
Behav Res
DOI 10.3758/s13428-016-0818-x

Using leap motion to investigate the emergence of structure
in speech and language

Kerem Eryılmaz1 ·Hannah Little1,2

© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract In evolutionary linguistics, experiments using
artificial signal spaces are being used to investigate the
emergence of speech structure. These signal spaces need to
be continuous, non-discretized spaces from which discrete
units and patterns can emerge. They need to be dissimi-
lar from—but comparable with—the vocal tract, in order to
minimize interference from pre-existing linguistic knowl-
edge, while informing us about language. This is a hard
balance to strike. This article outlines a new approach that
uses the Leap Motion, an infrared controller that can convert
manual movement in 3d space into sound. The signal space
using this approach is more flexible than signal spaces in
previous attempts. Further, output data using this approach
is simpler to arrange and analyze. The experimental inter-
face was built using free, and mostly open- source libraries
in Python. We provide our source code for other researchers
as open source.

Keywords Artificial language learning · Language
evolution · Leap Motion · Python · Signal space proxies ·
Combinatorial structure

� Hannah Little
hannah@ai.vub.ac.be

Kerem Eryılmaz
kerem@ai.vub.ac.be

1 Vrije Universiteit Brussel, Artificial Intelligence Laboratory,
Pleinlaan 2, 1050 Brussels, Belgium

2 Max Planck Institute for Psycholinguistics, Language
and Cognition Department, Wundtlaan 1, 6525 XD,
Nijmegen, The Netherlands

Introduction

In evolutionary linguistics, artificial language learning
(ALL) experiments are becoming increasingly common-
place (Scott-Phillips & Kirby, 2010). How humans in
the laboratory learn, use and transmit artificial languages
can inform our knowledge of how linguistic structure
came about via transmission and communication. Previ-
ously, these experiments have focused on the emergence of
structure on a morphosyntactic level using artificial mini-
languages composed from small discrete building blocks
(e.g., Kirby et al. 2008). However, there is a growing body
of work that is using artificial signaling paradigms to inves-
tigate the emergence of combinatorial structure; the level
of structure where meaningless building blocks combine
to make morphemes or words. Within this work, it does
not make sense to initially construct artificial signals from
discrete building blocks, as it is the emergence of dis-
crete building blocks, which is of interest. Accordingly,
this work uses continuous signal spaces to investigate how
combinatorial building blocks emerge in linguistic signals.

In this paper, we will briefly review existing continuous
paradigms before presenting the functionality of our own
paradigm, which uses the Leap Motion sensor to produce
auditory feedback. Further, we present explicit instruc-
tions for implementation as an appendix. You can find the
download instructions in “Getting the framework”.

Artificial signal spaces

The ideal artificial signal space to investigate the emer-
gence of combinatorial categories and structure is one that
prevents interference from pre-existing linguistic knowl-
edge, whilst having a continuous space from which discrete

http://crossmark.crossref.org/dialog/?doi=10.1186/10.3758/s13428-016-0818-x-x&domain=pdf
http://orcid.org/0000-0001-6367-8845
mailto:hannah@ai.vub.ac.be
mailto:kerem@ai.vub.ac.be

Behav Res

elements can emerge. Here, we will briefly outline issues
with continuous signal spaces that have been used in arti-
ficial language experiments to investigate the emergence
of combinatorial structure. Specifically, we will discuss the
problem of interference from iconicity, the problem of data,
which is difficult or labor-intensive to analyze, and the prob-
lem of having restrictions on the shape and size of artificial
signal spaces. This breakdown will hopefully help illustrate
how our own paradigm improves on previous work.

Limiting opportunity for iconicity

The use of graphical signals to investigate trends in how
communication systems emerge and evolve started with the
use of graphical symbols by Healey et al. (2002), and has
since grown into its own field of research: “experimental
semiotics” (for a review see Galantucci and Garrod, 2011;
Galantucci et al., 2012). Experimental Semiotics has signif-
icant overlap with ALL experiments in language evolution
and is not confined to only graphical signals. However,
many of these experiments investigate the effects of com-
munication and transmission by using graphical pictionary-
style communication tasks where participants are given a
concept to communicate without the use of words (e.g.,
Garrod et al., 2007; Fay et al., 2008). These experiments
are useful for investigating processes such as conventional-
ization. However, experiments investigating the emergence
of combinatorial structure become difficult to design with
graphical paradigms, as participants are very familiar with
presenting content graphically, both using written language
and creating iconic representations via drawing. In addi-
tion to this, graphical interfaces make it easy to utilize
iconicity, which has been shown to affect the emergence
of combinatorial structure (see for instance Roberts et al.,
2015 and Verhoef et al., 2015a). Further, different levels
of iconicity are possible using different linguistic modal-
ities (Fay et al., 2014), meaning that trends demonstrated
with paradigms offering a lot of available iconicity (draw-
ing) may not be extrapolatable to communication mediums
with less available iconicity (e.g., speech).

In order to combat these issues of iconicity, Galantucci
(2005) developed an approach that used a graphical inter-
face, but had constraints on what participants could do using
the apparatus. The interface is a stylus that writes on virtual
paper that has a constant downwards drift, so participants
can only control signals on the horizontal dimension. Using
this approach, Galantucci has conducted social coordina-
tion experiments to investigate how communication systems
with combinatorial structure can emerge (Galantucci, 2005;
Roberts and Galantucci, 2012), and more specific experi-
ments have been done, which have looked at how rapidity
of fading (how quickly signals disappear after produc-
tion) affects combinatorial structure in signals (Galantucci

et al., 2010), and how the potential for iconicity affects
the emergence of combinatorial structure (Roberts et al.,
2015). There have also been experiments that have used the
apparatus in an iterated learning paradigm, where partici-
pants’ outputs were fed to other participants in transmis-
sion chains to investigate whether combinatorial structure
emerges more reliably via vertical transmission (learning) in
contrast with horizontal transmission (communication) (Del
Giudice, 2012).

Ease of analysis

Verhoef has done several experiments that use slide whis-
tles as a proxy for an articulation space (e.g., Verhoef
et al., 2014). Her experiments involve participants learning
pre-recorded whistles and reproducing them from memory.
This has been implemented in an iterated learning exper-
iment to see if learning biases within transmission chains
could influence the emergence of combinatorial structure
within an inventory of whistles. Verhoef has implemented
this in conditions with meanings to investigate the role
of iconicity (Verhoef et al., 2015a) and without meanings,
to isolate only the role of learning biases (Verhoef et al.,
2014). Results have clearly shown that within transmission
chains, combinatorial structure emerges and signals become
more learnable. However, the output from these experi-
ments is audio recordings of the acoustic signals, meaning
that quite a bit of processing is required in order to extract
the relevant data (the pitch values at each time frame)
before analysis can start. Further, the relationship between
stopper-movement and signal-pitch is not linear, and manip-
ulating the mapping between stopper and pitch is not pos-
sible. This not only restricts possible experimental designs,
but also complicates analysis if the experiment wishes
to calculate something like the stopper position from the
pitch data.

Since these initial experiments, a computational alterna-
tive to the slide whistle has been developed, which can work
with a mouse on a screen, or via touch pads on tablets. In one
experiment, participants created signals by placing their fin-
ger on a virtual slide whistle app on a tablet (Verhoef et al.,
2015b). This experiment explored whether some meanings
being more easily mappable than others would facilitate
communicative success. This has undoubtedly solved the
problem of having data that can be analyzed quickly without
much processing1 Verhoef has since used a digital signal-
ing apparatus but without auditory feedback, simply having

1In Verhoef et al. (2015b) the researchers analyzed some of the data
as it was being produced in real time, which was especially useful
because some of the data was collected as part of a public exhibition.
Accordingly, it was good for participants or visitors to be able to see
the data being produced and analyzed in real time.

Behav Res

visual signals represented by a bubble that can be moved up
and down using a touchscreen (Verhoef et al., 2016).

Both (Galantucci, 2005) and Verhoef’s slide whistle
experiments have used gaps in the signals to measure struc-
ture. The analysis (e.g., in Roberts et al., 2015) starts with
a signal already segmented into “forms” where signal parts
are separated by a gap (e.g., the stylus lifting off, or the
participant stops blowing into the whistle). In other words,
the participants were allowed to leave marks at segment
boundaries. These boundaries are problematic because they
are pre-conventionalized markers for structure. Instead of
relying on statistical regularities or negotiating a boundary
marker themselves, they are given an explicit way to seg-
ment the signals. Comparable cues are available in written
language (such as spaces between words), but not neces-
sarily in human speech, and certainly not at the phonemic
level.

Flexibility of the signal space

Using slide whistles, the signal space is difficult to manip-
ulate in its shape. An attempt has been made to affect the
size of the signal space using slide whistles by putting a
stopper on the plunger (Little and De Boer, 2014). Reduc-
ing the range of pitches that could be produced using the
whistle was hypothesized to make combinatorial structure
emerge more quickly. Using the stylus paradigm, it is also
difficult to manipulate the size, shape or dynamics of the
signal space because it is confined to one dimension, caus-
ing researchers to manipulate the meaning space, rather than
the signal space, to investigate the effect of things such as
mappability (e.g., in Roberts et al., 2015).

Using digital slide whistles, it is easier to manipulate the
shape of a signal space, and an experiment has been done
that looks at the effects of different biases created by non-
linear mappings between the signal-space and the auditory
feedback (Janssen et al., 2016). However, being on a flat sur-
face, participants are still often tempted to produce signals
as if they were graphical, focusing on the articulation space,
rather than the auditory aspects of the signal. Because of
this, the digital paradigms mentioned here have so far been
limited to a 1 dimensional space (usually pitch). With a 2
dimensional space on a flat surface, participants are even
more tempted to just “draw” their referent, as happened in
de Boer and Verhoef (2012).

The Leap Motion framework

The Leap Motion framework uses a commercially avail-
able, inexpensive, USB-powered sub-millimeter precision
infrared hand-tracking device called Leap Motion (Holz,
2014). It is a small rectangular box that sits on a desk with an

upward-facing camera. It works by building a skeletal hand
model from the infrared images it takes, converting each
image to a data frame representing the hand(s) it was able
to detect in that image. It is able to keep track of individual
hands and the associated fingers, as well as their positions,
orientations, and velocities.

The proxy we have developed using Leap Motion is con-
ceptually similar to the musical instrument, the theremin. As
the participant moves one hand above the sensor, the posi-
tion of their hand is translated into an auditory tone. In our
experiments, participants were only allowed to use one hand
and we tracked their palm location, but there is nothing in
the framework to limit the number of hands or tracking of
specific fingers. The framework is flexible in what features
of each Leap frame (or group of frames) would modulate
aspects of an auditory signal. Experiments (or “Exthere-
ments”) are not necessarily limited to using the position
of hands or fingers, but could also use, for example, the
angle of the palm with the horizontal plane, or any arbitrary
function of one or more data frames.

Advantages of the Leap Motion approach

We have developed a signal space proxy, which we feel
improves on the issues raised with previous methods above.
Namely, opportunities for iconicity can be controlled, it
improves the ease of analysis and, most importantly, is flexi-
ble in its geometry, size and in the nature of the signals it can
produce. Further, the framework itself is flexible, allowing
for use in many different experimental paradigms. Below is
a list of all of the crucial features that the framework has,
making it fit for purpose.

Continuous signal space

As already mentioned, a continuous signal space is needed
to allow for the discretization of signal building-blocks and
the emergence of combinatorial structure.

Minimizes interference from pre-existing linguistic
knowledge

The Leap Motion framework converts hand movement into
auditory feedback. While it is true that gesture is used in
communication almost ubiquitously, the gesture that pro-
duces signals using this framework is not similar. For one,
precise placement of the palm of one hand is not an impor-
tant feature of co-speech gesture or gesture in sign language.
Further, the use of hand-placement to generate precise
auditory feedback is not something that occurs in natural
language. However, both visual and acoustic signaling may
help contribute to the ecological validity of experiments
using the framework.

Behav Res

Limits opportunity for iconicity

The Leap Motion framework generates auditory signals that
are less iconic than graphic signals. The framework still has
a visual element (i.e., the hand position in front of the partic-
ipant) and, as a result, participants still use this information
to try and generate iconic signals. However, it is the audi-
tory signals that are transmitted, not the visual ones, which
makes iconicity a less salient feature in the transmitted sig-
nals. Iconicity in signals could be combated by transforming
mappings between hand-position and auditory feedback,
or by designing the signal space to be less intuitive with
a given meaning space. Importantly, the framework offers
flexibility to make the opportunity for iconicity more or less
possible.

Ease of analysis

The signals in our framework start as raw, numeric data that
can be converted into perceivable signals such as sounds,
eliminating a whole step in the data analysis pipeline.
This also makes it possible to automate analyses once the
experimental session is over. The capabilities of data anal-
ysis using the Leap Motion framework are covered more
extensively in “Data output”.

Flexible signal space

It is possible to change the shape and dimensionality of
the signal space using the Leap Motion framework. Hav-
ing a flexible signal space makes it easier to make a signal
space more or less like a signal modality used in natural
languages. For example, slide whistles are more constrained
than speech, but the results from these experiments are
extrapolated to be relevant to speech. The current frame-
work allows for the signal space to be made to be more
or less like speech, or more or less like gesture, in order
to answer whether previous signal spaces have ecological
validity. Further, it allows for comparison of data from sig-
nal spaces that differ in a feature, perhaps relevant to the
differences between the spoken and manual modalities or
differences between previously used signal space proxies.

Ease of deployment

Experimental tools should be easy to deploy. Most
researchers are not software developers, and thus prefer rel-
atively simple, pre-configured frameworks that works out of
the box. The Leap Motion framework comes with a default
configuration that runs a peer-to-peer experiment for two
participants, and it pre-packages all dependencies it legally
can. It is designed for the use of non-programmers, and
configuration changes are made by editing plain text files.

Flexible experimental structure

Our framework not only allows replicating the experiments
that we have done utilizing it, but also allows easy imple-
mentation of new peer-to-peer artificial language learning
tasks by extending the framework. Care has been taken to
keep the implementation as modular and configurable as
possible, so that the structure and the flow of the experi-
ment (e.g., how interacting agents are chosen, in what order
they interact, what are the phases etc.) can be altered with
minimal impact to the rest of the functionality.

Open access and extensibility

A critical property, which functions as a precondition to
some of the properties above, is the codebase being open
access. This not only enables extensibility of the framework
by third parties without asking the original developers, but
also frees the user base from having to rely on the original
developers for bug fixes. Our framework is open source and
is free to use and modify.

Getting the framework

The framework has been developed using a Python-based
library to serve as an experimental workbench. The frame-
work requires an ordinary modern desktop or laptop com-
puter to run the experiments. As many computers as there
are clients are required for practical reasons, and another
computer to run the server, if the experimenter would like
to keep track of the experiment throughout on a separate
machine, though there’s no reason the server cannot be run
on the same machine as a client. The framework does not
have any specific hardware requirements apart from a Leap
Motion sensor.

The code is available at https://github.com/keryil/
leaparticulatorqt. It is open source, and the readers can use,
modify, and distribute it as they wish, as well as contact
the authors with questions or suggestions. The GitHub page
also links to a quick start implementation video on YouTube.

The signals

Auditory signals are produced by moving one hand above
the Leap Motion. The signals can be manipulated along
any of the dimensions or features that the Leap Motion
can detect. The paradigm records hand position above the
Leap in three spatial dimensions and the duration of the sig-
nal can also be measured or controlled. Different auditory
dimensions can be paired with the different spatial dimen-
sions above the Leap Motion (see Fig. 1). For example if the
experimenter wishes to have signals be manipulated on the
dimension of pitch, then the pitch of signals can be affected

https://github.com/keryil/leaparticulatorqt
https://github.com/keryil/leaparticulatorqt

Behav Res

Fig. 1 The Leap Motion controller showing the spatial dimensions
used in one of our experiments. There is also the possibility to use the
front-back dimension

by moving the hand left and right, back and front or up
and down. Not every dimension needs to be paired with
an auditory dimension, or even to auditory output at all (if
one wanted to do a purely gestural or visual experiment for
instance).

The mapping between hand position and feedback can be
linear, but does not need to be. Signals can be manipulated
by pitch (e.g., low to high from left to right) or volume (e.g.,

quiet to loud from up to down). In our experiments, we have
not used mappings that were linear, because in pilot experi-
ments participants found it much more difficult to perceive
signal differences at the quiet and high ends of the signal
space when the mappings were linear (the transformations
used are available in Appendix “A.4 Signals”). It is also
possible to produce the signal based on a non-linear com-
bination of multiple dimensions or features, as long as they
can be calculated from the Leap frames.

In the current framework, there is a strategy whereby
when a hand is withdrawn from the signal space during an
experiment, the amplitude of the signal gradually dimin-
ishes to zero within less than half a second, instead of
cutting it off right away. This dramatically reduces auditory
artifacts such as clicks, and makes the resulting signal sound
more continuous-sounding.

There is functionality to have duration constraints on the
signals in experiment, and to have a progress bar show par-
ticipants time elapsing if there is a time constraint on signals
(see Fig. 2, also “A.4.2 Manipulation of duration” in the
Appendix).

The meanings

Usually, in artificial signaling experiments, signals refer to
meanings (though this is not always the case, see Verhoef
et al., 2014). Within the current framework, any image can
serve as a meaning. As long as the meaning files follow a

Fig. 2 Signal creation screen for an experiment with limited signal durations. The progress bar indicates the time left until maximum duration is
reached, though not all experiments will have a time limit on signals

Behav Res

naming convention that follows their features, it is easy to
select a subset of the meanings based on specified features.

Experimental paradigms

Artificial language learning experiments generally come in
three flavors: 1. individual learning or signal creation exper-
iments, where individual participants create or learn and
reproduce signals (e.g., Little et al., 2015; Little et al.,
2016b), 2. iterated learning experiments, where the repro-
ductions of one individual are taught to the next participant
in a transmission chain (e.g., Kirby et al., 2008; Verhoef
et al., 2014), and 3. communication games (e.g., Garrod
et al., 2010; Roberts et al., 2015), where two or more par-
ticipants use a created language to communicate with one
another about a set of meanings. Several studies have even
included a combination of these, e.g., having generations
of communication games (e.g., Kirby et al., 2015; Verhoef
et al., 2015b).

From a practical, interface-building perspective, nearly
all these paradigms can be characterized as being made
up, either partially or wholly, from components of peer-to-
peer communication games where peers try to invent, learn
or transmit signals through pairwise interactions with one
another. All such games typically require at least one par-
ticipant that produces signals and one that recognizes them,
but it is perfectly possible for a single participant to assume
both roles. For instance, individual learning tasks are com-
munication games where a single participant acts both as
the speaker and the hearer, effectively functioning as their
own partner or peer in a pairwise interaction. They pro-
duce signals, and later, they are asked to recognize their
own signals. Iterated learning tasks can also be described
as identical-peer communication games, but with the differ-
ence that the peer (who once again is both the hearer and the
speaker) is changed several times during the experiment to
model vertical transmission. Therefore, throughout the cur-
rent paper we shall review the communication game as the
most general paradigm. However, all instantiations of ALLs
are possible with the current framework.

Several experiments have already used the Leap Motion
framework. These have mostly been individual signal cre-
ation experiments, for example (Little et al., 2015), which
looked at the differences in signal structure between sig-
nals for meanings that differed along continuous dimensions
compared to discrete differences, and (Little et al., 2016a),
which looked at the effects of different signal dimensional-
ities on signal structure. There are also upcoming publica-
tions on a communication game (some details given in this
manuscript), comparing structure and iconicity in signals crea-
ted in communication or an individual signal creation task.

Structure of experiments

Different experiments need to be structured in different
ways, but for the most part, individual learning, iterated
learning and communication experiments have a finite
number of possible parts to the experiment. They usu-
ally need a window to create or reproduce signals, one
to recognize signals, and one to provide feedback. The
creation/reproduction tasks may be presented in batches
or interleaved with the recognition tasks. In the current
implementation, both are possible.

Experiments within the framework operate by exchang-
ing message objects back and forth between a server and
the client(s). Both the server and client are limited to send-
ing and receiving a single line at a time, where that single
line is a serialized form of the message object. There are
mechanisms within the framework to ensure that the system
fails when it receives unexpected, out-of-order messages
to ensure the experiment is flowing exactly the way it
should. The framework allows the experimenter to extend
the functionality and flexibility of experiment designs by
implementing new message classes without interfering with
the rest of the messaging scheme.

Phases

Within the framework, the experiment design may be aided
by the use of phases (blocks of tasks within an experiment
that may be repeated). Between phases, different meaning
spaces and different signal spaces can be used. For exam-
ple, the meaning space might need to grow between phases
after a set number of meanings have been seen, or a set
number of interactions have happened. In our communica-
tion game, whether the meaning space grew was dependent
on how successful participants had been at communicating
the meanings they had seen up until that point. The idea
being, that if they hadn’t established signals for existing
meanings, they were unlikely to deal with new meanings
well.

Each session can keep track of how successful partici-
pants are at communicating each meaning. We call “estab-
lished meanings” any meaning that has been successfully
communicated at least twice in a row. All other meanings, as
well as established meanings that have recently been com-
municated incorrectly, are not “established”. By default, the
meaning space expands if and only if all the current mean-
ings are “established”, but the experimenter can add any
criteria for progression to a new phase of the experiment.
It is possible to add arbitrary logic that changes the sig-
nal space (e.g., add dimensions, swap dimensions, expand,
shrink, etc.).

Behav Res

The framework also allows the probability of choosing
a particular meaning as the topic at a particular round to
be dependent on whether or not a meaning is established.
At each communication round, there is a probability that an
unestablished meaning will be picked (see phases section in
appendix for details on how to set the appropriate param-
eters). For example, the experimenter may want 50 % of
topics to be unestablished and 50 % to be established. This
is a crucial functionality, as if there are far more estab-
lished meanings than unestablished one, and all meanings
are equally likely to be seen, then it will take a long time for
unestablished meanings to become established so that the
experiment can progress.

Client side interface

The server must be running when the client is launched.
Upon launch, the client immediately starts a connection to
the server. At first, participants will see a welcome screen
that contains instructions, ideally detailing the structure of
the experiment and explaining how to use the Leap Motion
device, though we also recommend a live demonstration.
The auditory feedback is available during the introduc-
tion screen so that the participant can practice and become
familiar with the device.

In the communication game example, once there are
two participants both of whom confirm they have read and
understood the instructions by clicking an onscreen button,
the experiment starts. The participants can then take turns in
being the speaker and the hearer, producing and recognizing
signals, respectively. However, whose turn it is to be speaker
can also be assigned randomly, or dependent on other events
in the experiment.

Participants may receive feedback about their commu-
nicative success between the turns, as well as information
on the meaning that was intended by the speaker, and the
meaning chosen by the hearer.

The experiment ends when participants have either suc-
cessfully communicated all meanings, or the experimenter
manually ends the session (see “Server side interface”), at
which point participants are shown a message telling them
the session is over and giving the appropriate instructions,
e.g., leave the experiment booth.

Client screens

Screens seen by the participants are designed to be as
intuitive, fail-safe and user friendly as possible, even if
participants have not read the instructions. All screens are
displayed full screen without any window decorations such
as minimize or exit buttons.

Simple text screens

Simple text screens can be added at the beginning of the
experiment, or once before each experimental phase, if
needs be.

Signal creation screen

On a signal creation screen, typically a participant will see
a meaning for which they must create or reproduce a sig-
nal. This screen features the image, and a “Record” button,
which can be pressed to start recording a signal. This turns
into a “Stop” button, which can be pressed to stop the
recording when the participant is done creating their signal.
After the participant has created a signal, the button turns
into a “Rerecord” button for if the participant is unhappy
with their first recording. Participants can also play back
a signal they have just created by pressing “Play”. When
participants are happy with their signal they can then press
“Submit”.

There is also a volume dial, so participants can readjust
the volume should it be at an uncomfortable level. This has
no bearing on the experimental data being logged, since that
data consists of Leap Motion frames (hand position), not yet
converted into audio.

Signal recognition screen

In communication game experiments, communicative suc-
cess is measured by participants’ ability to correctly identify
the meaning referred to by the signal of their partner. Sig-
nal recognition screens are also helpful in individual signal
creation experiments. If the participant knows that they will
be tested on their own signals, this creates an incentive for
them to create signals that are distinct from one another. In
this situation, if a participant is very bad at recognizing their
own signals (at chance level) then this may be an indication
that the participant is not taking the experiment seriously.

The signal recognition phase screen features one or two
lines of instructions. Typically “Choose the image you think
the signal refers to”, or similar. There is a “Play” button,
which the participant can press to hear the signal to be rec-
ognized. There is also a set of possible meanings, which
includes the target meaning. This set of images can have
any number of elements, and can be chosen from the whole
image collection, or from a finite subset of it. The size of
this set can be modified. Finally, there is a “Submit” button
to send the chosen meaning to the server.

This screen has certain restrictions to ensure valid
responses. The participant is unable to press the submis-
sion button without listening to the signal at least once,

Behav Res

Fig. 3 Signal recognition screen

preventing participants from guessing at random without
knowledge of the signal. The participant must select an
image before pressing submit, and only one meaning can be
chosen before submission. Other dependencies are possible.

The volume dial is also present on this screen (see Fig. 3),
but does not need to be.

Transition screens

When a participant is waiting for the other participant to
finish a task (such as creating a signal or recognizing one),
they are shown filler screens (see Fig. 4). Since in the com-
munication game participants take turns, it is important to

Fig. 4 The wait dialogue after signal recognition

Behav Res

make sure they are aware when it is not their turn, and that
they are not allowed to interact with anything until it is. This
“screen” is technically a semi-transparent modal dialogue
that covers the current window. These screens are partic-
ularly useful during issues in networking where message
passing might be delayed, and the participants tend to be
confused unless they see explicit instructions to wait for the
other participant.

Server side interface

On the server side interface, each client connection is listed
along with the address and unique ID of the participant (see
Fig. 5). Once participants have indicated that they are ready
on the client side, a new session starts.

The interface displays a list of rounds played in the exper-
iment in real time, and clicking on each round displays
a panel containing details such as the speaker’s intended
meaning, hearer’s guess and speaker’s signal. It is also pos-
sible to playback the signal. Both the round list and the
detail panel are updated live during the experiment.

It is possible to end the experiment at any moment using
the provided End Experiment button. The server updates the
log file at the end of every round, so ending the experiment
early has no bearing on the recording of the data up until
that point.

Data output

The data output is based on a single log file generated by the
server. This file is updated at the end of each round. So if a
session is aborted half way through for whatever reason, a
full log of the session (except the unfinished, last round) is
saved.

Log files are created that contain signal data and another
containing question data. These objects, can be exported in
one of the many formats, including comma separated values
(csv). See Tables 1 and 2 for the columns available in the
data frames.

Other possible signal variables can be extracted from this
output. For example, knowing the hand-position at each data
frame within a signal will allow the experimenter to measure

Fig. 5 The server side interface as seen by the experimenter. The red numbers that can be seen on the meanings are only seen on the server side,
and are the file names of the meanings

Behav Res

Table 1 Columns of the response DataFrame, as returned by
toPandasp2p() (see Appendix 2)

Response column Description

round Number of exchange, e.g., first exchange in the
experiment is round 0.

phase Number of phase.

client clientid of the signal creator.

image What meaning was the signal produced for.

data index The index of this data point in the trajectory.

x Hand position on the x-axis i.e., from left to
right in millimeters

y Hand position on the y-axis i.e., from down to
up in millimeters

z Hand position on the z-axis i.e., from front to
back in millimeters

frequency Frequency of the signal in Hertz. This is useful
if you do not have a linear mapping between
hand position and your auditory output.

mel Frequency of the signal in Mel Scale.

amplitude Volume of the signal in range [0,1]. This is use-
ful if you do not have a linear mapping between
hand position and your auditory output.

how much movement is in a signal or the mean pitch of a
signal.2 Each frame is given an integer index starting from
0, so that the duration of each signal (i.e., the number of data
frames) is simply the largest data index value it is associated
with.

Online playback experiments

While it is true that it is more difficult to be iconic with
continuous auditory signals than it is with graphical signals,
iconicity can still exist, and be measured, in signals pro-
duced using the Leap Motion framework. In experimental
semiotics, one way to measure iconicity is to let naı̈ve par-
ticipants see or listen to signals and have them pair them
with an array of possible meanings (e.g., Garrod et al.,
2007). If participants can pair signals with their intended
meanings without any knowledge of how they were estab-
lished, then those signals can be said to be iconic. For the
most part, these playback experiments have been conducted
online to allow for a massive number of participants, which
increases statistical power. In order to make it easy to inte-
grate the signals produced using the Leap Motion paradigm
with such online experiments, we have built an interface

2Note that the data frames produced by Leap Motion contain consid-
erably more information than included here, including timestamps for
each frame; see the Leap Motion documentation for a comprehensive
list of the types of information these frames contain.

Table 2 Columns of the question DataFrame, as returned by
toPandas p2p() (see Appendix A.9)

Question Column Description

round Number of exchange, e.g., first exchange in the
experiment is round 0.

phase Number of phase.

client client id of the signal recognizer.

image0, image1,
image2, etc.

Which meanings were in the set being selected
from.

answer The meaning that the signal was produced for.

given answer The meaning selected by the participant.

success Are the answer and given answer the same

that allows the experimenter to convert the log files to .wav
files (see Appendix A.10). It is a small GUI application that
allows the user to select a log file, and export all or some of
the signals as wave audio files, allowing the experimenter
to only select, for example, signals from a specific phase if
they would like to compare iconicity of signals produced at
the beginning of the experiment to signals produced at the
end of the experiment. The application also allows the user
to modify the playback rate (see Appendix A.4).

Limitations and further development

The primary limitation of this paradigm is its reliance on
Leap Motion devices. Although the device itself is quite
cheap (around $90 at time of writing), we cannot expect it
to be widely available in people’s homes. This limits the
applicability of the paradigm to laboratory settings where
the hardware can be provided. Online experiments (which
are becoming more and more prevalent) will not be feasible.

It is possible to use other, possibly native sensors (such as
motion sensors of gaming consoles). However, that would
require a major rewrite of the theremin component (see
Appendix “A.1 Requirements”), but the component itself
is quite small. Conceptually, the only change required is to
make sure the callback method that receives data frames
from Leap Motion receives the new data frames instead
(see Appendix A.11 for details). Previous work has used
infrared gaming sensors (such as the Xbox Kinect) to mea-
sure structure and conventionalization in gestural signals
(Namboodiripad et al., 2016). The Leap Motion would be
less suited to such work, as it has only one vantage point
and doesn’t manage well when hands overlap.

The current framework implementation is limited in hav-
ing exactly one exchange at a time. While this is often desir-
able, parallel interactions themselves can also be targets of
research. This would require a major redesign of the cur-

Behav Res

rent codebase to accommodate multiple interactions taking
place at once. The main challenge would be to handle the
parallel execution, and the increased complexity of track-
ing which meanings are established among which pairs.
Moreover, each server instance can only handle a single
session, but one can run as many server instances on a ma-
chine as possible, as long as each one listens at a different port.

The framework can accommodate more than two partic-
ipants in a session, and its basic infrastructure can already
initiate sessions with more than two participants. How-
ever, this has never been meaningfully tested since no such
experiments have been implemented to date, and would
require some additional customization to phases, e.g., in
peer selection.

This framework is not necessarily tied to auditory sig-
nals mapping onto visual meanings: one can just as easily
modify the framework to use visual representations of hand
trajectories to serve as signals, and/or label sounds instead
of images that serve as meanings. However, this would
require extending the existing meaning- and signal-related
classes and the UI to accommodate data from the new
modality. The rest of the framework should work as outlined
in this article. One restriction is that the meanings should
already be present on all the computers participating in the
session, so dynamically generated meanings are not sup-
ported by this framework. They need to be static and present
from the onset.

Development within the Leap Motion framework has
generally been progressing on an as-needed basis, and this
is likely to continue to be the case. However, functionality
for iterated learning experiments is a likely next step. The
only significant change necessary is support for using the
output of one session as the initial repertoire to reproduce in
the next one, enabling the experiment to mimic generations
of learners.

Conclusions

We have developed a new signal space paradigm for
conducting artificial language learning experiments inves-
tigating the emergence of combinatorial structure. This
paradigm has improved on previous paradigms, as it allows
for manipulation of the availability of iconicity, generates
data that is easy to analyze, and is very flexible in terms of
the size and shape of the signal space and the nature of the
feedback. Ongoing work by the authors is utilizing the sig-
nal space flexibility to investigate the effects of the physical
aspects of a signaling space in order to understand modal-
ity effects, something that was difficult using previous
paradigms. Other uses of the paradigm include comparing
visual signals to auditory ones, or replicating previous
studies in experimental semiotics using auditory signals.

Acknowledgments Open access funding provided by Max Planck
Society. This paradigm was built for experiments that are part of the
European Research Council project, ABACUS (283435). The authors
would like to thank three anonymous reviewers for their suggestions
for the improvement of this paper. All errors belong to the authors.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

Appendix A: Implementation

A.1 Requirements

The framework itself is a package named
leaparticulator.

The framework is designed for Python version 2.6 and
higher, on Windows (7 and higher), Linux (any flavor, as
long as you can get the libraries) or Mac OS/X (10.6 and
higher). Python 3.x is not supported simply because several
libraries the framework depends on are not ported to Python
3 yet; most critically twisted.

For some more isolated functionality of the framework,
some dependencies may not be required. A version of Leap
libraries for Windows, Linux and OS/X are already pro-
vided in the framework along with code that decides which
one to use, but the Leap Motion driver needs to be installed
separately.

For the analysis, a computer with multiple cores and at
least 6 GB of memory is recommended. The scripts will
spawn the right number of tasks based on the configurations
it detects, and will use a single task if there is only one core.
Memory usage is dependent on the data being processed,
and care should be taken since the spawned tasks might fail
if they run out of memory, possibly disrupting the whole
batch of tasks and even the interpreter.

A.2 Packages

The framework itself is a package named
leaparticulator. The most important packages in the
framework are:

– leaparticulator.browser: A tool to browse
and visualize experimental data files.

– leaparticulator.data: Contains modules for
representing and manipulating experimental data,
including classes for representing Leap frames, meanings,
trajectories of frames, and Hidden Markov Models, as
well as functions for importing/exporting data files.

– leaparticulator.drivers: Contains Leap
Motion libraries for various operating systems.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Behav Res

– leaparticulator.notebooks: Contains
IPython notebooks and scripts used for data prepro-
cessing, analysis and visualization, as well as other bits
of code that don’t fit in anywhere else.

– leaparticulator.p2p: Contains the communica-
tion game implementation.

– leaparticulator.test: Contains tests for vari-
ous classes and behaviors, as well as test data.

– leaparticulator.theremin: Contains the
theremin implementations.

– leaparticulator.trajectory recorder:
Contains a tool to export trajectories in experimental
log files as wave audio files.

The Python dependencies are the following, along with
their roles (note that the libraries themselves might have
non-Python dependencies, such as PyQt4 depending on
Qt4) (Table 3).

The various parameters and paths used in the frame-
work are defined in a separate Python module named
leaparticulator.constants, and are thus eas-
ily customizable. Any mention of constants in the fol-
lowing sections is a shorthand for “member of module
leaparticulator.constants”.

Finally, all instruction text on experimental screens are
parsed from plain text files residing in a resources folder,
which is specified by the constant P2P RES DIR.

A.3 Structure of experiments

Message classes reside in the module
leaparticulator.p2p.messaging, and each are
initialized using the data required for the function of the
message. When a message arrives, the recipient server or
client reacts based on the type of message.

Both the server and the client objects keep track
of their current state using their member variable

Table 3 Dependencies of the framework

Dependency Function

PyAudio For audio I/O.

PyQt4 For the graphical user interfaces.

twisted For asynchronous I/O and networking.

qt4reactor To integrate QT and : event loops.

IPython Mostly for data processing and visualization
scripts.

pandas Frequently used in data processing scripts.

matplotlib Used for data visualization.

scipy Used for its implementations of scientific
functions such as gamma.

jsonpickle Used to serialize and deserialize data.

ghmm Used for training HMMs.

factory.mode.3 Possible values are defined in the con-
stants module (see Table 4).

For the client, most changes to the mode occur
in the client’s incoming data callback method
LeapP2PClient.lineReceived(self, line),
which is called for each line received. This method checks
the current mode, ensures the message received was of the
expected type given the current mode, takes the necessary
action, and finally changes the mode to its next state if
necessary. The default flow is outlined in Fig. 6.

There are two exceptions where mode is set out-
side of this method on the client; speak(self) and
hear(self, image) methods set the FEEDBACK
mode, preparing the client to receive feedback. These
exceptions are due to these mode changes not being
triggered by incoming messages to the client (which
lineReceived() is a callback for), but by outgo-
ing messages triggered by the UI. The server uses its
lineReceived() method the same way.

The specific server and client implementations can
override the method LeapP2PServer.lineReceived
(self, line) to customize the experiment’s structure
and flow. It is important to keep to the same pattern of
type checking to ensure the system is working as intended,
and not out of contingencies. Note that some functionality
is compartmentalized into methods of their own, either to
reduce clutter, or to ensure they are callable from outside the
lineReceived() method (such as via the UI).

If the server or client needs to call the UI at any time,
for instance to show a screen, it can find a reference to
the current UI using the attribute factory.ui. Both
the server and client have specialized UI classes (under
leaparticulator.p2p.ui) which offer methods for
common tasks such as getting a reference for the currently
active window, showing a wait dialogue, or displaying the
signal creation screen. The class itself is not a part of UI,
but rather a wrapper that creates windows and widgets by
reading specifications from .ui files created in QT Designer.
Both the root folder to search for .ui files and the names of
specific files for each screen are specified in the constants
module (constants named QT DIR and * WIN, respectively,
where the wildcard stands in for a screen name).

Note that both the client and the server need to have
access to the file-based resources (such as .ui files or
images) at identical relative paths within the project folder.
In other words, the “./img”, “./res” and “./qt generated”

3As a side effect of using twisted for networking, client and server
connections are not persistent objects. That’s why all persistent infor-
mation about a session is kept on the relevant connection factory
objects, which itself is always kept in object.factory for any
connection object.

Behav Res

Table 4 Server and client mode constants

Client Mode Indicates Server Mode Indicates

INIT Initialization. INIT Initialization.

SPEAKER Client is speaker. SPEAKERS TURN Signal creation

HEARER Client is hearer. HEARERS TURN Signal recognition

FEEDBACK Client is receiving feedback. FEEDBACK Clients are receiving feedback.

folders need to be synced across the server and the client for
everything to work as expected.

A.4 Signals

A.4.1 Transformation of Signals

We used the following equations to generate tones from
the x- and y-coordinates of the hand being tracked. Note
the amplitude is a logarithmic function of the (absolute)
y-coordinate, whereas the frequency is an exponential func-
tion of the x-coordinate. The amplitude is constrained to the
interval [0,1], with values falling outside the range corrected
to the nearest boundary.

amplitude = 1.1 − log |y|
log 250

f requency = 110 × 3
(|x+200|)

200

We could further use the same equations to map coordi-
nates to pitch or amplitude for our analysis, in order to be
able to have both the features of the auditory feedback and
hand position as dependent variables.

A.4.2 Manipulation of duration

Momentary frame rate of the Leap Motion vary with CPU
load, which is particularly problematic for tasks that pro-
duce a replay dependent on accurate temporal information
of hand position, as in our framework. To solve this, we
developed an alternative listener that polls the device at
preset intervals (set at constants.THEREMIN RATE)
and therefore samples at uniform intervals. This alternative
implementation also helps constrain the maximum duration
of the signals, which can be useful in situations where a
pressure for shorter signals is required (as in e.g., Little
et al., 2016b). Using the ConstantRateTheremin im-
plementation ensures that our sampling is uniform, and
that the playback rate is identical to the recording
rate. The constants used specifically for this setup are
MAX SIGNAL DURATION and THEREMIN RATE. The
former is the maximum signal duration in seconds, and
the latter is the rate (with a unit of second−1) at which
the audio will be updated based on the position of the
hands. For instance, a theremin with a rate of 100 can
change pitch one hundreds times every second (the rec-
ommended default). Note that very high rates can be
CPU-intensive. It is also important to note that you
need to pass default rate=THEREMIN RATE to your
ThereminPlayback constructor to ensure the playback
is consistent with the recording.

Fig. 6 The message flow of a typical session. The Message suffixes in the class names are omitted here for brevity, so the Init class is actually
called InitMessage

Behav Res

With this boilerplate in place, it is relatively sim-
ple to put together a limited duration constraint.
There already exists code to stop a recording, as
LeapP2PClientUI.stop recording(). This
method is normally bound to the click events of
“Stop recording” buttons, but it can also be used
as a generic way to stop recording a signal. To
limit the duration, all one needs to do is to set
MAX SIGNAL DURATION to a positive value, and then
twisted will call stop recording() after wait-
ing MAX SIGNAL DURATION seconds. The appropriate

Theremin and ThereminPlayer instances are set
up under the hood. Setting MAX SIGNAL DURATION
to a non-positive value such as 0 turns off the duration
constraint.

Implementing a simple progress bar (as seen in Fig. 2),
so that participants can see signal time elapsing is a use-
ful addition. Assuming there already is a QProgressBar
widget on your window, and that it is referenced by
self.progressbar of your UI object, it is possible to
update the progress bar in intervals of about .1 seconds as
follows:

A.5 Phases

For experiments where the meaning grows or changes from
phase to phase, the index of the last item in the current

expansion state is kept in an integer variable called
image pointer, on both the client and server. Each
expansion changes the meaning space (or possibly the signal
space if the experimental design demands this) and therefore

Behav Res

constitutes a new phase. The meaning space is kept in a list
called images on both the server and client factory objects.

The entry point for meaning space expansion is the
expandMeaningSpace() method of the server object.
This method both checks whether or not it is necessary to
perform an expansion (i.e., if all meanings in this phase are
established), and then performs one if necessary. Finally, it
sets LeapP2PServerFactory.end experiment to
True if an expansion is warranted yet impossible (i.e., if
all possible meanings are established). The number of suc-
cessful communications needed before a meaning is “estab-
lished” can be set using the LEARNING THRESHOLD in
constants. The extent of the expansion can be modulated by
the constant MEANING INCREMENT, which specifies the
increment that will be added to image pointer at each
expansion.

At each round, the method choose speaker
and topic() of the server is called to determine the
speaker, as well as choose a topic from the meaning space.
Currently, it is set to choose topics based on how well
established the topic-signal pairing is, as detailed below.
To customize this behavior beyond what current param-
eters allow, such as constraining the number of times a
topic can be chosen, or just presenting topics randomly,
the choose speaker and topic() method can be
re-implemented.

The NOVELTY COEFFICIENT is the probability of
picking an unestablished meaning for a round. For example,
if this value is 0.5, then 50 % of meanings communicated

will have already been established at the point they are com-
municated (if there are any established meanings, otherwise
it defaults to only unestablished meanings), and 50 % will
be unestablished.

For Nest established meanings in a meaning space of
Nmeanings items, and a NOVELTY COEFFICIENT c, the
probabilities for picking each item established meanings can
be calculated as follows:

pest = (1 − c)Nest − 1

p−est = cNest − 1 (1)

To find the number of established meanings Nest where
pest = p−est (after which unestablished items get increas-
ingly frequent), it is sufficient to solve:

1 − c

Nest

= c

Nmeanings − Nest

Nest = Nmeanings(1 − c) (2)

The initial pressure towards choosing established mean-
ings is being replaced by one towards choosing unestab-
lished meanings in the end (see Fig. 7). Whenever there is a
difference between the number of established and unestab-
lished meanings, the bias will favor the smaller group.
Initially, this helps the participants keep practicing the few
established meanings that they will hopefully build on. To-
wards the end of a phase, it helps participants focus on unesta-
blished meanings in a mostly-established meaning space.

Fig. 7 Plot of log(pest) and log(p−est) for two different levels of c, and different number of meanings Nmeanings . The x-axis is the number of
established meanings

Behav Res

We recommend a NOVELTY COEFFICENTS above 0.5
(the default is 0.55), reducing the minimum number of
meanings to establish before the pressure towards unestab-
lished meanings prevails. Fine tuning this value is particu-
larly important for larger meaning spaces, which can quickly
get either too repetitive or too novel for the participants.

A.6 Client side

The client interface is started by running
leaparticulator.p2p.server with the following
command (assuming the current working directory is in
PYTHONPATH):

The parameter condition may not be useful in exper-
iments without conditions, but a value is still required to
ensure the server and client agree, and may be useful if new
conditions are implemented in the future. The client key-
word tells the module we are trying to spawn a client and
not a server, and the client id is used as a unique ID for
this client on the server, for example, a participant number.
Providing non-unique IDs within an experiment with more
than one participant causes an exception to be thrown during
the connection attempt.

It is also possible to provide the server address directly
from the command line, overriding the server details in the
constants file, although this is optional.

A.6.1 Text screens

Most experiments start with a simple text screen explain-
ing the experiment, or giving other relevant infor-
mation. Such a screen can be shown by invoking
LeapP2PClientUI.first screen(), and the final
screen (e.g., saying thank you for completing the exper-
iment or giving further instructions) can be shown using
final screen() of the same class. By default there
are only two information screens, an initial one contain-
ing instructions and another one concluding the experiment,
both of which are shown exactly once.

Text for these screens are kept in the files
“res/p2p/* screen.txt”, named after the name of the screen.
and read in when the screen is being constructed. Images

can be added to this screen by editing the file indicated in
the constant FIRST WIN.

Any change that is more involved than that requires some
(very simple) coding. If the experiment requires multiple
text screens (e.g., to display the new meaning space at
each phase change), one can easily create and customize
clones of this screen and call them at appropriate times
(e.g., between different phases). The rest of the experiment
should not be affected. The right place to add new screens
is the lineReceived() method of the client, like most
changes to the experiment’s flow.

If these screens are not remarkably different in structure
to simple text screens, we suggest implementing a gen-
eral information window that displays the right information
based on an argument provided. For instance, if we wanted
to make the first and last screens more general, and add
an info screen before each phase, we would need to do the
following:

1. Remove the previous info screens.
2. Create the UI file for the generic window. This window

should include the text containers to be populated later.
3. Create the relevant text resources in the resources

folder.
4. Create constants to mark the different modes.
5. Create a method that will populate the window with the

relevant information.
6. Ensure the new screen will be followed by the correct

screen when closed.
7. Call the screen from the previous step as needed.

Behav Res

Behav Res

As an alternative to using textual content that requires
formatting, it is also possible to provide or even build the
window contents as an image file, and using a simple screen
with an image container for the same purpose we use the
textcontainers in the examples above. For instance, it is pos-
sibleto add a montage of the meaning space at the beginning
of a phase by simply creating the image using external tools
(such as Imagemagick’s montage command), and using
it to populate the screen. Note that this strategy may not
work well with displays of different sizes due to image
scaling.

A.6.2 Signal creation screen

The signal creation screens are pretty straightfor-
ward (see Fig. 2). The entry point for this screen is
the method creation screen(image=None) of
LeapP2PClientUI. The argument image must be a
subclass of the class AbstractMeaning from module
leaparticulator.data.meaning, and indicates
the meaning that the participant will generate a signal
for. The .ui file used to build the window is stored in the
constant CREATION WIN.

Behav Res

A.6.3 Signal recognition screen

For signal recognition screens (see Fig. 3), the maxi-
mum number of options available per question can be
changed using the constant N OPTIONS. One can also
customize the interface itself by editing the file indicated
in constant TEST WIN. The testing window must always
have exactly N OPTIONS QPushButton objects, and
they should be named btnImageN where N is the option
number.

Also, ifN OPTIONS is greater than 4, some functions under
the packageleaparticulator.data (most notably those
producing Pandas frames from log files, see “Data output”)
would need modification to extract the new columns from
the log file as required by the extra options. Once these are
in place, the rest will be handled under the hood.

The main point of entry for this screen is the
method LeapP2PClientUI.test screen(). The
selection of the options that are not the target mean-
ing is at random by default. One can customize it at
LeapP2PServer.lineReceived().

A.6.4 Transition screens

Can be shown using the show wait() methods of UI
objects. Showing any other screen automatically disables
this dialogue, as well as calling wait over(). The UI file
can be changed using the constant WAIT WIN.

A.7 Server side

The server side interface must be launched before
the client side. It is started by running the module
leaparticulator.p2p.server with the following
command (assuming the current working directory is in
PYTHONPATH):

The uid command line argument dictates the name
of the log file. The researchers can use it to implement
whatever scheme they use to label experimental runs. If
omitted, the unique ID is generated from the timestamp at
the moment of execution.

Upon launch, the interface immediately fires up a new
server instance listening on the port specified in the con-
stants module. Each new connection is listed along with the
address and unique ID of the participant, and upon confir-
mation from both parties that they are ready on the client
side, a new session starts.

The interface is read in from the file indicated by the
constant SERVER WIN.

A.8 Meanings

Images that will be used as meanings can be placed in the
”img” folder (or any other folder as specified in the constant
MEANING DIR P2P) and can be selected specifically or at
random depending on the experimental design. This logic
resides in the constructor for LeapP2PServer, and the
default behavior is to randomize the meanings.

Behav Res

When a session starts, the server checks the images
it is able to find in the meanings directory based
on a given file name pattern stored in the constant
P2P IMAGE MASK, and calls the FromFile() class
method of leaparticulator.data.P2PMeaning
for each filename found. One can subclass the class
AbstractMeaning of the same module to create new
meaning classes.

It is also possible to pass the parameter max images
to the server factory constructor to limit the number of
meanings.

For experiments that have custom requirements for
phases (see “Phases”), it is sufficient to override
the method expandMeaningSpace() of the class
LeapP2PServer to implement behaviors that go beyond
simple expansion, such as replacement of the whole mean-
ing space.

A.9 Data output

The name of the log file is dictated by the
LeapP2PServerFactory.uid attribute (see “Server
side interface”). If one is not provided, the current times-
tamp is used instead. The log file is output to the LOG DIR
subdirectory of the ROOT DIR, which is expected to be the
root folder of the project.

The file consists of several JSON4 objects, one per line.
For an experiment of N rounds, the log file would consist
of N + 2 lines. The first two lines describe the participants
and the image list (i.e., the meaning space in its maxi-
mally expanded form), and every line after that contains
a LeapP2PRoundSummary object serialized into JSON,
one for every round.

An overview of the attributes of a
LeapP2PRoundSummary object is below (Table 5).

Note that round number is not an explicit part of the
logged data. This information is still present: the summary
at line n is always for round n − 2.

At the analysis stage, the log file needs to be
read into a convenient data structure. Our frame-
work offers a way of doing this using the function
leaparticulator.data.functions.toPandas p2p.
This method takes a log file path as a parameter, and
returns a tuple of two pandas.DataFrame objects:
one containing response data (i.e., data regarding the sig-
nal creation task), and another containing question data5

(i.e., data regarding the signal recognition task). These

4Javascript Object Notation, an extremely ubiquitous data exchange
format.
5If you change the constant N OPTIONS, you need to modify
toPandas p2p() to produce the right number of columns.

Table 5 Attributes of a LeapP2PRoundSummary object

Attribute Description

speaker Speaker’s client id

hearer Hearer’s client id

signal Raw data from sensor

image Speaker’s target image

guess Hearer’s guess

success True iff image equals guess

options Options in the recognition screen excluding
target

success counts dict from meanings to consecutive success
counts

image pointer Index of the last element in the meaning space

objects, in turn, can be exported in one of the many for-
mats pandas.DataFrame supports, such as CSV. See
Tables 1 and 2 for the columns of the DataFrame.

A.10 Signal recorder

The module leaparticulator.trajectory recor
der.recorder p2p handles this conversion of signals
to .wavs. The module can be run directly from the command
line, and the argument “constantrate” should be passed
if the constant rate theremin implementation is needed.
The user interface is quite straightforward, and consists of
browsing for files, choosing some, browsing for the target
directory, and hitting a button to export them.

A.11 Using other sensors

Using other sensors to feed data into this framework
should be quite simple. In particular, let’s consider plug-
ging in another sensor into the theremin. All the work
required is concentrated to the actual theremin mod-
ule. The method Theremin.on frame(frame) han-
dles everything from dispatching the frames on to the
ThereminPlayer instance to adding them to the appro-
priate buffer if there is an ongoing recording. It might be
best to copy its behavior as closely as possible while inte-
grating the data stream from the new sensor. The only thing
left to do is extending ThereminPlayer to convert from
whatever features your sensor provides to an audio signal.
How exactly to realize this conversion is, of course, up to
the researcher.

References

de Boer, B., & Verhoef, T. (2012). Language dynamics in structured
form and meaning spaces. Advances in Complex Systems, 15(3),
1150021–11150021–20.

Behav Res

Del Giudice, A. (2012). The emergence of duality of patterning
through iterated learning: precursors to phonology in a visual
lexicon. Language and Cognition, 4(4), 381–418.

Fay, N., Garrod, S., & Roberts, L. (2008). The fitness and function-
ality of culturally evolved communication systems. Philosoph-
ical Transactions of the Royal Society B: Biological Sciences,
363(1509), 3553–3561.

Fay, N., Lister, C.J., Ellison, T.M., & Goldin-Meadow, S. (2014).
Creating a communication system from scratch: gesture beats
vocalization hands down. Frontiers in Psychology, 5, 354.

Galantucci, B. (2005). An experimental study of the emergence of
human communication systems. Cognitive Science, 29(5), 737–
767.

Galantucci, B., & Garrod, S. (2011). Experimental semiotics: a review.
Frontiers in Human Neuroscience, 5, 11.

Galantucci, B., Garrod, S., & Roberts, G. (2012). Experimental semi-
otics. Language and Linguistics Compass, 6(8), 477–493.

Galantucci, B., Kroos, C., & Rhodes, T. (2010). The effects of rapidity
of fading on communication systems. Interaction Studies, 11(1),
100–111.

Garrod, S., Fay, N., Lee, J., Oberlander, J., & MacLeod, T. (2007).
Foundations of representation: where might graphical symbol
systems come from?. Cognitive Science, 31(6), 961–987.

Garrod, S., Fay, N., Rogers, S., Walker, B., & Swoboda, N. (2010).
Can iterated learning explain the emergence of graphical sym-
bols?. Interaction Studies, 11(1), 33–50.

Healey, P.G., Swoboda, N., Umata, I., & Katagiri, Y. (2002). Graph-
ical representation in graphical dialogue. International Journal of
Human-Computer Studies, 57(4), 375–395.

Holz, D. (2014). Systems and methods for capturing motion in three-
dimensional space. US Patent, 8(638), 989. https://www.google.
com/patents/US8638989.

Janssen, R., Winter, B., Dediu, D., Moisik, S., Roberts, S., & McCro-
hon, L. (2016). Nonlinear biases in articulation constrain the
design space of language. In Roberts, S.G., Cuskley, C., Barcel-
Coblijn, L., Feher, O., & Verhoef, T. (Eds.) The Evolution of
Language: Proceedings of the 11th International Conference
(EVOLANG11), (pp. 448–451).

Kirby, S., Cornish, H., & Smith, K. (2008). Cumulative cultural
evolution in the laboratory: an experimental approach to the ori-
gins of structure in human language. Proceedings of the National
Academy of Sciences, 105(31), 10681–10686.

Kirby, S., Tamariz, M., Cornish, H., & Smith, K. (2015). Compression
and communication in the cultural evolution of linguistic structure.
Cognition, 141, 87–102.

Little, H., & De Boer, B. (2014). The effect of size of articulation
space on the emergence of combinatorial structure. In Cartmill,
A., Roberts, E.S., Lyn, H., & Cornish, H. (Eds.) The Evolution

of Language: Proceedings of the 10th international conference
(EvoLangX), vol. 10, (pp. 479–481). World Scientific.

Little, H., Eryılmaz, K., & De Boer, B. (2015). Linguistic modal-
ity affects the creation of structure and iconicity in signals. In
Noelle, D.C., Dale, R., Warlaumont, A.S., Yoshimi, J., Matlock,
T., Jennings, C., & Maglio, P. (Eds.) The 37th annual meeting of
the Cognitive Science Society (CogSci 2015), (pp. 1392–1398).
Austin, TX:Cognitive Science Society.

Little, H., Eryılmaz, K., & de Boer, B. (2016a). Differing signal-
meaning dimensionalities facilitates the emergence of structure.
In Roberts, S., Cuskley, C., McCrohon, L., Barceló-Coblijn, L.,
Feher, O., & Verhoef, T. (Eds.) The Evolution of Language: Pro-
ceedings of the 11th International Conference (EVOLANG11),
(pp. 182–190).

Little, H., Eryılmaz, K., & de Boer, B. (2016b). Emergence of signal
structure: Effects of duration constraints. In Roberts, S., Cusk-
ley, C., McCrohon, L., Barceló-Coblijn, L., Feher, O., & Verhoef,
T. (Eds.) The Evolution of Language: Proceedings of the 11th
International Conference (EVOLANG11), (pp. 468–470).

Namboodiripad, S., Lenzen, D., Lepic, R., & Verhoef, T. (2016).
Measuring conventionalization in the manual modality. Journal of
Language Evolution. lzw005.

Roberts, G., & Galantucci, B. (2012). The emergence of duality of
patterning: Insights from the laboratory. Language and Cognition,
4(4), 297–318.

Roberts, G., Lewandowski, J., & Galantucci, B. (2015). How commu-
nication changes when we cannot mime the world: experimental
evidence for the effect of iconicity on combinatoriality. Cognition,
141, 52–66.

Scott-Phillips, T.C., & Kirby, S. (2010). Language evolution in the
laboratory. Trends in Cognitive Sciences, 14(9), 411–417.

Verhoef, T., Kirby, S., & Boer, B. (2015a). Iconicity and the emergence
of combinatorial structure in language.

Verhoef, T., Kirby, S., & De Boer, B. (2014). Emergence of
combinatorial structure and economy through iterated learning
with continuous acoustic signals. Journal of Phonetics, 43, 57–
68.

Verhoef, T., Roberts, S.G., Dingemanse, M., Warlaumont, A.S., & Jen-
nings, C. (2015b). Emergence of systematic iconicity: Transmis-
sion, interaction and analogy. In Noelle, D.C., Dale, R., Yoshimi,
J., Matlock, T., & Maglio, P. (Eds.) The 37th annual meeting of
the Cognitive Science Society (CogSci 2015), (pp. 2481–2487).
Austin, TX: Cognitive Science Society.

Verhoef, T., Walker, E., & Marghetis, T. (2016). Cognitive biases and
social coordination in the emergence of temporal language. In
Papafragou, A., Grodner, D., Mirman, D., & Trueswell, J.C. (Eds.)
The 38th annual meeting of the Cognitive Science Society (CogSci
2016), (pp. 2615–2620). Austin, TX: Cognitive Science Society.

https://www.google.com/patents/US8638989
https://www.google.com/patents/US8638989

	Using leap motion in artificial language experiments
	Abstract
	Introduction
	Artificial signal spaces
	Limiting opportunity for iconicity
	Ease of analysis
	Flexibility of the signal space

	The Leap Motion framework
	Advantages of the Leap Motion approach
	Continuous signal space
	Minimizes interference from pre-existing linguistic knowledge
	Limits opportunity for iconicity
	Ease of analysis
	Flexible signal space
	Ease of deployment
	Flexible experimental structure
	Open access and extensibility

	Getting the framework
	The signals
	The meanings
	Experimental paradigms
	Structure of experiments
	Phases

	Client side interface
	Client screens
	Simple text screens
	Signal creation screen
	Signal recognition screen
	Transition screens

	Server side interface
	Data output
	Online playback experiments

	Limitations and further development
	Conclusions
	Acknowledgments
	Open Access
	Appendix A: Implementation
	A.1 Requirements
	A.2 Packages
	A.3 Structure of experiments
	A.4 Signals
	A.4.1 Transformation of Signals
	A.4.2 Manipulation of duration
	A.5 Phases
	A.6 Client side
	A.6.1 Text screens
	A.6.2 Signal creation screen
	A.6.3 Signal recognition screen
	A.6.4 Transition screens
	A.7 Server side
	A.8 Meanings
	A.9 Data output
	A.10 Signal recorder
	A.11 Using other sensors
	References

