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Abstract We present deterministic and randomized algorithms for the problem of
online packet routing in grids in the competitive network throughput model (Aiello et
al. in SODA, pp 771–780 2003). In this model the network has nodes with bounded
buffers and bounded link capacities. The goal in thismodel is tomaximize the through-
put, i.e., the number of delivered packets. Our deterministic algorithm is the first online
algorithm with an O

(
logO(1)(n)

)
competitive ratio for uni-directional grids (where

n denotes the size of the network). The deterministic online algorithm is centralized
and handles packets with deadlines. This algorithm is applicable to various ranges
of values of buffer sizes and communication link capacities. In particular, it holds for
buffer size and communication link capacity in the range [3 . . . log n]. Our randomized
algorithm achieves an expected competitive ratio of O(log n) for the uni-directional
line. This algorithm is applicable to a wide range of buffer sizes and communication
link capacities. In particular, it holds also for unit size buffers and unit capacity links.
This algorithm improves the best previous O(log2 n)-competitive ratio of Azar and
Zachut (ESA, pp 484–495, 2005).
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1 Introduction

Large scale communication networks partition messages into packets so that high
bandwidth links can support multiple sessions simultaneously. Packet routing is used
by the Internet as well as telephony networks and cellular networks. Thus, the devel-
opment of algorithms that can route packets between different pairs of nodes is a
fundamental problem in networks. In a typical setting, requests for routing packets
arrive over time, thus calling for the development of online packet routing algorithms.
The holy grail of packet routing is to develop online distributed algorithms whose
performance is competitive with respect to multiple criteria, such as: throughput (i.e.,
deliver as many packets as possible), delay (i.e., guarantee arrival of packets on time),
stability (e.g., constant rate, avoid buffer overflow) , fairness (i.e., fair sharing of
resources among users), etc. From a theoretical point of view, there is still a huge gap
between known lower bounds and upper bounds for packet routing even in the simple
setting of directed paths and centralized algorithms.

We study the “Competitive Network Throughput Model” introduced by [4] for
dynamic routing on networks with bounded buffers. The goal is to route packets
(i.e., constant length formatted data) in a network of n nodes. Nodes in this model are
switcheswith localmemories called buffers. An incoming packet is either forwarded to
a neighbor switch, stored in the buffer, or erased. The resources of a packet network are
specified by two parameters: c—the capacity of links and B—the size of buffers. The
capacity of a link is an upper bound on the number of packets that can be transmitted
in one time step along the link. The buffer size is the maximum number of packets
that can be stored in a node.

1.1 Previous Work

Algorithms for dynamic routing on networks with bounded buffers have been studied
both in theory and in practice. The networks we study are uni-directional grids of d
dimensions. Such 2-dimensional grids with or without buffers serve as crossbars in
networks (see [5,6,25] for many references from the networking community). Thus,
even centralized algorithms for this task are of interest since they can be used to control
a crossbar.

Online Algorithms for Uni-directional Lines Our work on uni-directional line net-
works is based on a sequence of papers startingwith [4]. In [4], a lower boundof�(

√
n)

was proved for the greedy algorithm on uni-directional lines if the buffer size B is at
least two. For the case B = 1 (in a slightly different model), an �(n) lower bound for
any deterministic algorithm was proved by [3,7]. Both [7] and [3] developed, among
other things, online randomized centralized algorithms for uni-directional lines with
B > 1. In [3] an O(log3 n)-competitive randomized centralized algorithm was pre-
sented for buffer size B at least 2. For the case B ≥ 2, [3] proved that nearest-to-go
is Õ(

√
n)-competitive. For the case B = 1, [3] presented a randomized Õ(

√
n)-

competitive distributed algorithm. (This algorithm also applies to rooted trees when
the packet destinations are the root.) In [7], an O(log2 n)-competitive randomized algo-
rithmwas presented for the case B ≥ 2. (This algorithm also applies to rings and trees).
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Table 1 Comparison of our results to previous online algorithms for packet routing

Paper d Comp. ratio Det.\Rand. Range of B, c Remarks

Angelov et al. [3] 2 �̃(n2/3) Det. B > 1 Distributed,
nearest-to-go, 1-bend
routing

Angelov et al. [3] 1 Õ(
√

n) Det. B > 1 Distributed, nearest-to-go

Angelov et al. [3] 1 Õ(
√

n) Rand. B = 1 Shared randomness,
distributed

Angelov et al. [3] 1 O(log3 n) Rand. B > 1 Centralized

Azar and Zachut [7] 1 O(log2 n) Rand. B > 1 Centralized, FIFO buffers

Theorem 4 1 O(log5 n) Det. [3, log n] Centralized, preemptive,
deadlines

Theorem 10 d O(logd+4 n) Det. [3, log n] Centralized, preemptive,
deadlines

Theorem 13 d O(log n) Det. B, c > log n, B/c = nO(1) Centralized, deadlines

Theorem 29, 31 1 O(log n) Rand. B ∈ [1, log n], c ≥ 1 Centralized

Theorem 30 1 O(log n) Rand. log n ≤ B/c ≤ nO(1) Centralized

The networks are uni-directional d-dimensional directed grids. Unless written otherwise link capacities are
unit. In the special case of B = 0 and c ≥ 3, the algorithm stated in Theorem11 is O(logd+2 n)-competitive.
The remark “deadlines” means that the algorithm handles requests with deadlines

Online Algorithms for Uni-directional Grids Angelov et al. [3] showed that the
competitive ratio of greedy algorithms in uni-directional 2-dimensional grids is�(

√
n)

and that nearest-to-go policy achieves a competitive ratio of �̃(n2/3).

Other Related Results Kleinberg and Tardos [18] studied the disjoint path problem
in undirected planar graphs (see [18] for a formal description of the family of graphs
for which their results hold). They presented constant approximation randomized
algorithm for this problem as well as an online algorithmwith logarithmic competitive
ratio. Note that our results apply to high-dimensional grids that do not satisfy the
planarity requirement in [18].

Leighton et al. [19] and subsequent works [20,23,24] deal with a different model
for packet routing. In this model, there are unbounded input queues and bounded
intermediate buffers. In addition, each packet comes with a path along which it is sent.
The latency of each packet is O(C + D), where C denotes the maximum congestion
and D denotes the length of a longest path.

Offline algorithms for trees and meshes were studied in [5] . They obtained a loga-
rithmic approximation ratio for unbounded buffers and a constant approximation ratio
for bufferless networks. Offline packet routing for uni-directional lines was studied
in [16,22].

1.2 Our Results

In this paper, we unify results from [13,14] with slightly improved constants. The fol-
lowing results are presented for online packet routing in d-dimensional uni-directional
grids (for d = O(1)). See Table 1 for a comparison of our results to previous results.
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Deterministic Online algorithmWe present a centralized deterministic online algo-
rithm for packet routing in uni-directional grids with n nodes. Our algorithm achieves
a polylogarithmic competitive ratio for a wide combination of parameters described
below. (The buffer size is denoted by B and the link capacities are denoted by c.)
The deterministic packet-routing algorithm handles requests with deadlines, allows
preemptions (i.e., packets may be dropped before they reach their destination), and
employs adaptive routing (i.e., part of the route is computed while the packet is trav-
eling to its destination).

(i) For B, c ∈ [3 . . . log n], the competitive ratio of the algorithm is O(logd+4 n) for
uni-directional grids of dimension d.

(ii) For B = 0 and c ≥ 3, the competitive ratio of the algorithm is O(logd+2 n) for
uni-directional grids of d dimensions. In the trivial case of a uni-directional line
(i.e., d = 1), our algorithm is degenerated to the nearest-to-go policy [4] and is
optimal.

(iii) For B, c ≥ log n and B/c = nO(1) the algorithm reduces to online integral
path packing [2,10]. The competitive ratio of the algorithm is O(log n) for uni-
directional grids, independent of the dimension d. In this algorithm, packets are
either rejected or routed but not preempted.

In the rest of the paper, we address the algorithm for uni-directional grids as the
‘deterministic’ algorithm.

A Randomized Algorithm for the One Dimensional Case We present a cen-
tralized online randomized packet routing algorithm for maximizing throughput in
uni-directional lines.1 Our algorithm is nonpreemptive; rejection is determined upon
arrival of a packet. Our algorithm is centralized and randomized and achieves an
O(log n)-competitive ratio. In addition to handling the case that B = 1 and c = 1,
our algorithm improves over previous algorithms as follows:

(i) The competitive ratio is O(log n) compared to the best previous competitive ratio
of O(log2 n) by Azar and Zachut [7].

(ii) Our algorithm works also for buffers of size B = 1 (with no restriction on the
link capacities).

(iii) We consider also the parameter c of the capacity of the links ([3,7] considered
only the case c = 1).

(iv) The O(log n) competitive ratio applies for the following combination of para-
meters: (1) B ∈ [1, log n] and c ≥ 1, or (2) log n ≤ B/c ≤ nO(1) .

In the rest of the paper, we address the algorithm for uni-directional lines as the
‘randomized’ algorithm.

1 We remark that the randomized algorithm can be generalized to d-dimensional grids to obtain competitive
ratios that are (O(log n))d . In light of similar competitive ratios with the deterministic algorithm, we omit
the description and analysis of the randomized algorithm for d-dimensional grids.
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1.3 Techniques

Reduction of Packet-Routing to Circuit Switching Packet routing is reduced to a
circuit switching problem [2,18] by applying a space-time transformation [1,6,7,22].
We extend the space-time transformation of [7] so that it also supports deadlines.

The reduction of packet routing to circuit switching relies on the ability to bound
the path lengths without losing toomuch throughput. In [7] a bound on the path lengths
that incurs only a constant fraction loss of throughput is proven for routing in a uni-
directional line. We extend the lemma of [7] to d-dimensional grids and to general
values of buffer sizes B and link capacities c.

This implies that online packet-routing is reduced to the well studied problem of
online packing of paths [2,10]. Algorithms for online packing of paths either reject a
request or assign a path to a request (i.e., perform call admission). The edge capacities
of the space-time graph are B and c. If the capacities are large, i.e., B, c ≥ log n, then
the online path packing algorithm by Awerbuch et al. [2] achieves a log n competitive
ratio, where n is number of vertices of the (original) graph, as required. In the case
where the capacities are small, i.e., B, c < log n, the algorithm by [2] does not apply,
hence we coalesce groups of nodes by tiling [9,18]. This induces a new graph, called a
sketch graph inwhich the capacities are (again) large.We apply the online path packing
algorithm over the sketch graph, but are left with the problem of translating paths over
the sketch graph to paths over the space-time graph. We refer to this translation as
detailed routing. We use the framework of Buchbinder and Naor [10,11] for online
path packing because it helps us point out the tradeoffs between the path lengths, the
competitive ratios, and the overloading of edges.

Detailed Routing The path packing algorithm computes a path over the sketch graph,
and the algorithm must translate this sketch path to a detailed path over the space-
time graph. The detailed path traverses the same tiles that are traversed by the sketch
path and bends whenever the sketch path bends. Detailed routing has been addressed
before in undirected graphs [9,18] aswell as in space-time graphs of the uni-directional
line [22].

Detailed routing is not always successful; indeed, we need to bound the fraction of
the requests that are lost during detailed routing. In the deterministic algorithm, the
detailed routing technique partitions each path in the sketch graph into three parts, and
reserves only a unit of capacity for each part. This is the reason why the algorithm
requires B, c ≥ 3. In some parts of the detailed routing, we reduce the problem of
detailed routing to online interval packing. This reduction uses an online procedure for
packing intervals on a line (which is, in fact, a nearest-to-go routing policy). We apply
an online distributed simulation of the optimal interval packing algorithm [17]. The
correctness of this simulation is based on the ability of the packet-routing algorithm
to preempt (i.e., drop) packets.

Classify and Select Requests are categorized as near or far, and the algorithm ran-
domly chooses to deal with one category of requests. The categorization is based on
the tiles. A request that can be routed within a tile is considered near; otherwise it is
a far request.
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Randomization is also employed to choose a random subset of the requests so as to
further weaken the adversary.We use random phase shifts that determine the quadrants
within tiles from which paths may start.

Random Sparsification Requests that are assigned sketch paths by the online path
packing algorithm are randomly sparsified. This random sparsification has two roles:
(1) Reduction of loads of sketch graph edges incurred by the path packing algorithm
to a small constant fraction with high probability. (2) Solving the problem that the
source nodes of requests may be densely packed in an area A. The capacity of the
edges that enable routing paths out of A is proportional to the “perimeter” of A, while
the number of source nodes in A is proportional to the “area” of A. In a d dimensional
grid, the area of a subregion can be as large as the perimeter of the subregion to the
power d. By applying random sparsification, the number of remaining paths whose
source node is in a quadrant of a tile roughly equals the perimeter of the quadrant.

Comparison to [7]. There are three main differences between this paper and [7].
Node Model Thefirst difference is the nodemodel for Store-and-ForwardNetworks.

(see “Appendix 6” for a detailed comparison.) We believe that our model is simpler
and more realistic. The linear lower bounds [3,7] on the competitive ratio for the case
of unit buffer sizes do not hold for our model. In fact, our randomized algorithm is
O(log n)-competitive even if buffer capacities are unit.

Integral Solution First, Sparsify Later The second difference is in the algorithmic
design. The online algorithm in [7] computes a fractional solution and rounds it to an
integral solution. In this paper, the online algorithm computes a (non-feasible) integral
solutionwhich is randomly sparsified to obtain feasibility. The sparsification technique
helps in dealing with the logarithmic ratio between the number of request sources in
a quadrant of a tile and the cut along which these requests must be routed. For more
details on this sparsification see Sect. 7.4 and in particular Sect. 7.4.3.

Tiling and Detailed Routing We employ tiling to “increase” the capacities of the
input graph to �(log n). These high capacities enable the use of known online path
packing algorithms [2,10] that are O(log n) competitive. Since the tiling produces a
“low resolution” sketch graph, the outcome of the online path packing procedure is
sketch paths that need to be translated to the higher resolution graph, i.e., the input
graph. This translation is called “detailed routing”. We designed the detailed routing
procedure in our algorithm so that it is modular. This modulatory enables us to show
its correctness and its effect over the competitiveness of the algorithm. Moreover,
detailed routing is adaptive and computed in a distributed on-the-fly fashion. This part
of the online algorithm is different in the deterministic and randomized algorithm,
e.g., in the deterministic algorithm some of the packets are dropped during detailed
routing. For more details see Sects. 5.2 , and 7.4.2.

1.4 Organization

The formal definition of the problem is stated in Sect. 2. In Sect. 3, the reduction
of packet-routing to path packing is presented. In Sect. 4, we outline the steps of
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the deterministic algorithm. In Sect. 5, we elaborate on each step of the determin-
istic algorithm with respect to uni-directional lines and prove that the algorithm is
O(log5 n)-competitive, where n is the number of nodes. In Sect. 6 we present a
generalization of the deterministic algorithm to the d-dimensional case and exten-
sions to special cases, such as: bufferless grids, and grids with large buffers and
large link capacities. In Sect. 7 we design and analyze a randomized algorithm
for uni-directional lines. Our randomized algorithm achieves a competitive ratio
of O(log n).

2 Problem Definition

2.1 Store-and-Forward Packet Routing Networks

We consider a synchronous store-and-forward packet routing network [3,4,7].
Each packet is specified by a 4-tuple ri = (ai , bi , ti , di ), where ai ∈ V is the source

node of the packet, bi ∈ V is the destination node, ti ∈ N is the time step in which
the packet is input to ai , and di is the deadline. Since we consider an online setting,
no information is known about a packet ri before time ti . Deadlines mean that the
algorithm is only credited for delivering packet ri to its destination bi before time
di .

The network is a directed graph G = (V, E). Each edge has a capacity c that
specifies the number of packets that can be transmitted along the edge in one time
step. Each node has a local buffer of size B that can store at most B packets. Each
node has a local input through which multiple packets may be input in each time
step. The network operates in a synchronous fashion with a delay of one time step for
communication. This means that a single time step is needed for a packet to traverse
a single link.

In each time step, a node v considers the packets arriving via the local input, the
packets arriving from incoming edges, and the packets stored in the buffer. Packets
destined to node v (i.e., bi = v) are removed from the network (this is considered a
success provided that the deadline has not passed, and no further routing of the packet
is required). As for the other packets, the node determines which packets are sent
along outgoing edges (i.e., forwarded) and which packets are stored in the buffer. The
remaining packets are deleted.

The literature contains two differentmodels of node functionality.We use themodel
used by [6,22]. The reader is referred to “Appendix 6” for a comparison between two
different models of node functionality; this comparison is mostly of interest for the
case B = 1.

We use the following terminology. A packet is rejected if it is locally input to a
node and the node deletes it. A packet that is locally input but not rejected is called
an injected packet. A packet is preempted or dropped if it was injected and deleted
before it reached its destination.

The task of admission control is to determine which packets are injected and which
are rejected. An algorithm that drops packets is a preemptive algorithm; an algorithm
that does not drop packets is called a non-preemptive algorithm.
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Fig. 1 A 4 × 4 grid network
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2.2 Grid Networks

A two dimensional �1×�2 uni-directional grid network is a directed graphG = (V, E)

defined as follows (see Fig. 1). The set of vertices is V � [�1] × [�2], where [�]
denotes the set of integers {1, . . . , �}. We denote the number of vertices by n (i.e.,
n = �1 · �2). There are two types of edges: horizontal edges (i, j) → (i + 1, j) and
vertical edges (i, j) → (i, j +1). For each packet, the source node ai = (ai (x), ai (y))

and the destination node bi = (bi (x), bi (y)) satisfy ai ≤ bi (i.e., ai (x) ≤ bi (x) and
ai (y) ≤ bi (y)). We refer to an �1 × �2 two dimensional directed grid network simply
as a grid.

A d-dimensional grid is defined analogously over a vertex set V � [�1]×· · ·×[�d ].
Our analysis applies to the case that d is a constant.

Capacities and Buffers We assume uniform capacities and buffer sizes. Namely,
(i) all edges in the grid have the same capacity, denoted by c; and (ii) all nodes have
the same buffer size, denoted by B.

2.3 Online Maximum Throughput in Networks

The throughput of a packet routing algorithm is the number of packets that are
delivered to their destination before their deadline. We consider the problem of
maximizing the throughput of an online centralized deterministic packet-routing
algorithm.

Let σ denote an input sequence. Let alg denote a packet-routing algorithm.
Let alg(σ ) denote the subset of requests in σ that are delivered on time by alg .
The throughput obtained by alg on input σ is the size of the set alg(σ ), i.e.,
|alg(σ )|. Let opt(σ ) denote the subset of requests in σ that are delivered by an
optimal throughput routing. An online deterministic alg is ρ-competitive if for every
input sequence σ , |alg(σ )| ≥ 1

ρ
· |opt(σ )|. An online randomized algorithm is ρ-

competitive with respect to an oblivious adversary, if for every input sequence σ ,
E[|alg(σ )|] ≥ ρ · |opt(σ )|, where the expected value is over the random choices
made by alg [8].

2.4 Problem Statement

The Input The online input is a sequence of packet requests σ = {ri }i . Each packet
request is specified by a 4-tuple ri = (ai , bi , ti , di ) over a grid network G = (V, E).
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Fig. 2 The space-time graph
Gst with the new sink nodes
(shown on the rightmost
column)
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We consider an online setting, namely, the requests arrive one-by-one, and no infor-
mation is known about a packet request ri before its arrival.

The Output In each time step, the packet-routing algorithm decides what each of the
packets in the network should do. This decision can be either reject a new packet,
preempt an existing packet, store a packet in a buffer of the node which the packet has
reached, or forward the packet to a neighboring node.

The Objective The goal is to maximize the number of packets that are successfully
routed (i.e., reach their destination before the deadline expires).

3 Reduction of Packet-Routing to Path Packing

3.1 Space-Time Transformation

A space-time transformation is a method to map traffic in a directed graph over time
into a directed acyclic graph [1,6,7,22]. Consider a directed graph G = (V, E)

with edge capacities c and buffer size B. The space-time transformation of G is
the acyclic directed infinite graph Gst = (V st , Est ) with edge capacities cst (e),
where: (i) V st � V × N. (ii) Est � E0 ∪ E1 where E0 � {(u, t) → (v, t + 1) :
(u, v) ∈ E , t ∈ N} and E1 � {(u, t) → (u, t + 1) : u ∈ V, t ∈ N}. (iii) The
capacity of all edges in E0 is c, and all edges in E1 have capacity B. Note that the
space-time graph corresponding to a d-dimensional grid is a (d + 1)-dimensional
grid. Figure 3a depicts the space-time transformation in the one dimensional
case.

Adding Sink Nodes Following [7], we add sink nodes to define a specific destination
node for each request. For every vertex v in the line, we define a sink node v̂ (see
Fig. 2). A copy of a vertex v ∈ V in the space-time graph Gst is a space-time vertex
(v, t) ∈ V st for some t . We add an incoming edge of infinite capacity to the sink node
v̂ from each tile s that contains a copy (v, t) of v.
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3.2 Untilting

A standard drawing2 of the space-time graph of a grid is a lattice generated by non-
orthogonal vectors. This drawing is hard to depict and deal with, hence we apply
a transformation called untilting defined as follows (see [22] for untilting in two
dimensions).

We rectify the drawing of the space-time graph of a grid by applying an automor-
phism q : Zd+1 → Z

d+1 defined by q(x1, . . . , xd , t) � (x1, . . . , xd , t − ∑d
i=1 xi ).

We refer to this transformation as untilting. The sole purpose of applying untilting is to
obtain a drawing of the space-time graph of a grid in which the edges are axis parallel.
Such an axis parallel drawing simplifies the definition of tiles. Note that the image
of some of the vertices in Gst is outside the positive quadrant. Figure 3b depicts the
untilted space-time graph in the one dimensional case. [e.g., the node (2, 1) is mapped
to (2,−1).]

3.3 Tiling

The term tiling refers to a partitioning of the nodes of the space-time graph Gst into
finite sets with identical geometric “shape”.

Tiling is obtained by a partitioning of Zd+1 by disjoint (d + 1)-dimensional cubes
with side-length k. (For the sake of simplicity Z

d+1 is partitioned to cubes. One can
save a logarithmic factor in the competitive ratio by a partitioning to boxeswith unequal
side length. See Sect. 7.2 for an example of such a partitioning).

A tile s is a maximal subset of V st such that its image q(s) (after untilting) is
contained in a cube. Formally, given a cube side-length k, a tile is defined by its lower
corner p ∈ Z

d+1, where the coordinates of p are integral multiples of k. The lower
corner p defines the tile sp � {v ∈ V st : p ≤ q(v) < p + k · �1}, where �1 is the all
ones vector. Note that some of the tiles in V st are partial, namely contain less than kd

vertices (see Fig. 3c, d). In this case, we augment partial tiles by dummy vertices so
that they are complete. Note that a dummy vertex is never an internal vertex in a path
between non-dummy vertices, and hence, this augmentation has no effect on routing.

3.4 The Sketch Graph

The sketch graph is the graph obtained from the space-time graph after coalescing each
tile into a single node (sink nodes remain unchanged). There is a directed edge (s1, s2)
between two tiles s1, s2 in the sketch graph if there is a directed edge (α, β) ∈ Est such
that α ∈ s1 and β ∈ s2. The capacity c(s1, s2) of an edge (s1, s2) in the sketch graph
is simply the sum of the capacities of the edges in Gst from vertices in s1 to vertices
in s2 (i.e., the capacity of a vertical edge between two tiles c · τ and the capacity of a
horizontal edge is B · Q). Figure 3e depicts an untilted sketch graph of a space-time
graph of a one dimensional grid.

2 For d = 2, the Gst has a 3-dimensional standard drawing in which: (i) a node (i, j, t) ∈ V st is mapped
to the point (i, j, t), and (ii) edges are mapped to straight segments between their endpoints.
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Fig. 3 a The tilted space-time graph Gst . The horizontal axis is the (infinite) time axis and the vertical axis
is the (finite) node axis. b The untilted space-time graph Gst . The encapsulated path in (a) corresponds to
the encapsulated path in (b). Diagonal edges depict edges in E0. Edges in E1 are depicted by horizontal
edges. c The corresponding tiling of the (tilted) space-time graph Gst . The bolded parallelogram with dark
grey in (c) corresponds to the bolded rectangle with dark grey in (d). d Tiling of the untilted space-time
graph Gst by 2 × 4 rectangles. e The sketch graph over the tiles S
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The sketch graph also has node capacities for nodes that correspond to tiles (i.e., not
sinks). The capacity of every node that corresponds to a tile is c(s) = 2 · k2 · (B + c).

Notation We denote the sketch graph by S = (V (S), E(S)). We abuse notation and
often refer to the nodes of S (that are not sinks) as tiles.

3.5 Online Packing of Paths

A reduction of packet routing to packing of paths is presented in Sect. 5.1. We briefly
overview the topic of online packing of paths.

Consider a graph G = (V, E) with edge capacities c(e). Edges have soft capacity
constraints (i.e., the capacity constraint may be violated, and one goal is to minimize
the violation). The adversary introduces a sequence of connection requests {ri }i , where
each request is a source-destination pair (ai , bi ). The online packing algorithm must
either return a path pi from ai to bi or reject the request.

Consider a sequence R = {ri }i∈I of requests. A sequence P = {pi }i∈J is a (partial)
routing with respect to R if J ⊆ I and each path pi connects the source-destination
pair ri . The load of an edge e induced by a routing P is the ratio |{p j ∈ P : e ∈
p j }|/c(e). A routing P with respect to R is called a β-packing (or β-feasible) if the
load of each edge is at most β. The throughput of a packing P = {pi }i∈J is simply
|J |.

An online path packing algorithm is (α, β)-competitive if it computes a β-packing
P whose throughput is at least 1/α times themaximum throughput over all 1-packings.

If each request is served by a single path, then the routing is nonsplittable.
A fractional packing is a multi-commodity flow. Each demand can be (partly)

served by a combination of fractions of flows along paths. A sequence Pf = {Pi }i∈I

is a fractional (splittable) routing with respect to R if each path pi ∈ Pi connects
the source-destination pair ri , and the total flow allocated by paths in Pi is at most
one. The throughput of a fractional splittable path packing Pf = {Pi }i∈I is the sum
of the allocated flows along every path in Pf . An optimal offline fractional packing
can be computed by solving a linear program. Obviously, the throughput of an opti-
mal fractional packing is an upper bound on the throughput of an optimal integral
packing.

The proof of the following theorem appears in “Appendix 5”. The proof is based
on techniques from [2,10]. We refer to the online algorithm for online integral path
packing by ipp.

Theorem 1 Consider an infinite graph with edge capacities such that mine c(e) ≥ 1.
Consider an online path packing problem in which a path is legal if it contains at most
pmax edges. Assume that there is an oracle, that given edge weights and a connection
request, finds a lightest legal path from the source to the destination. Then, there exists
a (2, log(1 + 3 · pmax))-competitive online integral path packing algorithm. More-
over, the throughput is at least 1/2 times the maximum throughput over all fractional
packings.
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3.6 Polynomial Path Lengths

Notation Consider a directed graph G = (V, E) over n vertices with edge capacities
c and buffer size B in each vertex. Let Gst denote the space-time graph of G (see
Sect. 3.1).

Consider a sequence R = {ri }i of routing requests (without deadlines) over Gst ,
i.e., each request is a three-tuple ri = (ai , bi , ti ) that requires a path from (ai , ti ) to a
copy of bi in Gst , that is, (bi , t) for t ≥ ti .

Let opt f (R) denote an optimal fractional path packing in Gst with respect to
R = {ri }i . Let opt f (R | pmax) denote an optimal fractional path packing in Gst with
respect to R = {ri }i under the constraint that each request is routed along a path of
length at most pmax. Let |g| denote the throughput of a fractional path packing g.

The following lemma shows that bounding path lengths (in a fractional path packing
problem over a space-time graph) by a polynomial decreases the throughput only by
a constant factor. The lemma is an extension of a similar lemma from [7]. The proof
of Lemma 2 appears in “Appendix 1”.

Lemma 2 Let pmax ≥ 2n · (1 + B
c ). Then,

|opt f (R | pmax)| ≥ 1

2
·
(
1 − 1

e

)
· |opt f (R)| .

We remark that a trivial lower bound on the path lengths is �(B/c) if we want to
be able to route a constant fraction of the optimal throughput. Indeed, if B packets
are injected simultaneously to the same node in a line, then at most c packets can
be forwarded in each step. Hence �(B/c) steps are required to forward a constant
fraction of the packets. This justifies the term B/c in the definition of the maximum
path length (see Lemmas 2 and 19).

4 Outline of the Deterministic Algorithm

The listing of the deterministic framework appears in Algorithm 1. Upon arrival of a
request ri , the algorithm reduces the packet request to an online integral path packing
over the sketch graph with bounded paths. The algorithm then executes the online
algorithm for online integral path packing (ipp) with respect to this path request. If the
path request is rejected by the ipp algorithm, then the algorithm rejects ri . Otherwise,
let p̂i denote the sketch path assigned to the request ri . The algorithm injects the
request ri with its sketch path p̂i and performs detailed routing in the space-time
graph Gst . Detailed routing in Gst may fail (see Sect. 5.2). In case of failure, the
algorithm preempts ri .

To simplify the description, we begin in, Sect. 5, by presenting a detailed descrip-
tion and proof for the one-dimensional case. The required modifications for higher
dimensions are described in Sect. 6. We also assume that there are no deadlines (i.e.,
di = ∞), hence each packet is specified by a 3-tuple ri = (ai , bi , ti ); we reintroduce
deadlines in Sect. 5.4.
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Algorithm 1 The deterministic framework. The algorithm receives a sequence of packet requests over
the network G = (V, E) and it either rejects, injects, or preempts these packet requests. A packet arrives
at its destination if it is not rejected or preempted. The deterministic algorithm executes the ipp algorithm
as a sub-procedure.

Upon arrival of a packet request ri = (ai , bi , ti ), for i ≥ 1 (if ri is rejected or preempted in any step, then
the algorithm does not continue with the next steps), the algorithm proceeds as follows:

1. Reduce ri = (ai , bi , ti ) to a path request r̂i in the {1, 2, ∞}-sketch graph Ŝ as follows:
(a) The source of the path request r̂i is the half tile sin , where the tile s contains the vertex (ai , ti ).
(b) The destination of the path request r̂i is simply the sink b̂i .

2. Execute the ipp algorithm over Ŝ with respect to the reduced path request r̂i .
(a) If the ipp algorithm rejects the r̂i then reject ri .
(b) Else, let p̂i denote the path output by ipp, i.e., the sketch path assigned to r̂i .

3. Inject the request ri (the request “includes” its sketch path p̂i ) and perform detailed routing in the
space-time graph Gst . Detailed routing proceeds by processing the first segment of p̂i , the internal
segments of p̂i , the last segment of p̂i , and finally the last tile of p̂i . Failure in one of these parts causes
a preemption of ri .

4. Packet request ri arrives to its destination bi if it is not rejected or preempted.

5 The One Dimensional Case

In this section we present the details of Algorithm 1 for d = 1.We refer to Algorithm 1
by (an outline of algorithm for d = 1 is depicted in Figs. 4, 5).

Parameters The parameters of the uni-directional line network G are: n nodes, buffer
size B in each node, and the capacity of each link is c.We assume that B, c ∈ [3, log n].
Let pmax = 2n · (1 + B

c ) = O(n · log n). Let k � �log(1 + 3pmax)�. The length of a
tile’s side is k.

Proposition 3 If B, c ≤ log n, then (i) k = O(log n), and (ii) the capacity of each
edge in the sketch graph is at most k · max{B, c} = O(log2 n).

5.1 Reduction to Online Integral Path Packing

Downscaling of Capacities We regulate the number of paths that traverse each edge
and node in the sketch graph by downscaling capacities. There are three types of

requests
{ri}i

reduce reqs to
path reqs

(bounded length)

online integral
path packing
over {1, 2,∞}
sketch graph

detailed routing

rejected reqs
O((B + c) · log2 n)

comp. ratio

preempted
reqs

O(log2 n)
comp. ratio

served reqs
path reqs inj. reqs

Fig. 4 An outline of the deterministic routing algorithm

123



Algorithmica

injected requests first seg. internal seg. last seg. last tile

preempted
reqs

O(log n)
comp. ratio

preempted
reqs

O(log n)
comp. ratio

preempted
reqs

O(log n)
comp. ratio

served reqs

joint comp. ratio

Fig. 5 An outline of the detailed routing algorithm

Fig. 6 Capacity assignment in
the {1, 2,∞}-sketch graph Ŝ.
Unit capacities are assigned to
sketch edges and capacity of 2 is
assigned to interior edges

s

1

1

1

1

2
sout

sin

capacities: (1) edges between tiles are assigned unit capacities, (2) incoming edges
to sink nodes are unchanged and remain with infinite capacities, and (3) each tile is
assigned two units of capacity.3

To apply a reduction to integral path packing, we reduce node capacities to edge
capacities. Namely, each node s ∈ V (S) is split to two “halves” sin and sout . After
the split, edges are “redirected” as follows: the incoming edges of s enter sin and the
outgoing edges of s emanate from sout . We add an additional edge called an interior
edge between sin and sout . All interior edges are assigned two units of capacity (see
Fig. 6). We refer to the augmented sketch graph with these capacities as the {1, 2,∞}-
sketch graph. We denote the {1, 2,∞}-sketch graph by Ŝ. Let ĉ : E(Ŝ) → {1, 2,∞}
denote the downscaled capacity function of the {1, 2,∞}-sketch graph Ŝ.

Note that, since nodes are split and sinks are added, we need to increase the maxi-
mum path length to pmax ← 2 · pmax + 1.

The Reduction A request ri = (ai , bi , ti ) to deliver a packet is reduced to a path
request r̂i in the {1, 2,∞}-sketch graph Ŝ. The source of the path request r̂i is the
vertex sin , where the vertex (ai , ti ) is in tile s. The destination of the path request is
simply the sink node b̂i .

3 In the case of d-dimensional grid, the capacity of a tile is d +1. This saves a factor of d in the competitive
ratio.
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The sole purpose of the sink node is for a clean reduction to path packing. Once
the ipp algorithm returns the sketch path p̂i , the sink node is removed from p̂i , and
the last tile in the sketch path is regarded as the end of the sketch path.

Theorem 1 implies that the ipp algorithm returns an integral packing of paths in Ŝ
that is (2, k)-competitive with respect to the optimal fractional path packing in Ŝ. The
length of each path in the packing is at most pmax.

5.2 Detailed Routing

This section deals with the translation of paths in the sketch graph to paths in the
space-time graph. This translation, called detailed routing, is adaptive and computed
in a distributed on-the-fly fashion. The detailed path respects the sketch path in the
sense that it traverses the same tiles and bends only where the sketch path bends. Note
that, some of the packets are dropped during detailed routing.

More formally, the goal in detailed routing is to compute a (detailed) path pi in
the space-time graph Gst given a sketch path p̂i in the {1, 2,∞}-sketch graph Ŝ. The
projection of pi on Ŝ equals p̂i .

5.2.1 Preliminaries

Terminology A bend in the sketch path is a node in which the sketch path changes
direction, i.e., vertical to horizontal or horizontal to vertical.

A segment of a path in a grid is a maximal subpath, all the vertices of which belong
to the same row or column of the grid. A segment is special if it is the first or the last
segment of a path. Otherwise, it is an internal segment.

We refer to the side through which the detailed path enters a tile as the entry side.
Similarly, we refer to the side through which the detailed path exits a tile as the exit
side.

Packing Intervals Online The problem of packing intervals in a line is defined as
follows.

1. Input: A set I = {pi }r
i=1, where each pi is an open interval (ai , bi ) ⊆ (1, n).4

2. Output: A maximum cardinality subset I ′ ⊆ I of pairwise disjoint intervals.

In the online setting, we assume that the intervals appear one by one, and that a1 ≤
a2 ≤ · · · ≤ ar . The online algorithm must maintain a maximum subset I ′ such that
(i) I ′ is a subset of the prefix of the intervals input so far, and (ii) the intervals in I ′
are pairwise disjoint.

The online algorithm is based on an optimal algorithm for maximum independent
sets in interval graphs [17]. Upon arrival of an interval pi = (ai , bi ), the algorithm
proceeds as follows: (1) If pi does not intersect the intervals in I ′, then pi is added
to I ′. (2) Else, pi intersects an interval p j = (a j , b j ). If bi > b j , then pi is rejected

4 We consider open intervals rather than closed intervals. One could define the problem with respect to
closed intervals, but then instead of requiring disjoint intervals in the packing, one would need to require
that intervals may only share endpoints.
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Fig. 7 The untilted space-time graph Gst is partitioned into tiles depicted by square rectangles. These
tiles are the vertices of the {1, 2, ∞}-sketch graph Ŝ, in fact, two neighboring squares correspond to two
neighboring vertices in Ŝ. a The sketch path p̂i is overlayed on Gst . We partition p̂i into three parts: (I) first
and last segments, which are depicted by solid segments, (II) internal segments, which are depicted by
dashed segments, and (III) routing in the last tile, which is depicted by a grey line. The source node of the
packet request is in the first tile of the sketch path, the target node of the packet request is in the last tile of
the sketch path. b The detailed path pi is depicted by a thin line that traverses the same tiles traversed by the
sketch path p̂i . The detailed routing of the first segment is depicted by the horizontal line emanating from
the source node. The dashed line depicts the detailed routing after the first segment. The detailed routing
of the last segment takes a turn on the entry side of the tile that contains the last bend. The detailed routing
in the last tile is depicted by an straight dotted thin line. The space-time copies of bi are depicted by the
grey rectangle that surrounds the target node. The intervals that are input to the interval packing algorithm
are depicted by braces

(namely, I ′ remains unchanged). Otherwise, if bi ≤ b j , then pi preempts p j (namely,
I ′ = (I ′ ∪ {pi }) \ {p j }).

Note, that this online algorithm can be executed in a distributed fashion in a line.
Namely, the local input of each processor ai is the interval pi = (ai , bi ) (or the empty
input). Additionally, ai receives I ′ from its neighbor ai−1. Now, ai can verify by itself
whether to preempt an interval from I ′ and accept pi or to reject pi . After ai completes
his local computation, ai sends I ′ to its neighbor ai+1.

Partitioning of Detailed Routing Detailed routing is partitioned into at most three
parts,5 as follows (See Fig. 7b).

(I) Special segments,
(II) Internal segments, and
(III) Last tile: detailed routing in the last tile deals with routing the request from the

point that it enters the last tile till a copy of the destination vertex within the tile.

Preemptions may occur in parts (I) and (III) of the detailed routing. Preemptions
are caused by conflicts between detailed routing of packets that belong to the same
part. Namely, a special segment can only preempt another special segment. Similarly,
detailed routing in the last tile preempts only routes that end in the same tile.

5 Degenerate cases of detailed routing consist of two parts or just a single part; for example, detailed routing
of requests whose sketch path is a single tile consists only of part (III).
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Reservation of Capacities The algorithm reserves one unit of capacity in each edge
e ∈ Est for each part of detailed routing. This is the reason for the requirement that
B, c ≥ 3. Note that the algorithm is wasteful in the sense that it only uses 3 units of
capacity in each edge. We refer to each of these 3 units of capacity as a track, i.e., each
part uses a different track.

5.2.2 Detailed Routing in Special Segments

Consider the first segment of a sketch path p̂i (see Fig. 7a). The detailed routing
corresponding to this segment is a straight path that starts in the source-vertex (ai , ti )
and ends in the tile in which p̂i bends for the first time. As there may be contention
for capacity allocated for special segments, detailed routing needs to decide which
request is dropped. We reduce the problem of routing the first segment of detailed
paths to the problem of packing intervals in a line (described in detail in Sect. 5.2.1).

A separate reduction to interval packing in a line takes place for every row and
column of the untilted space-time grid.

Detailed routing in the last segment of p̂i (before the last tile) is similar. Consider
a last segment of a sketch path p̂i that starts in tile s1 and ends in tile s2. The detailed
routing of a last segment begins in the entry side of s1 that is reached by the detailed
routing of the previous segment, and ends in the entry side of s2. Between these two
endpoint, detailed routing is along a straight path. As in the case of detailed routing of
the first segment, routing in the last segment is reduced to interval packing in a line.

Consider a sketch path p̂i whose first bend is in tile s. Suppose that the detailed
routing of the first segment of p̂i is not preempted before it enters the tile s. We claim
that detailed routing will not preempt pi before it performs a “turn” in s. Indeed, due
to distinct tracks used in each part, it suffices to focus on conflicts with first or last
segments of other requests. There are two types of conflicting requests whose first
segment conflicts with the first segment of ri depending on the relative location of
the source vertex (either before or after the entry to tile s). If the source vertex of r j

appears before the entry to s, then ri since ri enters s, we know that ri “wins” and r j is
preempted. If the source vertex of r j appears after the entry to s, then ri “wins” again
because p̂ j has a first segment, and therefore r j requests an interval that ends outside
the tile s while ri requests an interval that ends in tile s. We also need to consider a
conflict with a last segment of a request r j : (1) If r j ends inside s, then it must also
begin in s (because it is not possible for ri and r j to enter the tile through the same
edge). If r j begins and ends s, then it is routed using only the third track (reserved for
detailed routing in the last tile) and r j does not conflict with the first segment of ri .
(2) If r j ends outside s, then it is preempted by ri because ri requests an interval that
ends inside s.

5.2.3 Detailed Routing in Internal Segments

Detailed routing of internal segments takes place in a tile as follows. Fix a node v. The
node v has two incoming edges and two outgoing edges. We denote these edges by
horzin, vertin and horzout , vertout . We refer to the request that traverses an edge e by
e.r . For example, horzin .r is the name of the request that enters v via the horizontal
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Fig. 8 A knock-knee bend in
detailed routing in Gst .
Space-time nodes are depicted
by white circles. The detailed
route of p̂i makes a turn in the
vertical direction, thus freeing
the suffix of the row ρ. The
conflicting detailed route takes a
turn in horizontal direction, thus
freeing the suffix of the column
in the vertical direction

ρ

p̂i

edge. If an edge e is not assigned to a request, then we set e.r to null. The rules for
detailed routing of these paths are as follows:

1. If one of the incoming edges e is not assigned to a request, then the other edge e′
(if e′.r is not null) chooses the outgoing edge according to its exit side.

2. (Precedence to straight traffic.) Else, if the exit side of horzin .r is east or the
exit side of vertin .r is north, then the paths continue without a bend, namely,
horzout .r ← horzin .r and vertout .r ← vertin .r .

3. (Simultaneous bends.) Else, a knock-knee bend takes place, namely, horzout .r ←
vertin .r and vertout .r ← horzin .r (see Fig. 8).

We claim that detailed routing in an internal segment always succeeds. If the detailed
path is headed towards its exit side (e.g., traverses the tile without a bend), then detailed
routing gives it priority so that it reaches its exit side. If the sketch path bends in the
tile, then the detailed path must encounter either a null path or another detailed path
that also bends in the tile (in which case the path takes the required turn). This is true
because, otherwise, there would be more than k paths that exit the tile from the same
side, contradicting the congestion guarantee by the ipp algorithm (that at most k paths
traverses the edges between tiles).

We now deal with transitions from part (I) to part (II) of detailed routing. Recall,
that each part of the detailed path uses a different track. Consider a sketch path p̂i

whose first bend is in tile s. If the detailed routing of p̂i reaches s, then it is not
preempted by another special segment (see Sect. 5.2.2). As in detailed routing in
internal segments, the detailed route of p̂i in tile s bends when it meets a null path or
a detailed path that also wants to bend. The same argument shows that such a bend is
always successful. After the bend, the path transitions from the first track to the second
track.

We conclude that detailed routing is always successful in internal segments.
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5.2.4 Detailed Routing in the Last Tile

We refer to requests whose sketch path is a single tile as near requests. Note that
detailed routing of a near request consists only of part (III).

Detailed routing in the last tile routes a path along a straight vertical path from
the entry point to the row in the tile that corresponds to the destination node. Note
that if the destination vertex of ri is bi , then it suffices to route the path to one of
the space-time copies of bi . Hence, every copy of bi in the tile is a valid destination.
Contentions occur only in each column, and a path with a closest destination preempts
the conflicting paths.

5.3 Analysis of the Algorithm for d = 1

Recall that the length of a tile’s side is k = �log(1 + 3pmax)�. Moreover, in the case
where B, c ∈ [3, log n], it follows that k = O(log n).

Theorem 4 The competitive ratio of the algorithm for uni-directional line networks
is O(log5 n) provided that B, c ∈ [3, log n].
Proof sketch of Theorem 4 The algorithm starts with the path packing algorithm ipp
over the {1, 2,∞}-sketch graph. This means that capacities are reduced by a factor of
at most O(k2 · max{B, c}) = O(k3) (by the capacity assignment “inside” a tile and
“between” tiles). The fact that path lengths are boundedby pmax reduces the throughput
only by a constant factor. The throughput of algorithm ipp is O(1)-competitive.

Detailed routing succeeds in routing at least a k2 fraction of the sketch paths. There
are two causes for loss of packets: routing of special segments and routing in the last
tile. Routing of special segments (i.e., first and last segment) succeeds for a fraction
of 1/k. we show that the success rate is not multiplied and that the success rate for
special segments is 1/2k. Routing in the last tile succeeds for a fraction of 1/2k per
tile. Putting things together we get a competitive ratio of O(k5), as required. ��

Note that the Theorem 4 actually applies for B, c ∈ [3, O(log n)]. The constant in
the O(log n) linearly affects the constant in the competitive ratio of the algorithm.

Notation Let R be a fixed sequence of packet requests introduced by the adversary.
Let Rs ⊆ R denote the set of requests whose sketch path ends in tile s. For every
X ⊆ R and for every tile s let Xs � X ∩ Rs . We interpret requests in R as path
requests in Gst . Let opt (respectively opt f ) denote a maximum integral (respectively
fractional) packing of paths from R in Gst . Let ipp(R) denote the set of requests that
algorithm ipp injected when given input R. For brevity, we denote ipp(R) simply by
ipp. Similarly, let alg denote the set of requests that alg routed to their destination.
Let ipp ′ ⊆ ipp denote the set of requests that are not preempted before they reach the
entry side of their last tile. (Note that alg ⊆ ipp ′ ⊆ ipp ⊆ R.) Let f ∗ denote an
optimal fractional flow with respect to R over the sketch graph S. Let f ∗{1,2,∞} denote
an optimal fractional flow with respect to R over the {1, 2,∞}-sketch graph Ŝ. (Note
that opt and opt f are packings of paths in Gst , while f ∗ and f ∗{1,2,∞} are packings
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in sketch graphs.) Let opt f (R | pmax) denote an optimal fractional path packing in
Gst with respect to R under the constraint that each request is routed along a path of
length at most pmax. Let f ∗(R | pmax) denote an optimal fractional flow in the sketch
graph S with respect to R under the constraint that flow paths have a length of at most
pmax. Let f ∗{1,2,∞}(R | pmax) denote an optimal fractional flow in the {1, 2,∞}-sketch
graph Ŝ with respect to R under the constraint that flow paths have a length of at most
pmax. Let |g| denote the throughput of flow g.
We now present a detailed proof of Theorem 4, based on the following propositions.

Proposition 5 | f ∗(R | pmax)| ≥ |opt f (R | pmax)|.
Proof Consider a fractional packing h of paths in Gst in which paths lengths are
bounded by pmax. Let g denote the flow in sketch graph S where g(e) is simply the
sum of the flows of h along the edges in Gst that are coalesced to e in S. Clearly,
|g| = |h|. We claim that g is a feasible fractional flow in the sketch graph S whose
flow paths are not longer than the flow paths in h. (In fact, they are shorter by a factor
of k.)

We show that the flow g satisfies the capacity constraints in S as follows. If e is a
sketch edge between tiles, then, by linearity, the capacity constraint is satisfied.Wenow
focus on interior edges. The amount of flow in h that traverses a tile in Gst is bounded
by the sum of the capacities of the edges in the tile, namely, it is at most (B + c) · k2.
It follows that the amount of flow in g that traverses a node (that corresponds to a tile)
in the sketch graph is bounded by the node’s capacity (which equals 2 · k2 · (B + c)).
We conclude that g is a feasible flow in S, and the proposition follows. ��
Proposition 6 k2 · (B + c) · | f ∗{1,2,∞}(R | pmax)| ≥ | f ∗(R | pmax)| ≥ | f ∗{1,2,∞}(R |
pmax)|
Proof Recall that f ∗ is a maximum flow in the sketch graph S while f ∗{1,2,∞} is

a maximum flow in Ŝ. The proof is a direct consequence of the following bounds
between capacities in S and in Ŝ.

For every edge e that is both in S and in Ŝ, we have

k · (B + c) · ĉ(e) ≥ c(e) ≥ ĉ(e). (1)

For every node s that corresponds to a tile, we have

c(e) = k2 · (B + c) · ĉ(e). (2)

��
Proposition 7 |ipp| ≥

(
1

2·k2·(B+c)

)
· | f ∗(R | pmax)|

Proof By Theorem 1 (i.e., (2, k)-competitiveness of ipp),

|ipp| ≥ 1

2
· f ∗{1,2,∞}(R | pmax).
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Downscaling of capacities implies

f ∗{1,2,∞}(R | pmax) ≥
(

1

k2 · (B + c)

)
· | f ∗(R | pmax)|,

and the proposition follows. ��
The following proposition proves that a fraction of at most (1− 1

2k ) of the requests
in ipp are preempted before they reach their last tile.

Proposition 8 |ipp ′| ≥ 1
2k · |ipp|

Proof Consider a row or a column L of nodes in Gst . Let R ∩ L denote the set of
requests that contain special segments that compete over edges in L . From the point
of view of L , each request ri ∈ R ∩ L is a request for an interval Ii ⊆ L . As described
in Sect. 5.2.1, the detailed routing of the requests R ∩ L along L simulates an optimal
interval packing algorithm. In particular, the simulation has the property that if an
interval Ii = (ai , bi ) preempts an interval I j = (a j , b j ), then the intervals overlap
and bi ≤ b j . Hence, the edge (bi − 1, bi ) is in I j .

Focus on preemptions that occur during the detailed routing of first segments (the
case of last segments is similar). Consider the “forest of preemptions” over the inter-
vals, where the set of intervals that were preempted by Ii are children of Ii . We claim
that if interval I j is a descendant of Ii in this forest, then the edge (bi − 1, bi ) is in
I j . The proof is by induction on the distance between Ii and I j in the forest of pre-
emptions. The induction basis holds for a child I j by the discussion above. Suppose
that Ik preempted I j (hence bk ≤ b j ). Since Ik is a descendent of Ii , by the induction
hypothesis (bi − 1, bi ) is an edge in Ik . Because I j is preempted by Ik in a vertex to
the left of bi , it follows that the edge (bi − 1, bi ) is in I j , as required. By Theorem 1,
the load induced by ipp on each {1, 2,∞}-sketch edge is at most k. Therefore, the
maximum number of proper descendants of Ii in the forest is (k − 1) (not including
Ii ).

Consider a bipartite graph of preemptions over ipp ′ ∪ (ipp \ ipp ′) (now we consider
both first segments and last segments). There is an edge (ri , r j ) if the request ri ∈ ipp ′
is an ancestor of the request r j ∈ (ipp \ ipp ′) in the forest of preemptions corresponding
to detailed routing. Since a preempted request is preempted only once, the degree of
the nodes in ipp \ ipp ′ is one. Recall that each sketch path contains at most 2 special
segments. By the discussion above, the degree of a node in ipp ′ is bounded by 2·(k−1).
By counting edges in the bipartite graph, we conclude that |ipp ′|·2·(k−1) ≥ |ipp\ipp ′|,
and the proposition follows. ��

The following proposition states that a fraction of at least 1/(2k) of the requests
that reach their last tile are successfully routed.

Proposition 9 |alg | ≥ 1
2k · |ipp ′|

Proof Since {ipp ′
s}s∈V (S) is a partition of ipp ′ and {algs}s∈V (S) is a partition of alg ,

it suffices to prove that |algs | ≥ 1
2k · |ipp ′

s | for every tile s.
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Fix a tile s. Every sketch path of a request in ipp ′
s traverses the interior edge of s in

Ŝ whose capacity is 2. Theorem 1 implies that this capacity is violated by at most a
factor of k, hence |ipp ′

s | ≤ 2k.
Detailed routing in the last tile successful routes at least one request from ipp ′

s if
ipp ′

s �= ∅, and the proposition follows. ��
We now put things together to complete the proof of Theorem 4.

proof of Theorem 4 The proof is as follows.

|alg | ≥ 1

2k
· |ipp ′| (by Prop. 9)

≥ 1

2k
· 1

2k
· |ipp| (by Prop. 8)

≥
(

1

8 · k4 · (B + c)

)
· | f ∗(R | pmax)| (by Prop. 7)

≥
(

1

8 · k4 · (B + c)

)
· |opt f (R | pmax)| (by Prop. 5)

≥
(

1

8 · k4 · (B + c)

)
· 1
2

·
(
1 − 1

e

)
· |opt f (R)| (by Lemma. 2)

≥ �

(
1

k4 · (B + c)

)
· |opt| .

The last line holds because every integral path packing is also a fractional one. The
theorem follows. ��

5.4 Requests With Deadlines

In this section we present the modification needed to deal with packet requests with
deadlines. The change to the algorithm is in the reduction to online integral path
packing (see Sect. 5.1), i.e., we need to change the sink node in the reduction as
described below.

Adding Sink Nodes for Requests with Deadlines A request to deliver a packet is of
the form ri = (ai , bi , ti , di ), where di is the deadline. In terms of a path request in the
space-time graph Gst , this means that we need to assign a path from (ai , ti ) to a vertex
(bi , t ′), where ti ≤ t ′ ≤ di . Thus, the destination is a set of vertices rather than one
specific vertex. We connect this set of destinations to a new sink. Formally, for every
request ri , introduce a new vertex sinki and connect every vertex in {(bi , t ′)}di

t ′=ti
to

sinki with an edge of infinite capacity.
Now, a packet request ri = (ai , bi , ti , di ) is reduced to a path request in the

{1, 2,∞}-sketch graph from the half-tile sin (where the tile s contains (ai , ti )) to
sinki . A path from (ai , ti ) to sinki contains at most di − ti + 1 edges. We still bound
the path length by pmax, as before, to obtain a load of O(log pmax) by ipp.

We claim that a request that is not preempted by detailed routing reaches its des-
tination on time. To see this fix a packet request ri that is not preempted by detailed
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Fig. 9 The 3 possible starting
points of detailed routing in a tile

Tile

Copies of bi

(1)

(1)

(2)

(3)

{(x, di − x)}x

Time-zone

routing, and let p̂i denote its sketch path. Let s denote the tile in which p̂i ends. We
now show that the detailed path pi ends in a vertex (bi , t) such that t ≤ di . There are
3 cases (see Fig. 9): (1) pi enters s via a last segment from the south-west corner of s,
(2) pi enters s via a first segment from the west, or (3) pi enters s via a first segment
from the south.6 In the first two cases, pi enters s and moves north until it reaches a
copy of bi . The copy (bi , t ′) of bi that is reached must satisfy t ′ ≤ di if (bi , di ) is in the
tile. Indeed, because s is the last tile of p̂i , the copy of bi in the leftmost column of s
lies below the “time-zone” {(x, di − x)}x in the untilted space-time graph. Moreover,
the entry point of pi to tile s lies below this copy of bi (if it were above this copy of
bi , then it has already reached bi ). In the third case, pi enters via the south side. This
means that (before entering s) pi consists only of a first segment, i.e., starting from its
arrival the packet was forwarded and was not buffered at all. Since the deadlines are
“feasible”, i.e., the deadline di ≥ ti + dist (ai , bi ), where dist (ai , bi ) is the distance
between ai to bi . The packet keeps moving north and reaches the copy of bi at time
ti + dist (ai , bi ). It follows that the packet reaches its destination on time in this case
as well. We conclude that requests that are not preempted reach their destination on
time, as required.

6 Generalizations

In this section we present a generalization of the algorithm to the d-dimensional
case as well as extensions to the special cases: bufferless grids and grids with large
buffers\capacities.

The d-Dimensional Case The following modifications are needed to extend the algo-
rithm to d-dimensional grids.

6 Note that cases (2) and (3) are degenerate cases in the sense that the detailed routing consists only of the
a first segment and routing in the last tile.
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(1) k = �log(1 + 3pmax)�, where in the d-dimensional case

pmax � 2 · diam(G) ·
(
1 + n ·

(
B

c
+ d

))
.

In the case where B, c ∈ [3, log n], it follows that k = O(log n).
(2) Apply tiling with side length k, e.g., a face of a cube contains kd vertices.
(3) Similarly to the 1-dimensional case, the sketch graph also has node capacities for

nodes that correspond to tiles (i.e., not sinks). The capacity of every node that
corresponds to a tile is c(s) = (d + 1) · kd+1 · (B + d · c). Edges in the sketch
path have unit capacities.

(4) Similarly to the definition of {1, 2,∞}-sketch graph, we define the {1, d +1,∞}-
sketch graph by assigning a capacity of d + 1 (instead of 2) to the interior edges.

(5) Detailed routing of internal segments is generalized as follows. Each node has
d +1 incoming edges and d +1 outgoing edges. Fix a node v. Let in1, . . . , ind+1
denote edges that enter v. Similarly, let out1, . . . , outd+1 denote edges that exit
v. Detailed routing in v proceeds as follows: For every j ∈ [1, d + 1], let � j

denote the exit side of request in j .r in the tile s that contains v.
(a) (Precedence to straight paths.) If � j = j , then out j .r = in j .r .
(b) (Try next crossing.) Else, if the exit side of in� j .r is not j or null, then out j .r =

in j .r .
(c) Else, if in� j .r = j or (in� j .r = null and j is the smallest index j ′ for

which in j ′ .r = � j ), then a knock-knee takes place: out� j .r = in j .r and
out j .r = in� j .r .

(d) (Try next crossing.) Else, out j .r = in j .r .
The key observation for detailed routing in an internal segment is that if a request
ri fails to bend at node v, then another request proceeds in v toward its exit side
(in the tile that contains v). Thus, as a request ri continues to try to turn in the
next crossing, it crosses a new request that will exit the tile successfully. Since
the number of requests in ipp that traverse the same sketch edge is at most k, it
follows that ri is bound to find a crossing in which it turns toward its exit side.

The following theorem bounds the competitive ratio of the algorithm for general
dimensionality d. The proof of Theorem 10 is outlined in “Appendix 2”.

Theorem 10 The competitive ratio of the algorithm for d-dimensional grid networks
is

O
(

kd+3 · (B + d · c)
)

= O
(
logd+4 n

)

provided that B, c ∈ [3, log n].
Bufferless Grids For the case B = 0 and c ≥ 3 (no upper bound on c), we obtain the
following result. The proof of the following theorem is sketched in “Appendix 3”.

Theorem 11 There exists an online deterministic preemptive algorithm for packet
routing in bufferless d-dimensional grids with a competitive ratio of O(logd+2 n).
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In the one dimensional case without buffers, the optimality of online interval pack-
ing implies that the nearest-to-go policy [4] is optimal.

Proposition 12 Nearest-to-go is an optimal policy for packet routing in a line when
B = 0.

Large Buffers and Large Link Capacities In this section we consider the case that
the size of the buffers and the capacities of the links are at least logarithmic.

Redefine the parameter ν, by

ν � nO(1).

This of course influences pmax and k because pmax � pmax ≥ (ν + 2) · diam(G)

and k � �log(1 + 3pmax)�. However, in this setting pmax is polynomial in n and
k = �(log n).

The following theorem shows that it is easy to achieve a logarithmic competitive
ratio if B/c = nO(1) and B, c ≥ k.

Theorem 13 There exists an online deterministic algorithm for packet routing in d-
dimensional grids with a competitive ratio of O(log n) if B/c = nO(1), and B, c ≥ k.
In this algorithm, packets are either rejected or routed but not preempted.

Proof Scale B and c by setting B ′ ← � B
k � and c′ ← � c

k �. Run the ipp algorithm
over the space-time graph Gst with the scaled capacities B ′ and c′ to decide which
requests are rejected and which are routed. We claim that the routes computed by the
ipp algorithm are a valid routing. Indeed, ipp is (2, k)-competitive with respect to B ′
and c′. Hence, the same packing of paths is (O(k), 1)-competitive with respect to B
and c. The theorem follows since k = O(log n). ��

7 A Randomized Algorithm for the One Dimensional Case

In this section we design and analyze a randomized algorithm for routing packets in
uni-directional line networks. Our randomized algorithm achieves a competitive ratio
of O(log n).

The randomized algorithm applies only to the setting in which requests are without
deadlines (i.e., di = ∞), hence each packet is specified by a 3-tuple ri = (ai , bi , ti ).

The randomized algorithm deals with all values of buffer sizes and communication
link capacities in the range [1, O(log n)]. We do not require that B, c ≥ 3 as in the
deterministic algorithm.

In particular, it holds also for unit buffers. In Sects. 7.3, 7.4, 7.5 and 7.6 we deal
with the case that both B and c are in [1, log n]. We consider this case to be the
most interesting one. In Sect. 7.7 we deal with the case of log n ≤ B/c ≤ nO(1). In
Sect. 7.8 we deal with the case of B ∈ [1, log n] and c ∈ [log n,∞) (for a summary
of the results presented in this section, see Table 2).
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Table 2 Values of B and c in which our algorithm achieves logarithmic competitive ratio. In particular, it
holds also for unit buffers, i.e., B = 1. We consider the first case to be the most interesting one

B c Sections

[1, log n] [1, log n] 7.3, 7.4, 7.5 and 7.6

[log n,∞)
[
� B

nO(1) �, B
log n

]
7.7

[1, log n] [log n,∞) 7.8

7.1 Outline of Modifications

Our goal is to reduce the O(log5 n) competitive ratio of the deterministic algorithm
(see Theorem 4) to a logarithmic competitive ratio with the help of randomization. In
this section we outline the techniques that are employed to achieve this goal.

In the randomized algorithm, the online integral packing algorithm is applied to the
sketch graph (without downscaling of capacities). To simplify the discussion assume
that B = c = 1. Since the load on every edge in the sketch graph is atmost k, and k also
equals the length of the tile side, this implies that O(k2) paths traverse each tile side.

The ratio between the area and the perimeter of a tile is �(k). As the number of
requests that start in a tile is proportional to the area of a tile, and the number of requests
that can enter or exit a tile is proportional to the perimeter of a tile, we need to avoid
losing a factor of�(k) in the competitive ratio.We do this by randomly sparsifying the
requests. The goal of this sparsification is to leave a �(1/k) fraction of the requests
so that a constant fraction of the remaining requests can be routed out of their starting
tile.

To facilitate detailed routing, we consider three (non-disjoint) areas within each
tile: (1) a part in which new requests may start, (2) a part dedicated to routing, and
(3) a part in which requests reach their destination. The tiles are randomly shifted so
that a constant fraction of the requests “agree” with the designated parts in the tiles.

Detailed routing of requests not rejected by the ipp algorithm or by random sparsi-
fication is simpler and always succeeds.

7.2 Preliminaries

Tiling The untilted space-time graph Gst is partitioned into rectangular tiles. We
denote length of each tile by τ and the height by Q (we also require that τ and Q are
even). Note that tiles may not be squares as in the deterministic algorithm. Dummy
nodes are added to the space-time graph Gst so that all the tiles are complete.

RandomShiftingThe tiling is specified by two additional parametersφτ ∈ [0, (τ−1)]
and φQ ∈ [0, (Q −1)], called the phase shifts. The phase shifts determine the position
of the “first” rectangle; namely, the node (φτ , φQ) is the bottom left corner of the first
rectangle.

123



Algorithmica

Fig. 10 The south-west (SW)
quadrant of a tile

SW

τ

Q

Recall that the sketch graph has a node for every tile in the space-time graph (see
Sect. 3.4). Each horizontal edge has a capacity of Q · B, and each vertical edge has a
capacity of τ · c,

Near and Far RequestsA request ri = (ai , bi , ti ) is classified as a near request if the
tile that contains (ai , ti ) also contains a copy of bi (namely, the tile contains a vertex
(bi , t ′) for some t ′). A request that is not a near request is classified as a far request.
We denote the set of near and far requests by Near and Far, respectively.

A routing of a request ri ∈ Far cannot be confined to a single tile. A routing of a
request ri ∈ Near may be within a tile or may span more than one tile (our algorithm
attempts to route near requests only within a single tile).

SW-Far requests We partition each tile of the untilted space-time graph into four
“quadrants” as depicted Fig. 10.

The tiling and random shifting defines the following random subset of the requests.
Let R+ ⊆ R denote the subset of requests whose source vertex is in SW-quadrant of
a tile. The subset Far+ is defined by

Far+ � R+ ∩ Far.

Online Integral Packing of Paths of Far Requests The ipp algorithm is applied only
to Far+ requests over the sketch graph S (see Line 1 in Algorithm 2).

Multiple Simultaneous Requests from The Same Node If multiple requests arrive
simultaneously to the same node, then even the optimal routing can serve at most c+ B
packets among these packets. Since this limitation is imposed on the optimal solution,
the path packing algorithm can abide this limitation as well without decreasing its
competitiveness. The online algorithm chooses c + B packets whose destination is
closest to the source node, as formalized in the following proposition.

Proposition 14 W.l.o.g. each node injects at most the closest c + B requests at each
time step.

7.3 Randomized Algorithm: Preprocessing

Tiling parameters The tile side lengths are set so that the trivial greedy routing
algorithm is O(log n)-competitive for requests classified as near. Each tile has length
τ and height Q. Recall that B, c ≤ log n.
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Definition 15 (i) If B · c < log n, then τ = 2�(log n)/c� and Q = 2 · �(log n)/B�.
(ii) If B · c ≥ log n, then τ = 2B and Q = 2c.

Proposition 16 The choice of the tiling parameters implies the following:

1. τ + Q = O(log n).
2. The capacity of each sketch edge is at least log n.
3. The ratio of maximum capacity to minimum capacity in the sketch graph is bounded

by 2.

Proof The first part of the proposition follows from the assumption that B, c ∈
[1, log n]. The capacity c(e) of a horizontal edge e in the sketch graph is Q · B.
If Bc ≥ log n, then c(e) = 2Bc > log n and all the sketch edges have the same capac-
ity. If Bc < log n, then c(e) ≥ 2 log n

B · B = 2 log n. Moreover, the ratio of maximum
capacity to minimum capacity is bounded by 2. Indeed,

Q · B

τ · c
≤ 2 · (1 + log n/B) · B

2 · (log n/c) · c

= log n + B

log n
≤ 2 .

Similarly, the ratio τc
Q B ≤ 2, and the proposition follows. ��

To simplify the presentation, we assume that τc = Q B (we can obtain this by
reducing the capacities by a factor of at most 2, which affects the competitive ratio
only by a factor of 2). Let cS denote the capacity of the sketch edges to the neighboring
tiles.

Proposition 17 If the phase shifts φτ and φQ are chosen independently and uniformly
at random, then E(|opt(R+)|) = 1

4 · |opt(R)|. By a reverse Markov inequality,

Pr

[
|opt(R+)| ≥ 1

8
· |opt(R)|

]
≥ 1

7
.

Proof Since the phase shifts φτ and φQ are independent and uniformly distributed,
the probability that a request ri ∈ R is also in R+ is 1/4. By linearity of expectation,
E(|opt(R+)|) = 1

4 · |opt(R)|.
Plugging X = |opt(R+)|, d = 1

8 · |opt(R)| and a = |opt(R)| in Lemma 37
(see “Appendix 4”) yields the second part of the proposition, i.e., Pr

[|opt(R+)| ≥
1
8 · |opt(R)|] ≥ 1

7 . ��

7.4 Algorithm for Requests in Far+

In this section we present an online algorithm for the requests in the subset Far+.
Similarly to the deterministic algorithm in Sect. 4, the Far+-Algorithm invokes the
ipp algorithm (in Step 1) and applies detailed routing (in Step 4). The additional
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randomized steps are employed in Step 2, and Step 3. Note that randomized algorithm
is non-preemptive, that is, if a packet is not rejected then it is guaranteed to arrive to
its destination.

7.4.1 Description of The Far+-Algorithm

Parameters Set the maximal path length in the sketch graph to be pmax � 4n. We set
the probability λ of the biased coin in Step 2 of algFar+ to be λ = 1/(200k), where
k = �log(1 + 3pmax)�.

Algorithm 2 The Far+-Algorithm. The input to the algorithm is a sequence of packet requests in Far+
and it either rejects or injects.

Upon arrival of a packet request ri = (ai , bi , ti ) in Far+ proceeds as follows (if ri is rejected in any step,
then the algorithm does not continue with the next steps):

1. Reduce the packet requests to an online integral path packing over the sketch graph with paths of
length at most pmax. Execute the ipp algorithm with respect to these path requests. If the path request
is rejected by the ipp algorithm then reject ri . Otherwise, let p̂i denote the sketch path assigned to
request ri .

2. Toss a biased 0-1 coin Xi such that Pr(Xi = 1) = λ. If Xi = 0, then reject ri .
3. If the addition of p̂i causes the load of any sketch edge to be at least 1/4, then reject ri .
4. Apply I -routing to ri . If I -routing fails, then reject ri . Otherwise, inject ri with the sketch path p̂i

and alternate between T -routing and X -routing.

The listing of the randomized algorithm appears in Algorithm 2. The input to the
algorithm is the sequence of requests in Far+ which is processed as follows: (1) The
ipp algorithm computes an integral packing of paths over the sketch graph S under the
constraint that the length of a path is at most pmax. In Proposition 2, we show that this
constraint reduces the optimal fractional throughput by a factor of at most two. Algo-
rithm ipp remembers all accepted requests, even those that are rejected in subsequent
steps. By Theorem 1, the computed paths constitute an (O(1), k)-competitive packing,
for k = O(log n). (2) The probability λ is set to 1

�(k)
. (3) We maintain the invariant

that after Line 3, the load of every sketch edge is at most 1/4. (4) I -routing deals with
routing the request out of the initial SW-quadrant and is described in Sect. 7.4.2. The
rest of the path is computed based on the sketch path p̂i . This computation is per-
formed locally and on-the-fly by alternating between two routing algorithms called
T -routing and X -routing (described in Sect. 7.4.2).

Remark One may consider applying random sparsification before the ipp algorithm
is invoked. The motivation for such a variation is to avoid congesting the network
with requests destined to be rejected. Apart from reducing the load of sketch edges,
random sparsification facilitates successful I -routing (see Lemma 23). This means
that sparsification needs to be applied after the online path packing algorithm.
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Fig. 11 Allowed detailed routes
in tile quadrants. Paths may not
cross the thick lines X

TI

T

7.4.2 Detailed Routing

The ipp Algorithm computes a sketch path p̂i . If we wish to route the packet, we need
to compute a path in Gst . We refer to this path as the detailed path. Three routing
algorithms are employed for computing different parts the detailed path (see Fig. 11):
(1) I -routing: from (ai , t ′i ) to the north or east boundaries of the SW-quadrant. (2)
T -routing: deals with routing in the north-west quadrant (NW-quadrant) and the south-
east quadrant (SE-quadrant) of a tile. (3) X -routing: X -routing deals with routing in
the north-east quadrant (NE-quadrant).

Let algFar+ ⊆ R+ denote the subset of requests that were successfully routed by
I -routing. Let pi denote the detailed path of a request ri ∈ algFar+ . The packing
{p j | r j ∈ algFar+} satisfies the following invariants:

1. The source of p j is in the SW-quadrant of a rectangle.
2. The prefix of p j till it exits the SW-quadrant is straight.
3. For every tile, p j may enter the tile only through the right half of the south side

or the upper half of the west side.
4. For every tile, p j may exit the tile only through the right half of the north side or

the upper half of the east side.
5. Except for the first bend of p j , every bend corresponds to a bend in the sketch

path p̂ j .
6. At most cS/4 paths are routed out of the SW-quadrant.
7. The load of every edge in Gst is at most one (i.e., all capacity constraints are

satisfied).

I -Routing The goal of I -routing is simply to exit the SW-quadrant either from its east
side or its north side. I -routing deals with routing paths that start in the SW-quadrant
of a tile till the north or east side of the SW-quadrant. I -routing uses only straight
paths.

By Proposition 14, at most B+c requests are input at each node of Gst to Algorithm
ipp. These requests are ordered arbitrarily. We therefore consider each SW-quadrant
as a three dimensional cube of dimensions Q

2 × τ
2 × (B + c) where each node in the

quadrant has B + c copies. The i th request that arrives at node (v, t) is input to node
(v, t, i) in the cube. We refer to each copy of the quadrant in the cube as a plane.
Namely, the i th plane is the set of nodes (v, t, i) in the cube. I -routing deals with each
Q
2 × τ

2 plane separately,
I -routing tries to route horizontally the first B requests that start at a node. Similarly,

I -routing tries to vertically route the requests that arrive after that. By trying to route
a request, we mean that if the corresponding row or column in the plane is free, then
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Fig. 12 X -routing is
implemented by
super-positioning two instances
of T -routing depicted by black
and grey arrow

the request is routed (and that row or column in the plane is marked as occupied);
otherwise the request is rejected.

Finally, we limit the number of paths that emanate from each side of the SW-
quadrant by cS/4, where cS denotes the capacity of the sketch edges to the neighboring
tiles. Thus after cS/4 requests have been successfully I -routed out of the SW-quadrant,
all subsequent requests from this SW-quadrants fail.

Note that I -routing is computed before the packet is injected and does not preempt
packets (after they are injected) since precedence is given to existing paths.
T -routing The NW-quadrant and the SE-quadrant have a “blocked” side that is
depicted by a thick link in Fig. 11. Paths may not traverse the blocked side. T -routing
deals with routing in these two quadrants. Paths may enter these quadrants from two
sides but must exit through a third side (unless they reach a copy of their destination).
We show that T -routing is always successful (in fact, T -routing is similar to detailed
routing in internal segments described in Sect. 5.2.3).

Consider a SE-quadrant: each path enters through the south or west sides of the
quadrant, and should be routed to the north side of the quadrant. The detailed paths
of south-to-north paths are simply vertical paths without bends (such paths are given
precedence). The detailed paths of west-to-north paths are obtained by traveling east-
ward until a bend can be made, namely, the vertical path to the north side is not
saturated. Since both path types contain at most cS/4 paths, and since cS/2 paths can
cross the north side of the quadrant, T -routing never fails.
X -routing X -routing deals with routing in the NE-quadrant. Note that a path may
enter the NE-quadrant from its west side or from its south side. Moreover, a path may
exit the NE-quadrant from its east or north side. We show that X -routing is always
successful.

X -routing is implemented by super-positioning two instances of T -routing (see
Fig. 12). We partition the traffic in a NE-quadrant to two parts based on the side from
which the path exits the quadrant. As in T -routing, precedence is given to straight
traffic. A bend takes place whenever a free path is available. Clearly, a straight path is
successfully routed. Paths that needs to turn are blocked by at most cS/4 paths from the
other part. There are at most cS/4 paths that need to turn, and the capacity of the side
of the quadrant is cS/2, hence X -routing is always successful. (Note that knock-knee
bends are not required, although they could be incorporated).
Last Tile Detailed routing in the last tile employs greedy shortest path routing. If a
packet enters the last tile from the south side, then it simply continues north until it
reaches its destination. Note that no such packet may enter the last tile from the west
side. Indeed, if a sketch path enters s from the west side and s is the last tile in the
sketch path, then the neighboring tile from the west contains a copy of the destination,
and hence s is not the last tile in the sketch path.
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7.4.3 Analysis

Notation We define the following chain subsets of requests

algFar+ ⊆ ippλ
1/4 ⊆ ippλ ⊆ ipp(Far+ | pmax) ⊆ Far+ ,

as follows. ipp(Far+ | pmax) is the subset of requests accepted by the ipp algorithm
in Line 1. ippλ ⊆ ipp(Far+ | pmax) is the subset of requests for which the biased coin
flip Xi equals 1 in Line 2. ippλ

1/4 ⊆ ippλ is the subset of requests whose addition did

not cause a sketch edge to be at least 1/4 loaded in Line 3. algFar+ ⊆ ippλ
1/4 is the

subset of requests for which detailed routing is successful in Line 4 (recall, that only
I -routing may fail).

Let opt f (R) (respectively, opt(R)) denote an optimal fractional (respectively, inte-
gral) packing of paths in Gst with respect to the requests R. An optimal packing of
paths in the space-time graph Gst in which the length of the paths in the packing is
bounded by pst

max is denoted by opt f (R | pst
max).

The following theorem states that the invocation of the ipp algorithm assigns routes
to a constant fraction of an optimal solution.

Theorem 18

|ipp(Far+ | pmax)| ≥ 1

4
· |opt(Far+)|.

Proof The proof of the theorem is divided into three parts [summarized by Eqs. (3)–
(5)]. The first part states that a fractional packing is not smaller than an integral one.

|opt f (Far+)| ≥ |opt(Far+)|. (3)

The second part shows that bounding the path lengths reduces the throughput only
by a factor of 2.

Lemma 19 ([7, Claim 4.5]) Let pst
max � 2 · (n − 1) · (1 + B/c). Then,

|opt f (Far
+ | pst

max)| ≥ 1

2
· |opt f (Far

+)|. (4)

The third part shows that paths of length at most pst
max in the space-time graph are

mapped to paths of length at most 4n in the sketch graph.

Proposition 20 Every path p in Gst of length at most pst
max is mapped to a path p̂ in

the sketch graph S of length at most 4n. Hence, by the (2, k)-competitiveness of the
ipp Algorithm, it follows that:

|ipp(Far+ | pmax)| ≥ 1

2
· |opt f (Far

+ | pst
max)|. (5)
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Proof Let p denote a path of length at most pst
max � 2 · (n − 1) · (1 + B/c) in Gst .

We partition the edges of p̂ into horizontal edges and vertical edges in p̂. The number
of vertical edges in p is bounded is n and the same holds also for p̂.

We now prove that the number of horizontal edges in p̂ is at most 3n. For every row
i in Gst , let ni denote the number of horizontal edges of p in the i th row. Similarly, for
every row i in the sketch graph, let n̂i denote the length of the intersection of p̂ with
the i th row of the sketch graph. Let [αi , βi ] denote the interval of rows of Gst that are
mapped to the i th row of the sketch graph (note that βi − αi is simply the height of a
tile).

By Def. 15, the length of every tile is at least 2B. Indeed, if B · c > log n, then the
length τ equals 2B. If B · c ≤ log n, then the length τ ≥ 2 log n/c ≥ 2B. It follows
that

n̂i ≤
⌈∑βi

j=αi
n j

2B

⌉

≤ 1

2B
·

βi∑

j=αi

n j + 1.

Hence,
∑

i n̂i ≤ pst
max
2B + n ≤ 3n. We conclude that the length of the path p̂ is at most

4n, as required. ��

Equations (3)–(5) completes the proof of Theorem 18 ��
The following proposition shows that, in expectation over the biased coins tosses

in Line 2, at most a quarter of the sketch paths are rejected due to “14 -loaded” edges
in Line 3 of the Far+-Algorithm.

Lemma 21 If n > 16, then

E(|ippλ
1/4|) ≥ 3

4
· E(|ippλ|) .

Proof The idea it to show that, after random sparsification, the load of every sketch
edge is at most 1/4 with high probability. This implies that few requests are rejected
as a result of causing the load of an edge to be greater than 1/4.

Let p̂i denote the sketch path of ri . Given a sketch edge e, let P(e) � { p̂i : ri ∈
ipp(Far+ | pmax), e ∈ p̂i } denote the set of sketch paths that traverse e. Similarly, let
Pλ(e) � { p̂i : ri ∈ ippλ, e ∈ p̂i } denote the set of paths that traverse e after random
sparsification. We first claim that, for a constant γ > 200, for n > 24, and for every
sketch edge e,

Pr

(
|Pλ(e)| >

c(e)

4

)
<

1

16n
. (6)

We now prove Eq. (6). Since ipp(Far+ | pmax) is (2, k)-competitive, it follows that

|P(e)| ≤ k · c(e) .
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The tossing of the biased coins with λ = 1/(γ k) with γ = 200, implies that

E(|Pλ(e)|) = λ · |P(e)| ≤ λk · c(e) = 1

γ
· c(e).

The following sequence of equations is explained below.

Pr

(
|Pλ(e)| >

c(e)

4

)
= Pr

(
|Pλ(e)| ≥ (1 + δ)

c(e)

γ

)

<

(
eδ

(1 + δ)(1+δ)

) c(e)
γ

≤
(

eδ/γ

(1 + δ)(1+δ)/γ

)2·log n

=
(

e
1
4− 1

γ

(
γ
4 )

1
4

)2·log n

,

The first line holds if δ satisfies 1+δ
γ

= 1
4 . The second line is due to a multiplicative

Chernoff bound [21]. The third line is implied by Proposition 16 since c(e) ≥ 2 · log n.
The last line follows by the definition of δ.

Since γ = 200 and n > 16, then

(
e
1
4− 1

γ

(
γ
4 )

1
4

)2

< 2−2 < 2− log 16n
log n and therefore,

Pr
(
|Pλ(e)| >

c(e)
4

)
< 2− log 16n and Eq. (6) holds.

Since pmax = 4n, the length of each sketch path is at most 4n. By Eq. (6) and by
applying a union bound it follows that

Pr
(

ri /∈ ippλ
1/4 | ri ∈ ippλ

)
≤ Pr

(
∃ e ∈ p̂i : Pλ(e) >

1

4
· c(e)

)

≤ 4n · 1

16n
= 1

4
.

The lemma follows by linearity of expectation. ��
The following theorem states that, in expectation, a 1/�(k) fraction of the requests

that are accepted by the ipp algorithm are successfully routed.

Theorem 22 E(|algFar+|) ≥ λ
4 · |ipp(Far+ | pmax)|.

Proof We first prove a Lemma and a Proposition. Lemma 23 deals with a projection
of a random sparsification of a 0-1 matrix. This lemma helps estimate the number of
requests from ippλ for which I -routing is successful in each plane (ignoring the effect
of Line 3 in the algorithm). Proposition 24 helps analyze the effect of Line 3 on the
number of requests for which I -routing is successful. ��
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Definitions Let I (·) be an operator over 0-1 matrices defined as follows. I (X) is all
zeros except for the first nonzero entry in each row of X . Namely,

I (X)i, j �
{
1 if Xi, j = 1 and Xi,� = 0, for every � < j

0 otherwise.

The motivation for this definition is as follows. Suppose that the matrix X indicates
the existence of packets in a plane of a SW-quadrant in which packets are routed
by I -routing along rows out of the quadrant. The only packets for which I -routing
succeeds in this plane are the packets that correspond to ones in I (X).

Let L ∧ B denote the matrix obtained by the coordinate-wise conjunction of L and
B. For a matrix X , let w(X) denote the number of 1’s in X .

In the following lemma we analyze the effect of random sparsification on I -routing
along the rows of the SW-quadrant. A similar effect occurswhen considering I -routing
along the columns of the SW-quadrant.

Lemma 23 Let A and Z be 0-1 matrices whose dimensions are Q
2 × τ

2 . Assume that
the entries of Z are i.i.d. 0-1 random variables with E(zi j ) = λ . Let λ < 2

τ
. Then,

E
(
w

(
I (A ∧ Z)

)) ≥ λ

2
· w(A) .

Proof Consider each row Ai of A and Zi of Z separately. The expectation of the 0-1
random variable w(I (Ai ∧ Zi )) equals the probability that it equals 1. Note that

Pr(w(Ai ∧ Zi ) = 0) = (1 − λ)w(Ai )

≤ e−λ·w(Ai ).

Since λ · τ/2 ≤ 1, it follows that λ · w(Ai ) ≤ 1, and hence

Pr(w(Ai ∧ Zi ) = 1) ≥ 1 − e−λ·w(Ai )

≥ λ

2
· w(Ai ).

The lemma follows by linearity of expectation. ��
We now return to the proof of Theorem 22. For every tile consider its SW-quadrant

as a three dimensional cube of dimensions τ
2 × Q

2 × (B + c). Recall that I -routing

deals with each τ
2 × Q

2 plane separately.
The lengths τ and Q of each tile are at most 2 log n. Recall that λ = 1

γ ·k where
k ≥ log(1 + 3 · 4n). Hence, if γ = 200, then 1/λ = γ · k ≥ τ

2 .
Assume that we skip Step 3 of the algorithm (namely, we do not check that the

load is bounded by 1/4), and apply directly I -routing to the requests in ippλ. Let Iippλ
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denote the set {ri ∈ ippλ : I—routing succeeds in routing ri }. We consider each of the
(B + c) planes separately, and by Lemma 23 and linearity of expectation, we obtain

E(|Iippλ |) ≥ λ

2
· |ipp(Far+ | pmax)|

= 1

2
· E(|ippλ|) . (7)

Furthermore, Lemma 21 implies that:

E(|ippλ \ ippλ
1/4|) ≤ 1

4
· E(|ippλ|) . (8)

Hence,

E(|Iippλ |) − E(|ippλ \ ippλ
1/4|) ≥ 1

4
· E(|ippλ|) . (9)

Notations For a 0-1 matrix L , let L̄ denote negated matrix L̄i, j � 1 − Li, j . For
matrices L and B, let L ≤ B denote Li, j ≤ Bi, j , for every i and j .

Proposition 24 If L ≤ B then:

w(I (L)) ≥ w(I (B)) − w(B ∧ L̄).

Proof It suffices to deal with each row separately. Let Bi denote the i th row of the
matrix B. We claim that if w(I (Bi )) = 1, then w(I (Li )) = 1 or w(Bi ∧ L̄i ) ≥ 1.
Indeed, assume that w(I (Bi )) = 1 and w(I (Li )) = 0. Then, Li is all zeros. Hence,
Bi ∧ L̄i = Bi , and the proposition follows. ��

We now prove the following lemma.

Lemma 25 For every outcome of the random biased coins:

|algFar+| ≥ |Iippλ | − |ippλ \ ippλ
1/4| .

Proof Consider a specific tile s and its SW-quadrant. Fix an i-plane used by I -routing.
W.l.o.g this i-plane corresponds to a horizontal I -routing. Define three 0-1 matrices
A, Z and L with dimensions Q

2 × τ
2 , as follows:

1. Let A be thematrix whose entries indicate the existence of a request r ∈ ipp(Far+ |
pmax) whose source vertex is in the i th plane of the SW-quadrant of the tile s.
Namely, Av,t = 1 iff node (v, t) receives at least i requests in ipp(Far+ | pmax).

2. Let Z denote a random matrix in which the entries are i.i.d. Bernoulli random
variables with Pr(Zv,t = 1) = λ. These Bernoulli random variables correspond
to the outcomes of the biased coin tosses in Step 2 of the algorithm.

3. Let L be the matrix whose entries indicate the existence of a request r ∈ ippλ
1/4

whose source vertex is in the i th plane of the SW-quadrant of the tile s.
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For a subset W of requests, a tile s, and a plane index i , let W (s, i) ⊆ W denote
the subset of requests in W whose source vertex is in the i th plane of the tile s. Let L̄
denote the negation of L . By definition the following identities hold:

(i) |algFar+(s, i)| = w(I (L)),
(ii) |ippλ(s, i)| = w(A ∧ Z),
(iii) |Iippλ(s, i)| = w(I (A ∧ Z)),
(iv) |ippλ(s, i) \ ippλ

1/4| = w(A ∧ Z ∧ L̄).

It suffices to prove that

w(I (L)) ≥ w(I (A ∧ Z)) − w(A ∧ Z ∧ L̄). (10)

Since L ≤ (A ∧ Z), Eq. (10) follows from Proposition 24, and the lemma follows. ��
Wenowcomplete the proof of Theorem22.ByLemma25 andEq. (9), it follows that

E(|algFar+|) ≥ 1
4 · E(|ippλ|). Theorem 22 follows since E(|ippλ|) = λ · |ipp(Far+ |

pmax)|. ��
Theorem 26 E(|algFar+|) ≥ �( 1

log n ) · |opt(Far+)|.
Proof By Theorem 22, it follows that E(|algFar+|) ≥ �(λ) · |ipp(Far+ | pmax)|.
By Theorem 18, |ipp(Far+ | pmax)| ≥ �(|opt(Far+)|). The theorem follows since
λ = 1/�(k) = 1/�(log n). ��

7.5 Algorithm for Requests in Near

In this section we present an online algorithm for the requests in the subset Near.
The algorithm is a straightforward greedy vertical routing algorithm. Given a request
ri ∈ Near, the algorithm attempts to routs the request vertically.

We emphasize that an optimal routing is not restricted to routing a request ri ∈ Near
within the tile.
Notations Let algNear denote the set of requests successfully routed by the Near-
Algorithm with respect to the requests in Near. Let algNear(s) denote the set of
requests routed by the Near-Algorithm within the tile s. Let Nears denote the set of
requests in Near whose starting node is in the tile s. We abuse notation and refer to the
set of routed packets in an optimal routing with respect to Nears also by |opt(Nears)|.
Theorem 27 For every tile s, |algNear(s)| ≥ �( 1

log n ) · |opt(Nears)|.
Proof It suffices to prove that

|algNear(s)| > �

(
1

log n

)
· |opt(Nears) \ algNear(s)|

Weconsider a bipartite conflict graph between requests in algNear(s) and opt(Nears)\
algNear(s). There is an edge (r, r ′) ∈ algNear(s) × opt(Nears) \ algNear(s) if the
vertical path of r shares an edge with the path of r ′ in opt(Nears) \ algNear(s).
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Since at most c requests can traverse the same vertical edge, it follows that a route
of a request in algNear(s) conflicts with at most

deg(r) ≤ Q · c .

If r ′ /∈ algNear(s), then it either encountered a saturated horizontal edge or a
saturated vertical edge. Hence, the degree of r ′ ∈ opt(Nears) \ algNear(s) is at least

deg(r ′) ≥ c .

By counting edges on each side we conclude that

|opt(Nears) \ algNear(s)|
|algNear(s)| ≤ max deg(r)

min deg(r ′)

≤ Q · c

c
.

By Definition 15, Q ≤ 2 · log n, and the theorem follows. ��
Corollary 28 |algNear| ≥ �

(
1

log n

)
· |opt(Near)|.

7.6 Putting Things Together

The online randomized algorithm alg for packet routing on a directed line proceeds
as follows.

1. Choose the tiling parameters τ, Q according to Definition 15.
2. Choose the phase shifts φτ ∈ [0, τ − 1], φQ ∈ [0, Q − 1] of tiling independently

and uniformly at random.
3. Flip a random fair coin b ∈ {0, 1}.
4. If b = 1, then consider only requests in Far+, and apply the Far+-algorithm to

these requests.
5. If b = 0, then consider only requests in Near, and apply the Near-algorithm to

these requests.

Theorem 29 If B, c ∈ [1, log n], then the competitive ratio of alg is O(log n).

Proof sketch of Theorem 29 The chosen tiling parameters and phase shifts induce a
classification of the requests to two classes: Near and Far+. With probability 1

2 the
random fair coin b chooses the bigger class. Theorem 26 and Corollary 28 state that
algFar+ and algNear are O(log n) competitive, and the theorem follows.

7.7 Large Buffers

In this section we consider a special setting in which the buffers are large. Note that
the Algorithm fails if B = ω(log n) both with near and far requests. Formally, assume
that log n ≤ B/c ≤ nO(1).
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We briefly mention the required modifications. The tiling parameters are τ = B/c
and Q = 1. This implies that there are no near requests and all requests are classified
as far. Each tiles is partitioned in to a left half and a right half. The algorithm considers
only requests whose source vertex is in the left half of a tile; such requests are denoted
by R+. Note that random shifting is employed so that on the average R+ contains half
the requests.

The north and south side of the left half of each tile are “blocked” so that detailed
routing does not traverse these sides. Thismeans that I -routing is only along horizontal
edges. In the right half of each tile, three T -routing are super imposed. The first T -
routing is for the paths that enter the tile from the west side. These paths traverse the
left half horizontally and then in the right half undergo T -routing (so that they exit
from the east or north side of the right half). The second T -routing is for the paths that
enter the tile from the south side of the right half. Finally, the third T -routing is for
continuing the paths of the I -routing from the border between the halves to the north
and east sides of the right half of the tile.

Path lengths are bounded as before (this is why we require that B/c is polynomial).
In addition the random sparsification parameter λ is the same.

The algorithm proceeds as follows:

1. Execute the ipp algorithm with respect to the path requests in R+ over the sketch
graph.

2. Toss a biased 0-1 coin Xi such that Pr(Xi = 1) = λ. If Xi = 0, then reject ri .
3. If the addition of p̂i causes the load of any sketch edge to be at least 1/4, then

reject ri .
4. Apply I -routing to ri . If I -routing fails, then reject ri . Otherwise, inject ri with

the sketch path p̂i and apply T -routing till the destination is reached.

In this setting, the ratio between the capacity of the sketch edges that emanate from
a tile to the number of requests whose source vertex is in the tile is constant. This
constant ratio simplifies the proof of the following theorem compared to the proof of
Theorem 29.

Theorem 30 If log n ≤ B/c ≤ nO(1), then there exists a randomized online algorithm
that achieves a logarithmic competitive ratio for packet routing in a uni-directional
line.

Recall that for the case where B, c ∈ [�(log n),∞) and B/c = nO(1), there is an
even simpler and deterministic online algorithm with O(log n) competitive ratio, as
stated in Theorem 13.

7.8 Small Buffers and Large Link Capacities

The case B ∈ [1, log n] and c ∈ [log n,∞) is dealt with by simplifying the algorithm.
Webrieflymention the requiredmodifications. The tile size is τ = 1 and Q = log n/B.
The maximum path length is set to 2(n −1)(1+ B/c) which is polynomial (i.e., tiling
is not needed to reduce the path length). Instead of partitioning a tile into quadrants,
we partition each tile into an upper half and a lower half. The set R+ is defined to the
set of requests whose origin is in the lower half of a tile.
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The set Near is dealt by a vertical path. Since in every tile s, |algNear(s)| ≥
min{c, |opt(Nears)|} and since |opt(Nears)| ≤ log n

B · (B + c), it follows that
|algNear(s)|
|opt(Nears )| ≥ 1

log n .

The set Far+ is dealt by invoking a variation of the Far+-Algorithm. The modified
invariants for detailed routing are that paths may not enter or exit horizontally through
the lower half of a tile (but, of course, may traverse the tile vertically). I -routing simply
routes the first 3

4 · c requests vertically. The remaining capacity of c
4 is reserved for

incoming paths from the south side. In the upper half of each tile, X -routing on a
single column is employed.

We conclude with the following theorem.

Theorem 31 If B ∈ [1, log n] and c ∈ [log n,∞), then there exists a randomized
online algorithm that achieves a logarithmic competitive ratio for packet routing in a
uni-directional line.

Remark The space-time graph seems to assign symmetric roles to the time axis and
the space axis. Such a symmetry would imply that one could reduce the case of large
buffers to the case of large link capacities. However, this is not true due to the definition
of a destination. A destination (in the space-time graph) is a row of vertices (namely,
the set of copies of an original vertex). This implies that one cannot simply transpose
the graph and exchange the roles of space and time.

8 Open Problems

Two basic problems related to the design and analysis of online packet routing remain
open even for uni-directional lines. (i) Achieve a constant competitive ratio or prove
a lower bound that rules out a constant competitive ratio. (ii) Achieve a logarithmic
competitive ratio by a distributed algorithm (as opposed to a centralized algorithm).

In a follow-up paper [15] we showed an improved O(log n)-competitive determin-
istic online algorithm for uni-directional lines. We also extended this algorithm to the
d-dimensional case, in which its competitive ratio is O(logd n)-competitive. In this
context, it remains to see wether competitiveness for the d-dimensional case can be
improved.
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Appendix 1: Proof of Lemma 2

Lemma 2 Let pmax ≥ 2n · (1 + B
c ). Then,

|opt f (R | pmax)| ≥ 1

2
·
(
1 − 1

e

)
· |opt f (R)| .

Proof Let f ∗ denote an optimal fractional path packing in Gst with respect to a set of
flow requests R, that is f ∗ = opt f (R). The flow f ∗/2 has a throughput that is half
the throughput of f ∗ and the load of each edge is at most 1

2 .
We construct two flows g and h, each of which incurs a load of at most 1

2 on each
edge and |g + h| ≥ (1 − e−1) · | f ∗|/2. Let 0 < α < 1 and � denote parameters to be
defined later. The flows g and h are constructed for each flow path p of f ∗ as follows.
Initially, h is zero and g starts in the first vertex of p with half the flow amount of f ∗
along p. During the first � edges of p, the flows g and h are defined as follows. In each
“forward” edge, the incoming flow of g is forwarded to the outgoing edge along p,
and no flow is added to h. In each “store” edge of p, we decimate g by leaving only
a fraction (1 − α) of g along the store edge. The remaining α fraction is deflected to
h which routes the flow along a shortest path in G to the destination (i.e., uses only
forward edges). After � edges, we drop whatever flow is left of g.

Clearly, the load that g incurs on each edge is at most 1
2 . To obtain the same bound

for h, we need to set α to be small enough. Indeed, the flow along each forward edge
in h is bounded by α · nB. Thus it suffices to have

α · nB ≤ c

2
.

So we set α � c
2nB .

The fraction of dropped flow is bounded by (1−α)�
′
, where �′ denotes the number

of store edges along the first � edges of p. Let � � n +α−1, then �′ ≥ α−1; otherwise,
we would have reached the end of p as it contains less than n edges. Hence the fraction
of flow in f ∗ that is dropped by g + h is at most (1 − α)1/α ≤ 1/e.

To conclude, the length of the flow paths in g +h is bounded by �+n = 2n(1+ B
c ),

and the flow amount of g + h is at least 1
2 · (1 − 1

e ) times the flow amount of f ∗. ��

Appendix 2: Proof sketch of Theorem 10

The proof of Theorem10 follows the proof of Theorem4. The proof of the propositions
below follows the analogous proofs in Sect. 5.3.

Proposition 32 | f ∗(R | pmax)| ≥ |opt f (R | pmax)|.
Proposition 33

1

d + 1
· kd+1 · (B + d · c) · | f ∗{1,d+1,∞}(R | pmax)| ≥ | f ∗(R | pmax)|

≥ | f ∗{1,d+1,∞}(R | pmax)|
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Proposition 34 |ipp| ≥ �
(

d+1
kd+1·(B+d·c)

)
· | f ∗(R | pmax)|

Proposition 35 |ipp ′| ≥ 1
2k · |ipp|

Proposition 36 |alg | ≥ 1
(d+1)·k · |ipp ′|

Theorem 10. The competitive ratio of the algorithm for d-dimensional grid networks
is

O
(

kd+3 · (B + d · c)
)

= O
(
logd+4 n

)

provided that B, c ∈ [3, log n].
Proof sketch of Theorem 10 Bounding path lengths incurs a constant loss to the com-
petitive ratio. Algorithm ipp incurs an additional constant loss to the competitive
ratio. The capacity assignment of {1, d + 1} reduces the throughput by a factor of
1

d+1 · kd+1 · (B + d · c). Similarly to the uni-dimensional case, a fraction of at most

(1− 1
2k ) of the requests in ipp are preempted before they reach their last cube. Finally,

a fraction of at least 1
(d+1)·k of the requests that reach their last tile are successfully

routed, i.e., by detailed routing in the last tile. Hence, the total fraction of requests that

are successful routed is�
(

1
kd+3·(B+d·c)

)
. The theorem follows since B, c ∈ [3, log n].

��

Appendix 3: Proof of Theorem 11

Theorem 11. There exists an online deterministic preemptive algorithm for packet
routing in bufferless d-dimensional grids with a competitive ratio of O(logd+2 n).

Proof Since B = 0, the space-time graph Gst after untilting consists of unconnected
d-dimensional grids. Within each such d-dimensional grid, we apply a version of our
algorithm. Note that since B = 0, trivially pmax ≤ ∑

i �i (i.e., the diameter of the
grid) and does not depend on c. Note also that the destination is a single node (bi , t ′),
where t ′ = ti +‖ai −bi‖1. Thus we need not introduce sink nodes. The edge capacities
are d · c to every interior edge (instead of (d + 1)). Hence, the capacity assignment
reduces the throughput by a factor of kd (instead of kd+1 · (B + d · c)). ��

Appendix 4: Proof of Lemma 37

Lemma 37 (A Reverse Markov Inequality) Let X be a nonnegative bounded random
variable attaining values in [0, a]. For every d < a,

Pr (X ≥ d) ≥ E(X) − d

a − d
.
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Proof We prove that Pr (X < d) ≤ 1− E(X)−d
a−d . Let Y be a random variable such that

Y � a − X . Note that, Y is also a nonnegative bounded random variable attaining
values in [0, a]. Hence, X < d if and only if Y > a − d. The expected value of Y
is E(Y ) = a − E(x). The lemma follows by applying Markov Inequality [21], as
follows:

Pr (X < d) = Pr (Y > a − d)

≤ E(Y )

a − d

= a − E(x)

a − d

= 1 − E(x) − d

a − d
.

��

Appendix 5: Online Integral Path Packing Algorithm IPP

In this sectionwe present algorithm ipp and prove Theorem1. The presentation follows
the framework of [10,11]. The presentation emphasizes two points: (1) The graph over
which the requests arrive may be infinite. (2) There is an upper bound pmax on the
length of a path that may serve a request.

Linear Programming Formulation Fractional path packing is a multi-commodity
flow problem, and is formulated by a linear program (LP). In Fig. 13, the dual LP

min
e∈E

xe · c(e) +
i

zi s.t.

∀i ∀p ∈ Pi :
e∈p

xe + zi ≥ 1 (covering const.)

x, z ≥ 0
(I)

max
i p∈Pi

f(i, p) s.t.

(demand const.) ∀i
p∈Pi

f(i, p) ≤ 1

(capacity const.) ∀e ∈ E flow(e) ≤ c(e)
f ≥ 0

(II)

Fig. 13 (I) The Primal linear program. (II) The Dual linear program
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corresponds to the fractional path packing problem aswell as the corresponding primal
LP are listed.

The notation in the LPs is as follows. For each request i , let Pi denote the set of
paths in G that can serve the request ri = (ai , bi ). The length of every path p ∈ Pi

is at most pmax. The variables f (i, p) denote the amount of flow allocated to request
i along the path p. The demand constraint in the dual LP states that at most one unit
of flow can be jointly allocated to all the paths in Pi . The capacity constraint states
that at most c(e) units of flow can traverse an edge e. The objective is to maximize the
flow amount.

The primal LP has two types of variables: one variable zi per request ri and one
variable xe per edge e. The variable xe can be interpreted as a weight assigned to the
edge e. The covering constraint states that for every request ri and every path p ∈ Pi ,
the weight of the path p plus zi should be at least 1. The objective is to minimize the
sum of edge weights times their capacities plus the sum of the variables zi .

The Online Algorithm for Integral Packing of Paths The listing of algorithm ipp
appears in Fig. 3. Note that the graph G = (V, E) may be infinite. This implies that
the primal LP has an infinite number of variables (however, all but a finite subset of
the primal LP variables are zero). We assume that there exists a lightest path oracle
that, given edge weights xe and a request ri , finds a lightest path p ∈ Pi .

Algorithm 3 The ipp algorithm. We assume that all the variables are initialized to zero using lazy
initialization. We assume that given edge variables xe , there exist an oracle that returns a lightest path in
Pi .

Input: G = (V, E) (possibly infinite), sequence of requests {ri }∞i=1 where ri � (ai , bi ).
Upon arrival of request ri :

1. Let α(p, i) � ∑
e∈p xe .

2. p ← argmin{α(p′, i) : p′ ∈ Pi } (find a lightest path from ai to bi using an oracle).
3. If α(p, i) < 1 then, route ri along p:

(a) f (i, p) ← 1.
(b) For each e ∈ p do

xe ←xe · 21/c(e) + 1

pmax
· (21/c(e) − 1) .

(c) zi ← 1 − α(p, i).
4. Else, reject ri .

(a) zi ← 0.

For a given sequence σ of requests let F∗(σ ) denote the maximum flow of the dual
LP. An online integral path packing algorithm is said to be (α, β)-competitive if for
every sequence σ of requests (1) its total throughput is at least F∗(σ )/α, and (2) the
load of every edge is at most β.
The proof of the following theorem follows the framework of [11,12].

Theorem 1. Algorithm ipp is a (2, log(1+3 · pmax))-competitive online integral path
packing algorithm under the following assumptions: (1) mine c(e) ≥ 1. (2) A path is
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legal if it contains at most pmax edges. (3) There is an oracle, that given edge weights
and a request, finds a lightest legal path from the source to the destination.

Proof Let us denote by�i P (respectively,�i D) the change in the primal (respectively,
dual) cost function after request ri is processed. We claim that �i P ≤ 2 · �i D.

If ri is rejected, then �i P = �i D = 0. If ri is accepted, then �i D = 1 and
�i P = ∑

e∈p �i xe ·c(e)+�i zi . Step (3b) increases the cost
∑

e xe ·c(e) as follows:

∑

e

�i xe · c(e) =
∑

e∈p

[
xe · (21/c(e) − 1) + 1

pmax
· (21/c(e) − 1)

]
· c(e)

=
∑

e∈p

(
xe + 1

pmax

)
· (21/c(e) − 1) · c(e)

≤ cmin · (21/cmin − 1)
∑

e∈p

(
xe + 1

pmax

)

≤ 1 · (21 − 1)
∑

e∈p

(
xe + 1

pmax

)

≤
∑

e∈p

xe +
∑

e∈p

1

pmax

≤ α(p, i) + 1 . (11)

Hence after step (3c):

�i P =
∑

e∈p

�i xe · c(e) + �i zi

≤ (α(p, i) + 1) + (1 − α(p, i))

= 2 . (12)

Since �i D = 1 it follows that �i P ≤ 2 · �i D, as required.
After dealing with each request, the primal variables {xe}e ∪ {zi }i constitute a

feasible primal solution. Given a dual solution { f (i, p)}, let | f | �
∑

i
∑

p∈Pi
f (i, p).

Let { f ∗(i, p)} denote an optimal dual solution. Using weak duality and since �i P ≤
2 · �i D it follows that:

| f ∗| ≤ ∑
e∈E xe · c(e) + ∑

i zi ≤ 2 · | f | , (13)

which proves 2-competitiveness; namely | f | ≥ 1
2 · | f ∗|.

We now prove log(1+3 · pmax)-feasibility of the dual solution, i.e. for each e ∈ E ,
flow(e) ≤ log(1 + 3 · pmax). The update rule of the primal variables {xe}e in Step 3b
implies,

xe = 1

pmax
(21/c(e) − 1) ·

flow(e)−1∑

j=0

(21/c(e)) j
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= 1

pmax
(21/c(e) − 1) · 2

flow(e)/c(e) − 1

21/c(e) − 1

= 2flow(e)/c(e) − 1

pmax
. (14)

The update rule requires thatα(p, i) < 1 for every p. Hence, before the update xe < 1,
and after the update xe < 21/c(e) + 1

pmax
· (21/c(e) − 1). Since cmin ≥ 1, it follows that

xe < 3.
By Eq. (14) it follows that

2flow(e)/c(e) − 1

pmax
< 3 .

Implying that flow(e) ≤ log(1 + 3 · pmax) · c(e), as required. ��

Appendix 6: Two Models For Nodes in Store-and-Forward Networks

The literature contains two different models of node functionality. In an effort to make
the comparison concrete and perhaps clearer, we present schematic implementations
of the nodes in each model.

To simplify the discussion, we use two type of packets: regular packets and ghost
packets. A regular packet contributes a unit to the throughput (if delivered) and a ghost
packet does not contribute to the throughput and acts as a “place holder”. We therefore
may treat a buffer as if it always contains B packets. If a buffer contains only ghost
packets, then it is empty in reality. A reasonable policy does not drop a regular packet
while keeping a ghost packet.

Model 1 This model is used by [6,22]. Figure 14a depicts a block diagram of a node.
A node contains a combinational circuit comb, a buffer consisting of B flip-flops, and
c flip-flops on each link that emanates the node.

In each clock cycle, the combinational circuit comb receives c packets from each
incoming link, B packets from its buffer, and B + c packets from its local inputs.
It outputs B packets to the buffer and c packets along each outgoing link. Packets
that were input but not output are considered dropped packets unless the node is their
destination.

Model 2 This model is used by [3,7]. Figure 14b depicts a block diagram of a node.
A node contains two combinational circuits comb0 and comb1, two sets of B latches,
and one latch on the link that emanates the node. Note that this implementation uses
a two-phase clock. The phases are denoted by φ0 and φ1.

In the first phase of each clock cycle, the combinational circuit comb0 receives one
packet from the incoming link, B packets from its buffer, and B packets from its local
input. In total 2B + 1 packets (either regular or ghost packets) are fed to the comb0
circuit. The comb0 circuit outputs B packets and the rest are dropped unless this is
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Fig. 14 a A schematic of a node in Model-1. b A schematic of a node in Model-2

their destination. In the second clock phase of each clock cycle, the combinational
circuit comb1 outputs one packet along the outgoing link and B packets are sent back
to comb0.

Remark 1 The setting B = c = 1 in Model 1 is strictly stronger than B = 1
in Model 2. Indeed, in Model 1, if a node receives a regular packet from its
neighbor and is also input a regular packet locally, then it may store one packet
and forward the other one.On the other hand, inModel 2, one of the packetsmust be
dropped.
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2. We could also allow for more injected packets in each node. In this case, the node
must drop some of them. Of course, the online algorithm has to decide which
packets should be dropped.

3. The linear lower bounds for B = 1 in [3,7] hold only with respect to Model 2.
4. It is not clear how to extend Model 2 for the case that c > 1 or B = 0.
5. Under the common assumption that the cost of a flip-flop is roughly twice the cost

of a latch, the hardware needed for the latches of a node in Model 2 is roughly the
same as the cost of flip-flops of a node in Model 1 (with c = 1).
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