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ABSTRACT: We perform a systematic one-loop renormalization of a general renormalizable
Yang-Mills theory coupled to scalars and fermions using a regularization scheme with a
smooth momentum cutoff A (implemented through an exponential damping factor). We
construct the necessary finite counterterms restoring the BRST invariance of the effective
action by analyzing the relevant Slavnov-Taylor identities. We find the relation between the
renormalized parameters in our scheme and in the conventional MS scheme which allow
us to obtain the explicit two-loop renormalization group equations in our scheme from
the known two-loop ones in the MS scheme. We calculate in our scheme the divergences
of two-loop vacuum graphs in the presence of a constant scalar background field which
allow us to rederive the two-loop beta functions for parameters of the scalar potential. We
also prove that consistent application of the proposed regularization leads to counterterms
which, together with the original action, combine to a bare action expressed in terms
of bare parameters. This, together with treating A as an intrinsic scale of a hypothetical
underlying finite theory of all interactions, offers a possibility of an unconventional solution
to the hierarchy problem if no intermediate scales between the electroweak scale and the
Planck scale exist.
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1 Introduction

Renormalization is in quantum field theory a standard procedure. It not only renders
calculated quantities finite but also, when the freedom in implementing it is judiciously ex-
ploited, allows to analyze the behavior of the computed Green’s functions and observables
when the characteristic energy scale changes. The first step in this procedure is usually
the introduction of an ultraviolet (UV) regularization (an UV cutoff). The second one is
performing appropriate subtractions (usually interpreted as an effect of taking into account
contributions of suitable counterterms) after which the UV cutoff can be removed leaving
finite amplitudes. The freedom in the subtractions (in the choice of the renormalization
scheme) can be used either to directly parametrize the computed quantities in terms of a
selected set of measured observables or to introduce an arbitrary scale u and parametrize
the theory predictions with a set of finite, 1 dependent parameters (hybrid schemes are also
possible). The requirement that physical results be independent of p gives then rise to the
renormalization group (RG) which in turn allows for the mentioned possibility of analyzing
the dependence of predictions on the energy scale. The most frequently used scheme of this
second type is the (modified) minimal subtraction MS applied to dimensionally regularized
amplitudes which automatically introduces an arbitrary scale u. Renormalization of Yang
Mills (YM) theories is usually studied using this scheme [1] the main reason being that the
dimensional regularization (DimReg), unlike other more physical UV cutoffs, automatically
preserves (in theories like QCD, without fermions in chiral representations) the BRST sym-
metry. This greatly facilitates the construction of the finite (renormalized) effective action
which must be BRST-symmetric. This property of the effective action is indispensable to
ensure decoupling of unphysical degrees of freedom (Faddeev-Popov ghosts and antighost,
scalar components of vector bosons, would-be Goldstone modes in the case of broken gauge
symmetries or longitudinal vector bosons of unbroken gauge symmetries) and unitarity of
the S-matrix in the physical subspace of the full (pseudo-)Hilbert space.

However, DimReg, while being elegant and convenient as a technical tool, has some
rather unphysical features. In particular it sets (by definition) to zero the whole class of
contributions to the effective action which are due to real fluctuations of quantum fields
but which happen to be quadratically divergent with an explicit momentum ultra-violet
cutoff A (however introduced). It is also hard to interpret physically the departure from
the integer dimension of the space-time. These drawbacks do not, of course, create any
problem for practical calculations aiming at expressing low energy observables in terms of a
selected set of other low energy observables (or in terms of another set of finite parameters),
in which, after performing subtractions, the cutoff is completely removed, but certainly
obscure understanding of the problem of stability of the electroweak scale G, 12 Versus the
Planck scale Mp;.

In this paper we would like to adopt a more fundamental point of view on renormal-
ization (close in spirit to the one taken in applications of field theory to statistical physics
problems), proposed in [2] (see also [3]), which we motivate (in section 9) by its possible
connection with the hierarchy problem. This view precludes using unphysical regular-
izations like DimReg and requires treating the momentum space cutoff A as a bona fide



physical scale which in our approach is viewed as an intrinsic scale of a fundamental theory
of physics at the Planck scale (and, therefore, the limit A — oo is not taken). This leads us
to study renormalization of a general YM theory coupled to scalars and fermions using an
explicit momentum cutoff A. The use of the momentum cutoff as the regulator in YM the-
ories immediately brings in the problem that the regulated Green’s functions do not satisfy
the requisite Slavnov-Taylor (ST) identities following from the BRST invariance. This calls
for a special form of subtractions which must restore these identities.! We recall in this
connection the general procedure for achieving this, which is based on the Quantum Action
Principle (QAP) [6-9], and implement it in the explicit one-loop calculations. We point
out, however, that strict BRST invariance is recovered with the help of this procedure only
in the limit of infinite A; for finite A the ST identities remain broken by terms suppressed by
inverse powers of A2 and one has to assume that other effects of the underlying fundamental
theory act so that effectively all potential problems associated with this breaking are cured.

To our knowledge, renormalization of YM theories in the regularization based on an ex-
plicit momentum cutoff has never been studied systematically. In this paper we provide the
necessary technical tools for developing the approach sketched in [2] and perform the sys-
tematic one-loop renormalization of a general renormalizable YM theory coupled to scalars
and fermions in arbitrary (but non-anomalous) representations using the explicit UV cutoff
proposed there. The paper is organized as follows. In section 2 we explain our notation and
conventions and recall basic facts concerning the BRST symmetry. In section 3 we specify
our choice of the UV cutoff which introduces a scale A and present some technicalities
concerning practical evaluation of Feynman diagrams. Section 4 is devoted to the general
procedure of making subtractions restoring the BRST invariance. Here we also specify our
renormalization scheme which, similarly as the ordinary MS scheme, introduces an arbi-
trary scale p. Explicit determination of the one-loop counterterms and of the relation be-
tween renormalized parameters in our scheme and in DimReg occupy sections 5 and 6. The
results of section 6 can be also read as an extension to the most general case of the results
of [10], namely as a proof of equivalence at one-loop of the MS scheme with anticommuting
+® matrix with a fully consistent renormalization prescription. In section 7 we introduce the
RG equation. We argue that the standard reasoning justifying it is not directly applicable
to regularizations which break the BRST invariance and, therefore, 1 independence of the
results requires a separate proof (which we offer). The renormalization group allows for the
use the concept of bare action whose structure in the case of our regularization is elucidated.
In the same section using the relation of our subtraction scheme with the standard MS
scheme we derive two-loop renormalization group equations satisfied by parameters (cou-
plings and mass parameters) of a general YM theory. In section 8 we apply our regulariza-
tion prescription to the two-loop computation of the scalar fields effective potential focusing,
however, only on its divergences. We determine in this way the two-loop coefficient pro-
portional to A? of the counterterm to the effective potential which turns out to be different
than that found using the dimensional reduction (DimRed) [11, 12] which has been recently

! An alternative approach is to device a cutoff regularization which preserves an appropriately modified
version of the BRST symmetry [4, 5].



reproduced in [13] using a cutoff regularization superficially similar to ours. We explain the
difference between our result and that in [13]. We also determine the one-loop coefficient
of A% in the counterterm to vector boson masses squared which is not present in DimReg
(or DimRed) but is unavoidable in the regularization by a physical momentum cutoff.

The possibility to formulate the theory in terms of the bare action and treating the
introduced momentum cutoff scale A as a physical (finite) scale allows to discuss the hier-
archy problem and to propose its possible solution along the lines of ref. [2]. In section 9
we recall the basic idea of this solution (which owing to the results presented in this paper
gain more solid foundations) and use the derived two-loop RG equations and the coefficient
of A? divergence of the effective potential to discuss (non)viability of this solution in the
SM. Section 10 contains our conclusions.

2 Lagrangian and conventions

As the starting point of our approach we consider a general renormalizable Yang-Mills
theory with the gauge group which is a direct product of an arbitrary number of compact
simple Lie groups and U(1) groups coupled to scalar and fermionic fields in arbitrary rep-
resentations of the gauge group. We work with real scalars ¢' and represent all fermionic
fields as four-component Majorana spinors ¥* built out of fundamental two-component
Weyl spinors.? It is also convenient to consider the theory in the presence of an arbitrary
constant scalar background ¢’ which can eventually be identified with the vacuum expec-
tation value (VEV) of “the symmetric phase” field ®! = ¢’ + '. (This identification,
however, will not be used in what follows). Thus the classical gauge-invariant action ISH
(prior to regularization) is given by the integral of the Lagrangian density

L§T = —J0as W FP 1 4 J55(D,) (D46) — V(6 + )
45 0By i0" D)’ — M (6 + )} (21)

The potential V(®) is a fourth order polynomial. It is parametrized by the following
coupling constants and mass parameters:

Nkt = V(@) o = V(o). mby = M)y = Vi(e), V@) #0.  (22)

which, with the exception of A;jx;, are p-dependent. The generalized fermion mass matrix,
which is a first order polynomial in ®¢, includes also the Yukawa couplings

Mp(®) = Mp(0) + y; ®'. (2.3)

Different kinds of indices are lowered/raised with the aid of the appropriate metrics: J;;,
daB, Oqp for internal indices and 7, = diag(+1, —1, -1, —1) for Lorentz indices.
The explicit form of F',, is

F, = 0,A%— 0,A%+ €%, Al A)

2 Although calculations with the Majorana fields involve the charge conjugation matrix C' defined by the
relation ¢ = ¢TC, they are more convenient as they lead to a smaller number of diagrams.



and the covariant derivatives read
Dp¢ = 0+ AYTold + @) + Pa],  Dyuth = 9u1p + A tat). (2.4)

T.. are real antisymmetric generators of the gauge group in the representation formed by
the scalars ¢’; they satisfy the commutation relations [7a, T3] = Ty €’ B with the real
structure constants e’ af" Obviously, eyaﬁ, which themselves are matrix elements of the
generators e, in the adjoint representation ([eq]”; = e’ op)» are, similarly as 7o and ¢, (and
fo — see below), proportional to the gauge coupling constants. We work in a natural basis
of the gauge Lie algebra, so that the indices « split into Abelian ones (a4) and semisimple
ones (ag). Coefficients P, obeying 7'5]5a = 0 must vanish for non-Abelian indices a0 = ag.
If P,, # 0 for some Abelian indices a4, Stueckelberg fields are present (see e.g. [14] and
references therein) among components of the scalar fields ¢ as explained in appendix A.1.
In the generators t,, similarly as in the generalized fermion mass matrix (2.3), the chiral
projectors P g = £(1 F~°) are included:

to =faPr + PR, Mp(®) = Mp(®) P + Mi(®)Pr, (2.5)

(likewise y; = Y; Pr, + Y;* Pg). Here f, are ordinary antihermitian matrix generators (satis-
fying the relation [fo, fg] = f, evaﬂ) of the gauge group representation realized by the Weyl
fields. The background-dependent mass matrix mp of the Weyl fermions has the structure

mp = Mp(p) = Mp(0) + Yie', (2.6)

We also write mp = M r(p) for its Majorana counterpart. The mass matrix of the vector
bosons is given by

3] = MY (P)las = 36 (Ter Tido+ PLPs (27)

If Stueckelberg fields are absent, m%/ vanishes unless the background ¢ has some nonzero
components breaking (at least partly) the gauge group. Gauge invariance of ESH implies

also various important relations between parameters, like e.g.

(m3Tas), = —VI(O)[Tal' s = (TaV' ()i - (2.8)

To generate Green’s functions of the quantum theory, the classical action I[?I must be
supplemented with a gauge fixing term and with the ghost fields action. The structure of
divergences arising in the perturbative expansion can be then controlled by working with
the BRST invariant tree-level action

Iop=1I§" + I = / d*az (LG + L5, (2.9)

where EORQSt depends on the Nakanishi-Lautrup fields hg, the ghost fields w® and w, and
the so-called antifields K;, K,, K4 and Lq:

£ = (@ 4 Baha) Lo o) 4 K s(01) + Ks(u) 4 KES(AD). (210



Here £27 are arbitrary gauge fixing parameters. In what follows we will work in the Landau
gauge
= -9, A, b=, (2.11)

which leads to some simplifications due to the presence in this gauge of additional symme-
tries of I§*! (see appendix A.1).

The action on fields of the BRST “differential” s(-) is given by [15]
s(6) = W [Tald+9)+Pa)’,  s(WY) = w(tath)?,  s(A]) = —Ouw +¢7, ,w AL,
1

s(w®) = 5 eoéﬁ7 w5w77 $(Wa) = ha, s(hq) = 0. (2.12)

The antifields K;, K,, K~ and L., treated as external sources, control the renormal-
ization of the composite operators s(¢?), s()%), s(Aj) and s(w®). Setting s(K;) = s(K,) =
s(K%) = s(La) = 0 makes the action I8*' a BRST-exact functional: IF®t = s(W).
Nilpotency s? = 0 of the s(-) operation ensures then the BRST invariance of the complete
action (2.9): s(Ip) = 0.

In writing identities expressing the BRST invariance of the effective action we will
work in the momentum space representing fields by their Fourier images according to the
formulae

o} —ilr Ja 0 o d4l il 1)
A%(z) = / e AN, 25 - / o TR (2.13)

Momentum space one-particle irreducible (1PI) Green’s functions are then given by (all
momenta are incoming into the 1PI vertices)

1) 1) 1)
= = = ~ r ) 7A7 cee
SA30) S0y odv) O]

= 2m)* W@ +p+ D0, 0, p,1) . (2.14)

(B Agw)

The functional derivatives (which act always from the left) in (2.14) are taken at the
“point” at which all fields vanish. Notice also the order of the fermionic variables and the

“wrong” height of indices inside the bracket (-) For the 1PI functions we will also use

1PI*
the notation

(56 () A5 )

Green’s functions like (2.14) become “physical” when the background ¢ is chosen so that

= ) +p+ ) (PN PAW) . (215)

1PI 1PI

the following condition is satisfied

ST [¢,0, A, .. ]
5 (2)

As we have already said, in studying renormalization we do not impose the above relation,

=0.
0

treating ¢’ as arbitrary external parameters. Contributions of order A" to the 1PI function
are denoted T'(--- )™ e.g.:

fbag(p/apa l) = Z hn fbag(plvpv l)(n)

n=0



In what follows it will be convenient to further split fb ag(p’ , Dy l)(l) into the contribution
of the counterterm diagrams and the sum of genuine one-loop diagram contributions. The
latter will be denoted fbag ', p, l)(lB). If a given function is convergent by power-counting,
the superscripts 2) and ) are used interchangeably.

3 The UV regularization

As the UV regularization in our study of the renormalization of a general YM theory we
choose (out of many other possibilities) the prescription which consists of modifying every
derivative in the Lagrangian according to the rule

82
au — exp{w} 8M . (31)

The replacement (3.1) is to be done at the level of the Lagrangian densities (2.1) and (2.10);
in the latter the BRST operations s(-) have to be carried out first (this should be considered
a part of the regularization definition).

In the momentum space the above prescription is equivalent to the replacement

k2
ky— Ru(k) = exp{—w} k. (3.2)

Strictly speaking, the rule (3.2) should be applied to the Euclidean counterpart of the
action (2.9), in the form kg, — exp{+k%/(2A%)} kg, . Indeed, if (3.2) is applied literally
to, say, the massless one-loop one-point function in the Minkowski space-time, the integral
w.r.t. the time-like component of the momentum is badly divergent. By contrast, the
corresponding Euclidean integral is undoubtedly convergent owing to the exponential
damping factor (see below for consideration of an arbitrary diagram), which effectively
restricts the integration region to Euclidean momenta obeying kp < A; therefore we will
call A in the following the UV cutoff. The resulting amplitudes computed perturbatively
in the Euclidean space are easily continued to the Minkowski space-time. (Such a
treatement of the regularization does not preclude investigating non-perturbative effects,
e.g. bound states, by summing infinite series of subtracted and continued to the Minkowski
space Feynman diagrams.) In actual calculations we prefer to work with the Minkowski
space-time Feynman rules. Therefore, instead of explicitly reformulating the theory in the
Euclidean space, we work with the action (2.9) and the prescription (3.1), but perform
in Feynman diagrams a formal Wick rotation, that is neglect contributions arising from
(divergent) integrals over contours at infinity (in other words, all integrals over time-like
components of loop momenta are in practice taken over the imaginary axis). In the
perturbative expansion this procedure just implements the analytic continuation of the
corresponding (convergent) integrals of the Euclidean version of theory. We also stress
that in principle one could try to find a similar regularization acting directly in the
Minkowski space-time by replacing the exponential in (3.1) with a polynomial, what gives
a variant of the higher derivative regularization, see e.g. [53-55] — however, we prefer to
work with the exponential form for the sake of calculational simplicity.



In the more fundamental perspective (see section 9) we would like to treat the
Euclidean version of the Lagrangian density modified according to the prescription (3.1) as
a part of the complete Lagrangian density of an effective field theory for some fundamental
finite theory of all interactions. The scale A should be therefore identified with an intrinsic
physical scale of the putative fundamental theory rather than with the scale introduced
by the Wilsonian procedure of integrating out some high energy degrees of freedom, and
the limit A — oo should not be taken. Consistency of such an interpretation requires
probably the fundamental theory to be formulated in the Euclidean space. The question
then arises whether the prescription (3.1) in the effective theory can have a meaning
also outside the perturbative expansion. Since the action has then a nonlocal character,
standard arguments (appealing to the Osterwalder-Schrader theorem, whose status in YM
theories remains, however, unclear) in favor of uniqueness of the analytical continuation
to the Minkowski space-time of non-perturbatively determined Green’s functions may
not apply. Moreover with the exponential factors (3.3) not expanded, the propagators
can, after continuation, develop unphysical poles, signaling potential problems. However,
as will be seen (see the end of the next section), if the limit A — oo is not taken, the
(Euclidean) action (2.1) and (2.10) with the substitution (3.1) cannot be considered a
complete action of the effective theory: further terms suppressed by inverse powers of A
must be added to it to restore the BRST symmetry for finite values of A. In the spirit of
our further considerations we can therefore speculate that the complete Euclidean effective
theory action is not sick when treated non-perturbatively and does allow for a unique
continuation to the Minkowski space of the non-perturbative amplitudes.

The important virtue of the proposed prescription (3.1) is that it preserves the formal
invariance of the path integral with respect to shifting fields by constant backgrounds,
leading to the 1PI effective action I" satisfying the “translational Ward identity” [16]

LAY, ¢, ...,0] =T[A ¢, 0+ p,...,0]. (3.3)

It is therefore applicable without modifications also to theories with spontaneous symmetry
breaking by nonzero VEVs of scalar fields. On the practical side, the prescription (3.1)
allows for an easy extraction of finite and divergent parts of amplitudes which can be
automatized using standard computer packages for symbolic manipulations.

With the prescription (3.1) the propagators of vector bosons (in the Landau gauge),
fermions, scalars and ghosts take respectively the forms:

1o [ —t e Ky Ko

7'DM1H2 (k7 A) = RQ(k> _ m%/ Nuipe — kQ ’
r i aiaz

Z-Salaz(p; A) — C’_l:| , (34)

AT (g ) =

- o . _ i (0%
ZDghﬁ(k7 A) = RT(k‘)é R



The mixed scalar-vector propagator vanishes owing to the choice of the Landau
gauge (2.11). We also list the vertices which get modified by the prescription (3.1):

Laaa({k})= g Carasas {[R(k3) =R (k)] 13> + [R (k1) —R(ks)]>n/#
+ [Ro(ka) = R(ky)]Poup2 } ASH (k) A%2 (ko) A3 (ks) (3.5)

Lags({k})= 2%[R(kz)—R(kl)]”(%)mﬂﬁ(ks) ¢ (k1) 07 (k2) ,
Loagw({k})= —iRF (k1) e*h,, ALl (kg) Wa, (k1) @ (k2) .

We have used here the notation
n= % /H AdYk; Loy.w, (k1. .. k) (20)20W (k1 4+ - + ky) . (3.6)
{(®1,., 8,7 i=1

n

The remaining vertices having n > 3 are not modified.?

To see that indeed all relevant diagrams are regularized by the prescription (3.1),
consider a 1PI diagram + consisting of V; vertices of type i involving (prior to regularization)
d; derivatives and to which n;e lines of fields of type ® are attached, Iy internal and Eg
external lines of type ®. The corresponding integrand (after formal Wick rotation) acquires
the factor exp(w(y)k%/2A?), where

B(y) =) Te(250 —2) + > Vid;, (3.7)
[ i

(the factor sg characterizes the ® line propagator which behaves as k?q’ﬂ as kg — 00).
Obviously, a diagram ~ gets regularized if w(y) < 0. Moreover, since w(y) = 4L + @(y),
where L > 0 is the number of loops and w(7) is the textbook degree of superficial diver-
gence,* it follows that superficially convergent diagrams (of w(y) < 0) necessarily have
w(7y) < 0. Using the standard identities one gets that

@) =-4L—-1)=) Eo(l+ss)— Y ViA;, (3.8)
[ i

where A; = 4 —d; — > 3 nis(1 + se). This shows that in renormalizable theories, in
which all vertices have A; > 0, unregulated by the prescription (3.1) remain only one-
loop (L = 1) vacuum (Eg = 0) diagrams which cannot appear in physically interesting
amplitudes as divergent subdiagrams. All other diagrams arising in renormalizable theories
get regularized.

Computation of diagrams regularized with the help of the prescription (3.2) is based
on the following expansion

1 _ k2/A2 7 m _ k2/A2
R2(k) — m? ¢ k2 —m? nz:;) [m2 — k2 <1 c )} ’ (3.9)

3The two-point vertex £ K#8 1s omitted here as it does not contribute to loop 1PI diagrams. For the

same reason propagators involving the Nakanishi-Lautrup multipliers h, are omitted.
“See e.g. ref. [17].



(k may stand for a sum of several loop and external line momenta). It is clear that in the Eu-
clidean space, for k? — —k:%, the expansion (3.9) would be absolutely convergent. In partic-
ular, owing to the growing inverse powers of m?—k? in successive terms, for a given one-loop
diagram only a finite number of terms yield integrals that are divergent when the factors
eF/A%(1 — e¥*/A")n are omitted. The remaining terms are integrable without these factors
which implies that their contributions vanish in the limit A — oco. Thus the practical recipe
for computing diagrams regularized with the help of (3.2) consists of the following steps (see
also B): i) expanding all regularized propagators as in (3.9), ) combining denominators
using the standard trick introducing integrals over Feynman parameters «;, i) shifting and
formally Wick-rotating the momenta, iv) expanding the exponential factors in powers of
external momenta, v) performing integrals over angular variables. After these steps every
one-loop diagram gets represented in the form of the confluent hypergeometric function

Ula,b,2) = / dt 711 4 £)P="L exp(— 1), (3.10)

I'(a) Jo
in which a and b are some real numbers, t k‘% and z is the ratio of a linear combination
of masses squared and external momenta squared weighed by the Feynman parameters
a; and of A2, One is therefore led to study the limit of 2 — 0 of U(a, b, 2) which can
be extracted using the well known formulae [18]. In this way one-loop diagrams get
represented in the standard form of integrals over Feynman parameters.

Although this is not necessary for one-loop calculations, we note that in general ex-
traction of the A — oo asymptotics can be efficiently done by exploiting a theorem by
Handelsman and Lew [19] which relates the requisite coefficients in the asymptotics of the
Laplace transform of the general form

L[f,z] = /Oodt f(t)e *,

0

directly to the coefficients of the ¢ — oo asymptotics of the function f(¢) and to constant
terms in the Laurent expansions of (the analytic continuation of) the Mellin transform

MIf, 2] = /Ooodtf(t) 1

around its poles. Thus, the Handelsman-Lew theorem is crucial for finding the asymptotic
form of multi-loop diagrams, which cannot be expressed in terms of the function (3.10).

4 The subtraction procedure

The UV cutoff introduced in section 3 explicitly breaks the BRST symmetry — s(Iéx) #0,
where I{} is the action (2.9) modified according to the prescription (3.1). Consistency of the
quantized gauge theory does not require, however, BRST invariance of I}, but only BRST
invariance of the 1PI effective action I' — the functional generating one-particle irreducible
(1PI) Green’s functions. This can be restored by using the general methodology based on
the Quantum Action Principle [6-9] (see also [20, 21] for reviews). In practical terms it

~10 -



consists of starting with the local BRST invariant action expressed in terms of renormalized
fields and parameters and in making in the computed Green’s functions (or the effective
action) order by order in the loop expansion appropriate subtractions in such a way, that
the Zinn-Justin (ZJ) identity [22]

S =0, (4.1)
in which S(-) is the differential operator whose action on an arbitrary functional F of fields
and antifields is given by”

_ OF O0F  OF OF OF OF | OF O0F . OF
T KL 0A% 0K, 691 | 0K, 6y 0La 6wt Y Swa

S(F) (4.2)
is satisfied (up to higher order terms) by the subtracted effective action I". Within the gen-
eral framework the possibility to restore BRST invariance of the effective action (in non-
anomalous theories) in this way was first demonstrated in [15] using the BPHZ scheme [23]
in which subtractions are made directly in integrands of the integrals corresponding to
Feynman diagrams and thus no explicit regulator is introduced. This approach is usually
used in formal proofs of existence (within the perturbation theory) of unitary gauge theories
for which no symmetry preserving regularization is available [24-27]; some practical calcu-
lations within the Standard Model (SM) based on this approach can be found in [28-31].

The general QAP methodology can obviously be applied also in conjunction with any
explicit BRST symmetry violating regulator. In such an approach one constructs order by
order in the perturbative expansion the counterterms: the divergent (as the regulator is
removed) ones, which in our scheme will be uniquely determined by the regularization and
the adopted “minimal” subtraction prescription, and the additional finite counterterms
restoring the ZJ identity. This approach has been used in particular to renormalize YM
theories with chiral fermions using DimReg and the original 't Hooft-Veltman definition of
the v matrix which avoids inconsistencies [32-34] but breaks the BRST symmetry already
at one-loop. The full set of one-loop counterterms was determined in specific models [35],
including supersymmetric ones [36] as well as in an arbitrary renormalizable gauge theory
without scalars [10].

In this paper we apply this approach to the regularization of a general renormalizable
YM theory by the explicit UV momentum cutoff defined in section 3 (see [37-43] for par-
tially related applications in the context of the Wilson-Polchinski renormalization group).
Below we recall the general procedure based on the QAP and specify our way of fixing its
arbitrariness (our renormalization conditions).

As said, the starting point is the regularized action Ié\ obtained by applying the pre-
scription (3.1) to the local BRST symmetric action Iy defined by (2.9). All fields and
parameters of Iy have the interpretation of renormalized quantities. The action I is such
that S(1p) = 0 and satisfies a number of additional conditions listed in appendix A.1. Since

LlIg) =15 =15 + O(h),

the “asymptotic part” of F{} (denoted I'g) obtained by neglecting all terms which vanish
in the limit A — oo satisfies the ZJ identity (4.1) up to terms of order A.

®We use the notation k-g = [ d*z k(z) g().
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We now show that having a local action I,, (with all counterterms up to the order A"
included) satisfying the conditions of appendix A.1 and such that in the asymptotic part
T, of TA =TI

Tp=1I+ Y HTP (4.3)
k=1

the functionals n({“) are already A-independent for k < n and

S(T,) = i"MQ, + O™ ?), (4.4)

it is possible to construct I, extending these results to the next order in n. Useful in
this, in addition to the operator (4.2), is also its linearized version Sg [21] defined by
S(F+¢eG) =8(F)+eSp(G) + O(e?), whose explicit form reads

_0F & OF 5 OF & OF 5 ., 0§
T OKK 0AY T OK; 661 K, 00" | 0Lg dw | 8wg
§F § §F § §F § OF §

Sk

04z oKL T34 0K; T 97 0K, | 0ws 0La’ (4.5)
The operations S(-) and Sp have two important properties [21]. Firstly,
SpS(F)=0. (4.6)
for any functional F'. Secondly, if S(F') = 0, then
S:=0. (4.7)

In particular, S?O = 0.

It is the well known property of the ordinary renormalization procedure that the lowest
order divergent (in the infinite cutoff limit) part of T',,, that is F,(qnﬂ)div, is an integral of a
local operator which can be removed by adding to I,, appropriate counterterms. Similarly,
the QAP guarantees [6-9], that €, in (4.4) is an integral of a local operator (of ghost
number 1 and dimension < 5). Moreover, using the identity (4.6) applied to F' = T', in
conjunction with the expansion Sr, = Sy, + O(h) one learns that 2, satisfies the Wess-

Zumino consistency condition (WZCC)
S, =0. (4.8)

Restoring the BRST invariance of I in the order A" relies on the possibility of representing
Q, in a cohomologically trivial form

Q, =81, , (4.9)

with %, being the integral of some local operator (of ghost number 0 and dimension < 4),
which can therefore be used as an additional (symmetry restoring) counterterm. This is so
if the representation of the gauge group realized on fermionic fields fulfills (cf. eq. (2.5))

tr(fa{fs, #+1) =0, (4.10)
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for all triplets (c, 3,7) of the gauge indices.

In the “algebraic renormalization” framework usually explicit renormalization con-
ditions are used to fix the counterterm %, [21]. Here, aiming at constructing a mass-
independent renormalization scheme, we adopt a two-step procedure instead. In the first
step a local action

I, = I, — pPHip(nthdiv, (4.11)

(n+1)div
n

is constructed with the divergent part I' defined in the spirit of (the modified)

minimal subtraction as the “pure divergence”, i.e. by imposing the condition

anﬂ)div‘dﬁo o =0, (4.12)
in which d, is the “basic logarithmic divergence”
A2 A2
5Azlnp—1—*yE—ln2:1n?. (4.13)

The arbitrary scale p is introduced on dimensional ground to render the subtraction pro-
cedure mass-independent. The “asymptotic” (in the sense explained above) part I';, of the
effective action T'? = T'[I}] obtained from the regularized version I of I,, has then the form”

T, =T, — FrHiphdiv L opnt2y (4.14)
and it is easy to see that
S(T,) = A"MQ, + O™+, (4.15)

where ,, is related to Q, in (4.4) by
n

Q, = Q, — S, [{PHHdiv, (4.16)

As all A-dependent terms in T',, are at least of order A"2, eq. (4.15) means that Q, is
A-independent. Furthermore, (4.9) (if true) implies that

Q, = =S, 60 (4.17)

with (5|,F£Ln+1) being the integral of a (cutoff-independent) local operator (of ghost number
0 and dimension < 4). Regularized version I’} 1 of the next order local action

Lot = I + B+ 5&;11%"“) — I, + ! {5b1—\7(ln+1) _ F7(Zn+1)div}7 (4.18)

SFor semisimple gauge groups the only cohomologically non-trivial solution to the WZCC (4.8) is the
Adler-Bell-Jackiw anomaly, which vanishes to all orders if (4.10) holds (see e.g. [21]). Additional (Abelian)
anomalies that could potentially appear in the case of non-semisimple gauge groups [44] are excluded if
the Abelian antighost equation (A.6) is imposed as one of the conditions defining the theory (see [45] and
references therein).

"The form (4.14) is correct, because quadratic divergences are independent of external momenta. For

this reason, terms of the form
2

A2 exp {——} =A2 774 O(A_Q),

will not be produced by the prescription (3.1).
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leads then to T'A

il = I‘[I,/L\H] whose asymptotic part I',, ;1 reads

oy = T + B*F1 {5;5;1“) - r;”“)diV} + O(H2), (4.19)
and breaks the ZJ identity (4.1) only at the A"*2 order:
S(Fn—H) _ hn-i—l {Qn - Slo [F;n—i-l)div_(sbrgn—i-l)} } + O(hn+2) =04+ O(ﬁn+2). (4'20)

To complete the inductive step it is still necessary to show that I, satisfies also all the
auxiliary conditions (A.1)—(A.8). This is done in appendix A.2.

U'is not uniquely determined
by the condition (4.17) — any functional », belonging to %’ N ker Sy, can be added to it.
Here 9 denotes the vector space of integrals of local operators of dimension < 4 and zero

Due to the non-triviality of kerSy,, the counterterm g,I’ (nt

ghost number satisfying the homogeneous versions of the conditions (A.1)—(A.8) and having
other symmetries of Iy. It is easy to check that any », € ¥ N ker Sz, has the form

. B 5IGI
v, = / d*z {E % [(K;;S — MWy )0’ + ﬁAﬁs + (4.21)

— ST PO 4 28 (D) (D) +i(09#) 2%, (D)’ — (o, w} :

with the matrices E, z (of course, z¥ = 2Py + 2f*Pg) and the polynomial w(¢,1))
constrained by the global symmetries of Iy (including those which belong to the gauge
group); moreover zf; = 0 if either ¢ or j corresponds to the Stueckelberg scalar and w(¢, 1))
is independent of the Stueckelberg fields.

Remembering that the tree-level action Iy is (up to a rescaling of field) the most general
functional consistent with the power-counting and a given set of symmetries, it is easy to
check that eq. (4.21) can be can be rewritten in the form (here g¢ denotes collectively all
parameters of Iy except for components of the background ¢, i.e. couplings constants and
explicit mass parameters)

7y = — {%Cajc — Ny(2%) = Ny (2¥) — Noo(2) — Na(E + ZA)} I, (4.22)
where
Note?) = () {00 55— K g |-
Nl = () {5~ R}
Nu(z) = 2% {wﬁ : &% —Lg - 525} , (4.23)
Na(z) = zaﬂ{Aﬁ-(gjﬁ—Kz-@—wmé;—ha-#;} ,

are the “counting operators” [21], E equals [E for non-Abelian indices and vanishes otherwise

Y ,
E = 09 E_ 0%, (4.24)
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while the coefficients B¢ satisfy the relations

9

B¢ GgCTa = [ZAPQ T,, for Ty =Ty, ty, €y, (4.25)
and 5
BC ag—CPaA = [4°4,, Bs, . (4.26)

Of course, the coefficients B¢ corresponding to non-gauge couplings g¢ (which parametrize
the w(¢, 1) polynomial) are not constrained by the relations (4.25)-(4.26).

The form (4.22) of 7, implies that this functional can be obtained from Iy by an
infinitesimal “finite renormalization” of its fields and couplings ¢©. This shows that the

1)

necessity of fixing the freedom in the form of the counterterms 5bF£ln+ is equivalent to the
usual necessity of specifying the renormalization conditions.

In our approach we impose the implicit renormalization conditions by requiring that
the counterterms 6|,1“,(1n+1) belong to a subspace W C ¥ which is complementary to the
subspace ¥ N ker Sy, that is such that ¥ = [9 N kerSz,] ® W. Different choices of
W correspond to different mass-independent renormalization schemes. Since a generic

element v of 7/ is of the form
o= 46,0+ B, [ d K, - 0% 0%,

where the functional J is independent of the Stueckelberg fields and constrained by
power-counting and global (gauge and other) symmetries of I, it is easy to see that
one (particularly natural) choice is the subspace W spanned by the following integrated
operators (in the symbolic form)

ST € / (0°A,)(0"Ay) & Ay A" @ A" Prip @ A" Pra @ doA A" @
DA, D GA' & pA, A" & AADA ® AAAA, (4.27)

in which each component represents a set of operators with all possible assignments of
the “color” (and “flavor”) indices. In the last two terms suppressed Lorentz indices have
to be contracted in a Lorentz-invariant way. The counterterm (4.27) vanishes for A = 0
and does not involve the A,0,0"A" operator nor the Stueckelberg fields. We will call this
choice the A-MS scheme.

As a result of the procedure outlined above the action I is constructed which, modulo
exponents introduced according to the prescription (3.1), has a renormalizable form but
is obviously not BRST symmetric. In typical applications of the procedure, mentioned
at the beginning of this section, the structure of the resulting BRST symmetry violating
counterterms is not very interesting in itself — the counterterms serve only as a technical
mean to consistently calculate finite amplitudes satisfying the appropriate identities (which
embody the requirements of the BRST invariance). Therefore one usually does not exploit
the fact that, as will be shown in section 7, the action Ié‘o, can be given the interpretation
of the “bare” action Iy expressed in terms of the “bare” parameters. This fact, however,
will be crucial in discussing our view on the hierarchy problem in section 9.
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Before closing this section an important comment must be made. From the above
description of the procedure for constructing counterterms it is clear that the full BRST
invariance of the effective action I' (i.e. the ZJ identity) is recovered only in the strict limit
A — oo. This is perfectly fine if one does not ask about the origin of the low energy
field theory model and is interested only in obtaining renormalized (finite) amplitudes
satisfying the requirements of the BRST symmetry. On the other hand, if the bare action
and the cutoff A are to be given a physical meaning (and the limit A — oo is not to
be taken), one has to assume that the complete bare action Ip has additional terms,
suppressed by inverse powers of A, which are not obtained with the help of the outlined
procedure applied to the regularized renormalizable action (2.9), and which conspire to
restore the full BRST invariance of the amplitudes. Indeed, the experimental limit on
the photon mass M, < 107!8eV [46] does not leave room for BRST (gauge) symmetry
breaking at order M, /A? (or M, /A?), even for A as high as the Planck scale. As pointed
out in the discussion of the regularization prescription (3.1), in the complete Euclidean
action additional terms postulated here may be also important in the problem of the
non-perturbative continuation to the Minkowski space-time. We do not attempt here to
determine the form of these terms. We only point out that such a situation can be somewhat
analogous to the one encountered in superstring theory: while the anomaly is shown to
cancel out exactly at the string theory level, the minimal supergravity — the effective
low energy theory of massless string excitations derived from string tree-level amplitudes is
anomalous. Making it anomaly-free requires modifying the field strength H = dB by adding
a term which originates from one-loop string amplitudes; this correction taken alone breaks
supersymmetry; restoring supersymmetry reintroduces, in turn, the anomaly and so on.

5 Determination of the BRST symmetry restoring counterterms

At the one-loop order the ZJ identity (4.1) is equivalent to the condition
S;, 'MW =0, (5.1)

where T = Fgl) is the one-loop contribution to the renormalized 1PI effective action
(for the notation, see (4.3)). In our renormalization scheme (see section 4) the BRST

)

the coefficients of its individual terms it is sufficient to consider the derivative of (5.1) with

symmetry restoring counterterm 5@“81 must be of the form (4.27). In order to determine

respect to the ghost field restricted to the “physical submanifold”

W =Wy =Kl=K;=K, =1Ly =ho=0. (5.2)
In the momentum space, cf. eq. (2.13), the resulting identity reads®
or(}) ; or () : o or()
il,—2 /d4pe°‘ AB(p—1)—2n +/d4p tablp—1)| —2 ¢
"o AL P s A(p) g | 644 (p)
. i oTW oW
+ [ A | Td(p — )| =2 + [Ty =22 +
Jatw i o] G+ el g

8To simplify the notation we write F;lh) =1® .
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dtp oI§! ) or) - dtp SIS! 5 ST
e S5 @) [W” 51?5(—17)]% [ [fmm 5f<a<—p>]pf
d*p 5[8” ) ST B
vf (27)" 55 (p) lémm m_p)]ph =0, (5.3)

(the sum T, + P, appearing in (2.12) has been replaced here by T, because the Stueck-

elberg fields, if present, are free in the Landau gauge — see eq. (A.7)).

As it is easy to realize (by looking at the Feynman rules), the last three terms of the
left hand side of (5.3) vanish if the index 7 corresponds to an Abelian generator. The iden-
tity (5.3) takes then the form of the standard QED-like Ward-Takahashi (WT) identity.”

Taking functional derivatives of (5.3) w.r.t. “physical” fields and setting all fields to
zero one obtains various Slavnov-Taylor (ST) identities. If the first term on the Lh.s.,
obtained as a result of differentiation of (5.3), is a 1PI function X, we call the resulting
relation “the identity involving the X function”. At the one-loop order the 1PI functions
related by a given ST identity receive contributions from bare one-loop diagrams,'® from
minimal counterterms and from non-minimal ones. The strategy which we follow below
is to take a ST identity and compute first the contributions (marked by the superscript
(1B)) of regularized bare one-loop diagrams. Because the regularization (3.1) (“AReg”)
breaks the BRST invariance, these contributions to the ST identity do not sum up to
zero, but according to the QAP their sum, denoted 2 with appropriate indices, should
be local in the infinite cutoff limit. This can be verified by doing more or less standard
manipulations on regularized integrals. Since the calculations are rather lengthy, we do
not show their details except for one case: in C we outline the steps necessary to work
out the contribution of bare one-loop fermionic diagrams to the identity involving the
(AAAA) function. The functions €2 obtained in this way represent one-loop breakings of
the respective ST identities and have the obvious interpretation of appropriate derivatives
w.r.t. to fields of the functional Qy defined in (4.4).

The next step is to take into account minimal counterterms specified by the prescrip-
tion (4.12). The resulting one-loop breaking factors Q with appropriate indices are just the
appropriate derivatives w.r.t. to fields of the functional Qg defined in (4.15). From (4.16)
and (4.15) it follows that obtaining (’s reduces to setting to zero in the corresponding Qs
all factors §, defined in (4.13) and all terms proportional to A2. (In fact, the universality
of one-loop logarithmic divergences makes it clear that factors d5 cannot appear in 2’s and
to obtain s it is enough to set quadratic divergences to zero in the corresponding 2’s).

9Thus, Abelian ideals do not have to be considered separately — relevant constraints are already con-
tained in the identity (5.3). This statement generalizes to higher orders, because the regularization (3.1)
automatically preserves the Abelian antighost equation [45], see also eq. (A.6), in the infinite cutoff limit.
In particular, Abelian WT identities follow from the ZJ identity (4.1) as a consequence of the algebraic
relation (A.9).

10As there is no one-loop contribution to the function (K;w?), the last term of (5.3) does not contribute
if all differentiations act on the I§'! factor. For this reason and because non-minimal counterterms are not
allowed for this function (cf. (4.27)), all terms with (K;w”) are omitted in the formulae below.
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The last step is the determination of the non-minimal counterterms, which in prin-
ciple means solving eq. (4.17) with the auxiliary condition (4.27). Before presenting the
systematic of this procedure, we remark that there is an alternative way of obtaining the
necessary one-loop breaking factors €2. It relies on the fact that the bare 1PI functions
fgi]i) calculated using DimReg do satisfy the ST identities, provided the naive definition
of 4° is employed.'! Thus, replacing in the ST identities each bare one-loop 1PI function
s = fg\lB) calculated in our regularization (3.1) by the difference

AT(B) = T(1B) _TU5) (5.4)

Dim »

must produce the same factors 2. The necessary differences AT(B ), which will also be used
in sections 6 and 7 to derive the two-loop RGE satisfied by the renormalized parameters in
our scheme are calculated in B. This approach is obviously much simpler than the direct
calculations in AReg, firstly, because the differences (5.4) are already local expressions!?
and, secondly, because in this method the only 1PI function with antifields that contributes
to the factors Q is (Khw”) (the corresponding difference is given in (B.5)); the remaining
functions with antifields are the same in DimReg and AReg (even though the degree of
divergence may indicate otherwise) due to the additional “symmetry” (A.5) of L& (2.10)
in the Landau gauge, which is preserved by both regularizations.

We stress however that, except for the bosonic contribution to the identity involving
the (AAAA) function, all factors §2 have been computed directly in AReg (along the lines
described in C) and the results are, therefore, unaffected by ambiguities of DimReg with
the naive prescription for 7.

Systematic determination of non-minimal counterterms restoring the BRST symmetry
consists of considering first those ST identities in which only one 1PI function can have such
a counterterm (this is established by inspection of the allowed set (4.27) of non-minimal
counterterms) and moving successively to those in which more functions can have non-
minimal counterterms but only one such counterterm which has not been determined yet.

We have divided these steps into separate subsections.'?

5.1 Identity involving the (¢1) A) function

Functionally differentiating (5.3) twice w.r.t. the Majorana fields one obtains the identity
(we use the notation explained in (2.14)—(2.15))

iluTy g (R, kg, )W 4 82 Ty (b + 1 k)W o Toya (i, ko + 1) D22, +
(1)

H(T30) Ty (ks ko, DD = Vi) (K08 (k)9 (ko) (1)

HPerms which are ambiguous due to using the anticommuting +° in d-dimensions vanish if the condi-
tion (4.10) is fulfilled.

128trictly speaking, functions on the r.h.s. of (5.4) depend on two different sets of couplings, say, {g¢} and
{g°}. However, as will be shown in the next section, g° —§% = O(h) and thus the resulting non-localities are
of O(h?) order. Similarly, we assume here that non-local terms of order of O(A™!) (or O(d—4)) are neglected.

13Since minimal counterterms can be immediately obtained from divergent parts of formulae listed in B
we do not give them explicitly here; those needed for the calculation of the O(hz) vacuum graphs are given
in section 8.
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(O e (KR k)E (D)) — (O~ mp)an ( Balk)@ (57 (k2)) . +

1P1 P1
(1)

HIC Uy = )y ( Ka(k2) & 9" (1)) = 0. (5.5)

1PI

The contribution €, , _ (k1,k2,1) of the bare one-loop diagrams to the Lh.s. of (5.5) (in the
limit of infinite cutoff) is

1 3 3 ) o
Ly (k1 k2 1) = 5755 {Clﬂ“ [tetftv +5 (1 ~In 4> e"ge” te +yiy T+

2(4r 2

(s3]
-\ = n- |y, y .
3 4) v bube

Since lebw(lﬁ, k2,1) turns out to be A-independent, it is just equal lebﬂ(kl, k2,1) (notice
that none of the 1PI functions involved is quadratically divergent). Inspection of (4.27)
reveals that only the vertex (11 A) can have a non-minimal counterterm, of the general form

6T 0, (oo, 1) = i (cw(sbgm)m , (5.6)

(for simplicity we write 6I" rather than o,I" 81) from now on). The equation
lebg'y(k;h kQ? l) +1 luéfblluz(k;la k27 l) = 07 (57)

necessary for fulfilling the ST identity (5.5) has the unique solution

o~ 1 3 3 ..
b *
Oy = S [tat“t7 +3 (1 —1In 4) eﬁaﬂe“ﬂtﬁ +yiy T+

- <3 +1In 4> Yy tv} . (5.8)

5.2 Identity involving the (¢ A) function
Functional differentiation of (5.3) w.r.t. the scalar field yields the ST identity

i, L0, DD + TZE (0 + DD + (Ta) Tij(p, D +

, ~ Zio v~ N - o\ (D)
Vi) (K008 (0)a(1)) = ip" (Tye)i (RE(-Da (1)) =0. (5.9)
1PI 1PI
The contribution ;4 (p, ) of bare one-loop diagrams reads
Qia l)—L l—i—l 3 t[Y =Y ]—l— (5.10)
ia\Ds - (47_[_)2 19 n 92 I ZfOémF i mea .

§ § Tk _§ § T K
Hind (TR, - fin g (T, |

Again, since QW (p,1) = 0, Qo (p,1) = Qalp,1). Only the (¢pA) function can have a
non-minimal counterterm of the form

5fz‘g(l% —p) = ip"8Cia, (5.11)
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in which 6%, is a constant matrix. The Slavnov-Taylor identity (5.9) requires

Qia(p, —p) — ipudT i(p, —p) =0, (5.12)
whose unique solution is
1 7 3 “ «

§ § Tar _§ § T K
Hin (TR, - fn ) (T,

5.3 Identity involving the (AA) function
The identity involving the vacuum polarization tensor reads

Ty i v / > ~Q A (1)
(LD + (T T 0,00 — Vi) (RO 0 A D) +
N 1)
+ {m%,ﬁﬁn”" + 0 (P77 — n”“p2)} <Kg(p)&)o‘(l)>~ —0. (5.14)

1PI

The breaking €2 ag(l ,p) calculated directly from the bare one-loop diagrams has the form

Q.4(Lp) = il" W, 5(l,p), (5.15)

1
(4m)?

l2
Wasltr) = {82+ 5 fenliaia) = {3 + 03 for[tfar ) ] +

1 3 . o A2 5, 1 9

3 3 i 5
1 In 1 goT{Tg, T o Tep — {A2 + 24l2} tr [eaeﬁ] +

+2 {2 —1In i} tr[m3 eaes] - (5.16)

Taking into account minimal counterterms (i.e. setting A% to zero in ag(l,p)) yields
Q ag(l,p). Comparison of (5.14) with (4.27) reveals that two non-minimal counterterms
can contribute to (5.14): the already determined counterterm (5.11) (contributing to the
(pA) function) and the one for the vacuum polarization which must be of the general form

0T (p, —p) = 0" ('mi ) g + PP’ (8%24) s, (5.17)
with symmetric matrices 6bm%/ and 6bzA. Fulfilling the identity (5.14) requires that
Q41 1) + il 6TAG (1, —1) + (Tap) 6T 5(1, 1) = 0. (5.18)
Using the explicit form (5.13) of 6fig(l, —!) one finds the unique solution:

(0°%24) s = (471T)2 {—;tr [fafs] + %tr[ﬁﬂ'g} + %tr[eaeg] } (5.19)
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and
(47T)2(5bm%/)aﬂ = — {i +ln2}tr[{fa, f5} m}mp] + (5.20)

1
+ {2 +2In 2} tr [fam}}fgmp] — 51:1" [m%TaTﬁ] +

3

3 3. 3
1 {2 —In 4} tr [m%/eaeg] + 2 In 1 LpT{Tg, T YT Tep +

3. 3 3.3
5.4 Identity involving the (¢p¢A) function

The ST identity involving the L. * vertex has the form

il (p, ', D)W + T (0 + 1,p) Y + Tin(p, 0/ + DT +
+(Tap) " Tign(p, 0, )Y = V() <Kn(0)e5i(p)q37(p/)@a(l)>(i) +
, N €O (D)
—ip"(T,0); (S (P RLENE (1) =i (T (& 0 EL ()& () +
H0? m)n (0P )2 (0)) 40— ) (RS 05" ()) 4+
+ilp — )T i <f<¢(p + p')mu)>2 —0. (5.21)

The contribution of purely one-loop diagrams to the Lh.s. of (5.21) in the limit A — oo is
finite and reads

- 1 7 3 % "
Qz‘ja(pvp/7 l) _ (47r)2 (p2 . p/2) { (12 + In 2) tr [Ylfoéyj — YZ ijoz] + (5.22)
+z [ln2 (T"TaTx)ij —In ; €K6a(7;73)ij} } 5

In agreement with the expectation Qija(p,p/, l) is related to (5.10) by

Qo (0,0, —p) = 957 Qia(p, —p) - (5.23)
According to (4.27) only the function (¢¢A) can have a non-minimal counterterm. Its form

o0, 0\ 1) =i (pﬂéb%aji +p/“5b<%’mj) , (5.24)

with an arbitrary constant tensor 6’2, ji is dictated by the requirement of the Bose-Einstein
statistics. Fulfillment of (5.21) imposes the condition

Qa0 1) + 1,07 0 (0,0, 1) =0, (5.25)

and the unique solution is the tensor

1 7 3 X "

4% [ln? (T"TaTx)ij —In g emsa(ﬁfi)z‘j] } 5
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which is antisymmetric in the i indices. It is related to the counterterm (5.13) by

0 &

5b3{aﬁ = 67(,0] ) Ciay- (527)

5.5 Identities involving the (¢ AA) and (¢¢pAA) functions

The relations (5.23) and (5.27) reflect two facts: the preservation by our regularization
prescription of the shift symmetry (3.3) and that the same requirement has been imposed
on non-minimal counterterms in section 4 (see also appendix A.2). Therefore the non-
minimal counterterms for the (¢pAA) and (ppAA) 1PI functions must be given by (power
counting implies they are momentum independent)

_ - 0 ~ )
ST.2P(1,p,p') = 6T,2P(0,0,0) = — 6L2P(0,0) = n*P—— (8'm?) s 5.28
lﬁn(apap) 1&5( s Uy ) 8@1 ,Bn( ) ) n 8@1( mV)ﬁ ’ ( )
and
ST “P(1,U, p,p)) = o - 5T5(0,0) = 0P ———— (6'm?) g (5.29)
LA Dpldpl PR D' Dpl

The matrix (6'm?,)g, is given in eq. (5.20).

5.6 Identity involving the (AAA) function

Because of its relation to anomalies, one of the most interesting is the ST identity involving
the triple vector boson vertex FZ;‘:{([, p,p )M

i P (L, o) + €T (p + 1,0 + € T (0 + 1,p) Y +
HTap) T L) Vi) (Bil0)2* O A ) A30)) - +
(T (K OAD)) ) + v (Top) (Kw)a A0 +
b 4 0 (070 — ) (RIGE 0AL)) .+ (5.30)
g + 8 (097 — 70) } (RE )2 A3 +
Viessn {0~ D)0+ @+ D)0 — 2+ )7y (RS + ) 1)) =0,

1P
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Contribution €2, (l p, ') of bare one-loop diagrams to the left hand side of (5.30) obtained
by direct mampulatlon of regularized integrals is

Quar (i, p') = Qupr (Lp, p)™ ™ + (5.31)
1
— o
+6(47T)2 r([T% 7-3]7-) X
19 17 .3
_ vpl —7 e P 1p,.1
{p P (24+1n > (p"p”—p"p )(12+ln >}
1
+ o (ereacs) )x {1 (p? - p?)[24 12 -61n3-19] +

— (pPp’—pPp")[241n2—61n 3—34] } +

1 1
+E.Wtr(fa[fﬁa f’Y]) X

X |:(1—121n ;) (p/’/p//) — prP) e <5+12 In ;’) (p2 _p12):| )

Once again Qaéx)(l,p,p/) = Qaﬁlf(l,p,p’). The first term of (5.31) is the true anomaly
which in our regularization has the form

anom __ 21 / O'Tl/ 0123 __
Qr (1) = Wtr(fa{fﬁa f1}) -popie’™?, e =L (5.32)

Except for this one, all the remaining terms of (5.31) can be also obtained (as already
explained) by inserting in (5.30) the appropriate differences (5.4). The part of the (AAA)

4'in the DimReg with naive (an-

vertex that involves the Levi-Civita tensor is ambiguous
ticommuting) v° and therefore the term (5.32) can be obtained only directly in AReg; the
calculation is similar to the one for the (AAAA) vertex which is outlined in C (we show
there that the anomalies are independent of the shape of regularizing function in (3.1) as
long as it satisfies the appropriate boundary conditions).

According to (4.27) non-minimal counterterms are allowed for the (AAA), (AA) and
(pAA) vertices. The last two have already been determined (the formulae (5.17) and (5.28),
respectively). It is well known that in general the metric-independent part of the coun-
terterm to the (AAA) vertex converts only one form of the anomaly into another one but
cannot remove it — the anomaly is cohomologically nontrivial. Therefore, we seek only a
metric-dependent non-minimal counterterm. The most general form of such a counterterm

(which takes into account the requirements of the Bose-Einstein statistics) reads

5Fu1u2M3 (lh lo, 13) — {77#1M2 [ZM35 Ay s + lu35 aa2ala3] + (5.33)

alaoas
s [lm& Aajazas T l'u 0 aa;aalaz] + s [lm‘; Aasazar T l o aa3a2041:| }
with an arbitrary constant tensor 5"%1&2&3. The condition

Qa7 (Lp,p) + il 6T (1p,p') + (5.34)

e g0T0 (p+ 1, p )+ €% o ST05 (0 + 1, p) +(Taw) 6T 5 (1 p, p) = 0,

14 Ambiguous terms are multiplied by tr(fa {fs, fv}) and thus vanish if the gauge group representation
furnished by fermions is non-anomalous.
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has the unique solution (provided the condition (4.10) is fulfilled):

1 3 1/19 3
2 sb, _ K = 9 _ 2
(4m)“0ansy = € aﬁ{ 13 <5+121n 2> tr(fy i) 5 <24+1n 2) tr(7,7x)+
—I——712 [24In2—61n3—19] tr(ewe,{)}. (5.35)

Owing to the total antisymmetry of 8%, the counterterm (5.33) differs from the tree-level
vertex (3.5) only by the replacement of structure constants with 6%.
5.7 Identity involving the (AAAA) function

The last non-minimal counterterm from the list (4.27) to be determined is the one for the
four-vector boson vertex. To make the formulae simpler it is convenient to introduce the
following notation

1 = (i, s Un),s A, = flzz(ln), (5.36)

and to define the operator S which symmetrizes expressions w.r.t. (12,23, 4):
1
S{F(Zl,Zg,lg,M)} = g Z F(Zl,’LU(Q),ZJ(g),ZU(4)). (5.37)
oes({2,3.4))
In this notation the relevant ST identity takes the form

- e )|
() Tt (O, o T, 1))+ (Tay 9)? (8 (1) Ay Ay Ay )+

1P1
1)

+3 S{eﬂam <;1;2 (11+12)AML4>~ } -

e (Rt = e A b

{< (
+3S{<@i(_z2)21,2>(3 ( ~jaz)wm<h>fimf‘1u>(l)} *
{¢ !

. N i\
383 (& (~lo — ) A A ) (Kj(la + 1) 1(11)AM>~} +

1PI

PR
/Q(ZQ)W 1(ZI)A13A14>~ +

Vi) ( ~]‘(0)@‘3‘1(h)fhzflmflu>(i) =0. (5.38)

1PI

Power counting, Lorentz properties and the antighost equation (A.5) imply that in (5.38)

only the functions (AAAA), (AAA), and (Kfw®) can be different in AReg and DimReg.

Therefore, Qa,hinmos (I1,12,13,14) which is identical with Qe h2k3la (11 15, 13,14) can be ob-

tained using the differences (B.16), (B.7) and (B.5).1 As follows from (4.27), only the

15Unlike the previously considered identities, only the (potentially anomalous) contribution of fermions
to (5.38) has been worked out directly in AReg (the calculation is outlined in C). This contribution is
correctly reproduced by the differences (B.16), (B.7) and (B.5) if (4.10) is satisfied.
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vertices (AAAA) and (AAA) have non-minimal counterterms; (5.38) requires therefore that

2 2505 (01, D2, I 1)+ B8] 0 ST (1l D, L) +
i (1) OTHIH2HHA (13 1o 15, 14) = 0. (5.39)

The explicit form of Qg 424344 (11,15, 13,14) is rather complicated, however simplifications
occur after combining it with the second term in which STH2E354 (1) 415,15, 14) is given
by (5.33). The general form of the (AAAA) counterterm (again, neglecting a possible
metric-independent part) is

STH1K23Ha (11,12, 13, 14) = {nu1u2nusu45bq(a17a2)7(a37a4) + (5.40)

a1ooa30
phaHs phizia 6b(1(a1,a3),(a2,a4) 4 ptrkapps 5b(1(a1,a4),(a2,a3) },

where the otherwise arbitrary constant tensor 5"q( must be symmetric w.r.t.

ar,az),(as,04)
interchanges of the grouped pairs of indices and w.r.t. interchanges of the indices within

the pairs. The solution to (5.39) exists (if (4.10) is satisfied) and is unique:

_24(47T)25bq(011,042)7(013,044) = (5.41)
= (134 8In2) tr(Tay Tas{Tass Tas}) — 2(9 +8In2) tr(Ta, Tas Tas Tay) +
+2(13 —4In2) tr(eq, €as{€ass €ast) —4(9 —41In2)tr(eq, €as€as€ay) +
—16(1 4 210 2) tr(fay fasfasfou + far fausfanfas) +
+4(1+4In2) tr({fas, fao} {Fass Faul)-

This completes the determination at the one-loop order of the non-minimal countert-
erms listed in (4.27). Adding them to the action Iy obtained from Iy according to the
rules (4.11) and (4.12) one obtains the action I;. In agreement with the results of sec-
tion 4, applying the operator S given by (4.2) to the effective action I'y, which is the
asymptotic part (in the sense explained in section 4) of'® T'[I{}] one gets in general (us-
ing (5.32) and (C.11)) that

S(Ty) = hS, 'Y + O(h?) (5.42)

with (using the notation of differential forms in which A = f,Ajjdz#, w = faw®)

S;,I'M = —

i tr/wd{A/\dA—l—;A/\A/\A}, (5.43)
(in our conventions da’ A dz! A do? A dz® ~ d*x). This means that, when minimal and
non-minimal counterterms are taken into account, the Zinn-Justin identity is broken only
by the true anomaly, which in our regularization and subtraction prescription (part of
which is the condition that non-minimal counterterms (5.33) and (5.40) do not involve the
Levi-Civita tensor) has the well known canonical form (see e.g. [21, 47]). In the rest of the

paper we assume that the condition (4.10) for absence of anomalies is satisfied.

16Recall that in I the substitution (3.1) is made also in the counterterms (both, minimal and non-
minimal); the (momentum space) form of a regularized counterterm can be unambiguously fixed by the
comparison with the corresponding regularized tree-level vertex (see the formulae (3.5)).
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6 Relation between A-MS and DimReg-MS

Having determined all one-loop counterterms, minimal!” and non-minimal ones, we can
prove the equivalence at this order of the A-MS scheme and the DimReg-MS scheme with
the naive, i.e. fully anticommuting, prescription for the ~° matrix. Equivalence at one-
loop of renormalizable YM theories without scalar fields renormalized in the latter scheme
and in a consistent DimReg-based scheme with the 't Hooft-Veltman-Breitenlohner-Maison
prescription for 4% [32-34] has been demonstrated in [10]. Our calculation can be there-
fore treated as an extension of the result of [10], i.e. as a proof that at one-loop the naive
DimReg-MS scheme is consistent for the most general renormalizable YM theories.'® This
requires relating renormalized parameters and fields in both schemes and constitutes a
nontrivial check of the renormalization procedure developed in sections 4 and 5: for exam-
ple, relations of the gauge couplings in the two schemes determined using different vertices
must come out the same.

To make the formulae simple we denote collectively all parameters (masses and cou-
plings) and fields (including antifields) in the A-MS scheme ¢©, C' =1,... and ®, respec-
tively. Their counterparts in the DimReg-MS scheme will be denoted § and ®. Equivalence
of the two schemes means that the renormalized effective action I'piy [Ci), g, /1] which is the
asymptotic (in the sense explained in section 4) part of'? I'[/4] in the naive DimReg-MS
can be obtained from its A-MS scheme counterpart I'y[®, g, u] — the asymptotic part of
I'[I2] — through a “finite renormalization” of fields and couplings:

I'bim [(i)’ G(g)v ﬂ] =TI [C‘iagna] ) (61)

where ( is a matrix field rescaling

C=clg)=1- (42) £y (9) + OUR2), (6.2)
and .
9 =G%g) =g“ + e 0 (9) + O(R?). (6.3)

The formula (6.1) assumes that the two renormalization scales: u of the A-MS scheme
and ji of the DimReg-MS are identified (in other words, one seeks to relate fields and
parameters of both schemes taken at the same numerical value of the two respective
renormalization scales).

The first step in relating the two schemes is to determine the rescaling factors (matrices)
¢ (6.2) for all the fields. To this end we equate the terms quadratic in the fields ® on both
sides of the condition (6.1). Having determined (’s in this way one can proceed to finding
relations between the parameters. We consider first the matching conditions which do not
depend on non-minimal counterterms.

7These can be obtained immediately from divergent parts of formulae listed in B.

8In view of this, it is natural to expect that renormalizable YM theories renormalized in the A-MS
scheme and in DimReg-based schemes with non-naive v° are also equivalent (at least at one-loop).

91 full analogy with the notation introduced in section 4, I& denotes the dimensionally regularized
action with all order counterterms included.
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For the scalar fields (up to the one-loop accuracy) one has the relation:

(¢4 (0° — mZ)(y) i (p? —1m3)ij = —hART;(p, —p)V + O(1?). (6.4)

On the right hand side of (6.4) the factor
ARfij (p, —P)(l) = fij (p, —P)E\l) - fij (p, _p)l()li)rm (6.5)

is the difference of renormalized one-loop contributions in the two schemes. Since in this
case the 1PI function fij (p, —p)g\l) (subtracted in the A-MS scheme) is not affected by
non-minimal counterterms (cf. (4.27)), the difference (6.5) is obtained by simply setting
Spiv = A? = 0 in the corresponding “bare difference” of the form (5.4) which is given
explicitly by (B.11). (The formula (B.3) for dp;, implies that for p = fi setting dpiy = 0
is just the minimal subtraction of logarithmic divergences in both schemes). Solving (6.4)
for ¢y = Cg (because we work with real scalar fields) one finds (here i = 1):

1 3 1 R 1 3. 32) .,

The formula (6.4) yields also the relation between the mass matrices m% and m?% of the
scalar fields in both schemes:

[m3li; = [ChmEs) i ARI';(0,0)M). (6.7)

We do not give the explicit form of this relation here, because it can be also obtained from
the general relation between the scalar potentials in both schemes which we derive below.

In the analogous manner one finds the relation ¢ = Cw,/? between the Majorana fields
in the two schemes. Using the difference (B.13) with dpsy set to zero and solving the analog
of the condition (6.4) for ¢y, = (¢ Pr, + (- Pr with Hermitian (r one gets

(r=1+ (4;)2 {;fafa + i [mi — é] Y;*Yi} : (6.8)

The mass matrices mp and mp of the left-chiral Weyl fields in the two schemes are related
by

~ 1 iv ] o 1 o’ o
mp = mp + (4@2{@ YT Ta)ji = 5 [fof*Tmp +mp faf®] +
1 1 3 1 Yiy: Y Yd

The two mass matrices depend on the background scalar fields renormalized in two different
schemes: mp = Mp(0) + Y;¢' and mp = Mp(0) 4 Yie® (cf. (2.6)). Since in both schemes
the 1PI generating functional depends only on the sum ¢ + ¢, it is natural to set

© = (s (6.10)
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(with (4 given in (6.6)). This allows to rewrite (6.9) in the form (neglecting higher order
terms)

ME(p) = Mp(p) = Yi((s — ]1)ij j

(4i)2 [(pin (TTa)ji + (6.11)
3

—%{MF( Vaf™ +tp.} + = {ln—}{./\/lp WYY +tp )|,

(tp. stands for the transposition of the preceding term). The advantage of the relation (6.11)
is that differentiating it w.r.t. ¢’ yields the difference of the Yukawa couplings Y; and ¥; in
both schemes. The result agrees with the one obtained directly from the ¢ vertex using
the difference (B.15). (This confirms the relation (6.10)).

Considering the terms linear in the scalar fields ¢ on both sides of the condition (6.1)
one gets (using (6.10)) the relation

(Co) Vi (Co®) — Vi(@) = ArTi(p)™Y) . (6.12)

Again, ARTi(p)) is obtained from the difference (B.9) by setting in it dp;y = A2 = 0.
Integrating both sides of (6.12) w.r.t. the background field ¢ and taking the difference of
the resulting potentials V and V at the same “point” ¢ one obtains the relation (neglecting
higher order terms)

e ML+ (G- 1) LV(e). (6.13)

V(p) = V(p) = — ‘aw'

1
2(4m)?
Differentiating it w.r.t. the background ¢ one gets the formulae relating the mass matrices
and self-couplings of the scalar fields in the two schemes. The relations obtained in this
way agree with the one obtained from (6.7) and the other relations obtained by considering
the matching conditions relating directly the ¢ vertices in the two schemes.

In comparing the terms bilinear in the gauge fields on both sides of (6.1) one has to
take into account also the non-minimal counterterm 6fgg (5.17) (with 8’24 and &’m? given
by (5.19) and (5.20), respectively) which affects the relevant “renormalized difference”:

AR (p, —p)Y) = 0TLY (p, —p) + ATLY (p, —p) P , (6.14)

Opiv=A2=0

(the “bare” difference Afo’fg (p, —p)1B) is given by (B.6)). The comparison gives

1 1 2 7
(CA)aﬁ = aﬁ+2(4 B {(18 31n2> tr[fafﬁ] <F44+61n2> tr[7-a7,-8]+

23 19
<72 —In2-—— ln 3> tr[eqes] } , (6.15)

and
[ s = [CAmiCa] 5+ ArTH(0,0)D. (6.16)
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In the similar way, matching the terms proportional to the product ¢A on both
sides of (6.1) (using the “bare” difference (B.10), the non-minimal counterterm (5.11)
and eq. (6.10)) one gets the relation

Ta = Tar{ (CA)% + 627, ] (6.17)

between the gauge group generators 7, and 7, in the two schemes (that is between the
gauge coupling constants) in which 6= is given by

w1 (3.3 1 Wy
== Gy <41n4 8> tr[e ea}, (6.18)

(Ca is given in (6.15)) and the relation

Pa, = (Ca)%4, Ps, (6.19)

between the Stueckelberg parameters (cf. (2.4)) in the two schemes.

We have verified that the formulae (6.17), (6.19) and (6.10) in conjunction with the
explicit expression (2.7) for m?, in the A-MS (and its DimReg counterpart) reproduce
the relation (6.16). The same relation (6.17) follows also, upon using (B.12) and (5.24),
from matching the ¢¢pA vertices in the two schemes. Furthermore, using (6.8) together
with (B.14) and (5.6) we have verified that the relation between the fermionic generators
to and £, in both schemes obtained by considering the vertex 11 A is identical to (6.17), as
expected. Similarly, using egs. (B.7) and (5.33) the same relation for the adjoint generators
eq and €&, is obtained from matching the corresponding AAA vertices. Moreover, the rela-
tion (6.17) is also consistent with the form of the AAAA vertices (cf. egs. (B.16) and (5.40)).

To complete establishing the equivalence of the A-MS and DimReg-MS schemes at
the one-loop order, it is necessary to relate vertices involving antifields (these vertices do
not have non-minimal counterterms). Of these only the two-point function (Kiw?) has a
non-vanishing “bare difference” (see B). Eq. (B.5) after minimal renormalization yields

1 1 3. 4
T
— 1 (24%ms ) e 2
GG (47)? <8 4 n3> “e (6.20)

where (g relates the vector antifields K* and K*. Introducing the notation ¥ =
(6,9, Ay, w) and K = (K, K, K*, L) and matching the (K w W) vertices in the two schemes

we get the relation

~ \I} /

T =t 6w (G) (6.21)
with Ty(\p) = (75,ty, ey, ey). It follows that the formulae (6.20) and (6.21) are consistent
with (6.17) (and its counterparts for the other kinds of generators) provided

e = (M7, (6.22)
and
(C)% = (Ca)%y + 02, + O(?), (6.23)
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with 550‘; introduced in (6.18). The matrix (5 relating the antighost fields in both schemes
is equal to (k, because of the ghost equation (A.3). Similarly, the corresponding Nakanishi-
Lautrup multipliers are related by ¢, = (¢})~!. Finally, the block of the (; matrix (6.6)
corresponding to the Stueckelberg fields is the unit matrix. By comparison of the two
point functions (K;w?) in both schemes one concludes that the same statement holds for
Stueckelberg antifields, so that (6.22) is correct in this case as well. This establishes the
equivalence of the two considered schemes at least with the one-loop accuracy.

The relations between quantities defined in the A-MS and DimReg-MS schemes found
in this section, apart from providing a useful consistency test of the entire subtraction
procedure defined in section 4, will allow us to obtain the two-loop RGEs satisfied by
the running parameters of the former scheme using the known RGEs in the latter one.
Moreover, since usually the parameters that are extracted by fitting the SM to the data
are the gauge (and other) couplings in the DimReg-MS scheme (at ji = Mz or M;), the
relations established here will allow us (in section 9) to give the proper numerical input to
the RGEs in the A-MS scheme when analyzing the hierarchy problem.

7 Renormalization group equations

The relations (6.3) and (6.2) imply that the one-loop RG equations in the A-MS and the or-
dinary DimReg-MS schemes are identical. Moreover, having the one-loop relations between
renormalized parameters and fields in the two schemes, it is possible, using the known
two-loop RG equations in the DimReg-MS scheme [48-51], to obtain also the two-loop RG
equations for the parameters in the A-MS one. From the point of view of the RGE it is more
convenient to treat the background ¢ as a part of the scalar field ® = ¢+ . The renormal-
ized parameters of the A-MS scheme, collectively denoted g, whose two-loop 8 functions
are derived in this section, are therefore the gauge couplings (one per each independent
gauge group factor, at least in the absence of the mixing of gauge fields corresponding to
different U(1) groups), derivatives of the scalar potential V(®) at & = 0, the Yukawa ma-
trices Y;, the mass matrices Mg (0) of the fermionic fields and the Stueckelberg parameters
P - Before deriving these equations it is instructive, however, to take a look at how the
RG arises in YM theories regularized with the help of a BRST-symmetry breaking cutoff.

The subtraction procedure defined in section 4 introduces an arbitrary mass parameter
(. As a result, the action Igo depends on this scale and on A through the counterterms
(this dependence on A comes on the top on the dependence through the exponential fac-
tors (3.1)). The arbitrary scale yu is expected to play a similar role as in the DimReg-MS
scheme. In particular, one expects that observables computed in terms of renormalized
parameters are, for fixed value of the cutoff scale A, independent of p, if these parameters
vary appropriately with p and that Green’s functions computed in terms of renormalized
parameters satisfy the appropriate differential renormalization group equations.

In the case of non-gauge theories, or if the regularization does not break the BRST
invariance, the RG equations follow from the observation that Ié\o can be written in the
form of the bare action Ifg\ which has the same form as the starting action Ié‘, but with the
renormalized parameters g/ replaced by the “bare” ones, gﬁ, and with each type of field
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multiplied by its Z/2 factor. The bare parameters gﬁ and the Z'/2 factors are constructed
as power series in renormalized couplings g with coefficients formally divergent in the
limit of removed cutoff. The important fact (actually, more important than the precise
form of Ig) is that bare and renormalized parameters, gé and ¢, are in the strict one-to-
one correspondence and that to each field corresponds a unique Z/2 factor. Thus, in this
case I é\o depends on y only through the Z'/2 factors and the bare parameters. The formal
equivalence of the perturbative expansions in renormalized parameters and in bare ones
(the latter with a non-perturbative treatment of the Z/2 factors):

F[Ié\o[¢7ga Ky AH = F[IS[ZI/ZQS’QBH ) (71)

then firstly implies, that observables computed in terms of renormalized parameters and
depending explicitly on p are in fact p-independent (if bare parameters are treated as
p-independent, which is ensured by giving the renormalized parameters an implicit u-
dependence, which in turn is unambiguous owing to the one-to-one correspondence of
bare and renormalized parameters and uniqueness of the field renormalization Z factors)
and, secondly, allows, by applying to (7.1) the chain differentiation rule, to show that
the effective action T[I2] satisfies the standard RG equation with beta functions which
express the independence of y (for fixed value of the UV regulator) of the bare parameters.
Moreover, the equality®® T2 (6, g, u,A] = I{[Z'/2¢, gg] implies also that the same RG
equation is satisfied by I [#, g, i, A].

As emphasized in [10], this standard reasoning cannot be directly extended to the
BRST symmetry breaking regularizations, because the action I constructed in the
process of removing divergences and restoring the BRST invariance of the effective action
does not have the form which allows for immediate identification of the Z/2 factors and
bare couplings: trivially speaking, as illustrated by the explicit one-loop calculations
presented in section 5, to each gauge field there correspond in fact two different Z factors
— one multiplying the structure d,A4,0*A” and another one (affected by non-minimal
counterterms) multiplying 0,A4#9,A”. Furthermore, because of the non-minimal coun-
terterms, different operator structures involving gauge fields in the interaction part of
Igo are multiplied by different power series (with divergent, as A — oo and p-dependent
coefficients) in renormalized couplings, so that even if it were possible to extract in each
vertex the appropriate combination of field renormalization constants Z/2, one would
end up with several “bare” gauge couplings gg(i) (here ¢ labels different bare couplings
corresponding to an independent gauge group factor A). It would not be then obvious that

all the bare couplings gé @)

yield the same beta function 4 = A0 for the renormalized
coupling ¢g* (in other words, that requiring p independence of one of these bare gauge
couplings will automatically make p independent also the remaining ones).

On the other hand, it is well known that the concept of bare couplings is not indispens-
able to prove that observables and Green’s functions do satisfy the standard RG equations.

Indeed, QAP allows to derive [10, 21] the RG equation directly in terms of the I' functional.

2In the regularization of section 3 the relation I [p,g,u, A] = I}[Z/?¢, gs] is ensured (in theories
without gauge symmetries) provided the substitution (3.1) is made in all counterterm vertices.
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However, since from our point view the action I, é\o [0, g, u, A] should have the physical inter-
pretation of a bare action, it is important to show that Ié\o [, g, 1, A] and T obey the same
RGE. Therefore below, (modifying the reasoning of [21]) we present a recursive proof of
this important fact.

We first notice that?! I, I{]X and I'g trivially satisfy the following relations

0

Roly = RoI} = RoI'y = 0, where Ry = Mo (7.2)
In the next step, defining the differential operator
(“) C (“) 13 P w A

in which the “counting operators” Ny, X = ¢,1,w, A are given by (4.23), while ,Bg and
74X, are some A-independent coefficients, we prove that if

RuI, = 7 = K" e, + O(RH2), (7.4)

then also
R,y = " e, + O, (7.5)

with precisely the same local functional r,. The proof, relegated to D, relies on the fact
that the regularization (3.1) is such that (7.4) implies that the regularized functional I

automatically obeys a similar equation??

R IN = 7 = gt e L Oy (7.6)

n

where 72 is obtained from 7, by the replacement (3.1), so that

=t O, (r.1)

because quadratically divergent terms of I,, are momentum-independent.
To argue that (7.4) can be extended to the next order we notice that the functional

0
Jnt1 =1 + M({“)iu 51—‘52:1) ’ (7.8)
where the complete counterterm (51“&? D _ ,S”*l)div + 5@‘,(1”“) is constructed as in sec-

tion 4, belongs to the kernel of Sy,. This follows from the fact that, owing to the structure
of the counting operators (4.23), R,, given by (7.3) satisfies the identity

R,S(F) = SpR,F, (7.9)

' Recall (see section 4), that T, is obtained from the 1P effective action T'[I2] by neglecting terms that
vanish in the infinite cutoff limit.

22Gince it is I2 that generates Feynman rules, in the reasoning of D it is crucial that I2 (rather than I,,)
obeys the RGE (7.6). For this it is crucial that the derivatives in counterterms have to be also replaced
according to the rule (3.1); otherwise there would be no coefficients 51 and 1 for which the condition
RiI{ = O(h?) would be satisfied.
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in which F' is an arbitrary functional. This allows to write R,S (I',) in two different ways:
R,S (T'y) = Sr, R.T, = K" Spyr + O(RT2)

and, using (4.4),

0
i Qn n+2 .
uau + O(R"™)

R,S (Ty) = " R, Qy, + O(R"H2) = B H1
Combining both results and recalling that Q, = -S§ Ioéféy b we find that indeed
S Io Jn+1 =0.

In the similar way one can show recursively that r, (and hence .J,41) satisfies the
homogeneous versions of the auxiliary conditions listed in appendix A.1. As an element of
V N ker Sp, (for the definition of the space ¥ see the text above eq. (4.21)), J,41 can be
represented in the form (cf. (4.22)):

0
Jns1=—0RIp = — {MA 907 Ny (67%) = Np(67Y) — Nio(67%) — NA(MA)} Iy,

with some coefficients®® §34, 67vX. Defining then B;:‘H = 5;14 + BPTL§BA ete. it is easy to
see that (R,41 = R, + A" 6R)

Rps1lni1 = Rl + B Ry 6T 4 it SR I + O(H2)

= ptt {rn + 1 iérﬁgjl) + 5RIO} + O(h"t?2). (7.10)
Since J,+1 = —dRIy, the curly bracket vanishes and we get R, 11,11 = O(h"*?). The
reasoning presented in D then shows that also R, 41T41 = O(A"*2). This in turn implies
that the coefficients in §R are A-independent. On the other hand, the relation dRIy =
—Jn1 tells us that coefficients of R are polynomials in dimensional parameters of Ij; this
(in conjunction with their A-independence) ensures that they do not depend explicitly on
p. This completes the inductive step.

The above result shows that Rools = Roolgo = 0 and, therefore (D), Rool'so = 0.
The solution of the first of these equations by the method of characteristics tells us in
general [52] that the value of I, at a “point” (®, g, u) is equal to the value assumed by I
at a particular point (®y, gs, px) on an arbitrarily chosen hypersurface ¥ of codimension
one, connected to the point (®, g, 1) by the characteristic curves specified by the equations

S lt.n) = it ), 0, 1) = 1,
agA(tvg) :BA(g(t)g))v gA<07.g) :gA7 (711)
CB1.g) = o) B0 Rg),  B(0.Dg) =

ZNote that the conditions (4.24)—(4.26) impose some constraints on these coefficients; the most interesting
one of them relates the beta functions of gauge coupling to the anomalous dimension (in the Landau gauge)
of the corresponding ghost field §8°9T, /8¢ = [67*]", Tk.
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In the case of the A-MS scheme distinguished is the hypersurface ¥ defined by the condition
(A is defined in (4.13))

f(®s, g5, ps) =ps —A =0, (7.12)
on which I, takes the simplest form because all minimal logarithmically divergent as
A — oo counterterms vanish there (non-vanishing are only the minimal counterterms pro-
portional to A% and the non-minimal ones). Thus,

Lo[®, g, 1y Al = Loo[®, g, ps, Al = Ic[®(ty, @, 9), 3(ty,9), A, A]. (7.13)
where (cf. eq. (4.13)) -
A1
A _
The formula (7.13) together with the identification ®p = @(tﬁ,@,g), provides the

definition of the bare action Iy as the action defined on X:

Ig[®B, gB] = I[Py, g5, px, A]. (7.15)

The bare couplings (cubic and quartic couplings in the scalar field potential, Yukawa cou-
plings, gauge couplings as well as the explicit mass parameters of fermions) are then nat-
urally defined as

g8 =9ty 9). (7.16)
Independence of gf of j, that is u(d/du)gd = 0, determines then, as usual, the yu depen-
dence of the running couplings ¢ (u). Since the autonomous ordinary differential equa-

tions (7.11) imply automatically that [52]

0
_A C ~A
— g7 (t,g) = — g7 (t,9), 717
5 9 (t9) =5 (g)agcg(,g) (7.17)
one obtains u(d/du)g? (1) = B4(g9(1)) as the RG equations allowing to relate g(u) to
g
plings g;.)

According to this definition of the bare couplings, in the bare action the coefficients

). (Inverting the relations (7.16) expresses, of course, g () through the bare cou-

of the various gauge field dependent interaction vertices (affected by non-minimal coun-
terterms) are given by different infinite power series in the bare couplings.?* Further-
more, the Z4 = Z4(g, u, A) factor of a gauge field A is in this way uniquely defined (it
is the coefficient of the 9, 4,0/ A" structure in I, which is not affected by non-minimal
counterterms), whereas the coefficient of the structure 9, A*0,A” must be of the form
Za % F(g(tf), 9)) = Za x F(gp) with F'(gg) being an infinite powers series in the (dimen-
sionless) bare couplings. Finally, the bare masses squared of the scalar fields are uniquely
defined by (7.15) as the coefficients of the terms quadratic in bare scalar fields and have
the form (notice that on the left hand side of (7.15) there in no explicit A dependence!)

(mB) = (Am) 2AZ N N) + (M) (), m?, p, \)
= (4m) 2N FC () + (M) (), m?, p, \) (7.18)

24The exception are the terms coupling the ghost and gauge fields which, having no non-minimal coun-
terterms, are simply proportional to the bare gauge couplings (7.16).
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where A denote generically parameters of dimension 0 (gauge, Yukawa and quartic scalar
couplings) and p stands for generic cubic scalar couplings or explicit fermionic mass param-
eters. It is also important to notice that because of the minimal counterterms proportional
to A? (as well as due to the presence of non-minimal counterterms) the bare action I
includes also bare vector boson masses squared

(Mg = A2H(A(ty, A) + K(m2 (5, m?, p, A), pltg, p, N, Aths A)
= A’H(\g) + K(m*(ty, m? p,\), pB, AB) , (7.19)

— in the cutoff regularization there are unavoidably quadratically divergent corrections
also to the vector boson two-point functions (see section 5).

Summarizing, we have shown, that the action I, obtained in the process of construct-
ing minimal and non-minimal counterterms indeed winds up to a “bare” action Iy which has
no explicit dependence on p: the entire dependence on p enters through the bare parameters
and the field renormalization factors Z. In particular, the result (7.18) provides the general
justification of the conjecture first formulated in [53] and used in [2, 13], namely that coeffi-
cients of quadratic divergences are A-independent functions of bare couplings. It should be
stressed once again, that this result relies on the consistent application of the regularization
prescription of section 3 (that is, on making the substitution (3.1) also in the counterterms).

After these considerations we return to the derivation of the two-loop beta functions
in the A-MS scheme. The relation (6.1) allows us to express the beta functions and the
field anomalous dimensions in A-MS in terms of their DimReg-MS counterparts

84(g) = [Q9) 7" 89GC)), (7.20)

g _ 0 _
g) = C@NGIC@ + B 9)c(9) g [l
(matrix multiplications in the second line are implicit), where [Q(g)]¢ 4 = 0GC(g)/0g4.
Expanding?® the relations (7.20) in powers of & and using the differential operators (cf.
egs. (6.2)—(6.3))

. 0 0
B:B(Cl)(g)agicv 0= 08)(9)6!?7 (7'21)
we get
2
B0) = 340 + s {© o) — By (a) | + O, (7.22)
2
v(g9) = ¥(g) + (47;)4 {051y (9) + BEay(9) — [Ey(9), Ya)(9)] } + O(R?) . (7.23)

Instead of listing the beta functions for various couplings g¢ we follow Jack and Osborn [48]
and give formulae for the quantities

Bl =BTa, BT (0)=BMe(e),  Bh)(@) =BV(p). (7.24)

25We use the obvious notation

. Rt — I
B => e By (9)s =Y — ) Yoy (g

= (4m)
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Since the scalar background ¢ is not one of the couplings g©, 52)1)(90) is simply the scalar
potential V present in the Lagrangian (2.1) but with each coupling replaced by its one-loop
beta function. Similarly, the beta function of the Yukawa matrices can be immediately
obtained as the derivatives

vi _ 0 gm
5(1) = @B(DF(@)- (7.25)
The explicit forms of (7.24) read?® [48]
B (0) = B{ME(p)faf® + tp.} + 2Y;Mp(p)'Y7 + (7.26)

+% {MF(SD)Y]'*Yj +ip.} + %@iyjtr{Yin* +cc.},
5 (e) = S {ME} — ] [Mr(e)Mr(e))*} + S M ()7} +

0 V(e), (7.27)

¢t g
H005% g5

where
. 1 « a
Vg)ij’(g) = 7?&) ij(g) = 5'61‘{}/2}/} + CC.} +3 (ET )ij ’ (728)

is the the one-loop anomalous dimension of the scalar fields in the Landau gauge (see
e.g. [49-51]). Finally, the well-known expression for the beta functions of the gauge cou-
plings has the form

Bl =BT = T A%, Too = fa Tas €a (7.29)
with " . )
A’fa = ? tr{eﬁea} - 6 tr{ﬁ,]:x} - g tr{fﬁfa} . (730)

For completeness we give here also the one-loop anomalous dimensions of the vector fields
and the left-chiral Weyl fermions (in the Landau gauge)

Ve (9) = Fyeal9) = % tr{esea} — étr{TJa} - gtr{fnfa}. (7.31)
y(9) = A0y (9) = %iﬁ*Yi- (7.32)

In complete analogy with (7.24) we define also
037 (9) = © Mr(p) = (47)* (Mp(p) — Mr(9)) (7.33)

etc.; their explicit forms follow immediately from (6.11), (6.13) and (6.17); e.g.

ol

B =0T = (4n)* (T — Ta) = T80, (7.34)

where

11 1 7 1

41 19 3.9

26The one-loop functions given below can also be obtained from the formulae listed in B, or, more
specifically, from their parts proportional to dpiy.
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We are now in a position to compute the differences of the beta functions in the two
schemes. The formula (7.22) allows us to obtain these differences by means of simple alge-
braic manipulations®” on objects ﬂ(}f) and 9(){). The results can be conveniently expressed
in terms of the two-loop counterparts of (7.24), i.e

0

Bay" (9) = Bz (9) 5,5 Mr(). (7.36)
B0 = Ab0) 5 ‘9  Mu(p), (7.37)

etc. In the case of the gauge couplings we get

B(9) = Bl 9) + T[Q, A", . (7.38)

Both © and A are matrices of invariant forms on a Lie algebra, hence the commutator
in (7.38) vanishes if the gauge group contains at most a single U(1) factor. In such a case
the functions f(1) and 6y for a given gauge coupling depend only on this coupling and the
two-loop beta function is the same in both schemes, similarly as in theories with a single
coupling. In theories with multiple U(1) factors there are more Abelian gauge couplings
than independent Abelian generators and all of them can mix with each other (see e.g. [57]
and references therein). The two-loop beta functions for Abelian couplings are then in
general different in both schemes.

The beta functions of the couplings parametrizing the potential  can be obtained from

B e) = Ao+ [y (0) — iy (0)] | ¢ T

1210 { M3 (0)? [A + 300} — 2M3 (p)as " [365) 16| TOT P +
—2t{ ME ()], b + 2ME (9)ap tr{ ME(R) TP} +
ST TOHMEO] T Ty + 260{ 1 (ME(@)Mp()) + e +
)’

_l’_

=2 [T Tapl t{Y;Mp(p) " Mp(p)Mp(p)* + cc.} +
-~ [mi - H tr{Yij* (Me()Mp())? + cc.} : (7.39)

where 5?’1) is the one-loop contribution to (4 given in (6.6) taken with the opposite sign
(in agreement with the definition (6.2)). The two-loop anomalous dimension of the scalar
fields in the Landau gauge reads

i 13, 32] .
yé)ij(g) = 7@)@-(9) + { [2 +1n 9} AP 469 )‘} (TT3)ij + (7.40)

) 3
+ [4 +3In 2} tr{Y;"Y;§%q + cc.} + {4 +1In 2} tr{Yi*YeYj*Yg + cc.} +

7 1 3 * X O~ % §_§ g K 74
+[24+21n2]tr{(mfj +YJYZ-)YY,'Z}+[4 S }(Tﬁ)eY

2TNote that ﬂﬁ) and 9()% are linear combinations of BG)(g) and Hé)(g), respectively, with g-independent
coefficients.

— 37 —



where

Yij = tr {Y;Y;* +cc.}. (7.41)
For the beta function of the Weyl fermions mass matrices one obtains
Bsy"(0) = Bsy" (@) +4 [T T — €| Y Mp(e)Y (7.42)

o 1
[T Ta — £ 1
- 32
ivi)|2 21, 28
+¢"Y {[ In 5

7 3
+[24 Sn 2}tr[YY*YEYZ —{—cc} [4+1n2]tr[yin*yjy‘f*+cc.]}

<ln—> ] {Y'Y*Mp(p) +tp.} +
I

YT”'E 2./4’\“7')\7;} + [Z +31n 2] tr [ YV §5f +cc. ]
ij

+ [m—l] {(YWF(@)*Y"Y;Yij.) - (an*sijf*MF(go)ﬂp.)} +

[;’ In i+4] { (MF( )Y,g*fj;fa*yhrtp.) n (Y%*f;fa*MF(ap)Hp.)} +
—2 (Yffafa/\/lp(cp)*mrtp.) + (A*””A + 69“*) (ME(p)fsfrttp.).

The two-loop anomalous dimension of the left-chiral Weyl fields (in the Landau gauge) reads

1/ 3 1 .
Yy (9) = Az (9) = A fufr + [T “Ta— €0~ 3 <ln - 6) Y] VY4
ij

1 242 {Y oyl o5, Yy Yf} S yevyeys,
while that of the vector fields has the form
3.3 1
A <A
7(2)0[[3(9) = 7(2)&5(9) —|— [Q, A} a,@ + { |:2 ln Z — 4:| AOC’Y - 39&7} tr(e7eﬂ) . (743)
One should expect that the relation g7ea = Tn (7A)"‘Aa , holds in both schemes,?® so

that (7.43) agrees with (7.38). Similarly, the beta functions for Stueckelberg parameters
in (2.4) are determined by the anomalous dimensions of the Abelian vector fields

0
5 50 P = P (74, (7.44)

The above formulae have to be supplemented with the Jack-Osborn expressions [48] for
6(2) functions in the DimReg-MS scheme (to be distinguished from DimRed results, which
are also given in [48]) and with the Machacek-Vaughn formulae [49-51] for 5(9) matrices.
For completeness we list them (using our conventions) in E. The explicit expressions for
the S and 6 functions in the SM are given in F.

8 The “bare” scalar potential

As a further consistency check of the renormalization scheme defined in section 4 and
as an example of dealing with the regularization (3.2) in higher orders we consider in

Z8For non-Abelian indices the relation 7o = Tﬁ(fyA)"‘a holds only in the background field gauge and
provided '7A is the anomalous dimension of the background vector fields.
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Figure 1. Order h? vacuum graphs.

this section the order h? contribution to the constant term T'[0] of the effective action
[[g, A,...], i.e. to the background field dependent zero-point 1PI function. Owing to
the “shift” symmetry (3.3) which is preserved by the cutoff regularization of section 3,
calculating I'[0] in order h? is equivalent to the determination of the two-loop contribution
to the effective potential Veg ()

I'[¢, other (anti)fields = 0]= —/d4a: {Vert (¢ + ¢) + derivative terms} .

However because calculation of the complete two-loop Feynman integrals in the regulariza-
tion of section 3 is quite cumbersome, here we will content ourselves?? with calculating only
the divergent part of I'1 [0] (in agreement with the notation introduced in section 4 the sub-
script 1 indicates that the calculation proceeds from the action I {\) In other words, we want

2The complete two-loop Vet (p) of an arbitrary renormalizable gauge theory in the DimReg-MS and
DimRed schemes is given in [58].
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to find the y-dependent counterterm that ensures the finiteness of I'[0] in the O(h?) order.
This will provide some nontrivial consistency checks and will also allow to determine the
two-loop coeflicients of quadratic divergences in the bare action Ip introduced in section 7.

Diagrams relevant for calculating the two-loop contribution to the zero-point function
I'[0] are shown in figure 1. By an appropriate change of the basis in the field space the
background field dependent mass matrices M%(p), M¥(¢) and Mp(p) can be made di-
agonal. In this special basis the integrals corresponding to the genuine two-loop diagrams
A-J of figure 1, which can be written down using the rules for propagators and vertices
given in section 3, reduce to the nine integrals listed in G. All these integrals are fully
regularized by the prescription (3.1) and can, in turn, be reduced to the four basic inte-
grals (G.1)—(G.4) whose divergent parts we are here interested in, are determined in G.
The results for divergent parts can be then written back in the initial field basis.

Diagrams K, L and M of figure 1 are the one-loop diagrams with insertions of the one-
loop counterterms corresponding to the “wave function” and mass renormalization. We dis-
cuss them in more detail here in order to illustrate the working of our regularization scheme.
As explained in section 4, the momenta in the counterterms must also be replaced according

o0 (3.2); for example, the counterterm for the <AZ‘A§ > function must have the form
1PI

Srot LG (D, —p) = 1™ (0mY )ag + RUD)RUD)(OZAL)as — " R(P)*(6Zar)as.  (8.1)

As stressed, this is necessary for consistency of the A-MS scheme based on the regulariza-
tion (3.2): as revealed by the analysis of section 7 (and D) only then it is possible to derive
the RG equations and give the action I, the meaning of the bare action Igz. Because
of this rule the integrals corresponding to the diagrams K, L and M of figure 1 are not
completely regularized by the prescription (3.1). As found in section 3, one-loop vacuum
graphs are the only ones for which such a situation can occur. However, unregularized
parts of these diagrams are background-independent and can be omitted in the calculation
of the effective potential Veg(p). Indeed, Veg(p) can be also determined by computing
the background-dependent contributions to the scalar one-point 1PI functions (i.e. to
the scalar field tadpoles, which according to the analysis of section 3 get completely
regularized by the prescription (3.2)), and integrating them with respect to ¢. Similarly,
we will omit also all other p-independent terms proportional to A% in eqs. (8.17)—(8.25)
below (in particular, the contribution of the ghost analog of the diagram K which is
background independent in the Landau gauge).

The background-dependent contributions of the diagrams K, L, M reduce to the single
integral

4 7 m2
(47)? /(;17:;4 RO — 2 = A* +m? {m/ﬂ -1- 5/\} + (8:2)

m? m? 27 _3
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and read (tildes on I' indicate that the factors (2%)45%3111(0) = [d*z have been removed)

T(K) = ;/(g;’; m{ [R(k)? —m2] " [m§52¢ - Smg} } : (8.3)
fan =3 [ (jjfyl surf (RGP — ] ™ w2024z — md ]} (8.4)

~ d4k - -
(L) = —/Witr{ [m}chSZF—HSZFm}}mF—(m}&mF—i—ém}mFﬂ X
x [R(k)? = mpmp] ™ } (8.5)

(The traces reduce to simple sums over mass eigenvalues in the basis in which the mass
matrices are diagonal). Here

(6ZaT)ap = ( 45%2 {163tr leaes] + étr [TaT3] + %tr [fafs] } : (8.6)
(67);; = (45;)2{ (¥ e} - 3(TaT), ), (8.7)
§Zp = (452)2 {—;Y;*Yi}, (8.8)

as well as (cf. eq. (2.2))

N 0 3 o 3 o K
Gt = i = Sdea{ T, T} 4 2T T AT T,
1 1
+§)\ijkl(m§)kl + Qtr [pip;] — 2t [Y; Y mpmp + ce.] +

—tr[Y;mpY;mp + cc.] } +

A? a 1 K .
+W {3(T 7;)1‘1' - 5)\ijkl5 + tr [YzY; + CC.] } , (8.9)
N 5A T * V1
omp = (4m)? {—3)‘7 mpf’ +Y;mpY'}, (8.10)

are minimal counterterms extracted from the expressions (B.6), (B.11) and (B.13). Non-
minimal counterterms enter only through the diagram M in which

om¥ = 6%m2 + &'m?, (8.11)
consists of the minimal part

. 8
(8m3)ap = (47/:)2{2‘51"[771%/6&65] — 2tr[fampfme] + tr[{fa, fs}mpme] +

1T, THTh: T} +
A2

T an? {tr leacs] + %“‘VaTB] — tr[fafs] } (8.12)
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and the non-minimal one, §’m?, given by (5.20). The counterterm §Z4 1, in (8.1) in which
0Za1 = 0Zar + 824, where the non-minimal 624 part is given by (5.19), does not
contribute because the vector propagator is transverse in the Landau gauge (cf. (3.4)).

In combining the contributions of the genuine two-loop diagrams A-J with those of
the counterterm diagrams K, M, L, it is convenient to decompose the diagrams K-M into
pieces proportional to different types of couplings; schematically:

L=Lyo®oL, M=MroMioM.®M, K=KydKroK\oK,oK, (813)

Similarly, it is convenient to decompose contributions of the fermionic two-loop diagrams
C and G into pieces I and 11

C=0Cro 0y, G =G Gyy. (8.14)

corresponding to the product of, respectively, two masses and two momenta arising from
numerators of propagators of the Majorana fields. As usually, combining contributions
of genuine two-loop diagrams with those of the counterterm diagrams should remove all
divergences non-polynomial in the background field dependent mass matrices providing
thereby a nontrivial check of the consistency of the whole computation.

Having computed the divergent (¢-dependent) contributions to the zero-point 1PI
function one can determine those counterterms of Is which are necessary to renormalize
up to the order h? the effective potential Veg. In other words, one can determine the

(2)

counterterm Vso’ () in

= m

2
{ (¢ + ) +Z i q>+<p)}+ . (8.15)

(the ellipsis stand for derivative terms, and terms involving fields other than ¢). In the
A-MS scheme defined in section 4 the functions Véﬁ) are pure divergences, that is, vanish
(1)

if one sets first 4 = 0 and then A? = 0. The one-loop counterterm Vs’ can be read off
from (B.9) and reads

2
V(o) = —% [tr{ME(#)} = 20 Mp(p) M () }+ 36r{ M} ()} (8.16)
+%A [%tr{M?q(cp)z} —tr [MF(so)MF(so)*]Q}+gtr{/v12v(¢)2}} ,

We present the result for V( ) dividing it (using an obvious notation, e.g. writing M x for
Mx (¢) and M3 for [M3(p)]? etc., see also the definitions (2.2) and (7.41)) into pieces
which remove divergences from the sums of genuine two-loop diagrams and the counterterm
diagrams of figure 1, in which cancellations of nonlocal divergences occur:

1 4 .
VE(plA® K,y) = A° (—5A+1n3> 05V () Vi () +

+2 (0% — 208) ME(9) 78 0"V (0) Vi (9),  (8:17)

oo\r—n
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VO (¢|B & K)) = ”A Sa Mg MET6M 4 5A AijuMEIMER, (8.18)
VP (p|Cr @ Ky,; ® Ly,;) = gAQ (5A —In 4) tr{VMpYiM} + ce.} + (8.19)
—3(5,2\—26,\){/\/1%@ tr[Y MY MG +ce] +2tr [YIMGY; MpMpMi+cel] }
VO (|Crr & Ky11 ® Ly.11) = A%y {gtr [YMpEMEpY; + ce.] — itr [MEY] }
+A2{112(64 In2+15In3 — 25In5 — 11 In 11)tr[Y’MEMpY; + cc.
+; [ 1- 4?51 3+225ln5+91n2] tr[M3Y] }+
58/2\{2&[ Y (MpMp)?Y ' tee ] +4ME e [Y "M p MY +ee] —tr [M5Y] }
+6A{;tr [YMp MY MiMp+ce.] — % (7+4In2)tr[MEY]+
+i2 [7 +61n ;j tr [V (MpM5)?Y +cc.] } : (8.20)

VE(¢ID & E & Kt & M) = A%, {—gtr (METT) 4 D[ 7o) MQVQB}

17 51 459 125 . )
+A{[8—1 24 < In 3—8ln5]tr[7' TB]MVQWL
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+5A{916 [47 4+ 241n 2] tr [T“Tﬁ} M o5 — g [2 +1In 3:32] tr[METoT] +

3 3
—St[TMETOME] - St [M%Tﬂfra] M%aﬁ} : (8.21)
VO (p|F & K, @ M,) = [_15;5A25A + A2 (—é + 1?% 2 - ln 3)]
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+[6671n2+211113+1n5—871 11—3]tr[MFMFf0‘f +CC]}
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3 3
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+6A{3tr[MFM}MFf"‘M*ng+cc.] +

+§(7 +41n2)tr {Mpfa/\/l}fﬁ*—l—cc.} M%aﬁ}, (8.24)

V(@ HO IS TS M,) = A25A{ 385tr[ A "] Mvga}

2
A2 [?f_92251 ot 71 3_@1 5+871n11}tr[ O‘}M%/Ba

+5/2\{183tr{ } MY g + 196tr [eaMPe* M3 ] } +

61 103 27
129 3. 21 5

+ |: 16 + 321 36 :| tr[eaneaM } } (825)
The function V) given by the sum of the expressions (8.17)—(8.25) is indeed polyno-
mial in the ¢-dependent masses, in agreement with the expectations. Furthermore, it has
been established in section 7 that the (local) action (8.15) with the two-loop counterterms
included should satisfy the RGE of the form Rols = O(h?) (cf. eq. (7.3)); this, in particular,

implies the following relation

B0)— 1) ¥ 5V(e) =oDe). (3.26)

where v(?(y) is the coefficient of 205 (ie. of In(A/p)) in Vég)(gp). We have verified
that v(®(p) extracted from the formulae (8.17)-(8.25) agrees with the left hand side
of (8.26) computed using the result (7.39) combined with the DimReg result (E.2). (No-
tice that (7.39) gives precisely the difference appearing on the left hand side of (8.26).)
Moreover, the RGE Roly = O(h?) implies that the coefficients of the A? x §; and 63 terms
n (8.17)—(8.25) should be entirely fixed by the 1-loop divergences (8.16) and the 1-loop
B and v functions; we have verified that this is indeed the case. In particular, up to the

(2)

(background) field renormalization, in Vs’ (¢) the terms proportional to A2 x §5 can be ob-
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tained from quadratic divergences in (8.16) by replacing there the renormalized couplings
with the bare ones.

Finally, in the results (8.17)—(8.25) there is a new information, which is not a mere
consistency check of our earlier results: this is the 2-loop coefficients of the quadratic
divergence (of A?) which is important for the hierarchy problem (section 9). The explicit
form of this coefficient for the SM is given by (F.8). It differs from the one derived in [13]
where superficially a similar regularization was used.

A possible explanation of the discrepancy of our result (F.8) and that of [13] follows
from the observation that the latter one is reproduced if: i) after the reduction to the
basic integrals (G.1)—(G.4) only the “sunset” integrals (G.1) contribute to the two-loop
coefficients of the quadratic divergences (in other words, contributions of the remaining
basic integrals are assumed to cancel exactly with the contributions of the counterterm
diagrams K, L and M, ) all the sunset integrals (G.l) occur in the same version
n1 = ng = ng = 1. These assumptions are satisfied in the DimRed scheme because the
coefficient of the quadratic divergence of the sunset integral (G.1) is in DimRed given by
the residue of the pole at d = 3 [11, 12], while the quadratic divergences of the remaining
O(h?) contributions correspond to residues of the poles at d = 2. The fact that the
result of [13] agrees with the one of [11, 12] suggests that the cutoff on the integrals was
in [13] imposed after their reduction to the basic integrals. In contrast, our result (F.8) is
obtained using the consistent implementation of the cutoff procedure of section 3 (which
requires making the substitution (3.1) at the level of the complete action, including the
counterterms, that is before reducing Feynman integrals to the basic ones, so that no
operations on divergent integrals are performed) which violates the above assumptions
(for example i) is violated by the fermionic loop of the diagram C'). It is this consistent
implementation which allows to prove the RGE and is therefore the one in which the
conjecture of [13, 53] (proved in section 7) is valid.

9 Bare parameters and the hierarchy problem

In its most applications the role of QFT is to establish relations between various low energy
data. In this context renormalization allows to parametrize predictions of a concrete model,
like the SM, in terms of a small set of finite parameters. Regularization is then only an
auxiliary procedure which is chosen following the requirements of calculational convenience
and counterterms implementing subtractions are not treated as carrying any physical in-
formation — they become infinite when, at the end, the regularization is removed. In such
applications of QFT the origin and magnitude of finite parameters, like masses of physical
particles, are not an issue.

With an explicit UV cutoff, like the one introduced in section 3, one can, however, take
another point of view (ubiquitous in applications of field theory to critical phenomena)
and, keeping the UV cutoff finite and fixed, treat the action Ié\o with the counterterms
constructed in the process of renormalization as the fundamental object — the “bare”
action expressed in terms of “bare” parameters and “bare” fields. That such a bare action
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can be defined when the cutoff breaks the BRST symmetry3? has been shown in section 7.
Once such a bare action [ ]/3\ is obtained, there is in fact no need to split bare parameters (and
fields) into renormalized ones and counterterms: it is perfectly possible to compute Green’s
functions directly in terms of bare parameters (keeping the regularizing cutoff finite) - when
they are used to express, order by order in the perturbative expansion, physical quantities

in terms of a selected set of other physical quantities (like M, G;l/ 2

, OEM, etc. in the
SM) all potential infinities disappear leaving relations which would remain finite in the
limit of removed UV cutoff (in practical application it is then convenient to remove the
cutoff entirely to simplify the results; nothing however prevents in principle keeping the
regulator finite, at least when no gauge fields are present — see the remarks at the end
of section 4). In such an approach the UV cutoff can be given a physical meaning e.g.
of the inverse of the lattice spacing of a statistical model underlying the considered field
theory model or, as we want to treat it here, the characteristic scale of a more fundamental
finite theory. The question why the measured masses of physical particles described by the
model, like W+, Z9 or the Higgs boson are orders of magnitude smaller than the value of
the physical UV cutoff A, which should be comparable to the Planck scale,3! becomes then
important and is known as the hierarchy problem.

To study the hierarchy problem as described above one has to assume that at the most
fundamental level physics of all interactions, including the gravitational ones, is described
by some (most probably finite) theory, which may be not a QFT, and (like Loop Quantum
Gravity) may even give a completely different view on space and time, which predicts all
measured quantities in terms of a single dimensionful parameter, to be identified with A,
which is its intrinsic scale. It is then quite natural to expect that all predictions of this
hypothetical fundamental theory pertaining to low energy physics (low with respect to A),
in the limit in which departures of the space-time from the flat Minkowski space-time are
neglected and coupling to the gravitational sector ignored, can be obtained from an effective
finite field theory whose bare action 1{3\ and bare parameters are fixed by the fundamental
theory. Moreover, taking into account the putative finiteness of the fundamental theory,
it is natural to assume that it is the intrinsic scale of the latter that acts in the effective
theory as the UV cutoff. It is also conceivable that the complete effective field theory action
IQ contains also terms suppressed by A whose effect is such that amplitudes computed
in the effective theory eventually do satisfy for finite A all the necessary ST identities,
even though I]/g\ is not BRST invariant. In such a scenario the underlying hypothetical
fundamental theory of all interactions must by itself solve the fundamental aspect of the
hierarchy problem, that is predict the ratio My /Mp) ~ My /A. But even if it does, the
hierarchy problem generically manifests itself at the level of the effective low energy field
theory as the fine cancellation between the bare mass square parameters m3 (like (7.18))

30Tf there is a physical regulator preserving all symmetries necessary for quantum consistency (or as in
the ¢* model, there is simply no continuous symmetries) there is no need to construct counterterms: it is
possible to start directly from the bare action which takes then the same form as I¢'.

31Each physical intermediate scale between the electroweak scale and the Planck one potentially generates
a hierarchy problem, if the effective quantum field theory valid below the intermediate scale involves scalar
fields; in our considerations we assume absence of such intermediate scales.
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of the scalar fields (if such fields are present in the low energy theory) and, as is clear
from (7.19), also of bare masses squared of the vector fields (M2)g (if the built-in cutoff
violates explicitly the gauge symmetry) and the order A? contributions in the perturbative
calculation of the physical W+, Z0 and the Higgs boson masses.

Of course, if it is assumed, as it must, that the fundamental theory predicts correctly
the ratio Myy/Mp) (and My, /Mpy), the above cancellation is an artifact of using the effec-
tive field theory. Nevertheless it is precisely this cancellation (which can be termed the
“technical” aspect of the hierarchy problem), which from the point of view of the low en-
ergy effective theory is perceived as the main hierarchy problem and attempts at solving
it entirely within the effective theory, undertaken over years, have led to many ideas such
as technicolor or low energy supersymmetry, extra dimensions, etc.

If one adopts this attitude toward the hierarchy problem, it is just the cutoff dependent
bare action of the effective theory which is of special interest. Of course the fundamental
theory is unknown and, therefore, neither the corresponding bare action nor the way the
intrinsic scale A of the fundamental theory acts in it as a cutoff are known. Nevertheless,
it may by enlightening, using the bare action I}% of section 7 (which, with the cutoff A
implemented as in section 3, has many features expected from the realistic effective theory
— after expanding the regularizing exponential functions (3.1) it consists of infinite set of
operators of growing dimensions, coefficients of operators containing gauge fields are given
by infinite series in bare couplings) and assuming a concrete form of the action Iy — be
it the SM or some of its extensions — to pursue a kind of a “bottom-up” approach and
investigate the resulting structure of the bare effective action (as a function of the unknown
scale A) implied by the low energy data. In particular it can be interesting within such an
approach to see, using the RG equations of section 7 to evolve the renormalized parameters
from the electroweak scale up to the high scale (of order Mp)) where they become bare
parameters of I3 (see (7.16)), whether one can get some clues to the technical aspect of
the hierarchy problem, at least as far as the cancellation between bare masses squared of
scalar fields and the A? contributions are concerned.3?

In [2], inspired by the study [13], we have envisaged a possibility which, if realized in
Nature, would in fact imply absence of such a cancellation. This possibility — viewed from
the perspective of the bottom-up approach — is the potential existence of a particular
cutoff scale®® A = A, at which all contributions proportional to A2 to the counterterms to
the scalar field masses squared, that is all coefficients f¢(Ag(A)) in (7.18), simultaneously
vanish. If such a value of A exists and is reasonably close to Planck scale, one can take the
position that A, ~ 3A, is perhaps the intrinsic scale of the fundamental theory and that the
obtained bare action I3 defined as in (7.15) is the bare action of the corresponding effective
field theory. Absence of terms proportional to A2 in (7.18), i.e. the vanishing of all coeffi-
cients f¢, would of course mean absence of the technical hierarchy problem in the effective
theory. While this bears some resemblance to the well known Veltman condition [56],

32Tt seems, however, that the problem of a similar cancellation for vector fields must be taken care of by
some other mechanism operating at the level of the fundamental theory, possibly related to the one which
is necessary to restore the BRST invariance for finite A — see the remarks at the end of section 4.

331t is more convenient to work with the rescaled cutoff A ~ 0.32A introduced in eq. (4.13).
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the important differences should be noted: the Veltman condition was imposed on the
renormalized couplings at the electroweak scale. Moreover, if the DimRed is used as the
regularization (as advocated by Veltman), the leading quadratic divergences correspond,
at L-th loop, to simple poles at d = 4 — 2/L; therefore vanishing of quadratic divergences
requires in DimRed an infinite number of constraints on coupling constants (which can be
simultaneously satisfied only if there is a special symmetry, like e.g. the supersymmetry).
In contrasts, in the consistent regularization based on a physical UV momentum cutoff
A, like the one of section 3, coefficients of quadratic divergences arising from consecutive
loops combine (as shown in section 7) to cutoff independent functions of bare couplings,
and the number of constraints coincides with the (finite and small) number of scalar field
multiplets and, therefore, their vanishing does not require any additional (super)symmetry.

If all coefficients f©(Ag) in (7.18) do vanish simultaneously, the smallness of the elec-
troweak scale G;l/ ? and Higgs boson mass(es) compared to the Planck scale must be
ensured by the smallness compared to the scale A of the functions (mm?)¢ in (7.18); this, in
turn, must be ensured by the fundamental theory, much in the same way as the smallness
of soft supersymmetry breaking scalar masses in supersymmetric low energy effective theo-
ries must be ensured by a supersymmetry breaking mechanism operating in the underlying
more fundamental theory.

In [2] using the one-loop RG equations (which are identical in A-MS and in DimReg-
MS schemes) and one-loop approximation to the functions f Cin (7.18) we have shown that
the scenario described above can be realized in the extension of the SM considered earlier
in [59, 60] and consisting of an extra complex singlet scalar field and three right-chiral gauge
singlet neutrino fields. Here, using the two-loop RG equations derived in section 7 and the
two-loop approximation to the functions f¢ we analyze this possibility taking for Iy the
SM action. One of the reasons for doing this exercise is to get an estimate on the simplest
possible example of changes brought in by the systematic inclusion of all two-loop effects.

In the SM there is only one SU(2) doublet of scalar fields and, consequently, only one
function f defined by (7.18) (in the model analyzed in [2] there were two such functions).
The one-loop contribution ™) to

F=f0 4 am)72F@ 4 (9.1)

can be read off from (8.16) and reads (for the normalization of the couplings — see
egs. (F.1)—(F.3); all Yukawa couplings other than the top one, y;, are neglected):

3
O = —6x — (g0, +g5) +6u7. (9.2)

f® is given in (F.8). All couplings in (9.2) and (F.8) are the bare couplings (the subscripts
B are omitted for simplicity).

To find the dependence of the SM function f on the rescaled cutoff scale A ~ 0.32A
(cf. (4.13)) we evolve the SM couplings in the A-MS scheme using the two-loop RG equa-
tions of F from the scale p = M; up to some high scale. (Recall that, in agreement

with (7.16), the cutoff-dependent dimensionless bare coupling gg(A) is simply given by

the running one g(u) extrapolated to high scales, i.e. gg(A) = g(u = A).) As the initial
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conditions for the RG evolution we take the known values of the SM DimReg-MS scheme
couplings [61]

5 M,
A(M;) = 0.12604 + 0.00206 { —- — 125.1
(My) = 0.12604 + 0.00 OG{GeV 5 5}+

My
—0.00004 + 0.0003
{G vV } th
Je(My) = 0.93690 + 0.00556 { } + 0.0005¢y,

Guw(M;) = 0.64779 + 0.00004 {

} , (9.3)
} ,

gs(My) = 1.1666 — 0.00046

gy (M;) = 0.35830 + 0.00011 {

(the central value of g, corresponds to as(Mz) = 0.1184) in which M; = (173.344+0.75) GeV
and M, = (125.154+0.24) GeV are the pole top quark and Higgs boson masses, and convert
them with the help of the relation (6.3) which takes here the form

1

g% (My) = g% (My) — 1r)?

05, (3(M)). (9.4)

—

with the one-loop € functions given in (F.18)—(F.23), into the values appropriate for the
A-MS scheme.3*

The dependence of the SM function f of (7.18) on the rescaled cutoff A for the central
values of the couplings (9.3) is shown in figure 2. It is seen that the two-loop effects lower
the scale A at which f vanishes by about 3 orders of magnitude. Nevertheless, this scale
remains too high to reasonably identify A ~ 3A with the intrinsic scale of a fundamental
theory which, as argued, should be related to the Planck scale Mp; = 1.8 x 10'® GeV.

In figure 3 we compare the results of various approaches. It is clear that replacing
only f® given in [13] by the result (F.8) of the systematic calculation in the consistent
regularization scheme of section 3 is not very significant numerically. The difference is larger
if the actual approach taken in [13] (dashed line) is compared with our result (solid line).
Still, this comparison shows that the estimate of the scale A at which f vanishes is not very
sensitive to the details (nor to the consistency) of the approach taken to estimate the two-
loop effects. This is important for the interpretation of the hierarchy problem proposed in
this section. Since the one-loop beta functions are (for mass independent schemes) universal
and the function (M in (9.1) is (up to a multiplicative constant) independent of the precise
form of the momentum cutoff® it should be possible, unless large values of some couplings

34Up to the two-loop accuracy we could alternatively evolve the couplings (9.3) using the two-loop RG
equations of the DimReg-MS scheme and convert them at the scale 1 = A into the A-MS scheme couplings
using (9.4) with M; replaced by A.

35 At least if the cutoff does not differentiate between fields of different spins — but this seems a reasonable
assumption in view of the universality of gravity.
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Figure 2. Coefficient f of the quadratic divergence (of the term proportional to A? in (7.18))
in the SM. The solid line shows the results of the full two-loop (NLL) calculation (i.e. the full
two-loop coefficient f with A-MS couplings running according to two-loop beta functions). The
short-dashed line shows the one-loop coefficient f(*) with DimReg-MS couplings running according
to one-loop beta functions. Both curves correspond to the central values of the DimReg-MS initial
data given by (9.3).
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Figure 3. Comparison of the result of the consistent two-loop calculation of f (solid line) with
other approaches: as indicated, the dotted line shows the result of replacing f(?) given in (F.8)
by f@® of [13], the dashed line corresponds to using in addition the two-loop running couplings
of the DimReg-MS (instead of A-MS) scheme. Finally, the dot-dashed line shows the result of
approximating f by f(!) and using the two-loop running couplings of the DimReg-MS scheme. In
all cases central values of the initial values of (9.3) are used.
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Figure 4. Uncertainty of the SM function f};%gg corresponding to the uncertainty in the value
of the top mass. The band corresponds to 30 deviations of M; from the central value M; =
(173.34 + 0.75) GeV. Central value of M}, is used.

come into play, and if the uncertainty in the top mass is reduced — see below — to reliably
test whether a given extension of the SM involving elementary scalar fields is consistent
with the proposed solution to the hierarchy problem, that is whether it predicts (with the
uncertainty of one-two orders of magnitude) A sufficiently close to the Planck scale.

As illustrated in figure 4 the value of scale A at which the SM function f vanishes
strongly depends on the actual value of top mass. This is, however, not surprising since
the instability scale of the SM is also strongly dependent on the value of M; [61].

10 Conclusions

In this paper we have considered renormalization of a general renormalizable YM theory
with scalar and spinor fields in the regularization based on a physical UV momentum cutoff
which explicitly breaks the BRST symmetry. In this connection we have recalled the general
renormalization procedure based on QAP. We have proposed a concrete consistent realiza-
tion of such a regularization and formulated a mass-independent renormalization procedure
in terms of counterterms to the action which implement the necessary subtractions. Using
our scheme we have performed a systematic one-loop renormalization of a general YM the-
ory obtaining explicitly the one-loop counterterms (minimal and non-minimal ones). The
proposed renormalization scheme, similarly to the conventional MS scheme, introduces an
arbitrary renormalization scale pu. Therefore, we have proved that the parameters and
Green’s functions computed in this scheme satisfy the appropriate RG equations ensuring
independence of p of physical quantities. We have also established the relations between
parameters of the theory renormalized in our scheme and those of the ordinary MS scheme.
This allowed us to obtain explicit expressions for the two-loop RG equations satisfied by
the parameters renormalized in our scheme. Their correctness has been partly checked by
the direct calculation in our scheme of divergences of two-loop vacuum graphs.
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The established RG invariance of physics allowed to define the p independent bare
couplings and formulate the theory in terms of the bare action dependent on the cutoff
scale A only through the regularizing exponential function. The structure of this bare
action has been elucidated.

Finally, the concept of the bare action allowed us to speculate in the last part of
the paper on the hierarchy problem. We have formulated a condition which, if realized
in Nature, could be considered a solution of this problem, at least as far as it concerns
scalar fields only. It should be stressed that this solution does not require any additional
(super)symmetry. Using the results of the paper we have analyzed whether the SM itself
can be consistent with this possibility. While it turns out that the renormalization scale at
which the parameters of the SM satisfy the necessary condition is too high to be accepted,
from comparing on the example of the SM different approximations we have gained some
useful insight into the reliability of the similar checks based on simple one-loop calculations
for potential extensions of the SM.
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A Auxiliary conditions in the subtraction procedure

A.1 Auxiliary conditions

Here we list the auxiliary conditions which together with the ZJ identity S(I') = 0 specify
the 1PI effective action I'. For convenience we write these conditions for an arbitrary

functional G. These are (see [21] and references therein):

e The “translational Ward identity” [16]

TiGZO, TZ‘E—a,—i—/d4x
Op*

5
Ok (A1)

e Symmetry w.r.t. global gauge transformations (cf. formulae (A.11)—(A.12) below for
the definition of W,)
Wo.G =0, (A.2)

e The ghost equation

G%z)G =0, Gx) = — (A.3)

e The (Landau) gauge condition

=Aj@),  Ajx) = -0A)), (A.4)
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e The antighost equation [62]

GuG =AY, Go = /d%{éwj(x) - wv(x)evaﬁ(sh;@)}, (A.5)

in which
AY = /d4x{Lgeﬁmw7 — ngﬁmAZ — Ki [Ta(¢ + @) + Pa]’ + Ka [tat)]" };

If the gauge Lie algebra has an Abelian ideal, an additional condition, the local Abelian
antighost equation (AAE) [45]

oG Y
m = AaA (7), (A.6)
with
AZA = _8M{K5A - (()wwom} - Ki [7:36A ((]5 + 90) + POtA]z + Ka [tomw]a )
is imposed.

If Stueckelberg fields are present in the model (i.e. at least one vector Ps, in (2.4) is
nonzero) one can ensure (by performing, if necessary, an orthogonal rotation in the space
of scalars ¢') that only the last Ng; rows p°, with s = 1,..., Ng; of the matrix [P, ]
are non-vanishing and that they are linearly independent. The corresponding components
of the (rotated) scalar field ¢ are the Stueckelberg fields £°. In such a case two further
conditions (the Stueckelberg equations)

0G = — =
_— = ‘:/ ‘:; = —0u 1 s ~S YA .
8¢’ (z) Ad(@), A 0sts 0"{0ug +p’YAAM I (A.7)
and
T*(x)G =0 38(>:ii+—8 9 (A.8)
p )= W= G s K (x) P A SKE (1) '

are imposed. Further conditions on Iy and on I' may result from imposing other continuous
or discrete global (non-gauge) symmetries.

All the conditions (A.1)—(A.8) are satisfied by the tree-level action Iy (2.9) in the
Landau gauge (2.11) expressing their “accidental symmetries” or specifying their breaking
(factors A). It the analysis it is important that because all the A factors are linear in the
quantum (propagating) fields they do not affect quantum corrections.

Most of the conditions (A.1)—(A.8) play only a simplifying role in our analysis: imposed
on I', they enforce the Landau gauge as a particular choice in the class of ¢ gauges. An
important exception is the Abelian antighost equation (A.6) which specifies Abelian gauge
currents beyond the tree-level: if the theory has continuous (non-gauge) symmetries, in
kerSy, there are terms corresponding to couplings of Abelian gauge fields to conserved
currents of these symmetries [25, 44]. Such terms, which unlike other elements of ker Sy,
do not correspond to infinitesimal changes of parametrization of the tree-level action Iy,
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are excluded by the AAE [25, 45]. That this is indeed so can be seen by noticing that for
an arbitrary functional F' [45] the following “anti-commutation relation” holds:

J

owA(x)

S(F) + S < AY (x)) = W, (2)F — 0,0"ha, (x). (A.9)

dwoa(z) a4

Here 20, , (z) is the infinitesimal generator of Abelian gauge transformations

5 0 .
We, = a“W + [Ton(0+9)+Pa ] 5o+ [ty 1)) s+
) — 1)
_Kj [7:1,4]]1 TI{Z - Ky [taA]ba ﬁ . (A.l())

From (A.9) one learns that if I' satisfies the ZJ identity and the AAE then it also obeys
Abelian Ward-Takahashi (WT) identities which ensure that Abelian gauge bosons couple
only to gauge currents.

(Anti)commutation relations, similar to (A.9), hold also for all other differential op-
erators in (A.1)—(A.8) (some of them can be found in [21]). Here we show only the one
satisfied by G, in order to specify the W, operator in (A.2)

GoS(F) + Sp (GQF - Ag) = WoF. (A.11)

In particular, comparing (A.11) with (A.9) we get the relation between W, , and (A.10)
Wa, = / d*z W, , (). (A.12)

Relations like (A.11) mean that for functionals G which satisfy the ZJ identity (4.1) not
all conditions (A.1)—(A.8) are independent. They are, however, all necessary to specify the
actions I,, which do not satisfy this identity.

Finally, we remark that, as can be seen from (4.2), gauge singlet fields are in our
formalism treated on an equal footing with non-singlet ones. In particular, we do not
exclude the possibility that antifields corresponding to gauge singlets (i.e. Lo, and, say,
K;, and K,,) appear in counterterms even though they are absent in the tree-level action
Iy. Assigning to them the same ghost numbers and power-counting dimensions as to their
non-singlet counterparts one concludes that the conditions

oI,
KT,

oI 51, oI
—_ — A n e n g — n g
O™ T, 3K, - GR,

0,

follow already from the conditions (A.1)—(A.8) imposed on the I,, functional — they do
not have to be imposed separately.3

36 Alternatively, these new constraints can be imposed by appropriately restricting the form of the S )
operation [24, 25].
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A.2 Completion of the inductive step

To complete the inductive step discussed in section 4 we have to show that the auxiliary
conditions (A.1)-(A.8) are satisfied by I,+1. To this end, we first notice that the iden-
tities (A.1), (A.2) and (A.5) are preserved by the regularization prescription (3.1), i.e. if
I, obeys them, then so does I?. By using the well-known arguments [22] one concludes

that T2 and its “asymptotic part” T, satisfy these identities. In particular, this means
(n+1)div

that Ty, obeys their homogeneous counterparts. The same arguments show that
F%nﬂ)dw possesses all global (non-gauge) symmetries of Iy. In fact, Fﬁ?*”d‘v satisfies also

homogeneous versions of all the remaining conditions listed in appendix A.1, even though,
due to their dependence on derivatives, these identities are not (exactly) preserved by the
regularization (3.1). Let us consider first (A.3) with G = I,,. This identity implies that
I,, depends on the antighost @, only through the difference K% — 0*w,. That the same
is true also for I',, is obvious from Feynman diagrams, the only subtlety being that the
derivative acting on the antighost field in I is replaced according to (3.1). However, the
additional exponential that could spoil this identity for '} necessarily contains an external
momentum. Thus, the breaking of identity (A.3) for I'} tends to zero in the infinite cutoff
limit (1PI functions with external antighost lines are at most linearly divergent, due to

)

the derivative on each antighost field in the action I,). Thus, the entire T &”“ and in

particular, F&"*”d“ satisfy the identity (A.3). The same arguments show that I‘Slnﬂ)div
obeys (A.8). Finally, the conditions, (A.4), (A.6) and (A.7) applied to I, restrict its vertices
in such a way that it is impossible to construct 1PI loop diagrams which would contribute
to functions with external lines of, respectively, h,, w®4 and £°¢. Thus, F;"H)div obeys
homogeneous versions of these identities as well.

To prove that I,,11 obeys (A.1)—(A.8) we still have to show that the non-minimal coun-
terterm Jpl" ,(ZH_I) in eq. (4.18) satisfies their homogeneous versions. This is an important
point since a priori these identities could be in conflict with the condition (4.17) of restora-
tion of the ZJ identity. That this is not the case follows from (anti)commutation relations
like (A.11). More precisely, the above arguments show that the I, functional, cf. (4.11),
obeys all the conditions (A.1)~(A.8). Similarly as above one concludes that I',, obeys them
as well. Thus, the relation (A.11) applied to F' = I, in conjunction with (4.15) tells us

that €, obeys the homogeneous version of the antighost equation (A.5)

Using the counterparts of (A.11) for the other functional differential operators appear-
ing in (A.1)-(A.8) one concludes that €, satisfies also homogeneous versions of all the
remaining conditions (A.1)—(A.8) except for the Abelian antighost equation (A.6).37 Ex-

3"The difference between the Abelian antighost equation and other auxiliary identities is caused by the
fact that the Abelian WT identity is badly broken by our regularization prescription and thus I'), does not
satisfy it. From (A.9) we get
6Qy,

n+1
h owa (z)

+ O(ﬁn+2) = maA (m)fn - auaﬂh'aA ('75) )

with 20, , (z) defined in (A.10). Incidentally this relation shows that the counterterms which remove the
breakings (2, (4.15) automatically restore also Abelian WT identities.
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AL

Figure 5. Corrections to the BRST transformation of vector fields.

ploiting these constraints and assuming that €, is cohomologically trivial (cf. the remarks
below eq. (4.9)),

Qn = Slocn )

we have verified that C~n must be the sum of two terms
Cn=C2+C}, (A.14)

of which C satisfies the homogeneous versions of all the conditions (A.1)~(A.8) (includ-
ing (A.6)) and can be assumed to be invariant under global and discrete symmetries of Iy,
while C}! belongs to ker Sz,. Let us consider (A.1) as an example. For C, = Cp[¢, ... ;]
one can define C0 as

CO=C0o,...;0] =Cplo+,...;0],
so that

1
Cl=¢C,-C = /0 dt %cn[¢+<1—t)¢,...;up]
. 1 ~
_ _(p2/0 dt{(ncn)[¢,...;¢]}’¢:¢+(1W
p=ty

Using the relation TiS[Oén = 0 and the fact that [r;, Sp,] = 0, one concludes that the
above difference belongs to the kernel of S7,. In order to arrive at similar conclusions for
the identities (A.4), (A.3) and (A.2) we have used arguments of [21]. For the remaining
ones we have performed a “brute force” analysis of all possible terms in C,, consistent with
the power-counting. Finally, for continuous global symmetries of Iy Ward identities can be
used, in parallel with (A.2) while for discrete symmetries C~2 can be averaged over the group
of discrete symmetries to obtain “new” 52 possessing discrete symmetries in question.

Obviously, C! € kerSy, can be discarded as far as restoration of the ZJ identity is
concerned, cf. (4.17). In other words, for the counterterm restoring the BRST symmetry
in the order A"*! one can take

s+ — o (A.15)

preserving in this way the additional symmetries (A.1)—(A.8) of the next order local action
I,+1. This completes the inductive step.

B One-loop diagrams

Here we list the differences, defined in eq. (5.4), between the values of the one-loop diagrams
in AReg and DimReg. They have been generated by a dedicated Mathematica based
package in which the steps explained in section 3 have been implemented. These are
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Figure 7. Function <Ki(q)cb°‘(l)Af(p)>ﬁI .
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Figure 8. Corrections to the BRST transformation of scalars.

expansion of regularized propagators according to (3.9),

introduction of the Feynman parameters (at the level of tensor integrals),

shift of the integration variable producing “spherically” symmetric denominators,
expansion of the exponential factors in powers of external momenta,

carrying out the integrations over angular variables in d dimensions (making the
standard replacements k*k” — k20t /d, etc.),

transition to the Euclidean space (i.e. formal Wick rotation),

contractions of tensor structures in d dimensions.
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Figure 9. Function <K’5(q)®”‘(l)$j(p)>fﬁl .
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Figure 10. Function <Kn(q)@a(l)g)i(P)ﬁgj(P/)yl)
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Figure 11. Corrections to the BRST transformation of fermions.
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Figure 12. Function <I~Q(l)cDV(q)lzbl(pl)izbz(pg)yi).

1PI

The expression corresponding to a one-loop diagram, obtained according to the above
prescription, has the form of an integral over the Feynman parameters and over the length
of the Euclidean momentum kg. For d — 4 it gives the value of the diagram in the AReg,
while for A — oo - in the DimReg. Starting from this point the package treats both cases
separately. The expression corresponding to AReg is integrated over kp “algebraically”,
that is by exploiting the definition (3.10) of the confluent hypergeometric function. Anal-
ogous “algebraic” integration in the DimReg case exploits, instead of (3.10), the standard
representation of the Euler beta function. Both are the Mathematica built-in functions
(HypergeometricU and Beta, respectively) and their asymptotic forms can be found by
calling the Series procedure. After the expansion nonlocal parts of both expressions man-
ifestly cancel out in the difference, which becomes, therefore, a polynomial in the Feynman
parameters which can be integrated over by using the Mathematica Integrate function.
The package has been tested on many examples. In particular, we have verified that vio-
lations of the ST identities analyzed in sections 5.1-5.6, which were obtained by the direct
calculation in AReg (of the type presented in C), are reproduced by employing the trick
discussed around eq. (5.4) using the formulae listed below.

Two remarks are in order. Firstly, the algorithm is simple, because the Feynman
parameters are introduced at the level of tensor integrals. While this methods does yield
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Figure 14. One-loop contributions to fg;f;(l,p,p').

,*\ e : >\
/D" \E )
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T o T

Figure 15. One-loop contributions to fig,py(l,pm’).

Figure 16. One-loop contributions to 1:1

also expressions for the nonlocal parts of diagrams, their comparison with the result
obtained with the help of the standard Passarino-Veltman reduction usually requires
lengthy integrations by parts. Secondly, the package assumes that the ¢-dependent
mass matrices mp, m% and m%, are real and diagonal. These assumptions are satisfied
only in a special basis in the field space, but results for the general case can always be
unambiguously recovered. In particular, all the formulae given in this appendix and in
the main text are correct for arbitrary mass matrices.
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Figure 20. One-loop contributions to fvf(: (p,p',1).

In the differences of the 1PI functions generated by the package one-loop logarithmic

divergences always appear in the combination?®
A% 1

dpiv =In — — — —1 —In8m, (B.1)
Ky €

in which € = (4—d)/2 and pp is the 't Hooft mass — the natural mass unit of the DimReg
(see e.g. the expression (B.4) below), which is also the renormalization scale of the ordinary
DimReg-MS scheme. Since we are interested in renormalized parameters of the DimReg-
MS scheme, it is more convenient to express dp;, through the renormalization scale ji of

38This reflects the universality of one-loop logarithmic divergences which are related to the structure of
non-local terms in the 1PI effective action.
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Figure 21. One-loop contributions to falaz (p, —p).

§
T

Figure 23. One-loop contributions to falazi(pl,pg, q).
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Figure 24. Regularization-dependent one-loop contributions to I'hih2bsks (1) 1y, 13, 14).

the latter scheme which is related to ugy by
i = pgVAT e B2, (B.2)

and the “fundamental divergence” Jp of the A-MS scheme, defined in (4.13):
1
5Div :(5,\—7—2111—. (B3)
€ 1t

It is clear that divergent parts of bare 1PI functions (in either regularization) can be easily
recovered from the formulae listed below.
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To illustrate the method described above we quote here the explicit expression for the
one-loop correction (diagram C of figure 5) to the function (Kiw?) entering all the ST
identities analyzed in section 5

(RE-57(@)) ) = ~ilepen)”, x (B.1)

1PI
y u“‘d/ d?k { i ]B“ {77 - kuky] R"(k + q)
T em® [RE®2-mE] ™ R RE+q?

(In diagrams external lines of antifields are marked in the same way as those of the cor-

responding fields but carry the extra arrow pointing the direction of the flow of the ghost
number). For d = 4 the integral in (B.4) is regularized according to the prescription (3.2),
whereas for A = oo it is regularized dimensionally. For the difference defined in (5.4),
omitting terms which vanish in the limits A — oo, € — 0, one gets

(1B) ily

AR D0 = 7155 (e, <;+iln;‘+ jm) (B.5)

[\

As to the other 1PI functions of antifields, there are no one-loop diagrams contributing
N (1B) . ~ (1B)
to the function <Ki(q)<ba(l)>~ . To the function <Kg(p’)&)a(l)Ag(p)>~ contribute the
1PI 1PI

diagrams A and B shown in figure 5. However, owing to the antighost equation (A.5)
both these contributions are independent of the regularization (despite being superficially
logarithmically divergent). Likewise diagrams with external lines of antifields, shown in
figures 6-12, which contribute to the following functions of the antifields

(1B)
1P1

(Bee WA . (R0 0AW). .

(Ki@aw)
K@ 0AEGLE) . (Rme0dw) . . Ee@a0dw) .
(Ea@a 03 0FE)) " . (K@ (@30 p2))

(B )& @)

1PI

1PI

are independent of regularization. Therefore, the differences (5.4) corresponding to these
function vanish.

One-loop diagrams contributing to the two-point function fgg are shown in figure 13.
The corresponding difference (5.4) reads

TV v 11 3
(AP AT -9 = teacamt) (5 = o) + (B.6)

1 13 19 3
+tr(eqes) [p“p” <9 + F(SDN + 5 In2 — 2 In 3) +

23 13 19 3
] s B P S S O NI N
+n ( 7P g P oD S P In —l—2p n3 +
11 1 1
o (TaTs) |pp” [~ = — Z0piy — - In2
+r(7&ﬁ)[pp< 5~ P 6n)+
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7 1 1 A?
pu 26Dy + —p°lnd — =
+77 (1442? + Gp Div + 12]3 n 2 >:| +

1 1 3
e (T Tadnd) = {1 Sb b T, THT™, Todo+
—tr(fafs) [p"p” > + (5 2ln2 +
olg) (PP 18 Div + 3
v a2 i 2.2 9c 29
(A +18p +3p 5D1V+3p In2 )|+

e [25Divtr (fampfime) — <(5Div+;> tr ({fos fg}m}mp)} )

One-loop corrections to the three-point function fgg’;(l ,p,p') are displayed in figure 14.
For fermions in a non-anomalous representation the corresponding difference (5.4) (dia-
grams F, Fr and Fj; do not contribute to it) reads

(4m)2ATH (1,p, )18 = [P (1 — p') + 0™ (p — 1)P + 0" (' — p)*] x

afy
11 17 4 4 ) 4
x{itr (eaepey) (12 5 5D1v+31 3> — %tr (TaTsT) (—1+25Div+2ln 3> +
] 4
Lt (alfon 1) (1 2o+ 2 1n 3) } (B.7)

Diagrams contributing to the function (¢pAA) are shown in figure 15 (the diagram C is
not shown, because ghosts do not couple to scalars in the Landau gauge). Power-counting,
the Lorentz symmetry and the translational invariance (3.3) of the effective action imply
the relation

0 ~
NAB) _ VP p)1B) = AT (p, —p)1B)

between (B.6) and ATZZ,Q’ (1,p, p")1B). By computing the latter difference directly we have
checked that the relation (B.8) does indeed hold.

The difference (5.4) corresponding to the one-loop tadpole diagrams shown in figure 16
is

(47)2 AT, (p)(1P) = AQtr{Yim}} + ce.} — bpitr{Yimbmpm’ + cc.} — %A%r{pi} +
4 (5D1Vtr{plms} 42 [3A Sa — (3Div + 2)m? 5] (¢T{Ta, T8 }) . (B.Y)

(The couplings p;;i, and the scalar fields mass matrix m¥% are defined in (2.2)).
Diagrams contributing to the (¢A) function are presented in figure 17 (diagrams B and
C have the same value in both regularizations). The corresponding difference (5.4) reads

~ 1
(4m)?AL5 (1, —D)P) = —i1” <4 + ;5% - %ln i) (T"{Ts: Ts}e); + (B.10)

+4 17 (12 + 5D1V ~3 In 4) tr(Y}meB —Yifgmp + Y "'mpfg - Y; fﬂmp).
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Diagrams contributing to the function (¢¢) are shown in figure 18. They give
(4m)? ATy, (1 =D = BAX(TTa )iy + (B.11)
oot [ode {7 7} = ({7 7Ye) (T Tabe),, )+
+12 <35D1v + -+ 71 ) (TTa)irip +
+ [AQ + 12 <5Div .3 +3 ' 2)} tr[V;, Yii+ce.] +

8
—5Divtr[(Y“mFmFY + Y, Y mpmp + Y, mpY; mF)+cc] +

11+ 19
1

. . 1
=5 Aiviaguja [0 A% = dpiy (mig) 2] + 2 0pivtr(pis pia) -

Contributions to the (¢pp¢) vertex are displayed in figure 19 (only diagrams A, D and
E are different in AReg and DimReg). Since both regularizations preserve (3.3), Afgig 23
obtained by direct calculation coincides with the result of differentiating Afim (1, =1)(1B)
given in (B.11) with respect to the background ¢.

Only diagrams D and I of figure 20 contribute to the difference

(4m)2AT, 2 (p, o, 1)) = i (p' —p/™) x (B.12)

ijo
3 . 3103
TS IO ATIPWER Ts

corresponding to the (¢ppA) vertex.
For 1PI functions with two external fermionic lines (recall that we work with Majorana
fermions) we use the matrix notation in which spinor indices are omitted; we write for

example

Loy (P1,02) = (Topq, (pl,pz,q)} ; Loy w(P1:02,9) = [Fam Z(pl,pz,q)} ;

etc. In this notation the diagrams of figure 21 give

~ 1 3 1 . i
(4m)* AT gy (p, —p)1P) = Cy {tvtv 5 [ln 176 5Div:| viy } +
—(3 5Div+2) Ct:{fr\bpt'y—i-(‘)‘])iv C’ylfr\z}yl (B.13)

for the difference (5.4) of the corresponding (¢7)) functions in the two schemes,
2AT M (1B) : 3 m K 1 i x_ I
(4m)" ALy gpa (P12, 9)7 = 10 = 57" tatat™+ 7 (20piv+1) y'tayin™+
1
Z (20piy — 1) Yy} yJTZJ + - |:(5D1v+6:| “t,{tge'iﬁa}. (B.14)
for the difference of the (y1)A) vertices (diagrams of figure 22) and

(4W)2Af¢®wi(p17]92, 9P = C{ -(3dpiv+2) t$yit’y+6Div yjyékyj}- (B.15)
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for the difference of the (1p1)¢) vertices (diagrams of figure 23). As expected, (B.15) is just
the derivative of (B.13) w.r.t. .

Regularization-dependent contributions to the four-point function (AAAA) are shown
in figure 24. The corresponding difference (5.4) has (for non-anomalous representations f,)
the unambiguous form

(47 )2 ATHkzisRa (1) o [ 1,)0P) = (B.16)

Q12030

— 1H2 314 114 3H2 143 214
- 77“ K 77“ s Va1a2a3a4 + 77“ K 77“ K Va1a4a3a2 + 77“ K 77” K Va1a3a2a47
where

1
Verasasas = §{(11—1—12 Opiv) tr(€a; €as{€ass €as})—8(2+3 5Div)tr(ealea3ea26a4)} +
1

o { Gow = D0 (Tos Tow] (Tors Teusl + [Ters Taa] [Teas Taal) +

+ 2tr (Tiay Taw Tas Tay)) } +

_g 5Divtr ([faw fal] [fazv fa3] + [faw fa3] [foaw faz]) +

4
_§ tr ({f0117 fOéQ} {fasa fa4}) + gtr (falfasfaszq + fQSfalfaszOQ) ) (B'17)

(notice the symmetrization of the indices aq,...,a4 in the third line). Divergences are
associated only with the structure constants as expected. In general (i.e. not assum-
ing (4.10)) the difference (B.16) would contain also terms proportional to the Levi-Civita
tensor €*1293% which cannot be determined uniquely because of the ambiguities of the
DimReg scheme with the naive 7°. Such terms are multiplied by tensors of the form

tr({for, faot[fass faul) + %tr([fm, fos] {Fass faul)s (B.18)

N

tr(f@llf@QfOégfa4 - CC.) =

and vanish for a non-anomalous fermionic representation.

C Chiral anomaly

In this appendix we determine directly the contribution of fermionic loops to the ST iden-
tity (5.38) involving the (AAAA) vertex. We use the notation introduced in subsection 5.7
(egs. (5.36) and (5.37)).

Fermionic loops contribute only to the first three terms of the lLh.s. of the iden-
tity (5.38). Since it potentially can have a true anomaly, it will be instructive to generalize
the regularization (3.2) by not specifying explicitly the profile g(-) of the function entering
the regularization prescription

1
g(k)

but assuming only that ¢ is an analytic function satisfying the boundary conditions

k' — RM (k) = x kM, g(k) = g(k*/A?), (C.1)

T——00

g9(0) =1, g(z) " — 0. (C.2)
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We also use the following notation for fermionic propagators (cf. eq. (3.4)):
IA(k) = S(k; A)C, S (k) = Alim IA(k). (C.3)
—00
The contribution of fermions to the (AAAA) vertex (diagram G of figure 24) reads

f#l#2#3#4 (lla l2> l3a l4|G) = %1121314 = G11Z21314 + GlllQ’M’LS + Glllslﬂu (C4)

12304

where

Gryezizes (C.5)

d*k
:tr/(Qﬂ)4 iV oy LN ()Y 2 0y N (B —12) V3 t g A (K —lo —13) Y o) SN (E+11),

while the analogous contribution to the (pAAA) vertex has the form

f Fabsha (lla l2) l3a l4|G) = @jQZSM + @jl21413 + @j131214’ (CG)

J o234

with

Giuziza (C.7)

4
—itr / oyt U TA R s Za ko g Fr o), Fa ).

Finally the diagram G of figure 14 gives

= , d*k
D ppIG) =it [ S s AW A Pt A ). (C8)

The total contribution of these three functions to the Lh.s. of (5.38) will be denoted
Q4p. To simplify it, we decompose the contribution of (C.4) contracted with the momen-
tum [{" using the identity

itay = {k+ 11 = mp Yo, + 1o, {F — mr} = (Ta0)y;, (C.9)

(following from the gauge symmetry of IOG] ) into three parts. The one that originates from
the last term of (C.9) cancels exactly in €247 the contribution of (C.6). Furthermore, after
expanding the propagators in the remaining terms of Q4 according to (3.9) and retaining

39

only those integrals that do not vanish in the limit A — oo, “similar” terms®” can be

combined. As a result of these operations €247 can be represented in the form

Qyp = (XI+XII)11122324 + (XI+XII)Z114Z3Z2 + (XI+XII)11122423 + O(A_l)’

39S0me of these “similarities” become visible only after shifting the integration momentum and replacing
the matrix under the trace by its transposition, with the aid of standard relations

CA*TC = ~*, C+° =+°C, ct=c'=—c.
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(notice some reordering of the symbols 2, as compared to (C.4)!) where the integrands of
the integrals

XL s = %tr / ((;:;4z’y(k:)fy"?tazy(k:—l2)7“3ta35”(k:—l2—l3)7“4{ta4, by } X
x{g(k+h)—g(k+1)} g(k) g(k —l2) G(k — l2 — I3),
and
XU s = %e”‘awl tr / (‘;}; 1. (K)V2 by (k=) V3t 0y (k—la —13)7"4 1t X

x{g(k + 1) + g(k +ls) — 2} g(k) g(k — 12) g(k — l2 — I3).

vanish in the limit A — oco. (The term corresponding to —2 in the curly brackets of X!/
originates from the contribution of the (AAA) vertex to the considered ST identity.) The
factors g(k + ) can be now expanded in powers of the external momentum [. Performing
next the integrals over the angular variables one finds that in the limit A — oo the fermionic
contribution can be written in the form

Qur = O + Q5 = (AN, g0 + (AFN), iige, + (AFN), 00 + O(AT) (C.10)
in which
i = iy @94 10 = 1) 8l o)) +
+é (I = 1)y €yantt (Falfass Far}) } (C.11)
is the true anomaly, while
Noriyises =
= (Zcf;g x i {n el e phats g itk )
] 5 00120y 0l o) =100 5 Cfs o} s oD+
(j:f)g x g{—(z2 S 2Lg)Fri L (21y + Lg)FSmaie — (Iy — [g)PanpaHs ) x
X e”a4a1tr(f,<[fa2, fa3]) . (C.12)

is the cohomologically trivial breaking (the “spurious anomaly”) of the ST identity. Thus,
the complete result for Q4 depends (in the A — oo limit) on only two integrals:

0 0
%:4/ dtg(t)Pg(t) =1,  and %1:/_ %{g(t)A‘—g(t)?’}, (C.13)

—0o0

of which only %7, entering the spurious part of the anomaly depends on the shape of
the regularizing function g (41 = In(4/3) for g(z) = exp(x/2), which corresponds to the
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prescription (3.1)), while %, which multiplies the true anomaly, is independent of the
specific shape of g and depends only on the boundary conditions (C.2).

To close the analysis of the anomalies we will argue that in the regularization (3.1) the
ST identity involving the (AAAAA) vertex is free of anomaly, that is that Q5p vanishes
in the limit A — oco. To this end we first notice that all integrals that enter in this
identity, whose form is analogous to (5.38), are (at worst) logarithmically divergent. As
far as fermionic contributions are concerned relevant are only the (4°), (A*¢) and (A*)
functions. In the logarithmically divergent contribution (C.4) to the <A4> function one can
make the replacement

In(pi) = 9(pi) (pi), (C.14)

because the terms of the integral (C.4) omitted in this way all vanish in the limit
A — oo. In the convergent fermionic diagrams contributing to the <A5> and <A4¢5>
functions A can be sent to infinity. However, to make the cancellations in the ST identity
manifest, the fermionic contribution to (A®) (contracted with the momentum [{") has
to be decomposed using (C.9) into a combinations of integrals which individually are
logarithmically divergent. Therefore, before making the decomposition (C.9), we multiply
the wunregulated integrands (i.e. the ones in which A has been sent to infinity) of the
fermionic contributions to the <A5> and <A4¢> functions by the factor §(k)*, where k is
the loop momentum. (Making instead the replacement (C.14) in the regulated integrands
would produce five factors of §.) Performing next, just as before, appropriate shifts of
the integration momentum gives Qspr in the form of the integral whose integrand is a
homogeneous function of fourth degree in § and vanishes in the limit A — oco. The integral
is therefore similar to X! given above. However, because the present integral is (unlike
X7 only logarithmically divergent when all the § factors are omitted, the momenta ¢; in
G(k+¢q;) can give only a contribution of the order of A=2 x @(AIn A) which vanishes in the
infinite cutoff limit. Thus, Qs5p indeed vanishes for A — co. To complete the argument,
it is sufficient to notice that the counterterm (5.40) does not break the considered ST
identity either, because 8’q is an invariant tensor of the Lie algebra.

D RGE

Here we show that eq. (7.5) indeed follows from (7.4). To this end we notice that the
functional 72 defined by (7.6) and (7.3) is local and of renormalizable form when the
regularization is neglected. The arguments of section 3 then ensure that Feynman diagrams
generated by the auxiliary action (® and K stand for all fields and antifields, respectively)

IN®, K g 0, A] = IN®, Ks g, 1, A] — 7A@, Ks g, 1, Al (D.1)

with the additional “coupling constant” ¢, are convergent. The RGE (7.6) can be rewritten
as

0, with R,=R,+ 9 (D.2)

R.IN®, K g, c, i, Al| e

=0
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In the following it is convenient to decompose the R,, operator defined in (7.3) (and anal-
ogously R,) in the following way

i i 0
_ Dy
R, =B, —(7,) jQJ-é@ . (D.3)
B, contains then only derivatives w.r.t. the parameters (including the antifields):
0 4 0 KN J )
n :U’a'u +Bn agA (/yn )z J 5,(:@ ( )

Using eq. (D.2) and the functional integration by parts one easily checks that the generating
functional

ZulJ, K ges i, A] = / (D®) T+ (D.5)

satisfies the following RGE:

RonZn[J,C5 g, ¢, 1, A]| _g = © X Zn[J, K5 9,0, 1, Al (D.6)
in which
% =B _|_(¢')ij..i—B +g+(¢)it]4.i (D.7)
n = P U s T T e T I s '

Although © is a badly divergent factor
i 4
O =3 Fl) s ¢ [ 408 (0), (D.5)

(upper /lower sign corresponds to bosonic/fermionic ®?), it drops out from the RGE satisfied
by the functional W,, generating connected Green’s functions defined by

eiWn [‘L’C;gvcvuvl\] — Z:n [J’ K’ 9.6 H A] (Dg)
Zn[0,K;g,¢,1,A]

which satisfies the simple relation
AWl J,K; g, c,,u,AHC:O =0. (D.10)

Passing next to the functional T = T[I2] generating 1PI functions, which is given as
usually by the Legendre transform

fﬁ[{), K;g,c,u,Al = Wn[jcb,lC;g,c, w, A] — jk(b L (D.11)
with the source J® determined by the condition

Wil J,K; g, ¢, 1, A]
5JZ(.T) J=J°%

= d'(z), (D.12)

and using the inverse relations

STA[®, Ks g, ¢, i, A]

L = 270 @), (D.13)
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one finds that

R, I B W i 5W’VLJ7’C7 g 7A
RT3 [®,/C; g, ¢, A] = {Ban[J,zc;g,c,M,A] + () [ Mg ¢ ]}
J

J=J®
— B Wl J, K g, ¢, ,A’ . D.14
[J,K;g,c,p ]Hq, (D.14)
This means that
RT3 [®,K; 9, ¢, 1, A]|_y = 0. (D.15)
Since T'A = T[IA] = TA[®, K; 9,0, 1, A], (D.15) implies that
oA [®, K; A
RT3 [®,K; g, p, A] = — n[®: K590 A : (D.16)
dc =0
However, from (D.1) it follows immediately that
A, K; A
Oul®Kig el oa ) ogne). (D.17)

Odc o0

To see that the quantum correction in (D.17) is indeed of order O(A""2), it is sufficient
to notice that c-dependent contributions to T2 (except for the tree-level one, i.e. —c72)

n
are generated only by loop diagrams which contain one or more —c 72

. vertices. Since by

the inductive hypothesis 7} = O(h"*1), such diagrams are necessarily at least of order
of O(h"*2). Finally, using (7.7) and the A-independence of the coefficients in R, one
concludes that eq. (7.5) indeed follows from (7.4).

E DimReg-MS beta function 3

In this appendix, for the reader’s convenience, we recall in our notation (see section 2)
the Jack-Osborn [48] expressions for the two-loop contributions to the beta functions / in
the DimReg-MS scheme. We begin, however, with Machacek-Vaughn [49-51] formulae for
two-loop contributions to the anomalous dimensions ¥ of the scalars and left-chiral Weyl
fermions in this scheme in the Landau gauge:

o[ 35 11 20 -
Viays; = {—3 trleaeg] + EtT[Ta'ﬁi] + ﬁtr[fafﬁ] <T T >Z.j +

1 kin 3 o 2 5 o *
g G [(TOT)P ] = S ur{i*aXyY) e} +

3 . . 1 % *
—Ztr{Y;Yj YOy + cc.} . Qtr{Yi YV + cc.} , (E.1)
< 25 1 o 3 K 3 1y *
sty = {5 tleacs] - 0lTaTal — fafal 1P - 3 G0 - SvvY; +

1

We have not found in the literature the analogous Landau gauge two-loop contributions to
the anomalous dimensions of the vector fields. (Of course, anomalous dimensions of Abelian
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gauge fields can be read off from the expression for the beta function of the corresponding
Abelian gauge couplings given below.)

Two-loop contributions to the beta functions of the parameters of the scalar fields
potential can be extracted by taking the appropriate derivatives with respect to ¢ (to save
the space we write Mx for Mx (), and M?% for [M3%(¢)]?) of

y 1 ¢
B (e) = [ 0) -  afeacsl 7T

J

8V(sé)

Taﬁ
o TOTMETs Tap+

161 7 8 27
{208 tfeaeal + L nlTaTi) + Sl P M1 — 2t fea M en ) +

12
1M Lase T TOTOT Top = 5[M3Jag tr{ METT? } —{ METTS ) +
=3 tr{ MET METa} — §[M§]ij5km5l”V{”( ©)Vjmn(9) + (E.2)

H6ME o5 tr{fcwz; P Mp + cc.} + ztr{fa*f;; (MpM5)2 + cc.} +
— [T*Tal tr{YMEMpMip + ce.} + M tr{ Y MEYIMp + ce.} +

1
—S Y M — [MPlas T T0 ), + tr{YJY* (MpM3)? + ce. } n

+2 tr{Y]MFY}MFMFMF + CC.} + tr{Y]MFMF}/;*MFMF + CC.} s

where Y defined in (7.41). The above formula is basically the sum of the expressions (3.46)
and (3.47) given in [48]. We have however explicitly rewritten the traces over Dirac’s (or
Majorana’s) indices to the traces over the Weyl’s indices, expressing (E.2) (and the formulae
below) in terms of simpler matrices corresponding to the Weyl fermions. The second term

in the bracket in the first line “correcting” the anomalous dimension originates from the
fact that the contribution to 52)2) () naturally generated by the Feynman rules has the form

1 1 Ly
12T TOYME T, Tyke = 9" TOTMET Tag — Jtrleacs] [T ] Vi),

(the decomposition follows from the gauge invariance of the tree-level potential V).
The beta function for the Mp(yp) matrix reads [48]

B (9) = {—967 trleqes] + % tr[70T5) + gtr[fafﬁ]}{MFfafﬁ-i—tp.} +
2 { M (e Pt} + 6 [T Tap (it} — 3 { YeMpY af+1p. | +

{Yﬁfa MY+ tp. } ~3 {Y%*Mpfaf%tp.} +

\\1 Cﬂ w\w

11
{YfY P 5 M pttp. } - {MFY;f;fa*YMtp.} +

6Tl TV Yiktp ) — 5 [TV Tl [V Mitip] + 4YiMGY; ) +
3 [T { [YIY] Yittp.] + 4YIY;Y; ) 4+ 2YIY MpY]Y' +

o . 1. . .
“ YT MEY]Y = {YIMGYYEY +p. | - YV Mpttp} +
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3

—2V" () YV I*yk _yh {YiM}Yj +3

4o [YiY;Mp+tp.] } +

21

—|—Yigoj{ [%49 trleqes] — %tr[’ﬁﬂ'g] - tr[fafg]} [T‘XT'BLj— — [(TaTa)Q} y +

2
1 kin 5 « * 3 *y Ly *
+ﬁ)‘ik’ln>‘j — itr{f fo Y'Y —I—CC.} — Ztr Y;Y] Y'Y, 4+ cc.p +

1
-3 tr{Y;*Ye}/j*}/g + cc.} } (E.3)

Finally, those of the gauge couplings read [48-51]

—

B(TS =T, { —é {34 tr [e”eﬁ} —tr [T”Tﬁ} —10tr [f'{fﬂ }tr[egea] + (E.4)

2t [T*%TBTB} Ftr [f”fafﬁfg—i-cc }

l\')\»—l

tr[f°fo Y;'Y " +cc. ]}

F The Standard Model case

In this appendix we list the Standard Model two-loop 3 functions in the A-MS scheme, the
two-loop coefficient of quadratic divergence of the scalar fields and the factors 6 relating
renormalized parameters in this scheme to the ones in the DimReg-MS scheme. We use
the notation in which the scalar potential has the form

V(H) =m%H'H + )\ (H H)?. (F.1)

The normalization of the H field VEV is such that (H;) = %'I}H{SZQ. The tree-level masses
of the (usually most relevant) heavy states read

1 1 1
M; = Wotaa Mw = 59uwvn, Mz = 5\/93, +g2vm - (F.2)

The strong coupling constant g, is normalized so that the adjoint representation generators
€q, Of the SU(3)¢ group satisfy the relation

tr(eaceﬁc) = _3g§5acﬁc : (F3)

All the Yukawa couplings other than y; are neglected.
The beta functions of the gauge couplings are the same in both schemes and read (see
the explanation below (7.38))

19 1
0 == () = g9 (7205 + 3595, + 99, — 97)
41 1
By = n gs, By = =% > (26497 + 8192, + 199g; — 51y7) (F.4)
1
by =142, Blsy = —59s (15695 — 279, — 11gy + 12y;7)
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The one- and two-loop pieces of the beta functions of the A-MS scheme coupling \; read
BN = 2473 — 33Xy (3¢2 + g2 — 4 2)+g 44320 3 g
1) — 1 1 {99y gy Yt 8gw 4gwgy 89y Yt

Bl = —312X% + M (3(12 + ¢3)(392, + g2) — 36(4 + ¢5)y7) +

2)
1/3 39
+/\1 {8 (2615 - 73) gfj} + <4 - 3660) 9121}954'

1 /3 3 4
ﬂ <010 + 629> <202 — 3) Y + (F.5)

9 1
+ (8(10 — c6)g3 + 1(10 — c8)ga, + 5(170 - C12)9§> yf} +
1
16

8
+ [—8(4 + 12¢0)g2 + 27cog? + (co — > gg] yt + (cq 4 30)y +

(9(4 = c1)gy, — 6(28 + c1)gng; + (76 — 3c1)gy) v} +

3
{3 (1220 + 3cg)gS, — (1156 + 3c16)gu gy — (2236 — 3c13)gmgy+
—(1516 + 3c11) gy} ,

192

The one- and two-loop pieces of the beta function of the A-MS scheme mass parameter

2
My are

2 9 3
Bg)’{/m%{ = 12)\; + 6y; — (29120 + 29?3) ,

my /2 2 3 9 |, o 3 145\ ,
/B(Q)H/mH = —60)\1 + (24 + 263) A1 (39w + gy) + <32014 — E Ju T+ (FG)
15 2 2 ciy 957
+ <8 — 960) Guwly + <32 + 18 ) (72 + 1805))\1%
L 106(10 — c6)g? +27(10 — c8)g2 + (170 — e12)g2] o2 + | e — 20 | 4
24 § w Yy t 4 2 t-
The beta function of the A-MS scheme top quark Yukawa coupling reads
9 9 17
yoo_ 2 _d 9 1l
5(1) =Yt {2 8gs 4gw lzgy} )
131 ¢
Yt 2 _ 19l 19 _
Blay = wt {yt [(36 der)gs + 3 (450 9c21) g0 + ( T 96> 12>\1]
19
—12y/ + ( 3 108) gs + 92 (9930 + 9g§> + (F.7)

C20 23 4 3 2 9 C22 1187 4 2
i f2 ) 2200 672 .
* [(64 1 ) 9w~ 39u9y T\ 76 T 216 ) 9| TON
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The coefficients ¢, appearing in these beta functions read

and

1

60257

32
C3 =2+3ln§,

cg =54+ 121In2,

cg =257In2 —9(19 + 261n3),

c11 =59+ 373In2 — 181n 3,
c13 =13 —5531In2 + 901n 3,
cl5 = 53 — 2(101 In2 — 106 1I13),

9
C17 = 193 + 821n 5,

c19 =298 4+4111n2 — 421n 3,

c21 = 26 + 31n 18,

c1=1+12In2,

4
C4:3<1+61n3>,

16
C7:2+31n§,

3
co =7+ 12ln7,

2
cs=3+4In2,

9
cg = 11—|—31n§,

9
c1p = 145+ 821n 5,

c12 =1394+69In2 + 541n 3,
c14 =101 —2(1011n2 — 106 1n 3),
c16 = 13In2 4 63(1 +1n9),

c1g = 103 — 348In2 4 2161n 3,

C22 =

13931

108

c20 =295 —6(1011n2 — 1061n 3),

41

+ —(23In2 + 181n3).

18

Setting them to zero one recovers the beta functions of the DimReg-MS scheme.

The two-loop coefficient in front of the quadratic divergence, normalized as in
egs. (7.18) and (9.1), has the form

where

—_

f@ = = (=3(c3 — &5 + 62 + 269) gy + 6859292 — (C3 — &5 + 106) gop) +

[\

1
—5 (96 (27 + &) g2 + 27ergy, + (1767 + 8¢8) g;) v + 1821y +

4
+728 0197 4 3677 In 5~ 3ah (392 +g2) ,

1
2

17

8
29

1
L fome - Pz Puws
2 nem e

(64In2+15In3 —25In5 — 111n11),

45 25 )
ol 459 125
4 ln2+ ﬁln:i — ?1n5,
1901 369 125 847
_— — 71112* 3721n3+ﬁln5+ﬁln11,

16
1

8
13

4
13

8

189

32
61

+?ln2—541n3+251n5,

667

45
_7+71n2— EIHB,
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2
——+§ln2+211n3+551115—T1n11,

187

(F.9)
(F.10)

(F.11)
(F.12)
(F.13)
(F.14)

(F.15)



1
& =5 (—Z —211n2+91n3>, (F.16)
1 2 4
o S i

Finally, the factors 6 appearing in the formula (6.3) relating the renormalized param-
eters of the A-MS and DimReg-MS schemes read

29 9 47
Hff)(g) = [ In2— 71n3 - 48} g3, (F.18)
371
07} (9) = [ In2-3n3— 288} 95, (F.19)
001 (9) = 288(887+9841n2)gy, (F.20)
9A1()——1(2 +34+4)+1 2131 2| M (302 + 62) +
(1) g) = 8 gwgy Gw gy 8 9 1(99y gy
9
- [2 +61n2] My, (F.21)
9(1) (9) = my T 2+31n— (3gw+gy) Z(3+41n2)yt ) (F.22)
4 3 32 7 3. 32
Yt — 2 In== —2 L ZInZZ 2
01 (9) yt{3gs 32[3n9 ]gw+{4+32 g}g@ﬂr
5 3. 16] ,
— S+ ZIn— : F.2
2+ iul] v (F.23)

G Basic 2-loop integrals

Here we list the nine basic 2-loop integrals to which the genuine 2-loop vacuum graphs A-J
shown in figure 1 (section 8) regularized using the prescription of section 3 can be reduced.
We also calculate their divergent parts.

The integrals are

I (m1, ma, ma|n1, ng,n3) = (G.1)
n 71)7(]“1_3)2

. d4k‘ d4 e(nl 1) ("2 1)% (
- /(271')4 /(27r)4 R(k)? — m1 R(q)? — m2 R(k+ q)? — m%’

TNt (ma, ma|ni, ng,n3) = (G.2)
o d*k diq ng% €(n1_1)% e(m_l)ﬁ
- /(27T)4/(27T)4 © T RmE- mi R(q)?* —m3’
N (ma, malny, g, ng) = (G.3)
(2m)*/ (2m)! R(k)? =miR(q)* —m3 k¢’
M (my, ms|ni,ng, n3) = (G.4)

2
A2

2
_ _i2/ d4k. / d4q en2(kj;7§)2 e(”l—l)% e(”3 1) y M
(2m)*J (2m)" R(k)?> =miR(q)* —m3 ~ ¢*
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1% (ma, mg, m3|ny, ng, n3) = (G.5)

L[ A% [dlg (MR DG it !
- /(27?)4 /(27r)4 R(k)?2 —m3 R(q)? — m3 R(k + q)? — m} % (k+q)%
134 (my, ma, ma|ny,ng,n3) = (G.6)
L[ A% [dlg (mDE (DG oyt 1
B /(277)4 /(271')4 R(k)? —m3 R(q)? — m3 R(k + q)? — m3 % (k+q)%q*’
JIo% (ma, ma|ni, ng, ng) = (G.7)
o[ d'% [ d'q g te? em—D%z e<"2—1>%22 1
- / (2w)4/ @em' " RET=m R(@?—m3 K
J5A (m, ma|ny, ng, ng) = (G.8)

2 2
_ .2/ d4k/d4q ng B2 MmNz D

— e A ,
(2m)*) (2m)* R(k)?—m] R(q)*—m3 k*¢?

M (my, ma|ny, ng,n3) = (G.9)

2 2
= — e A X .
(2m*/ (2m)* R(k)2 —miR(q)? —m3 ~ ¢*k?

All these integrals are convergent provided all n;’s in the exponents are nonnegative and

at least two of them are strictly positive. The integrals arising in the decompositions of
the genuine 2-loop vacuum diagrams of figure 1 all fulfill these conditions.

Strictly speaking, only the integrals (G.1)—(G.4) are independent; the remaining ones
are their linear combinations. For instance,

1
I3 (m1, ma, ms|ny, ng,n3) = —5— {I""(m1,m2, ma|n1,ne—1,n3—1) +
mams3
—IXOt(ml,mg,0|n1,ng—l,ng—l)—IJt\Ot(ml,O,mg\nl,ng—l,ng—l) +
+I;% (m1,0,0[n1,n9—1,n3—1) }. (G.10)

However, because the integrals on the right hand side of (G.10) have lower values of n;’s,
they can in principle be divergent even if the one on the right hand side is not. In the case of
the diagrams A-J of figure 1 the integrals (G.1)—(G.4) arising on right hand sides of decom-
positions analogous to (G.10) have still nonnegative n;’s but in some cases more than one
n; vanishes. The decompositions like (G.10) are then justified if one makes the replacement

n; — n; + ¢ €, ¢ >0, e >0,

first. Singularities arising for ¢ — 0 cancel out in the sums like (G.10). Below we give
explicit expressions only for the integrals (G.1)—(G.4).
It is convenient to start with the following auxiliary integral

K2 2 (k+q)?

I = Iy (my. g, |y, ng, ) = 2,2/ a4 /d4q CMAT M2hT M ad
2n)t ) @m) k2 —mi ¢ —m3 (k+ ¢)? —m3

(G.11)
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In the Schwinger parametrization I, takes the form

(47) "Iy = — / Beebmictmie G g, (¢), (G.12)

Ry
where (¢; = n;/A?)
H(€) = [(&1+e)(Eo+e)+ (G +er)(Etes)+(&te)(E+es)] 2.

With the help of the identity

e1eg2e3 = {—2—|— Zez} + Z (1 — 61)(1 — ej) — H(l — 61'),

i,5;9<] i
Ix can be split into several pieces:
=18 - S 1P + 19, (G.13)
i,5;1<j
where ;
(4m)*1dv = — / a3¢ {—2 +3 e&m?} H(S), (G.14)
i=1

3
R

etc. Using the inequalities:

0 < HA(6) € Hoo(é) = [1&2+E1&3+E285] 7,

and 1 —e™™ < 2z/(1 + z) (the latter valid for = > 0) it is easy to prove that the integrals
]Igf)ij and Hf) have finite limits for A — oco. Aiming at computing the divergent parts of
the diagrams A-J in figure 1 we focus, therefore, on ]Ij‘\i" only.

Two out of the three integrals over &; in ]Iji\i" are elementary. Taking them we get

(4m) Y = —KCa(ma|n1, n2,n3) — Ka(malng, n1,n3) — Ka(ms|ns, n1, nz)
+2 ]CA(O|7”L1,TL2,77,3), (G.15)
where
2 r m?
Ka(m|ny,ng,ng) = A /dt exp(—smt) fringns (t) Sm = 5 (G.16)
0
with
f (t)—# In(t 4 n1 +n3) + In(t +ny +n2) +
ninans — (t T ’I’Ll)Q n ni ns n ni n9
n [t+n1nz+n1n3+n2n3] ~ In(ny +n3)} _ (G.17)
n2+ng
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To find the required terms in the expansion of the Laplace transform (G.16) the
Handelsman-Lew theorem [19] can be employed. It gives

Ka(mlng, ng,n3) = —A?Q(ny,n2,n3) — Lr(m|ng, n3) + O(A°), (G.18)
where
3.1 2 3 2 3 (1 1
s {5 F) 5 (e
=1 i=1 j=it+1 i=1 j=it+1
and

m? (1. m?
Zr(m|ng,n3) = m?*1In el {2 In el +vy—1+ ln(n2+n3)} . (G.19)
Thus, the integral (G.11) has the form
1
(4m)*
+.Zr(mq|ng, n3) + Lr(ma|ni, ng) + L (ms|nq, ng)} + O(AY).

Ia(ma, ma, m3|ny, n2, n3) = {A%Q(n1,n2,n3) + (G.20)

Note that the integral I (0,0,0|n1,n2,n3) is infrared convergent and elementary (in the

Schwinger parametrization):

1

()i A*Q(n1,n2, ng) .

I5(0,0,0|n1,n2,n3) =

Combining the above formula with the inequality

—(n—1)k% /A2 e—nkQE/A2 2 e—nkQE/AQ

e m
< +2——F—
KR eFEA 4m? T kp4m? T Ak

and monotonicity of the first term on the r.h.s. in m, it is easy to show that the difference
between I (G.11) and I}°" (G.1) is a bounded function of A for A — co. Thus, in this limit,

I/t\Ot(ml,mg,mg\nl,ng,ng) = IA(ml,mQ, m3|n1,n2,n3) + O(AO) (G.Ql)

The integral Jy = Ji°%(m1, m2|n1, n2, n3) defined in (G.2) can be conveniently calcu-
lated as a power series in ng:

s

(2

o0 2
n ~
(47)4T5 = Z (23' K, Fy(o,m?)Fy(ag, m3), o = n; + ng, (G.22)
s=0 :
where .
K, = M’ (G.23)
L(n+2)T(3)
and

k28 e—(oz—l)k?//\2 0

Fs(agf) = Q/dk k3 E m = Z.ﬁ?nGn(Oé,S,ZU), (G24)
0 n=0
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with
g5+l g—at/A? A2
Gn(ays,x) = /dt AT (o) (1—et/AH, (G.25)
0

Since Gy = O(A?) and G3 = O(A™%), it is easy to show that the series (G.24) can be
replaced by the sum of its first three terms at most (the remaining terms give to the
sum (G.22) contributions of order O(A~1)). It is also easy to determine with required
accuracy the asymptotic, for A — oo, forms of Gy, G1 and G (the cases s =0, s = 1 and
s > 2 have to be considered separately). With these approximations the series (G.22) can
be summed. Thus,

1
(4

J (my, ma|ni, ng, n3) = )4 a1 { Jhet (ml,m2]n1—|—n3,n2+n3,n3) +
+J3 (m3, mi|na+ng, na —i—ng,ng)}, (G.26)

where the divergent part of j}\(’t is

At n% 9
JtOt(x1,$2|a1,a2,n3) = ——In{1- + 03 172 +
’I’L3 [65Ke )]

2.2 2

2 2 1

+6A{n31§1_ (o1 + )x1—2x1m2 [ln +a1+ln$;—1]}+
s Qs 2 0

2 T1 T n%
+20° — Jln— -2+ +In2)+In{1+a; — =) +
(6%)] 1% a9

it ln<1 - ’”'%) } + O(AY). (G.27)

n3 a9 + 1

(The dependence on p is spurious — it cancels between logarithms and §,). Terms of order
O(A%) can be determined in the same way (with the aid of expansion of the dilogarithm
Lis(2)).

The remaining two integrals, (G.3) and (G.4), can be calculated in precisely the same
way as JiO

1 1
Nﬁ?ﬁ(ml,mz\nhnz,n:s):i(él ) 5{ Ntok(ml,m2]n1+n3,n2+n3,n3) +
_|_Nt011\:(m2,m1]n2+n3,n1+n3,n3)} (G.28)
where
Trtot A 2 2 "%
NS° , , (g, = —<¢-3 -3 In(1-—
2a (@1, T2l a2, m3) 2l { n3 + (n3 — 3aiaz) n( alaz) } +
2 202 1 1
—*(5 { 201+ n37§1+l‘1$2 |:111 +1 —1:|}+(5/2\1,‘1£C2+
a9 as w? 4
9 T1 T 14+ o4 1 n%
+A — In—5 — [Bae—5—+d+In2+ | +In{l+a; —— | +
2 g W ng 2 Q2
1 +O[1 2 n% 0
+o 2ns — 3o (1 4+ o)) Inll1 — ——2—— + O(A").
2 n% ( 3 2 ( 1)) < Qa9 + 1o ( )
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and

1 -
M{%% (m1, m3|n1,ng, ng) = (@) M7y (mT, m3|n1+na, n2, n3+ns) (G.29)
where
~ A2 n2
M (21, 23]0n, ng, a3) = ———=nZ + aqasln( 1 — —2 +
1A (1, 3|1, 2, a3) g 2T P
3
no 703
—H;Am {Sx%a? + 3x123 1 jL o + z303(2n3 — 301 (2 + 043))} +
2
x
+“{ngnéln‘3—2n%a1(1‘3+21:1a1—1—x3a3)—n%x3(3+25A—|—ln4)+
dnsaf 7
4 3 2 2 n3
+2x3nyIn(l+as——= )| —2z3a](l+a3)*In(l——————) +
o o1 t+oiag
2
dz102 (n2 — a3 (1 m(1-—"22 ) {40,
+4z 09 (n2 as ( +Oél)> n( o3 & o3 + O(AY)
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