bound is not only tight for one infinite family of
input p (realizing a particular function μ(n)), but for every μ(n) we construct a hard
family of inputs. A similar discussion applies to Theorems 1.5 and 1.6 below.

As for ProportionalSampling, the single-sample result Theorem 1.4 follows
from our results on the preprocessing-query variant below.

Theorem 1.5 For any 2 ≤ β < n, SortedSubsetSampling can be solved in pre-
processing time O(logβ n) and expected query time O(tβq (n, μ)), where

tβq (n, μ) =

⎧
⎪⎪⎨

⎪⎪⎩

μ, ifμ ≥ 1
2 log n,

1 + βμ, if μ < 1
β
logβ n,

log n

log(log n
μ

)
, otherwise.

In particular, the query time is always at mostO(1+ βμ). This is optimal, as there is
a constant ε > 0 such that for all 2 ≤ β < n SortedSubsetSampling has no data
structure with preprocessing time ε logβ n and expected query time ε tβq (n, μ) for any
fixed μ = μ(n).

123

Algorithmica

Observe that setting β = 2 in the above result yields a preprocessing time ofO(log n)

and an (optimal) expected query time of O(1 + μ).
The next result addresses the case of general, i.e., not necessarily sorted, probabil-

ities.

Theorem 1.6 UnsortedSubsetSampling can be solved in preprocessing timeO(n)

and expected query time O(1+ μ). This is optimal, as there is a constant ε > 0 such
that UnsortedSubsetSampling has no data structure with preprocessing time εn
and expected query time εn for any fixed μ = μ(n).

Both positive results in the previous theorems highly depend on each other. In particu-
lar, as is demonstrated in Sect. 2.2, we prove them by repeatedly reducing the instance
size n and switching from the one problem variant to the other.

We also present a relation between ProportionalSampling and SubsetSam-
pling that suggests that the classic problem ProportionalSampling is the easier of
the two problems (or can be seen as a special case of SubsetSampling). Specifically,
we present a reduction that allows one to infer the upper bounds for Proportion-
alSampling (Theorems 1.2 and 1.3) from the upper bounds for SubsetSampling
(Theorems 1.5 and 1.6), see Sect. 4 for details.

Related work A classic algorithm solves SubsetSampling for p1 = . . . = pn =
p in the optimal expected time O(1 + μ), see, e.g., the monographs [5] and [8],
where also many other cases are discussed. Indeed, observe that the index i1 of the
first sampled element is geometrically distributed, i.e., Pr[i1 = i] = (1 − p)i−1 p.
Such a random value can be generated by setting i1 = � log rand()

log(1−p) 	. Moreover, after
having sampled the index of the first element, we iterate the process starting at i1 +
1 to sample the second element, and so on, until we arrive for the first time at an
index ik > n. In [16] the “orthogonal” problem is considered, where we want to
uniformly sample a fixed number of elements from a stream of objects. The problem
of UnsortedSubsetSampling was considered also in [15], where algorithms with
linear preprocessing time and suboptimal query time O(log n + μ) were designed.
Our results improve upon this running time, and provide matching lower bounds.

1.3 Notation and Organization

In the remainder, we will write ln x for the natural logarithm of x , logt x = ln x/ ln t ,
and log x = log2 x . Finally, we will write rand() for a uniform random number in
[0, 1].

The rest of the paper is structured as follows. In Sect. 2 we present our new algo-
rithms, proving (the upper bounds of) Theorem 1.2 in Sect. 2.1 and Theorems 1.5 and
1.6 in Sect. 2.2. In Sect. 3 we present the lower bounds, proving (the lower bounds
of) Theorems 1.3 and 1.6 in Sect. 3.1, Theorem 1.2 in Sect. 3.2, and Theorem 1.5 in
Sect. 3.3. We present our reduction from ProportionalSampling to SubsetSam-
pling in Sect. 4. We discuss relaxations to our input and machine model and possible
extensions in Sect. 5.

123

Algorithmica

2 Upper Bounds

2.1 A Simple Algorithm for Sorted Proportional Sampling

In this section, we prove the upper bound of Theorem 1.2 by presenting an algorithm
for SortedProportionalSamplingwithO(β) expected query time afterO(logβ n)

preprocessing, where 2 ≤ β ≤ O(
log n

log log n) is a parameter. We remark that our algo-

rithm also works for β � log n
log log n , but is not meaningful in this case, because then the

preprocessing time is less than the query time.
Let p1, . . . , pn be an input sequence to SortedProportionalSampling. Con-

sider the blocks Bk := {i ∈ [n] | βk ≤ i < βk+1} with 0 ≤ k ≤ L := �logβ n	. Note
that B0, . . . , BL partition [n]. For i ∈ Bk we set pi := pβk , which is an upper bound
for pi . Let μ := ∑

i pi and μ := ∑
i pi . We also set for 0 ≤ k ≤ L

qk :=
∑

i∈Bk
pi = |Bk | · pβk = (

min(βk+1, n + 1) − βk) · pβk .

For preprocessing, we run the preprocessing of UnsortedProportionalSam-
pling on q0, . . . , qL . This takes timeO(L) = O(logβ n) using Theorem 1.3, since qk
can be evaluated in constant time.

Our query algorithm consists of two steps. First, we sample an index i with distri-
bution p1, . . . , pn . To this end, we sample a block Bk proportional to the distribution
q0, . . . , qL and then sample an index i ∈ Bk uniformly at random. Second, with prob-
ability 1− pi/pi we reject i and repeat the whole process. Otherwise we return i . This
culminates into Algorithm 1.

Algorithm 1 SortedProportionalSampling

Input: p1 ≥ . . . ≥ pn ≥ 0 and parameter 2 ≤ β ≤ O(
log n

log log n)

Preprocessing:
L := �logβ n	
qk := (min{βk+1, n + 1} − βk) · pβk

Run preprocessing of UnsortedProportionalSampling(q0, . . . , qL)

Querying:
Repeat

k := UnsortedProportionalSampling(q0, . . . , qL)

pick i uniformly at random in {βk , . . . ,min{βk+1 − 1, n}}
Exit loop with probability pi /pβk

Return i

Note that we pick index i ∈ Bk with probability proportional to pi and do not
reject it with probability pi/pi . Thus, the probability of returning a particular index
i is proportional to pi · pi/pi = pi and we obtained an exact sampling algorithm.
Moreover, in any iteration of the loop the probability r of not rejecting, i.e., of leaving
the loop, is

123

Algorithmica

r = 1

μ

n∑

i=1

pi · pi/pi .

In this equation, note the first step of samplingwith respect to p1, . . . , pn (
1
μ

∑n
i=1 pi)

and the second step of rejection (pi/pi). Clearly, this simplifies to r = μ/μ. The
following lemma shows that μ ≤ β · μ, implying r ≥ 1/β. Hence, the expected
number of iterations of the loop is O(β), and in total querying takes expected time
O(β).

Lemma 2.1 We have μ ≤ μ ≤ β · μ.

Proof The first inequality follows from pi ≤ pi . Note that for i ∈ Bk we have

i/β� ≤ βk . Thus, p
i/β� ≥ pβk . Hence,

μ =
n∑

i=1

pi ≤
n∑

i=1

p
i/β� ≤ β

n∑

i=1

pi = β · μ.

�

2.2 Subset Sampling

In this section we consider SortedSubsetSampling and UnsortedSubsetSam-
pling and prove the upper bounds of Theorems 1.5 and 1.6. An interesting interplay
between both of these problem variants will be revealed on the way.

We begin with an algorithm for unsorted probabilities that has a quite large pre-
processing time, but will be used as a base case later. The algorithm uses Theorem 1.3.

Lemma 2.2 UnsortedSubsetSampling can be solved in preprocessing timeO(n2)
and expected query time O(1 + μ).

Proof For i ∈ [n] let us denote by Si the smallest sampled element that is at least i ,
or ∞, if no such element is sampled. Then Si is a random variable such that

Pr[Si = j] = p j

∏

i≤k< j

(1 − pk) and Pr[Si = ∞] =
∏

i≤k≤n

(1 − pk).

All these probabilities can be computed on a Real RAM in time O(n) for any i , i.e.,
in timeO(n2) for all i . After having computed the distribution of the Si ’s, we execute,
for each i ∈ [n], the preprocessing of Theorem 1.3, which allows us to quickly sample
Si later on. This preprocessing takes time O(n2).

For querying, we start at i = 1 and iteratively sample the smallest element j ≥ i
(i.e., sample Si), output j , and start over with i = j + 1. This is done until j = ∞
or i = n + 1. Note that any sample of Si can be computed in O(1) time with our
preprocessing, so that sampling S ⊆ [n]will be done in timeO(1+|S|). The expected
runtime is, thus, O(1 + μ). �

123

Algorithmica

After having established this base case, we turn towards reductions between Sort-
edSubsetSampling and UnsortedSubsetSampling. First, we give an algorithm
for UnsortedSubsetSampling that reduces the problem to SortedSubsetSam-
pling. For this, we roughly sort the probabilities so that we get good upper bounds for
each probability. Then these upper bounds will be a sorted instance. After querying
from this sorted instance, we use rejection (see, e.g., [8]) to sample with the original
probabilities.

Lemma 2.3 Assume that SortedSubsetSampling can be solved in preprocessing
time tp(n, μ) and expected query time tq(n, μ), where tp and tq are monotonically
increasing in n andμ. ThenUnsortedSubsetSampling can be solved in preprocess-
ing time O(n + tp(n, 2μ + 1)) and expected query time O(1 + μ + tq(n, 2μ + 1)).

Proof Let p = (p1, . . . , pn) be an input sequence to UnsortedSubsetSampling.
For preprocessing, we permute the input p so that it is approximately sorted, by parti-
tioning it into bucketsUk := {i ∈ [n] | 2−k ≥ pi > 2−k−1}, for k ∈ {0, 1, . . . , L−1},
and UL := {i ∈ [n] | 2−L ≥ pi }, where L =
log n�. For each i ∈ Uk we set
pi := 2−k , which is an upper bound on pi . We sort the probabilities pi , i ∈ [n],
descendingly using bucket sort with the buckets Uk , yielding p′

1 ≥ . . . ≥ p′
n . In

this process we store the original index ind(i) corresponding to p′
i , so that we can

find pind(i) corresponding to p′
i in constant time. Then we run the preprocessing of

SortedSubsetSampling on p′
1, . . . , p

′
n . Note that

μ :=
n∑

i=1

p′
i =

n∑

i=1

pi ≤
n∑

i=1

max

{

2pi ,
1

n

}

≤ 2μ + 1.

Thus, the total preprocessing time is bounded by

O(n) + tp(n, μ) = O(n + tp(n, 2μ + 1)),

establishing the first claim.
For querying, we query p′

1, . . . , p
′
n using SortedSubsetSampling, yielding S

′ ⊆
[n]. We compute S := {ind(i) | i ∈ S′}. Each i ∈ S was sampled with probability
pi ≥ pi . We use rejection to get this probability down to pi . For this, we generate
for each i ∈ S a random number rand() and check whether it is smaller than or equal
to pi/pi . If this is not the case, we delete i from S. Note that we have thus sampled i
with probability pi , and all elements are sampled independently, so S has the desired
distribution. Moreover, since the expected size of S′ is μ, the expected query time is
bounded by

tq(n, μ) + O(1 + E[|S′|]) = O(1 + μ + tq(n, 2μ + 1)),

and the second claim is also established. �
We also give a reduction in the other direction, solving SortedSubsetSampling

by UnsortedSubsetSampling.

123

Algorithmica

Lemma 2.4 Let 2 ≤ β < n. Assume that UnsortedSubsetSampling can be solved
in preprocessing time tp(n, μ) and expected query time tq(n, μ), where tp and tq
are monotonically increasing in n and μ. Then SortedSubsetSampling can be
solved in preprocessing timeO(logβ n+ tp(1+ logβ n, βμ)) and expected query time
O(1+βμ+ tq(1+ logβ n, βμ)). More precisely, our preprocessing computes a value
μ with μ ≤ μ ≤ βμ and the expected query time is O(1 + μ + tq(1 + logβ n, μ)).

Proof Let p1, . . . , pn be an input sequence to SortedSubsetSampling. As in
Sect. 2.1, we consider blocks Bk = {i ∈ [n] | βk ≤ i < βk+1}, with k ∈ {0, . . . , L}
and L := �logβ n	, and let pi := pβk for i ∈ Bk . We will first sample with respect
to the probabilities pi—call the sampled elements potential—and then use rejection.
For this, let Xk be an indicator random variable for the event that we sample at least
one potential element in Bk . Then

qk := Pr[Xk = 1] = 1 − (1 − pβk)
|Bk |.

Moreover, let Yk be a random variable for the index of the first potential element in
block Bk , minus βk . Let Yk = ∞, if no element in Bk is sampled as a potential element.
Then Pr[Yk = i] = pβk (1 − pβk)i for i ∈ {0, . . . , |Bk | − 1}, and Pr[Yk = ∞] =
Pr[Xk = 0] = 1 − qk . We calculate

Pr[Yk = i | Xk = 1] = Pr[Yk = i]
Pr[Xk = 1] = pβk

qk
(1 − pβk)

i , i ∈ {0, . . . , |Bk | − 1}.

Since this is a (truncated) geometric distribution, we can sample from it in constant
time. Indeed, consider a geometric random variable Z with parameter p truncated at
m, i.e., Pr[Z = i] = p(1 − p)i/q for i ∈ {0, . . . ,m − 1}, where q := 1 − (1 − p)m .
Then �log(1 − q · rand())/ log(1 − p)	 samples from Z ; see also [8].

For preprocessing, we first compute the probabilities qk , k ∈ {0, . . . , L}. This can
be done in timeO(L) = O(logβ n) (as ab = exp(b ln a) can be computed in constant
time on a Real RAM). Then we run the preprocessing of UnsortedSubsetSampling
on them; note that the qk’s are in general not sorted. In total, the preprocessing time
is at most

O(logβ n) + tp(1 + logβ n, ν), where ν =
�logβ n	
∑

i=0

qk .

Using that (1 − x)y ≥ 1 − xy for 0 < x < 1 and y ≥ 1 we obtain

ν =
�logβ n	
∑

i=0

1 − (1 − pβk)
|Bk | ≤

�logβ n	
∑

i=0

pβk |Bk | =
n∑

i=1

pi = μ.

Using Lemma 2.1 we obtain ν ≤ βμ, and the boundO(logβ n + tp(1+ logβ n, βμ))

for the total preprocessing time follows immediately.

123

Algorithmica

For querying, we query the blocks Bk that contain potential elements, using the
query algorithm for UnsortedSubsetSampling on q0, . . . , qk . Then, for each block
Bk that contains a potential element, we sample all potential elements in this block.
Note that the first of the potential elements in Bk is distributed as Pr[Yk = i | Xk = 1],
which is geometric, sowecan sample from it in constant time,while all further potential
elements are distributed as Yk (but only on the remainder of the block), which is still
geometric. Then, after having sampled a set S of potential elements, we keep each
i ∈ S only if rand() ≤ pi/pi . This yields a random sample S ⊆ S with the desired
distribution. The overall query time is then at most

tq(1 + logβ n, ν) + O(1 + |S|) ≤ tq(1 + logβ n, μ) + O(1 + |S|)

As the expected value of |S| is μ ≤ βμ the proof is completed. �
Next, we put the above three lemmas together to prove the upper bounds of Theo-

rems 1.5 and 1.6.

Proof of Theorem 1.6, upper bound To solve UnsortedSubsetSampling, we use
the reduction Lemma 2.3 and then Lemma 2.4 (where we set β = 2), followed
by the base case Lemma 2.2. This reduces the instance size from n to O(log n), so
that preprocessing costs O(n) for the invocation of the first lemma, O(log n) for the
second, andO(log2 n) for the third. Note that μ is increased only by constant factors,
so that we indeed get the a query time of O(1 + μ).

For SortedSubsetSamplingwe first prove a weaker statement than Theorem 1.5,
which follows from simply putting together the reductions of this section.

Lemma 2.5 Let 2 ≤ β < n . Then SortedSubsetSampling can be solved in pre-
processing time O(logβ n) and expected query time O(1 + βμ). More precisely, our
preprocessing computes a value μ with μ ≤ μ ≤ βμ and the expected query time is
O(1 + μ).

Proof To solve SortedSubsetSampling, we use the reduction presented in
Lemma 2.4 followed by the upper bound of Theorem 1.6 that we proved above. This
reduces the instance size from n toO(logβ n) while μ is increased toO(1+ βμ). We
obtain the desired preprocessing time O(logβ n) and query time O(1 + βμ). �
Proof of Theorem 1.5, upper bound Assume that we are allowed preprocessing time
O(logβ̃ n) for some 2 ≤ β̃ < n. Our algorithm for SortedSubsetSampling simply

runs the preprocessing of Lemma 2.5 with β = β̃ to satisfy the preprocessing time
constraint.

For querying, we improve upon the runtime of Lemma 2.5 as follows. For any
β ∈ {2, . . . , n}, let μ(β) be the upper bound on μ computed by Lemma 2.5 given
O(logβ n) preprocessing time. Initially, we set β := β̃ so that μ(β) = μ(β̃) was

computed by our preprocessing. If 1+μ(β̃) ≤ logβ̃ n then we run the query algorithm

of Lemma 2.5 and are done. Otherwise, we repeatedly set β :=
β1/2� and rerun the

123

Algorithmica

preprocessing of Lemma 2.5, until β = 2 or 1 + μ(β) ≤ logβ n. Then we run the
query algorithm of Lemma 2.5.

It remains to analyze the runtime of this query algorithm. We consider three cases.
(1) If 1+ μ(β̃) ≤ logβ̃ n then the β-decreasing loop does not start and the query time

isO(1+μ(β̃)) ≤ O(1+ β̃μ). (2) If the β-decreasing loop breaks at β = 2, then since
it did not stop at β ∈ {3, 4} we have 1 + 4μ > log4 n, or μ = �(log n). In this case,
the total query time is O(1 + μ + log n) = O(μ). (3) Otherwise the β-decreasing
loop stopped at some β∗ with 1 + μ(β∗) ≤ logβ∗ n. Using μ(β) ≤ βμ and that we
decrease β by taking its square root, we obtain β∗ ≥ γ 1/2, where γ ≥ 2 satisfies

1 + γμ = logγ n.

The above equation solves to γ = �
(log n

μ

/
log

(log n
μ

))
. This yields a total query time

of O(logβ∗ n) = O(logγ n) = O(log n

log(log n
μ

)

)
, which proves the claimed query time. �

3 Lower Bounds

We prove most of our lower bounds by reducing the various sampling problems to the
following fact, that searching in an unordered array of length m takes time �(m). A
notable exception is Lemma 3.4.

Fact 3.1 Consider problem ArraySearch: Given m and query access to an
array A ∈ {0, 1}m consisting of m bits, with exactly one bit set to 1, find the position
of this bit. Any randomized algorithm for ArraySearch needs �(m) accesses to A
in expectation.

3.1 Proportional Sampling on Unsorted Probabilities

The lower bound for Theorem 1.3 is provided by the following lemma that reduces
ArraySearch to UnsortedProportionalSampling. Moreover, the same proof
yields the lower bound of Theorem 1.6 for UnsortedSubsetSampling.

Lemma 3.2 Any single-sample algorithm for UnsortedProportionalSampling
has expected time �(n). Moreover, any single-sample algorithm for UnsortedSub-
setSampling has expected time �(n).

Proof Let A be an instance of ArraySearch of size n, say with 1-bit at position �∗.
We consider the instance

pA = (pA
1 , . . . , pA

n) with pA
i = A[i].

Any sampling algorithm for UnsortedProportionalSampling returns �∗ on
instance pA with probability 1. Thus, simulating any algorithm for UnsortedPro-
portionalSampling (by computing pA

i on the fly) we obtain an algorithm for finding

123

Algorithmica

the 1-bit of array A. Hence, by Fact 3.1, any algorithm for UnsortedProportion-
alSampling takes expected time �(n).

Observe that on the same instance pA any sampling algorithm for UnsortedSub-
setSampling returns the set {�∗} with probability 1. This needs expected time �(n)

for the same reasons.With varyingμ, no better bound is possible, either: Ifμ ≥ 1, con-
sider anArraySearch instance A of length n−s, where s :=
μ−1�. Let pA

i = A[i]
for 1 ≤ i ≤ n − s and set the last s probabilities pA

i to values that sum up to μ − 1.
Then we still need runtime �(n − μ) by Fact 3.1. As we also need runtime �(μ) for
outputting the result, the lower bound of �(n) follows. Otherwise, if μ < 1, then we
consider p̃A

i := μ · A[i]. Since the algorithm does not know μ, it behaves just as in
the case μ = 1 until it reads pA

�∗ . However, finding �∗ takes time �(n), which yields
the result. �

3.2 Proportional Sampling on Sorted Probabilities

Here we present the proof of the lower bound of Theorem 1.2 for SortedPropor-
tionalSampling.

Proof of Theorem 1.2, lower bound Let n ∈ N and 2 ≤ β ≤ O(
log n

log log n). Let si :=
∑i−1

j=0 β j = (β i − 1)/(β − 1). Let L be maximal with sL ≤ n and note that L =
�(logβ n). Then β ≤ O(

log n
log log n) implies β = O(L). We consider blocks Bi :=

{si , si + 1, . . . , si + β i−1 − 1}, for i = 1, . . . , L , that partition {1, . . . , sL}.
Let A be an instance of ArraySearch of size L , say with 1-bit at position �∗. To

construct the instance p = pA = (pA
1 , . . . , pA

n) we set for any � ∈ {1, . . . , L} and
j ∈ B�

pA
j := β−�+A[�],

and pA
j := 0 for sL < j ≤ n. As block B� has size β�, the total probability mass of

B� is
∑

j∈B�
pA
j = β A[�], i.e., it is β for A[�] = 1, and 1 otherwise. Observe that

μ =
n∑

i=1

pA
i = L + β − 1,

since block B�∗ contributes β and each of the other L − 1 blocks contributes 1 as
total probability mass. Furthermore, note that pA

1 , . . . , pA
n is indeed sorted, as the

probability of an element in block B� is smaller by a factor of (at least) β than the
probability of an element in B�−1, except if � = �∗, in which case these probabilities
coincide.

In the following we will prove that there is no sampling algorithm where the pre-
processing reads at most εL input values and the querying reads at most εβ input
values in expectation, for a sufficiently small constant ε > 0. Assume, for the sake
of contradiction, that such an algorithm exists. On pA we run the preprocessing and

123

Algorithmica

then K times the query algorithm, sampling K numbers X1, . . . , XK ∈ {1, . . . , n}.
Denote by Yk the block of Xk , i.e., Xk ∈ BYk . If A[Yk] = 1 for some 1 ≤ k ≤ K then
we return Yk , otherwise we linearly search for the 1-bit of A.

This yields an algorithm for ArraySearch, let us analyze its expected number of
accesses to A. Since the total probability mass of block B�∗ is β, we have

Pr[Yk = �∗] = β

μ
= β

L + β − 1
= �

(β

L

)
,

since β = O(L). Thus, Pr[�k : A[Yk] = 1] = (1 − �(β/L))K = exp(−�(Kβ/L)).
Setting K = �(log(1/ε)L/β) (with sufficiently large hidden constant), this proba-
bility is at most ε. Hence, the expected number of accesses to A of the constructed
algorithm is (counting preprocessing, K queries, and a possible linear search through
A)

εL + K · εβ + Pr[�k : A[Yk] = 1] · L ≤ O(log(1/ε)εL).

For sufficiently small ε > 0 this contradicts Fact 3.1. �
Note that the same proof also works for single-sample algorithms. In this case the

preprocessing reads no input values, and the only restriction is β ≤ O(L). Setting
β = �(log(n)/ log log(n)) this yields a lower bound of �(log(n)/ log log(n)) on the
expected runtime of any single-sample algorithm for SortedProportionalSam-
pling.

3.3 Subset Sampling on Sorted Probabilities

We first prove two lemmas proving lower bounds for SortedSubsetSampling in
different situations. Then we show how the lower bound of Theorem 1.5 follows from
these lemmas.

Lemma 3.3 Let β ∈ {2, . . . , n}. Consider any data structure for SortedSubset-
Sampling with preprocessing time ε logβ n (where ε > 0 is a sufficiently small
constant) and query time tq(n, μ). Then for anyμ = μ(n)with β(1+μ) = O(logβ n)

we have tq(n, μ) = �(βμ).

Proof We closely follow the proof of the lower bound of Theorem 1.2 (Sect. 3.2).
Let si := ∑i−1

j=0 β j = (β i − 1)/(β − 1). Let L be maximal with sL ≤ n and note

that L = �(logβ n). We consider blocks Bi := {si , si + 1, . . . , si + β i−1 − 1}, for
i = 1, . . . , L , that partition {1, . . . , sL}.

Note that our assumptions imply β = O(logβ n), from which it follows that β =
O(log n) and thus L = �(logβ n) = �(log n/ log log n) grows with n. Since we can
assume that n is sufficiently large, we thus can assume the same for L . By assumption
we also have μ = O(logβ n) = O(L). If μ > L , then we introduce elements p1 =
. . . = p
μ−L� = 1. Then on the remainder p
μ−L�+1, . . . , pn we have a probability
massμ−
μ− L�, which is at most L , but still�(μ) (where we use that L is at least a

123

Algorithmica

sufficiently large constant). Hence, it suffices to show that sampling from the remainder
takes query time �(βμ). Focussing on this remainder, without loss of generality we
can from now on assume μ ≤ L .

Let A be an instance of ArraySearch of size L , say with 1-bit at position �∗. To
construct the instance p = pA = (pA

1 , . . . , pA
n), for some 0 ≤ α ≤ 1 we set for any

� ∈ {1, . . . , L} and j ∈ B� the input to pA
j := α · β−�+A[�], and for sL < j ≤ n to

pA
j := 0. As block B� has size β�, the total probability mass of B� is

∑
j∈B�

pA
j =

α ·β A[�]. Observe thatμ = ∑n
i=1 p

A
i = α(L+β−1) indeed has a solution 0 ≤ α ≤ 1,

since μ ≤ L . Furthermore, note that pA
1 , . . . , pA

n is indeed sorted.
Assume for the sake of contradiction that there is a data structure for Sorted-

SubsetSampling where the preprocessing reads at most ε logβ n input values and
the querying reads at most εβμ input values in expectation, for a sufficiently small
constant ε > 0.

On pA we run the preprocessing and then K times the query algorithm, sampling
K sets X1, . . . , XK ⊆ {1, . . . , n}. For every x ∈ ⋃K

k=1 Xk we determine its block
By and check whether A[y] = 1. If so, we have found the 1-bit of A. Otherwise we
linearly search for the 1-bit of A.

This yields an algorithm for ArraySearch, let us analyze its expected number of
accesses to A. Let �∗ be the position of the 1-bit in A. The probability of not sampling
any i ∈ B�∗ in any of the K queries is

∏

i∈B�∗
(1 − pi)

K = (1 − α · β−�∗+1)Kβ�∗ ≤ exp(−Kαβ).

This probability becomes at most ε by setting K =
ln(1/ε)/(αβ)� = �(1 +
log(1/ε)/(αβ)). Hence, the expected number of accesses to A of the constructed
algorithm is (counting preprocessing, K queries, and a linear search through A with
probability at most ε)

O(εL + K · εβμ + ε · L) ≤ O(ε(L + βμ + log(1/ε)μ/α))

≤ O(ε(log(1/ε)(L + β) + βμ)),

using μ = α(L + β − 1). Because of the condition β(1 + μ) = O(logβ n) we
can further bound the expected number of accesses to A by O(log(1/ε)εL), which
contradicts Fact 3.1 for sufficiently small ε > 0. �
Lemma 3.4 Consider any data structure for SortedSubsetSampling with pre-
processing time tp(n) and expected query time tq(n, μ). For any μ = μ(n) ≤ 1

2
we have

tp(n) + tq(n, μ) = �
(log n

log log n
μ

)
.

Note that this lemma directly implies the lower bound of Theorem 1.4 for Sorted-
SubsetSampling assuming μ ≤ 1

2 .

123

Algorithmica

Proof Let (P, Q) be a preprocessing and a query algorithm, and let p be an instance.
Let D = P(p) be the result of the precomputation. By definition we have

Pr[Q(p, D) = ∅] =
∏

i∈[n]
(1 − pi) =:
(p),

where the probability goes only over the randomness of the query algorithm, not the
preprocessing. If μp ≤ 1

2 , since pi ≤ μ one can easily check that 1 − pi ≥ 4−pi ,
which yields

(p) ≥ 4−μp ≥ 4−1/2 ≥ 1
2 .

Let P ⊆ [n] be the positions i ∈ [n] at which the preprocessing reads the value pi
during the computation of D, note that |P| ≤ tp = tp(n). Without loss of generality,
we can assume that 1, n ∈ P , i.e., that the preprocessing reads p1 and pn , as this
adjustment of the algorithm does not increase its runtime asymptotically.

For an instance p andQ ⊆ [n], let
(p,Q) be the probability that query algorithm
Q (with input p, D) reads exactly the values pi with i ∈ Q before returning ∅. We
clearly have

∑

Q⊆[n]

(p,Q) =
(p). (1)

Furthermore, if μp ≤ 1
2 and the expected query time is at most tq = tq(n, μ), we have

∑

Q⊆[n]
|Q|≤4tq

(p,Q) ≥ 1

4
. (2)

Indeed, since |Q| is a lower bound on the runtime of the query algorithm, denoting by
E the event that algorithm Q on input p, D runs for time at most 4tq we have

∑

Q⊆[n]
|Q|≤4tq

(p,Q) ≥ Pr[Q(p, D) = ∅ and E] ≥ Pr[Q(p, D) = ∅] + Pr[E] − 1.

Since Pr[Q(p, D) = ∅] =
(p) ≥ 1
2 and Pr[not E] ≤ 1

4 by Markov’s inequality, we
obtain (2).

By (2) and since the number of subsets of [n] of size at most 4tq is
∑4tq

s=0

(n
s

) ≤
(
en/4tq

)4tq ≤ n4tq /4, there exists a set Q∗ ⊆ [n], |Q∗| ≤ 4tq , with

(p,Q∗) ≥ 1

4
·
(4tq∑

s=0

(
n

s

))−1

≥ n−4tq . (3)

123

Algorithmica

Now we fix the instance p = (p1, . . . , pn) by setting

pi := α

i
,

for a parameter α > 0 chosen such that
∑n

i=1 pi = αHn = μ = μ(n), implying
α = �(μ/ log n). Fixing a set Q∗ as above for this instance p, we define a second
instance p′ = (p′

1, . . . , p
′
n) by setting

p′
i := min{p j | i ≥ j ∈ Q∗ ∪ P}.

That is, p and p′ agree on the read positionsQ∗ and P , and at all other positions p′
i is

as large as possible with p′ still being sorted. This means that the preprocessing and
the query algorithm cannot distinguish between both instances, implying a critical
property we will use,

(p′,Q∗) =
(p,Q∗).

With this, we obtain

(p′)
(1)≥
(p′,Q∗) =
(p,Q∗)

(3)≥ n−4tq . (4)

We next bound
(p′). Denote the read positions by Q∗ ∪ P = {i1, . . . , ik} with
i1 ≤ . . . ≤ ik . Note that k ≤ tp + 4tq . By assumption, we have i1 = 1, ik = n, and
we define ik+1 := n + 1. We obtain

(p′) =
∏

i∈[n]
(1 − p′

i) =
k∏

�=1

(1 − pi�)
i�+1−i� .

Using 1 − x ≤ e−x for x ≥ 0 this yields

(p′) ≤ exp

(

−
k∑

�=1

pi� (i�+1 − i�)

)

= exp

(

−α

k∑

�=1

(
i�+1

i�
− 1

))

.

Using the arithmetic-geometric mean inequality we obtain

1

k

k∑

�=1

i�+1

i�
≥

(
k∏

�=1

i�+1

i�

)1/k

≥ n1/k,

which yields
(p′) ≤ exp
(−αk(n1/k − 1)

) ≤ exp(−α(n1/k − 1)). Combining this
with (4),

exp
(
−α(n1/k − 1)

)
≥ n−4tq ≥ exp

(
−O(log2 n)

)
,

123

Algorithmica

as tq = O(log n) (otherwise the claim follows directly). Taking the logarithm twice
and rearranging,

k ≥ log n

log(1 + O(log2(n)/α))
.

Using tp + 4tq ≥ k and α = �(μ/ log n), we obtain

tp + 4tq ≥ log n

log(O(log3(n)/μ))
,

and thus tp + tq = �(
log n

log(log(n)/μ)
). �

A tedious case distinction now shows that the lower bound of Theorem 1.5 follows
from the above two lemmas.

Proof of Theorem 1.5, lower bound We prove that any data structure for Sorted-
SubsetSampling with ε logβ n preprocessing time (where ε > 0 is a sufficiently

small constant) needs query time �(tβq (n, μ)) for any μ = μ(n), where

tβq (n, μ) =

⎧
⎪⎪⎨

⎪⎪⎩

μ, if μ ≥ 1
2 log n,

1 + βμ, if μ < 1
β
logβ n,

log n

log(log n
μ

)
, otherwise.

We consider six (sub-)cases depending on μ and β, in each case reducing the claim
to Lemma 3.3 or 3.4.

Case 1, μ ≥ 1
2 : We split this into 3 subcases as follows.

Case 1.1, μ ≥ 1
2 log n: As the expected output size is μ, the expected query time is

always �(μ), which is tight in this case.
Case 1.2, μ ≥ 1

2 and 1
β
logβ n ≤ μ < 1

2 log n: In this case, we can choose 2 ≤
γ ≤ β such that μ = �(1

γ
logγ n). Solving for γ yields γ = �

(log n
μ

/
log log n

μ

)
. We

have γ ≤ 2γμ ≤ O(logγ n), so Lemma 3.3 (applied with β replaced by γ) yields a

lower bound of �(γμ) = �
(log n

log log n
μ

)
for any data structure with preprocessing time

O(logβ n) ≤ O(logγ n).

Case 1.3, 12 ≤ μ < 1
β
logβ n: These inequalities imply β ≤ 2βμ ≤ 2 logβ n. Thus,

Lemma 3.3 applies, showing that the query time is �(βμ). As any algorithm takes
time �(1), the query time is also bounded by �(1 + βμ), as desired.

Case 2, μ < 1
2 : We split this into three subcases as follows.

Case 2.1, 1
β
logβ n ≤ μ < 1

2 : Note that μ ≥ 1
β
logβ n implies β2 ≥ β logβ ≥

1
μ
log n so that logβ = �

(
log log n

μ

)
. Hence, the preprocessing time is ε logβ n =

O(
ε

log n

log log n
μ

)
. For sufficiently small ε > 0, Lemma 3.4 now implies tq(n, μ) =

�
(log n

log log n
μ

)
, as desired.

123

Algorithmica

Case 2.2, μ < 1
2 and 1

β3 log n ≤ μ < 1
β
logβ n: Then logβ = �

(
log log n

μ

)
and

logβ n = O(log n

log log n
μ

)
. Hence, with ε logβ n preprocessing time and sufficiently small

ε > 0, Lemma 3.4 implies that tq(n, μ) = �
(log n

log log n
μ

) ≥ �(logβ n) ≥ �(βμ), where

the last inequality follows from μ < 1
β
logβ n. Since any algorithm takes time �(1),

this yields a lower bound of �(1 + βμ), as desired.
Case 2.3, μ < 1

2 and μ < 1
β3 log n: Note that μ < 1

β3 log n implies μ < 1
β
logβ n.

Thus, if βμ < 1 then our query time isO(1+ βμ) = O(1), which is clearly optimal.
Hence, assume βμ ≥ 1. Together withμ < 1

β3 log n this implies β ≤ √
log n. Hence,

logβ n ≥ �(
log n

log log n) � O(
√
log n) ≥ β ≥ �(β(1 + μ)),

where the last inequality uses μ < 1
2 . Thus, Lemma 3.3 is applicable and we obtain a

lower bound of tq(n, μ) = �(βμ) = �(1 + βμ), as desired. �

4 Reduction from Proportional Sampling to Subset Sampling

In this section, we present a reduction from (Sorted or Unsorted) Proportional-
Sampling to (Sorted or Unsorted) SubsetSampling. This yields an alternative
proof of the upper bounds for ProportionalSampling (Theorems 1.2 and 1.3) using
the upper bounds for SubsetSampling (Theorems 1.5 and 1.6). Moreover, it shows
that the classic ProportionalSampling problem is easier than SubsetSampling
(or the former can be seen as a special case of the latter).

We first present a reduction that works for μ ≤ 1 and yields a query time pro-
portional to 1/μ. Then we show how to ensure 1/β ≤ μ ≤ 1 after O(logβ n)

preprocessing, which together with the first reduction shows the main result of this
section, Proposition 4.5.

4.1 Special Case

Let p be an instance to SortedProportionalSampling orUnsortedProportion-
alSampling. We assume μ ≤ 1 and will obtain a running time proportional to 1

μ
,

which is most reasonable when μ comes from a small interval [1/β, 1]. Instead of p
we consider p′ = (p′

1, . . . , p
′
n) with p′

i := pi/(1 + pi). Note that if p is sorted then
p′ is also sorted. Moreover, μ′ := ∑n

i=1 p
′
i is in the range [μ/2, μ].

Let Y = ProportionalSampling(p) be the random variable denoting propor-
tional sampling on input p, and X = SubsetSampling(p′) be the random variable
denoting subset sampling on input p′. Then conditioned on sampling exactly one ele-
ment X = {i}, this element i is distributed exactly as Y , as formulated by the following
lemma.

Lemma 4.1 We have for all i ∈ [n]

Pr[X = {i} | |X | = 1] = Pr[Y = i].

123

Algorithmica

Proof By applying Bayes’ rule we infer that

Pr [X = {i} | |X | = 1] = Pr[X = {i}]/Pr[|X | = 1]

=
(

p′
i

1 − p′
i

n∏

k=1

(1 − p′
k)

)

/

⎛

⎝
n∑

j=1

p′
j

1 − p′
j

n∏

k=1

(1 − p′
k)

⎞

⎠

=
(

p′
i

1 − p′
i

)

/

⎛

⎝
n∑

j=1

p′
j

1 − p′
j

⎞

⎠

Plugging in the definition of p′
i yields

Pr[X = {i} | |X | = 1] = pi
∑n

j=1 p j
= Pr[Y = i].

and the statement is shown. �
Moreover, the probability of sampling exactly one element is not too small, as

shown in the following lemma. This bound is not best possible but sufficient for our
purposes.

Lemma 4.2 If μ ≤ 1 then we have

Pr[|X | = 1] ≥ μ/4.

Proof First, observe that by Markov’s inequality

Pr[|X | ≥ 2] ≤ E[|X |]/2 = μ′/2 ≤ 1/2,

and thus, Pr[|X | ∈ {0, 1}] ≥ 1/2. Moreover, the definition of X implies that

Pr[|X | = 0] =
n∏

k=1

(1 − p′
k) and Pr[|X | = 1]

=
n∑

j=1

p′
j

1 − p′
j

n∏

k=1

(1 − p′
k) = μ · Pr[|X | = 0].

By putting everything together we obtain that Pr[|X | = 1](1 + 1
μ
) ≥ 1/2, and thus

Pr[|X | = 1] ≥ μ · 1

2(1 + μ)
≥ μ

4
,

as claimed. �

123

Algorithmica

We put these facts together to show the following result. We need μ ≤ 1, and we
want μ as large as possible, since the obtained running time is proportional to 1

μ
.

In the next section we will see that we can assume 1
β

≤ μ ≤ 1 after preprocessing
O(logβ n).

Lemma 4.3 Assume that (Sorted or Unsorted) SubsetSampling can be solved
in preprocessing time tp(n, μ) and expected query time tq(n, μ), where tp and tq
are monotonically increasing in n and μ. Then (Sorted or Unsorted, respectively)
ProportionalSampling on instances with μ ≤ 1 can be solved in preprocessing
time O(tp(n, μ)) and expected query time O(1

μ
· tq(n, μ)).

Proof For preprocessing, given inputp,we run the preprocessingof SubsetSampling
on input p′. This does not mean that we compute the vector p′ beforehand, but if the
preprocessing algorithm of SubsetSampling reads the i-th input value, we compute
p′
i = pi/(1 + pi) on the fly, so that preprocessing needs runtime O(tp(n, μ)) (recall

that μ′ ≤ μ). It allows to sample X later on in expected runtime O(tq(n, μ)) using
the same trick of computing p′ on the fly.

For querying, we repeatedly sample X until we sample a set S of size one. Returning
the unique element of S results in a proper sample according to SortedProportion-
alSampling by Lemma 4.1. Moreover, by Lemma 4.2 and the fact that sampling
X needs expected time O(tq(n, μ)) after our preprocessing, the total expected query
time is O(1

μ
· tq(n, μ)). �

4.2 General Case

In this subsection we reduce the general case with arbitrary μ to the special case
1/β ≤ μ ≤ 1. In the unsorted case, we simply compute μ exactly in time O(n),
which shows the following proposition. In the sorted case, we approximate μ using
an idea of Sect. 2.1, see Proposition 4.5.

Proposition 4.4 Assume that UnsortedSubsetSampling can be solved in pre-
processing time tp(n, μ) and expected query time tq(n, μ), where tp and tq are
monotonically increasing in n and μ. Then UnsortedProportionalSampling can
be solved in preprocessing timeO(n+ tp(n, 1)) and expected query timeO(tq(n, 1)).

Note that plugging Theorem 1.6 into the above proposition yields the upper bound
of Theorem 1.3.

Proof In the preprocessingwe computeμ in timeO(n), and set p̃i := pi/μ for i ∈ [n].
This rescaling ensures μ̃ = ∑

i p̃i = 1. Then we run the algorithm guaranteed by
Lemma 4.3 on p̃1, . . . , p̃n . �
Proposition 4.5 Let β ∈ {2, . . . , n}. Assume that SortedSubsetSampling can be
solved in preprocessing time tp(n, μ) and expected query time tq(n, μ), where tp and
tq are monotonically increasing in n and μ. Then SortedProportionalSampling
can be solved in preprocessing time O(logβ n + tp(n, 1)) and expected query time

O(max1/β≤ν≤1
1
ν
tq(n, ν)).

123

Algorithmica

Note that plugging Theorem 1.5 into the above proposition yields the upper
bound of Theorem 1.2 (to see the bound on the query time, note that we can set
tq(n, μ) = O(1+βμ) byTheorem 1.5 or Lemma 2.5, so thatmax1/β≤ν≤1

1
ν
tq(n, ν) =

O(max1/β≤ν≤1
1
ν
(1 + βν)) = O(β)).

Proof Let p be an instance of SortedProportionalSampling with μ = ∑n
i=1 pi .

As in Sect. 2.1 we consider the blocks Bk := {i ∈ [n] | βk ≤ i < βk+1} with
0 ≤ k ≤ L := �logβ n	 and set pi := pβk for i ∈ Bk . Then for μ := ∑n

i=1 pi we
have μ ≤ μ ≤ β · μ by Lemma 2.1. Note that we can compute μ in time O(logβ n),
as

μ =
L∑

k=0

pβk · (
min(βk+1, n + 1) − βk).

With these observations at hand, for preprocessing, we compute μ and consider
p′ = (p′

1, . . . , p
′
n) with p′

i := pi/μ. Since μ ≤ μ ≤ β · μ we have μ′ := ∑n
i=1 p

′
i

in the range [1/β, 1]. Thus, we can run the preprocessing of SortedProportion-
alSampling on p′; Lemma 4.3 is applicable since p′ has μ′ ∈ [1/β, 1]. We do this
without computing the whole vector p′. Instead, if the preprocessing algorithm reads
the i-th input value, we compute p′

i on the fly. This way we need a total runtime for
preprocessing of O(logβ n + tp(n, 1)).

For querying, Lemma 4.3 allows us to query according to p′ in expected runtime
O(1

μ′ tq(n, μ′)) ≤ O(max1/β≤ν≤1
1
ν
tq(n, ν)), where we again compute values of p′

on the fly as needed. As we want to sample proportionally to the input distribution, a
sample with respect to p′ has the same distribution as a sample with respect to p, so
that we simply return the sampled number. �

5 Relaxations

In this section we describe some natural relaxations for the input and machine model
studied so far in this paper.

Large Deviations for the Running Times The query runtimes in Theorems 1.2, 1.5 and
1.6 are, in fact, not only small in expectation, but they are also concentrated, i.e., they
satisfy large deviation estimates in the following sense. Let t be the expected runtime
bound and T the actual runtime. Then

Pr[T > kt] = e−�(k),

where the asymptotics are with respect to k. This is shown rather straightforwardly
along the lines of our proofs of these theorems, except the fact that the size of the
random set X in SubsetSampling is concentrated. Note that for any a > 1 the
Chernoff bound shows that

Pr[|X | > aμ] <

(
ea−1

aa

)μ

≤
(e

a

)aμ

.

123

Algorithmica

For μ � 1 this inequality does not show a tail bound of e−�(k) for Pr[|X | > kμ], and
in fact such a tail bound does not hold. However, it suffices that |X | is not much larger
than 1+μ to bound our algorithms’ running times, and this indeed has an exponential
tail bound, since by setting a = k(μ + 1)/μ we obtain

Pr[|X | > k(μ + 1)] <
(eμ

k(μ + 1)

)k(μ+1) ≤
(k

e

)−k
.

Partially Sorted Input The condition of sorted input for SortedSubsetSampling and
SortedProportionalSampling can easily be relaxed, as long as we have sorted
upper bounds of the probabilities. Given input p and sorted p with pi ≤ pi for
all i ∈ [n], we simply sample according to p and use rejection to get down to the
probabilities p. This allows for the optimal query time O(1 + μ) as long as μ =∑n

i=1 pi = O(1 + μ), where μ = ∑n
i=1 pi .

Unimodular Input Many natural distributions p are not sorted, but unimodular, mean-
ing that pi is monotonically increasing for 1 ≤ i ≤ m and monotonically decreasing
form ≤ i ≤ n (or the other way round). Knowingm, we can run the algorithms devel-
oped in this paper on both sorted halfs, and combine the return values, which gives
an optimal query algorithm for unimodular inputs. Alternatively, if we have strong
monotonicity, we can search for m in time O(log n) using ternary search.

This can be naturally generalized to k-modular inputs, where the monotonicity
changes k times.

Approximate Input In some applications it may be costly to compute the probabili-
ties pi exactly, but we are able to compute approximations pi (ε) ≥ pi ≥ p

i
(ε), with

relative error at most ε, where the cost of computing these approximations depends
on ε.We can still guarantee optimal query time, if the costs of computing these approx-
imations are small enough, see e.g. [12].

We sketch this for SubsetSampling. We can surely sample a superset S with
respect to the probabilities pi (

1
2). Then we want to use rejection, i.e., for each ele-

ment i ∈ S we want to compute a random number r := rand() and delete i from S
if r · pi (12) > pi , to get a sample set S. This check can be performed as follows. We
initialize k := 1. If r · pi (12) > pi (2

−k) we delete i from S. If r · pi (12) ≤ p
i
(2−k) we

keep i and are done. Otherwise, we increase k by 1. This method needs an expected
number ofO(1) rounds of increasing k; the probability of needing k rounds isO(2−k).
Hence, if the cost of computing pi (ε) and p

i
(ε) is O(ε−c) with c < 1, the expected

overall cost is constant, and we get an optimal expected query time of O(1 + μ).

Word RAM Throughout the paper we worked in the Real RAMmodel of computation,
where every memory cell can store a real number. In the more realistic Word RAM
model each cell consists of w = �(log n) bits and any reasonable operation on two
words can be performed in constant time. Additionally to the standard repertoire of
operations, we assume that we can generate a uniformly random word in constant
time. It is known that in this model Bernoulli and geometric random variates can be
drawn in constant time [2] and the classic aliasing method for UnsortedPropor-

123

Algorithmica

tionalSampling still works [3]. This already allows one to translate large parts of the
algorithms of this paper to theWord RAM. Unfortunately, terms like

∏
1≤k≤n(1− pk)

(see Sect. 2.2) cannot be evaluated exactly on the Word RAM, as the result would
need at least n bits. This difficulty can be solved by working withO(log n) bit approx-
imations and increasing the precision as needed, similarly to the generalization to
approximate input that we discussed in the last paragraph. This way one can obtain a
complete translation of our algorithms to the Word RAM. We omit the details.

Acknowledgments Open access funding provided by Max Planck Society (or associated institution if
applicable).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Borodin, A., Munro, I.: The Computational Complexity of Algebraic and Numeric Problems. Elsevier
Publishing Company, London (1975)

2. Bringmann, K., Friedrich, T.: Exact and efficient generation of geometric random variates and random
graphs. In: Proceedings of 40th International Colloquium on Automata, Languages, and Programming
(ICALP’13), pp. 267–278 (2013)

3. Bringmann, K., Green Larsen, K.: Succinct sampling from discrete distributions. In Proceedings of
45th Annual ACM Symposium on Theory of Computing (STOC’13), pp. 775–782 (2013)

4. Chung, Fan, Linyuan, Lu: The average distance in a randomgraphwith given expected degrees. Internet
Math. 1(1), 91–113 (2004)

5. Devroye, L.: Nonuniform Random Variate Generation. Springer, New York (1986)
6. Flajolet, P., Saheb, N.: The complexity of generating an exponentially distributed variate. J. Algorithms

7(4), 463–488 (1986)
7. Hagerup, T., Mehlhorn, K. and Munro, I.: Maintaining discrete probability distributions optimally. In:

Proceedings of 20th International Colloquium on Automata, Languages, and Programming (ICALP
’93), pp. 253–264 (1993)

8. Knuth,D.E.: TheArt of Computer Programming,Vol. 2: SeminumericalAlgorithms, 3rd edn.Addison-
Wesley Publishing Company, Boston (2009)

9. Knuth, D.E., Yao, A.C.: The complexity of nonuniform random number generation. In: Traub, J.F.
(ed.) Algorithms and Complexity: New Directions and Recent Results, Proceedings of a Sympo-
sium, pp. 357–428. Carnegie-Mellon University, Computer Science Department, Academic Press,
New York, NY (1976)

10. Matias, Y., Vitter, J.S., Ni, W.-C.: Dynamic generation of discrete random variates. Theory Comput
Syst 36(4), 329–358 (2003)

11. Miller, J.C., Hagberg, A.A.: Efficient generation of networks with given expected degrees. In: Pro-
ceedings of 8th International Workshop Algorithms and Models for the Web Graph (WAW’11), pp.
115–126 (2011)

12. Nacu, Ş., Peres, Y.: Fast simulation of new coins from old. Ann. Appl. Probab. 15(1A), 93–115 (2005)
13. Preparata, F.P., Shamos, M.I.: Computational Geometry. Texts and Monographs in Computer Science.

Springer, New York (1985)
14. Pătraşcu,M.:WebDiarios deMotocicleta, Sampling a discrete distribution. http://infoweekly.blogspot.

com/2011/09/sampling-discrete-distribution.html (2011)
15. Tsai, M.-T., Wang, D.-W., Liau, C.-J., Hsu, T.-S.: Heterogeneous subset sampling. In: Proceedings of

16th Annual International Computing and Combinatorics Conference (COCOON ’10), pp. 500–509
(2010)

16. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1), 37–57 (1985)

123

http://creativecommons.org/licenses/by/4.0/
http://infoweekly.blogspot.com/2011/09/sampling-discrete-distribution.html
http://infoweekly.blogspot.com/2011/09/sampling-discrete-distribution.html

Algorithmica

17. Walker, A.J.: New fast method for generating discrete random numbers with arbitrary distributions.
Electron. Lett. 10, 127–128 (1974)

18. Yao, A.C.: Context-free grammars and random number generation. In: Combinatorial Algorithms on
Words 12, 357–361 (1985)

123

	Efficient Sampling Methods for Discrete Distributions
	Abstract
	1 Introduction
	1.1 Proportional Sampling
	1.2 Subset Sampling
	1.3 Notation and Organization

	2 Upper Bounds
	2.1 A Simple Algorithm for Sorted Proportional Sampling
	2.2 Subset Sampling

	3 Lower Bounds
	3.1 Proportional Sampling on Unsorted Probabilities
	3.2 Proportional Sampling on Sorted Probabilities
	3.3 Subset Sampling on Sorted Probabilities

	4 Reduction from Proportional Sampling to Subset Sampling
	4.1 Special Case
	4.2 General Case

	5 Relaxations
	Acknowledgments
	References

