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Abstract We analyse the density of states of the random graph Laplacian in the percolating
regime. A symmetry argument and knowledge of the density of states in the nonpercolating
regime allows us to isolate the density of states of the percolating cluster (DSPC) alone,
thereby eliminating trivially localised states due to finite subgraphs. We derive a nonlinear
integral equation for the integrated DSPC and solve it with a population dynamics algo-
rithm. We discuss the possible existence of a mobility edge and give strong evidence for the
existence of discrete eigenvalues in the whole range of the spectrum.

Keywords Random graphs · Graph Laplacian · Density of states

1 Introduction

The eigenvalue spectrum of sparse random matrices is a fascinating and largely unsolved
problem with widespread applications ranging from transport in disordered systems, graph
theory and optimisation problems to nuclear physics and QCD [1, 2]. In this paper we con-
sider a prototype of such a random matrix, the Laplace operator on a mean-field random
graph with N nodes, i.e. a graph where a link between two arbitrary sites is either present
with probability p = 2c/N or not present with probability 1 − p. The constant 2c is the
mean connectivity of the graph. The Laplace operator on this graph is a matrix Γij where
for i �= j Γij = −1 if the nodes i and j of the graph are connected and Γij = 0 otherwise,
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while on the diagonal Γii = −∑
j �=i Γij . The entries on the diagonal are thus correlated to

the random entries outside the diagonal.
Even though the computation of the density of states for a mean-field random graph

has been reduced to an integral equation [3–5], a complete solution is still missing. In the
limit of infinite coordination, c → ∞, Wigner‘s semi-circle law is recovered. For any finite
c, Lifshitz tails were shown to exist in the integrated density of states [6]. Beyond these
asymptotic results a number of approximations have been used to compute the spectrum ap-
proximately, such as effective medium theory [7], single defect approximation [8], moment
expansions, numerical diagonalisation [9, 10] and regularisation techniques [9].

In this paper we are mainly interested in the density of states of the percolating cluster.
This problem is a special case of the spectral theory of random operators on percolation
subgraphs (see [11] for a review). Here, we show first that the density of states of the per-
colating cluster (DSPC) can be isolated using a symmetry argument and our knowledge of
the density of states below the percolation threshold. Second, we derive an integral equation
for the integrated density of states which can be solved reliably with a population algo-
rithm. The numerical solution reveals jumps in the integrated DSPC in the whole range of
the spectrum, calling in question the existence of a mobility edge. We are also able to find
the asymptotic behaviour of the integrated DSPC of the incipient percolating cluster at the
percolation threshold for small eigenvalues.

2 Model and Symmetry

The model shows a percolation transition at ccrit = 1/2. Below this concentration there is
no macroscopic cluster and almost all finite clusters are trees. The average number of tree
clusters Tn with n nodes is given in the macroscopic limit by [12]

lim
N→∞

Tn(2c)

N
= τn(2c) = nn−2(2c e−2c)n

2c n! . (1)

In particular the average total number of clusters per particle is τtot(2c) = 1−c. For c < 1/2,
the spectrum consists of a very complicated, but countable set of δ-peaks which can be cal-
culated iteratively [10]. Above the percolation threshold c > 1/2 a percolating cluster coex-
ists with many finite clusters, almost all of which are also trees. The fraction of sites in the
macroscopic cluster, Q(c), is the solution of 1 − Q(c) = exp(−2cQ(c)) [12]. Alternatively
we rewrite Q(c) = 1 − x(c)

2c
and obtain x(c) as the solution of

x(c) e−x(c) = 2ce−2c. (2)

This equation has two solutions, a trivial one with x(c) = 2c and a nontrivial one with
x(c) = 2c∗ such that c∗ > 1

2 if c < 1
2 and vice versa. This nontrivial solution allows one to

establish a symmetry for the number of trees with a fixed number of nodes above and below
the percolation threshold. Using (2), we can rewrite (1) according to

τn

(
x(c)

) = 2c

x(c)
τn(2c) or τn(2c∗) = c

c∗ τn(2c). (3)

Hence the number of trees above the percolation threshold is simply related to the number
of trees below the percolation threshold.
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3 Density of States

This relation allows us to compute the density of states of the percolating cluster alone,
which is the quantity of primary interest. It is known that the density of states, D(Ω), of the
infinite cluster contains at least some δ peaks, so that a population dynamics algorithm [9]
cannot be applied. In this paper we instead compute the integrated density of states, Δ(Ω) =∫ Ω

0 dΩ ′ D(Ω ′), which according to measure theory [13], may be decomposed into a singular
part and an absolutely continuous part. The absolutely continuous part may itself consist
of two contributions, eigenvalues stemming from localised eigenvectors that lie dense and
each have vanishing weight in the thermodynamic limit, and the eigenvalues stemming from
nonlocalised eigenvectors. We may thus write

Δ(Ω) = Δloc,disc(Ω) + Δloc,cont(Ω) + Δnonloc(Ω). (4)

Often in random matrix problems there is a mobility edge, i.e. a value Ω0 such that all
eigenvectors corresponding to eigenvalues Ω < Ω0 are localised and all eigenvectors corre-
sponding to Ω > Ω0 are nonlocalised (or vice versa). We will show here that such a sharp
edge does not seem to exist in our problem as we find discrete eigenvalues even in the re-
gion where nonlocalised eigenvectors lie. This shows that a naive approach using the inverse
participation ratio in order to find the onset of nonlocalised eigenvectors will not work since
the localised eigenvectors do not disappear where the nonlocalised ones first appear, so the
inverse participation ratio will not drop down to 0 as it would at a true mobility edge.

The density of eigenvalues, {Ωi}N
i=1, of the Laplacian matrix Γ is defined by

D(Ω,c) = lim
N→∞

1

N

N∑

i=1

δ(Ω − Ωi) = lim
N→∞

1

N
Tr δ(Ω − Γ ). (5)

Here · denotes the average over all realisations of connectivity for a given c. To compute
the density of eigenvalues we introduce the resolvent

G(Ω,c) = lim
N→∞

1

N
Tr

1

Γ − Ω
(6)

for complex argument Ω = γ + iε, ε > 0. In the limit ε → 0, we recover the spectrum from
the imaginary part of the resolvent according to

D(Ω,c) = 1

π
lim
ε↓0

�G(Ω + iε, c). (7)

In the percolating regime c ≥ 1
2 the macroscopic cluster coexists with many finite ones. In

order to study localised states of the macroscopic cluster it is essential to isolate the density
of states of the macroscopic cluster only. The symmetry expressed by (2) and (3) allows us
to decompose the resolvent into two contributions, one from the percolating cluster and one
from the finite clusters. Since the finite clusters from c∗ are also present at c (although with
a smaller total weight), we write G(Ω,c) as a sum of the resolvent G(Ω,c∗), appropriately
weighted, and a remainder Gperc(Ω, c), which then must generate the spectrum of the giant
cluster:

G(Ω,c) = Gperc(Ω, c) + c∗

c
G(Ω,c∗). (8)
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The above relation allows us to compute the density of states of the percolating cluster alone
from the full density of states above, G(Ω,c), and the density of states below the percolation
threshold, G(Ω,c∗) for c∗ < 1

2 , which is known [10].
The resolvent can be expressed in terms of an auxiliary function gc,Ω(ρ) as [3]

G(Ω,c) = −1 + i

2c

∫ ∞

0
dρ ρgc,Ω(ρ). (9)

The average over all realisations of connectivity is performed with the replica trick, resulting
in a nonlinear integral equation for gc,Ω(ρ) (cf. (16) and (17) in Ref. [3])

gc,Ω(ρ) = 2c exp

{

− iρ2

2

}

+ 2ic e−2c

∫ ∞

0
dx ρI1(iρx) exp

{

− i

2
(ρ2 + x2) + iΩ

2
x2 + gc,Ω(x)

}

(10)

with gc,Ω(0) = 2c. Here Iν(z) are the modified Bessel functions of the first kind.

3.1 Nonpercolating Regime

Equation (10) for c < 1/2 was solved in [10]. The solution is

gc,Ω(ρ) = 2c
∑

k

ak exp

(

− i

2
zkρ

2

)

= 2c

∫ ∞

−∞
dac,Ω(λ)e− i

2 λρ2
(11)

with coefficients ak and zk to be defined below. The sum can also be expressed as a Riemann-
Stieltjes integral with weight function ac,Ω(λ) = ∑

k akθ(λ − zk) (θ(· · ·) is the Heaviside
function). This formulation will be useful later.

The coefficients ak and zk can be grouped in infinitely many “classes.” The coefficients
of class n + 1 are given recursively by the relations

a
(n+1)

(lk ) = e−2c
∏

k

(2ca
(n)
k )lk

lk! (12)

z
(n+1)

(lk ) = Ω − ∑
k lkz

(n)
k

Ω − 1 − ∑
k lkz

(n)
k

(13)

(the upper index denotes the class). Class 0 contains only one element, namely a
(0)

0 = e−2c

and z
(0)

0 = Ω
Ω−1 . The index on the left hand side is a finite sequence (lk) of nonnegative

integers. In order to proceed to the next stage of the recursion, (lk) must be mapped to
a natural number m since for the calculation of, say, z

(n+1)

(lk ) it is necessary to access the
coefficients z(n)

m of the previous iteration. Such a mapping is possible because the set of
sequences {(lk)} is countably infinite. It was shown in [10] that the correct way to do the
mapping is to choose m = ∑

k lkM
k and to let M (formally) tend to infinity at an appropriate

point. Note that class n + 1 also contains all coefficients from class n. See [10] for details.
These classes give us an infinite hierarchy of coefficients, each recursion step adding

infinitely many coefficients to the previous ones. Note that the coefficients in class n con-
structed in this way are not an approximation but constitute (part of) the exact solution
of (10). Only the total weight of coefficients

∑
k ak falls short of 1 when stopping the recur-

sion at a finite n. The complete sets of coefficients ak and zk from (11) are the collection
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of all coefficients from all classes, i.e. the are equal to a
(∞)
lk

and z
(∞)
lk

from the recursion,
appropriately reindexed. It follows from this representation that for any finite sequence of
nonnegative integers (lk) there exists an index k′ such that

e−2c
∏

k

(2cak)
lk

lk! = ak′ and (14)

Ω − ∑
k lkzk

Ω − 1 − ∑
k lkzk

= zk′ . (15)

This will be useful below.
The solution of (10) which is given in (11) leads to a density of states consisting of

δ peaks which are located at those Ω where zk = 0.

3.2 Percolating Regime

In analogy to the resolvent, we can decompose gc,Ω(ρ) = g
perc
c,Ω (ρ) + gc∗,Ω(ρ) into a part

g
perc
c,Ω (ρ) pertaining to the infinite cluster and a part which is equal to the (known) solution

gc∗,Ω(ρ) of the integral equation at c∗. This decomposition has the advantage that we can
directly obtain the density of states of the infinite cluster by deriving an equation for g

perc
c,Ω (ρ),

which in analogy to (11) can be represented as

g
perc
c,Ω (ρ) = (2c − 2c∗)

∫ ∞

−∞
dbc,Ω(λ) e− i

2 λρ2
. (16)

The function bc,Ω(λ) is normalised such that
∫ ∞

−∞ dbc,Ω(λ) = 1 and the “initial condition”
gc,Ω(0) = 2c is being taken care of by the prefactor 2c − 2c∗. This ansatz is plugged into the
integral (10) and yields, after application of (14) and (15),

bc,Ω(λ) = 2c∗
∞∑

n=0

an

∞∑

M=1

(2c − 2c∗)M−1

M!
∫ ∞

−∞
dbc,Ω(λ1) · · ·

∫ ∞

−∞
dbc,Ω(λM)

× θ

(

λ −
[

1 − 1
1

1−zn
+ ∑M

i=1 λi

])

. (17)

This equation can be solved numerically by running a population dynamics algorithm for
the coefficients zk at c∗ below the critical point in parallel to a population dynamics for a
λ-population at c above the critical point, for which the zk and their weights ak are needed
as input.

The population dynamics algorithm below the critical point consists of keeping a large
population of zk’s and repeatedly updating this population by choosing a Poisson random
number n with parameter 2c∗, randomly selecting n of the zk with indices ki (i = 1, . . . , n)
and inserting 1 + 1

Ω−1−∑n
i=1 zki

as a new member into the population, replacing a random

existing member. This process yields a numerical approximation of the distribution ac∗,Ω(λ).
The population dynamics above the critical point is similar. A large λ population is up-

dated by first drawing a Poisson random number M with parameter 2c − 2c∗, but rejecting
and redrawing it if it is 0 (this step corresponds to the sum over M in (17) which starts
with M = 1, and which is correctly normalised for this modified Poisson distribution). If
c = c∗, this rule does not work and (17) shows that in this case M = 1 must be chosen with
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probability 1. Then some λi (i = 1, . . . ,M) are drawn randomly from the λ population, and
one z is drawn randomly from the population of the zk calculated above. Finally the new
member 1 − 1

1
1−z

+∑M
i=1 λi

replaces a random existing λ. This is repeated until convergence

(in a statistical sense) is achieved. The λ population then approximates bc,Ω(λ).
Given ac∗,Ω(λ) and bc,Ω(λ) the integrated DSPC can be computed according to (see

Appendix A):

2Δperc(Ω, c)

= 1 +
∫ ∞

−∞
dbc,Ω(λ)

(

sgn

(
λ

λ − 1

)

+ c sgn(λ − 1)

)

− (c − c∗)
∫ ∞

−∞
dbc,Ω(λ)dbc,Ω(λ′) sgn

(
λ

λ − 1
− λ′

)

+ c∗
∫

dac∗,Ω(λ) sgn

(
1

λ − 1

)

− c∗
∫

(
dac∗,Ω(λ)dbc,Ω(λ′) + dbc,Ω(λ)dac∗,Ω(λ′)

)
sgn

(
λ

λ − 1
− λ′

)

. (18)

4 Discussion

We have developed a systematic approach to compute the integrated DSPC. We stress that
the (nonintegrated) DSPC cannot easily be obtained from a conventional population dynam-
ics algorithm without regularisation methods, which was done in [9]. Naively it is given in
terms of bc,Ω(λ) by

Dperc(Ω, c) = 1

π
�

∫ ∞

0
dρ ρ

∫ ∞

−∞
dbc,Ω(λ)e− i

2 λρ2

=
∫ ∞

−∞
dbc,Ω(λ)δ(λ). (19)

The above density of states would be very simple if bc,Ω(λ) was differentiable with respect
to λ, as it would then be equal to (bc,Ω)′(0). It is however known that the density of states
of the percolating cluster contains δ peaks also for c > 1/2 [14]. Hence the position and
weight of the δ peaks cannot directly be obtained from a population dynamics algorithm—a
problem already encountered in the nonpercolating regime. It is thus essential to either use
regularisation as in [9] or to obtain the integrated density of states directly from population
dynamics without going to the density of states first and integrating, and this is what (17)
and (18) provide.

The final equation for the integrated DSPC, (18), reveals much about the eigenvalues of
the percolating cluster. We can, for example, understand the origin of the δ peaks in the den-
sity of states of the percolating cluster. Suppose for the moment that bc,Ω(λ) is continuous
as a function of Ω . Then the integrals over dbc,Ω(λ) certainly do not generate any jumps in
Δperc(Ω, c) due to the continuity in Ω . However, we know that ac∗,Ω(λ) = ∑

n anθ(λ − zn)

is discontinuous as a function of Ω since the zn depend on Ω , and inspection of (18) shows
that this leads to a jump in Δperc(Ω) if the location zn of a jump moves from −∞ to +∞
when Ω is increased infinitesimally (it does not lead to a jump if zn moves across 0 or 1,
as could be suspected at first sight, since the various contributions cancel in these cases).
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Fig. 1 The integrated density of
states below the percolation
threshold

Equation (13) shows that zn can and does indeed pass ∞ as Ω is varied. While the peaks of
the density of states of the finite clusters are located at those Ω for which zn = 0, the peaks
for the percolating cluster are located where zn = ∞. Since the zeros and the poles of zn

necessarily alternate when Ω is varied, it follows that the peaks in the percolating cluster
lie dense if the peaks in the finite clusters lie dense. In this sense there is no mobility edge
in the percolating cluster since isolated and thus localised eigenvalues exist throughout the
whole range of 0 ≤ Ω < ∞.

Unfortunately, this argument only strictly holds if bc,Ω(λ) is indeed continuous in Ω . If
it is not, cancellations might occur which could reduce (or even remove) the peaks from
the percolating cluster. It is shown in Appendix B that indeed bc,Ω(λ) is not continuous but
the argument presented there also shows that a complete removal of peaks would seem an
extremely fortuitous cancellation. In order to check these results we have performed popu-
lation dynamics simulations of the integrated DSPC according to (17). We used population
sizes of 106 for Figs. 1, 2(a) and 3 and 8 × 106 for Fig. 2(b). The larger population size leads
to a decreased statistical error which is important in Fig. 2(b) since the fluctuations could
otherwise mask the small jump at Ω = 1. The fluctuations appear because the distributions
ac∗,Ω(λ) and bc,Ω(λ) are only approximated by the finite populations.

An example of the integrated density of states below the percolation threshold is shown
Fig. 1. The value of c = 0.0396548 . . . used here is related by the symmetry of (2) to c = 2
which appears in Fig. 2. This integrated density of states was not calculated from (18) (there
is no percolating cluster below the threshold) but instead from (56) in Appendix A which
holds for the total integrated density of states. Each small cluster contributes one null eigen-
value, hence the integrated density of states jumps from 0 to τtot(2c) = 1 − c ≈ 0.96 (the
number of clusters per site) at Ω = 0. For larger Ω , steps are visible at Ω = 1, Ω = 2, and
Ω = 3. However, it is clear from the solution in (11) and the coefficients zk that inbetween
these locations the integrated density of states consists of infinitely many jumps which can-
not be discerned on this scale (there is a jump whenever at least one of the zk is equal to 0).

Figure 2 shows the integrated DSPC directly at the critical point c = 1
2 and deep inside the

percolating regime at c = 2. Some jumps are clearly observed for c = 1
2 , and they are located

at the predicted positions. The most prominent ones occur at Ω = 1 where the coefficient

z = Ω
Ω−1 = ∞, or at Ω = 3±√

5
2 where z = Ω− Ω

Ω−1

Ω−1− Ω
Ω−1

= ∞. For c = 2 the integrated density

of states in Fig. 2 looks smooth. This is, however, not the case as the close-up in Fig. 2(b)
reveals. The jump at Ω = 1 which is very pronounced at c = 1

2 is also present at c = 2.
As another application of our method, we consider the asymptotic behaviour of the in-

tegrated density of states of the incipient percolating cluster at the percolation threshold
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Fig. 2 Figure (a) (top) shows the
integrated density of states of the
percolating cluster at c = 1

2 and
c = 2. (b) (bottom) shows an
enlargement of the curve for
c = 2 around Ω = 1

Fig. 3 Logarithmic plot of the
integrated density of states of the
percolating cluster at c = 1

2

c = 1
2 . In Fig. 3 it is shown that for small Ω the integrated DSPC goes as Δperc ∼ Ω2/3. To

the best of our knowledge, this has never been observed before in the literature. This result
is in complete agreement with the Alexander-Orbach conjecture [15] according to which the
integrated density of states of the incipient percolating cluster on finite dimensional lattices
for small Ω goes with an exponent equal to one half of the spectral dimension of the giant
cluster, which was suggested by Alexander and Orbach to be 4/3. The Alexander-Orbach
conjecture is known to hold on hypercubic lattices of sufficiently high dimension for both
percolation and oriented percolation [16, 17], but does not seem to hold in all dimensions.
In addition it was shown for percolation on regular trees and the Bethe lattice [18, 19].
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Appendix A: Integrated Density of States

This section is intended to show how to derive the central equation (18). The density of
states is given by

D(Ω) = 1

π
lim

N→∞
lim
ε↘0

�G(Ω + iε)

with

G(Ω) = 1

N
Tr

1

Ω − Γ
= − 2

N

∂

∂Ω
logZ(Ω)

= − lim
n→0

2

Nn

∂

∂Ω
logZn(Ω) (20)

and the “partition function” Z(Ω) = det−1/2(Ω − Γ ). The integrated density of states is
therefore

Δ(Ω) =
∫ Ω

0
dΩ ′ D(Ω ′) = 1

π
lim

N→∞
lim
ε↘0

�H(Ω + iε) + const. (21)

with

H(Ω) = − 2

N
logZ(Ω) = − lim

ε→0
lim
n→0

2

Nn
logZn(Ω + iε). (22)

The averaged replicated partition function is given by [3, 10]

Zn(Ω) = exp
(−NF(Ω)

)

= exp

(

−N

(
1

2

∫
dnx e− i

2 Ωx2+gΩ(x)gΩ(x)
∫

dnx e− i
2 Ωx2+gΩ(x)

+ c − log
∫

dnx

(2π)n/2
e− i

2 Ωx2+gΩ(x)

))

, (23)

where gΩ(x) is the solution of the saddle point equation

gΩ(x) = 2c

∫
dnx ′ e− i

2 Ωx′2+gΩ(x′)− i
2 (x−x′)2

∫
dnx ′ e− i

2 Ωx′2+gΩ(x′)
.

This equation becomes, assuming a replica symmetric gΩ(x) = gΩ(|x|) =: gΩ(r),

gΩ(r) = 2c
(2π)n/2

Sn

∫
dr ′ r ′n−1(rr ′)1− n

2 Jn
2 −1(rr

′)e− i
2 Ωr ′2− i

2 r2− i
2 r ′2+gΩ(r ′)

∫
dr ′ r ′n−1e− i

2 Ωr ′2+gΩ(r ′)
, (24)

where Sn = 2πn/2

Γ ( n
2 )

is the surface area of the n-dimensional unit sphere.



768 T. Aspelmeier, A. Zippelius

In order to calculate H(Ω), we need limn→0
1
n
F (Ω), therefore we must expand the ex-

ponent in (23) in n. To this end, it will be necessary to calculate integrals of the form

∫ ∞

0

dr

(2π)n/2
rn−1Snf (r),

where the function f (r) is also a function of n. We assume that it can be expanded in n as

f (r) =
∞∑

k=0

nkfk(r).

Then we have, for arbitrary a > 0,

∫ ∞

0

dr

(2π)n/2
rn−1Snf (r) =

∫ ∞

0

dr

(2π)n/2
rn−1Sn

∞∑

k=0

nkfk(r) (25)

=
∫ ∞

0

dr

(2π)n/2
rn−1Sn

∞∑

k=0

nk
(
fk(r) − fk(0)e−ar2/2

)

+
∫ ∞

0

dr

(2π)n/2
rn−1Sn

∞∑

k=0

nkfk(0)e−ar2/2 (26)

= 2

Γ (n
2 )2n/2

∞∑

k=0

nk

∫ ∞

0

dr

r
en log r

(
fk(r) − fk(0)e−ar2/2

)

+ 2

Γ (n
2 )2n/2

∞∑

k=0

nk

∫ ∞

0
dr rn−1e−ar2/2fk(0) (27)

= 2

Γ (n
2 )2n/2

∞∑

k=0

nk

∫ ∞

0

dr

r
en log r

(
fk(r) − fk(0)e−ar2/2

)

+ 2

Γ (n
2 )2n/2

∞∑

k=0

nk 1

2

(
2

a

)n/2

Γ

(
n

2

)

fk(0) (28)

= n

∫ ∞

0

dr

r

(
f0(r) − f0(0)e−ar2/2

) + O(n2)

+ f0(0) − n

2
f0(0) loga + nf1(0) + O(n2). (29)

The term fk(0)e−ar2/2 involving the constant a has been introduced to avoid problems with
the divergence of the integrals at the lower boundary. The result is valid for any positive
value of a such that we may later choose a to our convenience, if necessary. Note that this
result involves f1(0), which stems from the next-to-leading order in the n-expansion. For
the ordinary calculation of G(Ω) such terms do not appear. Here, for H(Ω), however, they
will turn out to be crucial.

We can now calculate the integrals in (23). For the numerator of the first term of F(Ω)

we have

f (r) = e− i
2 Ωr2+gΩ(r)gΩ(r) (30)
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= e− i
2 Ωr2+gΩ

0 (r)(1 + ngΩ
1 (r) + · · ·)(gΩ

0 (r) + ngΩ
1 (r) + · · ·) (31)

= e− i
2 Ωr2+gΩ

0 (r)(gΩ
0 (r) + ngΩ

1 (r)(1 + gΩ
0 (r)) + O(n2)) (32)

expanding gΩ(r) = ∑∞
k=0 nkgΩ

k (r). Therefore
∫

dnx

(2π)n/2
e− i

2 Ωx2+gΩ(x)gΩ(x)

= f0(0) + n

[∫ ∞

0

dr

r

(
f0(r) − f0(0)e−ar2/2

) − 1

2
f0(0) loga + f1(0)

]

+ O(n2) (33)

= egΩ
0 (0)

(

gΩ
0 (0) + n

[∫ ∞

0

dr

r

(
e− i

2 Ωr2+gΩ
0 (r)−gΩ

0 (0)gΩ
0 (r) − gΩ

0 (0)e−ar2/2
)

− 1

2
loga + gΩ

1 (0)
(
1 + gΩ

0 (0)
)
])

+ O(n2). (34)

For the denominator we get likewise

f (r) = e− i
2 Ωr2+gΩ(r) (35)

= e− i
2 Ωr2+gΩ

0 (r)
(
1 + ngΩ

1 (r) + O(n2)
)

(36)

and thus
∫

dnx

(2π)n/2
e− i

2 Ωx2+gΩ(x) = egΩ
0 (0)

(

1 + n

[∫ ∞

0

dr

r

(
e− i

2 Ωr2+gΩ
0 (r)−gΩ

0 (0) − e−ar2/2
)

− 1

2
loga + gΩ

1 (0)

])

+ O(n2). (37)

Using these results, we get the following expression for F(Ω):

F(Ω)

= 1

2

(

gΩ
0 (0) + n

[∫ ∞

0

dr

r

(
e− i

2 Ωr2+gΩ
0 (r)−gΩ

0 (0)gΩ
0 (r) − gΩ

0 (0)e−ar2/2
)

− 1

2
loga + gΩ

1 (0)
(
1 + gΩ

0 (0)
)
]

+ O(n2)

)

×
(

1 + n

[∫ ∞

0

dr

r

(
e− i

2 Ωr2+gΩ
0 (r)−gΩ

0 (0) − e−ar2/2
) − 1

2
loga + gΩ

1 (0)

]

+ O(n2)

)−1

+ c − gΩ
0 − log

(

1 + n

[∫ ∞

0

dr

r

(
e− i

2 Ωr2+gΩ
0 (r)−gΩ

0 (0) − e−ar2/2
) − 1

2
loga + gΩ

1 (0)

]

+ O(n2)

)

(38)

= n

(

−1

2
gΩ

1 (0) + 1

2
loga − (c + 1)

∫ ∞

0

dr

r

(
e− i

2 Ωr2+gΩ
0 (r)−2c − e−ar2/2

)

+
∫ ∞

0

dr

r

(
e− i

2 Ωr2+gΩ
0 (r)−2cgΩ

0 (r) − 2ce−ar2/2
)
)

+ O(n2), (39)

employing the known fact that gΩ
0 (0) = 2c.
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We see that the missing piece of information is gΩ
1 (0). We must go back to (24) and use

it to calculate gΩ
1 (0). When we take the limit r → 0, then (rr ′)1−n/2Jn

2 −1(rr
′) → Sn

(2π)n/2 , so
the equation becomes

gΩ
0 (0) + ngΩ

1 (0) + · · ·

= 2c

∫ ∞
0

dr

(2π)n/2 Snr
n−1e− i

2 (Ω+1)r2+gΩ
0 (r)−gΩ

0 (0)(1 + ngΩ
1 (r) + · · ·)

∫ ∞
0

dr

(2π)n/2 Snrn−1e− i
2 Ωr2+gΩ

0 (r)−gΩ
0 (0)(1 + ngΩ

1 (r) + · · ·)
(40)

= 2c

(

1 + n

∫ ∞

0

dr

r

(
e− i

2 (Ω+1)r2+gΩ
0 (r)−gΩ

0 (0) − e− i
2 Ωr2+gΩ

0 (r)−gΩ
0 (0)

)
)

+ O(n2), (41)

such that

gΩ
1 (0) = 2c

∫ ∞

0

dr

r

(
e− i

2 (Ω+1)r2+gΩ
0 (r)−gΩ

0 (0) − e− i
2 Ωr2+gΩ

0 (r)−gΩ
0 (0)

)
. (42)

Inserting this into (39) gives

F(Ω) = n

(
1

2
loga − c

∫ ∞

0

dr

r

(
e− i

2 (Ω+1)r2+gΩ
0 (r)−2c − e−ar2/2

)

−
∫ ∞

0

dr

r

(
e− i

2 Ωr2+gΩ
0 (r)−2c − e−ar2/2

)

+
∫ ∞

0

dr

r

(
e− i

2 Ωr2+gΩ
0 (r)−2cgΩ

0 (r) − 2ce−ar2/2
)
)

. (43)

This is the final form of the “free energy” as it has been fully reduced to the quantity gΩ
0 (r).

Remember that the parameter a > 0 is arbitrary and will later disappear anyway upon taking
the imaginary value.

Now we need to express this in terms of the probability distribution ac,Ω(λ), in terms of
which gΩ

0 (r) can be written as

gΩ
0 (r) = 2c

∫ ∞

−∞
dac,Ω(λ) e− i

2 λr2
. (44)

We would like to express e− i
2 Ωr2+gΩ

0 (r) in a simple way using ac,Ω(λ), too. This is possible
via the following observation: The integral equation (24) (at n = 0) can be written as

gΩ
0 (r) = 2ce− i

2 r2 − 2ce− i
2 r2

∫ ∞

0
dr ′ rJ1(rr

′)e− i
2 (Ω+1)r ′2+gΩ

0 (r ′)−2c (45)

= 2ce− i
2 r2 − 2c

(
K e− i

2 (Ω+1)r ′2+gΩ
0 (r ′)−2c

)
(r), (46)

where K· is the linear integral operator

(K f )(r) = e− i
2 r2

∫ ∞

0
dr ′ rJ1(rr

′)f (r ′). (47)

Then

e− i
2 Ωr2+gΩ

0 (r)−2c =
(

K−1

(
1

2c
gΩ

0 (r ′) − e− i
2 r ′2

))

(r) (48)
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=
(

K−1
∫ ∞

−∞
dac,Ω(λ)

(
e− i

2 λr ′2 − e− i
2 r ′2)

)

(r) (49)

=
(

K−1
∫ ∞

−∞
dac,Ω(λ)

(
Ke− i

2
λ

1−λ
r ′′2)

(r ′)
)

(r) (50)

=
∫ ∞

−∞
dac,Ω(λ) e− i

2
λ

1−λ
r2

. (51)

Similarly,

e− i
2 (Ω+1)r2+gΩ

0 (r)−2c =
∫ ∞

−∞
dac,Ω(λ) e− i

2 ( z
1−z

+1)r2
. (52)

Let’s look at one of the integrals, e.g.

∫ ∞

0

dr

r

(
e− i

2 Ωr2+gΩ
0 (r)−2c − e−ar2/2

)

=
∫ ∞

0

dr

r

(∫ ∞

−∞
dac,Ω(λ) e− i

2 ( λ
1−λ

+1)r2 − e−ar2/2

)

. (53)

Ultimately, we will only be interested in the imaginary part of this. We can then forget about
the term containing a as it is real. Then

�
∫ ∞

0

dr

r
e− i

2 Ωr2+gΩ
0 (r)−2c =

∫ ∞

0

dr

r

∫ ∞

−∞
dac,Ω(λ) sin

(

−1

2

λ

1 − λ
r2

)

. (54)

Exchanging the order of integration and carrying out the integral over r , one gets

�
∫ ∞

0

dr

r
e− i

2 Ωr2+gΩ
0 (r)−2c =

∫ ∞

−∞
dac,Ω(λ)

π

4
sgn

(
λ

λ − 1

)

. (55)

Similar results hold for the other two types of integral.
Finally, we get for the integrated density of states

Δ(Ω) = 1

2

(∫ ∞

−∞
dac,Ω(λ) sgn

(
λ

λ − 1

)

+ c

∫ ∞

−∞
dac,Ω(λ) sgn

(
λ

λ − 1
− 1

)

− c

∫ ∞

−∞
dac,Ω(λ)dac,Ω(λ′) sgn

(
λ

λ − 1
− λ′

))

+ 1

2
. (56)

The constant of integration, i.e. the trailing 1
2 in the above equation, can be calculated as

follows. For c < 1
2 it is obvious from the definition of zn that in the limit Ω → −∞ all

zn tend to 1 from below. The evaluation of the integrals in (56) is then easy and gives − 1
2 ,

thus the constant of integration must be 1
2 since D(−∞) = 0. For c ≥ 1

2 a similar argument
holds, as the main body of the paper shows that in the limit that all zn ↑ 1, λ ↑ 1 as well.
Equation (56) can thus be evaluated as above, and the constant is again 1

2 .
Equation (56) is the equation for the total integrated density of states. We are interested in

the density of states of the percolating cluster, which can be obtained from this by subtracting
the part from the finite clusters. This can be done by evaluating (56) both at c ≥ 1

2 and at
the corresponding c∗ ≤ 1

2 and subtracting the latter from the former (suitably weighted).
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Decomposing ac,Ω(λ) into the two parts pertaining to the finite clusters at c∗ ≤ 1
2 and the

percolating cluster at c ≥ 1
2 ,

2cac,Ω(λ) = 2c∗ac∗,Ω(λ) + (2c − 2c∗)bc,Ω(λ), (57)

then yields (18) from the main text.

Appendix B: Non-Continuity of bc,Ω(λ)

In this section we discuss the question whether the population density bc,Ω(λ) is continuous
as a function of Ω or not. In Sect. 4 a simple argument was given to show that continuity
implies that localised eigenvalues of the percolating cluster lie dense. Here we will show that
bc,Ω(λ) is in fact not continuous. Nevertheless we conjecture that the localised eigenvalues
still lie dense since the cancellations that would have to occur to produce a gap appear
extremely fortuitous.

In order to judge whether bc,Ω(λ) is continuous, we examine the update rule λ = 1 −
1

1
1−z

+∑M
i=1 λi

contained in (17). Suppose Ω is such that it lies exactly at a pole of, say, zn (so

zn = ∞), then it follows from (12)–(13) that there are some n′ with zn′ = 1. In this case the
update rule shows that with finite probability (namely the probability that one of these n′ is
picked) λ = 1 is inserted into the population. Hence bc,Ω(λ) has a jump at λ = 1 as a function
of λ. This implies that other discrete values of λ are also present with finite probability. Take
for example the case that z = zn = ∞ is picked (which happens with finite probability),
and that only λi = 1 are chosen (the probability of which is finite as well, according to our
reasoning above), then obviously λ = 1 − 1

M
for M = 1,2, . . . are all generated with finite

probability. Among these is λ = 0. But when λ = 0 is present with finite probability, then
λ = zn′′ has finite probability for any n′′. Thus we see that all zn′′ from the finite clusters are
reproduced in the weight function bc,Ω(λ) of the percolating cluster, although with different
weights. Of course, as mentioned above, this is only true when Ω lies at a pole of some zn.
However, it shows that bc,Ω(λ) is not continuous as a function of Ω since (at least) zn moves
across ∞ as Ω is varied across the pole of zn such that a finite amount of weight is shifted
from −∞ to +∞ in the λ population, resulting in a jump in bc,Ω(λ) for any fixed λ.
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(ed.): The Art of Counting. MIT Press, Cambridge (1973)
13. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 1: Functional Analysis. Academic

Press, New York (1972)
14. Chayes, J.T., Chayes, L., Franz, J.R., Sethna, J.P.: J. Phys. A, Math. Gen. 19, L1173 (1986)

http://arxiv.org/abs/1002.5000


The Integrated Density of States of the Random Graph Laplacian 773

15. Alexander, S., Orbach, R.: J. Phys. Lett. (Paris) 43, L625 (1982)
16. Barlow, M.T., Járai, A.A., Kumagai, T., Slade, G.: Commun. Math. Phys. 278, 385 (2008)
17. Kozma, G., Nachmias, A.: Invent. Math. 178, 635 (2009)
18. Kesten, H.: Ann. Inst. H. Poincaré Probab. Stat. 22, 425 (1986)
19. Barlow, M.T., Kumagai, T.: Ill. J. Math. 50, 33 (2006)


	The Integrated Density of States of the Random Graph Laplacian
	Abstract
	Introduction
	Model and Symmetry
	Density of States
	Nonpercolating Regime
	Percolating Regime

	Discussion
	Acknowledgements
	Open Access
	Integrated Density of States
	Non-Continuity of bc,Omega(lambda)
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


