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Abstract

Generative reconstruction methods compute the 3D config-
uration (such as pose and/or geometry) of a shape by op-
timizing the overlap of the projected 3D shape model with
images. Proper handling of occlusions is a big challenge,
since the visibility function that indicates if a surface point
is seen from a camera can often not be formulated in closed
form, and is in general discrete and non-differentiable at oc-
clusion boundaries. We present a new scene representation
that enables an analytically differentiable closed-form for-
mulation of surface visibility. In contrast to previous meth-
ods, this yields smooth, analytically differentiable, and effi-
cient to optimize pose similarity energies with rigorous oc-
clusion handling, fewer local minima, and experimentally
verified improved convergence of numerical optimization.
The underlying idea is a new image formation model that
represents opaque objects by a translucent medium with a
smooth Gaussian density distribution which turns visibility
into a smooth phenomenon. We demonstrate the advantages
of our versatile scene model in several generative pose esti-
mation problems, namely marker-less multi-object pose es-
timation, marker-less human motion capture with few cam-
eras, and image-based 3D geometry estimation.

1. Introduction

Many vision algorithms employ a generative approach to
estimate the configuration θ of a 3D shape that optimizes a
function measuring the similarity of the projected 3D model
with one or more input camera views of a scene. In rigid
object tracking, for example, θ models the global pose and
orientation of an object, whereas in generative marker-less
human motion capture, θ instead models the skeleton pose,
and optionally surface geometry and appearance.

The ideal objective function for optimizing similarity has
several desirable properties that are often difficult to sat-
isfy: it should have analytic form, analytic derivative, ex-
hibit few local minima, be efficient to evaluate, and numer-

ically well-behaved, i.e. smooth. Many approaches already
fail to satisfy the first condition and use similarity functions
that cannot be expressed or differentiated analytically. This
necessitates the use of computationally expensive particle-
based optimization methods or numerical gradient approxi-
mations that may cause instability and inaccuracy.

A major difficulty in achieving the above properties is
the handling of occlusions when projecting from 3D to
2D. Only those parts of a 3D model visible from a cam-
era view should contribute to the similarity. In general, this
can be handled by using a visibility function V(θ) in the
similarity measure that describes the visibility of a surface
point in pose θ when viewed from a certain direction. For
many shape representations, this function is unfortunately
not only hard to formulate explicitly, but it is also binary for
solid objects, and hence non-differentiable at points along
occlusion boundaries. This renders the similarity function
non-differentiable.

In this paper, we introduce a 3D scene representation and
image formation model that holistically addresses visibility
within a generative similarity energy. It is the first model
that satisfies all the following properties:

1. It enables an analytic, continuous and smooth visibility
function that is differentiable everywhere in the scene.

2. It enables similarity energies with rigorous visibil-
ity handling that are differentiable everywhere in the
model and camera parameters.

3. It enables similarity energies that can be optimized
efficiently with gradient-based techniques, and which
exhibit favorable and more robust convergence in cases
where previous visibility approximations fail, such as
disocclusions or multiple nearby occlusion boundaries.

Our method approximates opaque objects by a translucent
medium with a smooth density distribution defined via a
collection of Gaussian functions. This turns occlusion and
visibility into smooth phenomena. Based on this representa-
tion, we derive a new rigorous image formation model that
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is inspired by the principles of light transport in translucent
media common in volumetric rendering [4], and which en-
sures the advantageous properties above.

Although visibility of solid objects is non-differentiable
by nature, we demonstrate experimentally in Section 6 that
introducing approximations on the scene level is advanta-
geous compared to state-of-the-art methods that employ bi-
nary visibility and use spatial image smoothing. We demon-
strate the advantages of our approach in several scenarios:
marker-less human motion capture with a low number of
cameras compared to state-of-the-art methods that lack rig-
orous visibility modeling [25, 9], body shape and appear-
ance estimation from silhouettes, and more robust multi-
object pose optimization compared to methods using local
visibility approximations [16].

2. Related work
For numerical optimization of generative model-to-image
similarity, the objective function needs to consider surface
visibility, and needs to be differentiated. The problem is
that the (discrete) visibility function V is generally non-
differentiable at occlusion boundaries of solid objects, and
often hard to express in analytic form. Some approaches
avoid explicit construction of V by heuristically fixing oc-
clusion relations at the beginning of iterative numerical op-
timization, which can easily lead to convergence to erro-
neous local optima, or by re-computation of visibility be-
fore each iteration, which can become computationally pro-
hibitive. Commonly the object’s silhouette boundaries are
handled as special cases, different from the shape inte-
rior [17, 24, 26, 29]. These approaches optimize the model
configuration (e.g. pose and/or shape) such that the pro-
jected model boundaries align with multi-view input silhou-
ette boundaries (and possible additional features away from
the silhouette), e.g. [8, 21, 27, 22, 1].

The integration of binary visibility into the similarity
function is more complex. Analytic visibility gradients can
be obtained for implicit shapes [11] and mesh surfaces [7],
by resorting to distributional derivatives [30, 11, 7], and
by geometric considerations on the replacement of a sur-
face with another with respect to motions of the occlusion
boundary [13, 6, 16]. For multi-view reconstruction of con-
vex objects, visibility can be inferred efficiently from sur-
face orientation [15]. While these approaches yield similar-
ity functions that are mathematically differentiable almost
everywhere, non-differentiability is resolved only locally,
which still leads to abrupt changes of object visibility, as
illustrated in Figure 1. Efficient gradient-based numerical
optimization of the similarity does not fare well under such
abrupt and localized changes, leading to frequent conver-
gence to erroneous local optima.

OpenDR uses binary visibility, provides an open-source
renderer that models illumination and appearance of ar-
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Figure 1. Visibility comparison on a vertically moving sphere. Top
to bottom: solid scene with binary visibility, spatial image smooth-
ing, and our visibility model for positions θ∈{0.2,0.4,0.6,0.8,1}.
Bottom: plot of the red sphere’s visibility at the central pixel
(marked by the gray cross in the first image) versus sphere po-
sition θ for the different visibilities. Only our method is smooth at
the double occlusion boundaries at θ = 0.4 and θ = 0.8.

bitrary mesh objects, and computes numerically approxi-
mated derivatives with respect to the model parameters for
perspective projection [16]. Finite differences are used for
the spatial derivatives of pixel colors, as proposed for faces
by Jones and Poggio [14]. To attain smooth visibility at
single occlusion boundaries, spatial smoothing by convolu-
tion of the model projection with a smooth kernel [14, 30],
and coarse-to-fine pyramid representations [14, 2, 16] are
used. Some global dependencies in pose energy between
distant scene elements are also handled by coarse-to-fine
approaches. Our scene and visibility model handles such
global effects by design and is the only model that handles
the important case of double occlusion boundaries well, e.g.
at the point of complete occlusion of an object, see Figure 1.

Some recent methods abandon the use of surface repre-
sentation and instead employ an implicit 3D shape model
for performing tracking of full-body motion [19, 18, 25, 9],
hand motion [3, 23] and object poses [20]. The implicit sur-
faces can be considered smooth at reprojection boundaries
and are therefore well-suited for modeling a differentiable,
well-behaved visibility function. Stoll et al. [25] do marker-
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Figure 2. From left to right: A solid sphere actor model, our rep-
resentation by a translucent medium with Gaussian density visu-
alized on a checkerboard background for increasing smoothness
levels (m={0.0001, 0.01, 0.5}). Note the proper occlusion, e.g.
of the left arm and the torso.

less skeletal pose optimization from multi-view video, and
use a collection of volumetric 3D Gaussians to represent the
human body, as well as 2D Gaussians to model the images.
A coarse occlusion heuristic thresholds the overlap between
model and image Gaussians. This design allows for long-
range effects between model and observation, and avoids
expensive occlusion tests, but leads to a problem formula-
tion that is merely piecewise differentiable. Follow-up work
empowered tracking with a lower number of cameras by
augmenting generative pose tracking with part detections in
images [9]. None of these approaches uses a rigorous visi-
bility model, as we do in this paper.

3. Scene model

We propose a scene model that approximates solid objects
by a smooth density representation, resulting in a visibility
function that is well-behaved and differentiable everywhere.
In this section, we introduce our scene representation (§3.1),
give a physically-based intuition of the resulting visibil-
ity function in terms of a translucent medium (§3.2), and
present the corresponding image formation model (§3.3).
Results of our scene model applied to rigid pose tracking
and marker-less motion capture from sparse cameras are
shown in Sections 5 and 6.

3.1. Smooth scene approximation

Hard object boundaries cause discontinuities of visibility at
occlusion boundaries. To obtain a smooth visibility func-
tion, we propose a smooth scene representation. We diffuse
objects to a smooth translucent medium – with high density
at the inside of the original object and a smooth falloff to
the outside. In our model, the density defines the extinction
coefficient which models how opaque a point in space is,
and thus how much it occludes [4]. To obtain an analytic
form and for performance reasons, we use a parametric rep-
resentation for the density D(x) at position x as the sum of

scaled isotropic Gaussians G={Gq}q , defined as

D(x) =
∑
Gq∈G

Gq(x), where each Gaussian

Gq(x) = cq · exp

(
−
∥∥x− µq

∥∥2

2σ2
q

)
(1)

has a magnitude cq , center µq and standard deviation σq .
Appearance is modeled by annotating each Gaussian with
an albedo attribute aq . Figure 2 shows an example of the
colored density representation for a human actor, consisting
of Gaussians of varying size and albedo.

Our model leads to a low-dimensional scene representa-
tion parametrized by γ ={cq,µq, σq,aq}q . For readability,
we use Gq(x) for Gaussians and omit the dependence on γ.

The degree of opaqueness and smoothness is adjustable
by tuning the magnitudes cq and standard deviations σq
of the Gaussians. We discuss the conversion of a general
scene to our Gaussian density representation in Section 4.
While other smooth basis functions are conceivable, Gaus-
sians lead to simple analytic expressions for the visibility
that work well in practice. While our Gaussian representa-
tion is similar to Stoll et al.’s [25], its semantics of a translu-
cent medium is fundamentally different and our image for-
mation model with rigorous visibility is phrased in entirely
new ways, as explained in the following sections.

3.2. Light transport and visibility

Our computation of the visibility V of a 3D point from a
given camera position is inspired by the physical laws of
light transport in translucent media, and based on simula-
tion techniques from computer graphics [4]. As the translu-
cent medium is only used as a tool to model continuous vis-
ibility, we assume a medium with uniform absorption of all
colors without scattering. According to the Beer-Lambert
law of light attenuation, the transmittance (the percentage
of light transmitted between two points in space) decays ex-
ponentially with the optical thickness of a medium, i.e. the
accumulated density, as visualized in Figure 3. Specifically,
the transmittance T of a 3D point at distance s along a ray
from a camera position o in direction n is

T (o,n, s,γ) = exp

(
−
∫ s

0

D(o + tn) dt

)
. (2)

Note that for a specific camera, n(u, v) is uniquely defined
for each pixel location (u, v); from now on, we use the short
notation n that is implicitly dependent on the pixel posi-
tion. With our Gaussian density representation, the density
at any point on a line through a sum of 3D Gaussians is
in turn the sum of 1D Gaussians. Specifically, inserting the
line equation x = o+sn into the 3D Gaussian Gq (1) re-

sults in a scaled 1D Gaussian of form c̄ exp
(
− (x−µ̄)2

2σ̄2

)
,
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Figure 3. Top: Raytracing of a Gaussian density. Bottom: Light
transport along the ray. The density along a ray is a sum of 1D
Gaussians (green), and transmittance (gray) falls off from one for
increasing optical depth. The radiance is the fraction of reflected
light that reaches the camera (red and blue areas). We use it to
compute the visibility of a particular Gaussian.

with µ̄ = (µ − o)>n and σ̄ = σ. The updated magni-
tude is c̄ = c · exp

(
− (µ−o)>(µ−o)−µ̄2

2σ̄2

)
. Using the Gaus-

sian form of the density, we can rewrite the transmittance
function (2) in analytic form in terms of the error function,
erf(s) = 2√

π

∫ s
0

exp(−t2) dt, as

T (o,n, s,γ) = exp

(
−
∫ s

0

∑
q

Gq(o + tn) dt

)
(3)

= exp

∑
q

σ̄q c̄q√
2
π

(
erf

(
−µ̄q√

2σ̄q

)
−erf

(
s−µ̄q√

2σ̄q

)) . (4)

Similar formulations are used for cloud rendering [31, 12].
The transmittance of a medium is symmetric, it also mea-
sures the fractional visibility of a point x = o+ sn from
position o, which we denote by V(x,γ) := T (o,n, s,γ).

3.3. Image formation and Gaussian visibility

For image formation, we assume that all scene elements
emit an equal amount of light Le. To produce a discrete
image from the proposed Gaussian density model, we shoot
a ray through each pixel of a virtual pinhole camera. The
pixel color is the fraction of source radiance that is emitted
along the ray and reaches the camera (color and radiance
are related by the camera transfer function; we assume a
linear camera response and use pixel color and radiance in-
terchangeably). For the defined medium with pure absorp-
tion, the received radiance is the product of transmittance
T , density D, albedo a and ambient radiance Le, integrated
along the ray x = o + sn,

L(o,n) =

∫ ∞
0

T (o,n, s,γ)D(x(s))a(x(s))Le ds. (5)

This is a special form of the integrated radiative transfer
equation [4, 5], and it models the fact that each point in
space emits light proportional to its density D(x) and illu-
mination Le. For our Gaussian density with parameters γ
and fixed Le=1, we obtain

L(o,n,γ) =

∫ ∞
0

T (o,n, s,γ)
∑
q

Gq(o + sn)aq ds. (6)

To obtain an analytic form, we approximate the infinite in-
tegral by sampling a compact interval Sq = {µ̄q+kλq | k∈
K⊂Z} around the mean of each Gq:

L̂(o,n,γ) =
∑
q

aq
∑
s∈Sq

λqT (o,n, s,γ)Gq(o+ sn), (7)

where λq∼ σ̄q is the sampling step length, which is adaptive
to the Gaussian’s size.

Gaussians have infinite support (Gq(x)>0 everywhere),
but each Gaussian’s contribution vanishes exponentially
with the distance from its mean, so local sampling is a good
approximation. In practice, we found that five samples with
K = {−4,−3, . . . , 0} and λ = σ̄ suffice. Importance sam-
pling could further enhance accuracy.

A final insight is that the inner sum in the radiance equa-
tion (7), the sum of the product of source radiance and trans-
mission, measures the contribution of each Gaussian to the
pixel color, and therefore computes the Gaussian visibility

Vq(o,n,γ) :=
∑
s∈Sq

λqT (o,n, s,γ)Gq(o + sn), (8)

of Gq from camera o in direction n. The Gaussian vis-
ibility from pixel (u, v), Vq((u, v),γ), is equivalent to
Vq(o,n(u, v),γ). The radiance L̂ and Gaussian visibility
Vq depend on the set of all Gaussians in the scene. How-
ever, our model enables us to represent most scenes with
a moderate number of Gaussians (§4), such that the ana-
lytic forms of L̂ and Vq can be evaluated efficiently. For in-
creased performance, we also exclude Gaussians with mag-
nitude c̄q<10−5 for the given ray direction, which does not
impair tracking quality (see supplemental document).

4. Model creation
In principle, arbitrary shapes can be approximated using a
sufficiently large number of small, localized Gaussians. We
convert an existing mesh model to our representation by first
filling the object’s volume with spheres. In our experiments,
like the actor in Figure 2, we place spheres manually, but
automatic sphere packing could be used instead [28].

We then replace the spheres by Gaussians of ‘equal per-
ceived extent’. A translucent object forms its boundary at
the point of strongest transmittance change. To find suitable
parameters cq and σq that approximate a sphere of radius r,
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we place a GaussianGq at its center and analyze the visibil-
ity Vq(o,n, {cq, σq}) viewed from an orthographic camera
(i.e. n is fixed in view direction and o is the pixel location).
We solve for magnitude cq and standard deviation σq such
that the transparency at the Gaussian’s center, 1 − Vq , is
equal to a constant m, and the inflection point of Vq lies at
distance r from the center. Here, m is a free parameter de-
termining the level of smoothness and translucency, see Fig-
ure 2. This is a useful tool to tune robustness versus speci-
ficity, as we demonstrate in Section 6.3.2. This procedure
aligns the perceived Gaussian size with the reference sphere
outline while maintaining a consistent opacity across Gaus-
sians of different size. An example is Figure 1, where the
inflection point is aligned with the binary occlusion bound-
ary. The optimization is necessary, as the inflection point
of visibility deviates from the density’s inflection point, and
parameters cq and σq jointly influence its location.

For generative tracking, the configuration of the tracked
model θ needs to be mapped to our scene representation
using a function γ(θ). In rigid object tracking, γ(θ) is a
single rigid transform that determines the position µq of all
Gaussians Gq; the sizes σq and densities cq are then fixed.
For skeletal motion capture, each Gaussian is rigidly at-
tached to a bone in the skeleton, and θ represents global
pose and joint angles. Other mappings for non-rigidly de-
forming shapes can be easily used, too.

5. Pose optimization
Reconstruction methods based on our representation will
compute θ from a set of image observations {Io}o captured
from different camera positions o, by minimizing an objec-
tive function of the general form

F(θ, {Io}o) =
∑
o

D(γ(θ), Io) + P(θ), (9)

where D(γ, I) is a data term, e.g. photo-consistency, and
P(θ) is a prior on configurations, e.g. a general regulariza-
tion terms. With our image formation model (§3.3), we can
formulate a photo-consistency-based model-to-image over-
lap in a fully visibility-aware, yet analytic and analytically
differentiable way as:

Dpc(γ, I) :=
∑

(u,v)∈I

∥∥∥L̂(o,n(u, v),γ)− I(u, v)
∥∥∥2

2
, (10)

where I(u, v) is the image color at pixel (u, v).
In Section 6.1, we use the photo-consistency energy
Fpc(θ, {Io}o) =

∑
o Dpc(γ(θ), Io) without prior for rigid

object tracking and body shape and appearance estimation.
We also demonstrate our approach for marker-less hu-

man motion capture. The generative method by Stoll et
al. [25] uses a Gaussian representation for the skeletal body
model, and transforms the input image into a collection of

Gaussians using color clustering. Their data term sums the
color-weighted overlap of all image and projected model
Gaussians using a scaled orthographic projection and with-
out rigorous visibility handling, see their paper for details.

For visibility-aware motion capture, we define a new
pose energy Fmc with a perspective camera model and a
new visibility-aware data term that accumulates the color
dissimilarity d(I(u, v), aq) over all pixels (u, v) in image I
and Gaussians Gq , weighted by the Gaussian visibility Vq:

Dmc(γ, I)=
∑
(u,v)

∑
q

d(I(u, v), aq)Vq(o,n(u, v),γ). (11)

To analyze the influence of our new visibility function in
isolation, we adopt the remaining model components from
the baseline method of Elhayek et al. [10]. To compen-
sate for illumination changes, colors are represented in HSV
space and the value channel is scaled by 0.2. To ensure tem-
poral smoothness and anatomical joint limits, accelerations
and joint limit violations are quadratically penalized in the
prior term P(θ). Motion capture with the new visibility-
aware energy leads to significantly improved results, as we
demonstrate in Section 6.3.

For all our experiments on rigid and articulated tracking,
we utilize a conditioned conjugate gradient descent solver
to minimize the objective function. The analytic derivatives
of the objective functions Fpc and Fmc with respect to all
parameters are listed in the supplemental document.

6. Results
We first validate the advantageous properties of our model
in general (§6.1), and then show how our scene representa-
tion and image formation model lead to improvements over
the state of the art in rigid object tracking (§6.2), shape es-
timation, and marker-less human motion capture (§6.3).

6.1. General validation

We validate the smoothness and global support of our visi-
bility handling using a scene with simple occlusions: a red
sphere, initially hidden by an occluder, moves up vertically
and becomes visible (Figure 1). In our model, the visibility
V of the red sphere (a single Gaussian) is smooth, and hence
differentiable with respect to position γ (blue line). This is
in contrast to surface representations which are only piece-
wise differentiable: binary visibility functions have discon-
tinuities (red line), and visibility with partial pixel cover-
age is continuous but non-differentiable at occlusion bound-
aries (dashed red line). Methods that smooth pixel intensi-
ties spatially as a post-process obtain smoothness at single
occlusion boundaries. However, when an object occludes
or disoccludes behind another occlusion boundary, like the
red sphere becoming visible behind the black sphere, and
thus two or more occlusion boundaries are in spatial vicin-
ity, visibility is non-differentiable and localized (green line).
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Target Initial Ours OpenDR
pose density mesh pyramid per pixel

Figure 4. 3D reconstruction of a red sphere (position) and blue
cube (position and orientation) using photo-consistency energy
Fpc from one image for three different initializations. Top to bot-
tom: initialization with overlap to final pose, distant initialization,
occluded initialization (the occluded cube is shown in yellow).
OpenDR does not find the right solution for initializations without
overlap or when far from the solution, and fails under full occlu-
sions. Our method finds the correct pose in all three cases.

Improper handling of this case is a major limitation in prac-
tical applications, for instance in motion capture where an
arm may disocclude from behind the body. Our approach
handles these cases by considering near-visible objects, it
‘peeks’ behind occlusion boundaries.

6.2. Object tracking

We show the advantages of our representation for gradient-
based multi-object pose optimization from a single view un-
der photo-consistency and compare against OpenDR [16].
The nine parameters in θ for the synthetic test scene are the
3D position of a red sphere, and position and orientation of
the blue cube. Both objects shall reach the pose shown in the
Target image of Figure 4. We compare the optimization of
Fpc with m= 0.1 using our model, OpenDR with per-pixel
photo-consistency, and OpenDR with a Gaussian pyramid
of 6 levels. The optimizer is initialized with 100 random and
three manual cases (rows in Figure 4). Without smoothing,
OpenDR fails in all cases as object and observation bound-
ary do not overlap sufficiently (last column). With smooth-
ing, OpenDR captures 70% of all random initializations,
when one object is fully occluded it fails (fifth column, last
row). Our solution captures the correct pose in 88% of all
random initializations, even under full occlusion if the oc-
cluded object is in the vicinity of the occlusion boundary
(forth column, last row). Only in few cases an erroneous
local minimum is reached. Averaged over all successful op-
timizations, the 3D Euclidean positional error of the sphere
is 7×10−3 times its diameter (ours) vs. 4×10−5 (OpenDR)
and for the cube 1.7×10−2 (ours) vs. 1.3×10−2 (OpenDR).
In essence, the density approximation (one Gaussian for the
sphere, 27 Gaussians for the cube) increases robustness and
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Figure 5. Reconstruction accuracy against marker-based ground
truth. Stoll et al. looses track of the arms after frame 150, and
Elhayek et al. lacks accuracy during the first half of the sequence.
Our method has a 3.7 cm average joint position error – 45% better
than Stoll et al. with 7 cm and best overall (dashed lines).

is essential for certain scene configurations. The inaccuracy
due to the approximation of sharp edges is of small scale,
≈ 10−2 compared to OpenDR, model and observation align
very well when visualized as meshes (fourth column).

We show in the supplemental document that our ap-
proach also enables accurate generative geometry and ap-
pearance estimation of non-trivial 3D shapes from images.

6.3. Marker-less human motion capture

We now show the benefits of our approach for marker-less
human motion capture on three multi-view video sequences
with single and multiple actors1. Our approach optimizes
Fmc in the skeletal joint parameters (see Section 5). We
compare against the purely generative approach by Stoll
et al. [25], and the recent combination of their generative
method with a ConvNet-based joint detection [9], which
was previously the only approach capable of marker-less
skeletal motion capture in outdoor scenes with only 2–3
cameras.

We first quantitatively compare against both methods
using the average Euclidean reconstruction error against
ground-truth 3D joint positions (from a concurrently run
marker-based system) using two cameras of the indoor se-
quence Marker [9], see Figure 5. All three algorithms use
the same skeleton with 44 pose parameters, 72 Gaussians
and data terms using HSV color space [9] to be compara-
ble. The implicit model needed for our approach is created
as described in Section 4. Our method improves over the
baseline [25] by a 45% lower average error (3.7 cm versus
7 cm), as the baseline cannot track large parts of the se-
quence at all from only two views. Compared to Elhayek et
al., who use a discriminative component together with gen-
erative tracking, our method with visibility-aware, purely

1A table describing each scene and the relevant parameters, such as
number, type and resolution of cameras, how many actors, pose parame-
ters, run time etc., is given in the supplemental document.
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Stoll et al. [25] ours (m=0.1) ours (m=0.1)Elhayek et al. [9]

Figure 6. Pose estimates for the Marker sequence, using two views
for reconstruction. Our method properly handles occlusion of the
legs in frame 38 (left), and has much higher accuracy for frame
131 (right), here viewed from a third camera not used for tracking.

generative tracking is more precise for the first 250 frames
and comparable for the last frames, where all three methods
show errors due to ambiguities with the black background.
We thus achieve similarly robust marker-less captured with
only two cameras as their more complex method. These
quantitative improvements also manifest as clear qualitative
pose improvements, as shown in Figure 6. The proper vis-
ibility handling overcomes failures of previous techniques
when arms and legs occlude. Please see the supplemental
material for videos. We also show that the qualitative accu-
racy of our new marker-less approach captured with only
four cameras on the Walker sequence from [25] is compara-
ble to their 12-camera result.

We repeat the same comparison on the outdoor sequence
Soccer with two actors, strong occlusions and fast actions,
from only three views. Again, we obtain significantly better
accuracy than Stoll et al. in terms of 3D joint position, in
particular for the limb joints (see Figure 7), as their results
quickly show severe failures with so few cameras. To ana-
lyze the impact of occlusions, we run our method once for a
single actor, and in a second run we jointly track both actors
(in total 84 parameters and 182 Gaussians). Simultaneous
optimization not only handles self-occlusions but also the
mutual occlusion of both actors. This improves by 10.6%
and demonstrates the strength of precise and differentiable
occlusion handling (see also Figure 8).

In the supplemental document we also analyze the per-
formance of our approach when evaluating our data term for
cells of a quad tree that clusters pixels of similar color, as in
Stoll et al., instead of for all pixels of the input images .

6.3.1 Radius of convergence

Our improved scene model with rigorous visibility handling
leads to more well-behaved similarity energies with a large
radius of convergence, i.e. they converge for points further
away from the global minimum, and a smooth energy land-
scape with few local minima (already observed in OpenDR
comparison). We now validate these properties for the mo-
tion capture energy Fmc, see Figure 9 left. For frame 83

Avg. error [cm]
ours Stoll et al. [25] Elhayek et al. [9]

all joints 7.18 10.72 4.53
limbs 4.81 9.39 4.80

Ground truth ours (m=0.1) Stoll et al. [25] Elhayek et al. [9]

Figure 7. Reconstruction accuracy for the Soccer sequence against
manually annotated ground truth and comparison to [25] and [9].
The figure illustrates a case of ambiguity across two views, where
the generative approach [25] looses track of the person’s arm. Our
approach and the approach from Elhayek et al. [9] instead keep
good average tracking with low 3D reprojection error for all joint
positions, see the table above.

ours (2 actors) ours (1 actor)

Figure 8. Reconstruction for the Soccer sequence with comparison
to tracking and modeling all versus a single actor. As shown in the
figure, tracking of both subjects at the same time is advantageous
as occluding regions are effectively handled by our approach.

of the Marker sequence, we initialized the shoulder joint
with α ∈ [−127◦, 43◦] and analyzed different choices of
m. As expected, the energy Fmc is smoother and contains
fewer local minima for smaller values ofm. We measure the
convergence radius by optimizing from 100 initializations
with α equally spaced over the shown interval and count
successful convergences. While all configurations succeed
for initializations α ∈ [−100◦,−20◦] close to the mini-
mum α = −58◦, only smoother versions (m ≥ 0.1) con-
verge for distant initializations, see Figure 9 right. The case
m=0.0001 models very sharp object boundaries, and hence
gives results similar to methods with binary visibility.
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Figure 9. A 1D slice through the energy landscape (for the shoul-
der joint angle) for different smoothness values m. Higher values
lead to a smoother energy with fewer local minima, and larger
peaks further from the occlusion boundary (at α = −75). The
global minimum of all configurations aligns well with the Eu-
clidean distance to the ground truth (at α = −58). Right: Con-
vergences from 100 initializations within the shown interval.

6.3.2 Visibility gradient and smoothness level

In our final experiment, we show that our new differentiable
and well-behaved visibility function is essential for the suc-
cess of our approach in marker-less human motion capture
with very few cameras. For the Marker sequence, we fix
the visibility for each Gaussian and each camera prior to
each iteration of the gradient-based optimizer, i.e. changes
in occlusion are ignored during optimization. This setup
quickly looses track of the limbs and fails completely after
110 frames, see Figure 10. Moreover, to analyze the behav-
ior of our method for different degrees of smoothness in our
scene model, we compare multiple fixed smoothness levels.
The best trade-off between smoothness and specificity is at-
tained for m = 0.1. Which we use for all our experiments
unless otherwise specified.

6.3.3 Computational complexity and efficiency

Our implementation of functions Fmc and Fpc and their gra-
dients has complexity O(NIN

2
qNK +NθNq) for NI in-

put pixels (summed over all views), and a scene of Nq
Gaussians, NK radiance samples and Nθ parameters. The
quadratic complexity in terms of the number of Gaussians
originates from the handling of multiple occlusion bound-
aries (occlusion test for each pair of Gaussians). Our energy
is nevertheless efficient to evaluate as the Gaussian density
allows to model even complex objects, such as a human,
by few primitives. For higher accuracy, coarse-to-fine ap-
proaches could be applied. For the Marker sequence the per-
formance is 8.1 gradient iterations per second for Fmc, 10K
input pixels (pixels far from the model do not contribute
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Figure 10. Reconstruction accuracy of joints for different smooth-
ness levels m, and for pre-computed fixed visibility per Gaussian.

and are excluded), 72 Gaussians, and 44 pose parameters.
The experiments are executed for 200 iterations on a quad-
core CPU with 3.6 GHz. As the visibility evaluation of each
pixel is independent, further speedups could be obtained by
stochastic optimization and parallel execution on GPUs.

6.4. Discussion and conclusion

We presented a new scene model and corresponding image
formation model that approximates a scene by a translucent
medium defined by Gaussian basis functions. This inten-
tionally smoothes out shape and appearance. While this may
introduce some uncertainty of shape models, it enables a
visibility function and an image formation model that are
differentiable everywhere, and efficient to evaluate. Ana-
lytic pose optimization energies were already used for mo-
tion capture [25, 9], but visibility was only approximated.
Our new approach advances the state of the art by enabling
analytic, smooth and differentiable pose energies with ana-
lytic and differentiable visibility. It also leads to larger con-
vergence radii of these similarity energies. This not only en-
ables us to perform purely generative motion capture at the
same accuracy but with far fewer cameras than Stoll et al.
[25], but also to achieve comparable accuracy with only 2–3
cameras as the more complex method by Elhayek et al. [9]
which combines generative and discriminative approaches.

OpenDR and other surface models may more accurately
represent shape and texture, and also integrate light sources
into the scene model. This allows for higher alignment pre-
cision for some shapes, but it comes at the cost of a smaller
convergence radius, failure under full occlusion, and lower
computational efficiency than with our model.
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