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H2-QUASI-OPTIMAL MODEL ORDER REDUCTION FOR
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Abstract. We investigate the optimal model reduction problem for large-scale quadratic-bilinear
(QB) control systems. Our contributions are threefold. First, we discuss the variational analysis and
the Volterra series formulation for QB systems. We then define the H2-norm for a QB system based
on the kernels of the underlying Volterra series and propose a truncated H2-norm as well. Next, we
derive first-order necessary conditions for an optimal approximation, where optimality is measured in
terms of the truncated H2-norm of the error system. We then propose an iterative model reduction
algorithm, which upon convergence yields a reduced-order system that approximately satisfies the
newly derived optimality conditions. We also discuss an efficient computation of the reduced Hessian,
using the special Kronecker structure of the Hessian of the system. We illustrate the efficiency of the
proposed method by means of several numerical examples resulting from semidiscretized nonlinear
partial differential equations and show its competitiveness with existing model reduction schemes
such as moment-matching and balanced truncation for QB systems by comparing accuracy in the
time-domain simulations and in the truncated H2-norm.
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1. Introduction. Numerical simulation is a fundamental tool in the analysis of
dynamical systems and is required repeatedly, for example, in control, design, opti-
mization, and uncertainty quantification. Dynamical systems are generally governed
by partial differential equations (PDEs), ordinary differential equations (ODEs), or a
combination of both. A high-fidelity approximation of the underlying physical phe-
nomena requires a finely discretized mesh over the spatial domain of interest, leading
to complex dynamical systems with a high-dimensional state space. The simulation
of such large-scale systems, however, imposes a huge computational burden. This
inspires model order reduction (MOR), which aims at constructing simple and reli-
able surrogate models such that their input-output behavior approximates that of the
original large-scale system accurately. These surrogate models can then be used in
engineering studies, which make numerical simulations faster and efficient.

In recent decades, numerous theoretical and computational aspects of MOR for
linear systems have been investigated; see, e.g., [2, 6, 15, 43]. MOR methods have
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984 PETER BENNER, PAWAN GOYAL, AND SERKAN GUGERCIN

been successfully applied in various fields, e.g., optimal control, PDE-constrained
optimization, and uncertainty quantification; see, for example, [17, 29]. In recent
years, however, MOR of nonlinear systems has gained significant interest with the goal
of extending the input-independent, optimal MOR techniques from linear systems to
nonlinear ones. For example, MOR techniques for linear systems such as balanced
truncation (BT) [2, 36], or the iterative rational Krylov algorithm (IRKA) [24], have
been extended to a special class of nonlinear systems, the so-called bilinear systems,
in which nonlinear terms arise from the product of the state and input [8, 11, 22, 48].
In this article, we address another vital class of nonlinear systems, called quadratic-
bilinear (QB) systems. These are of the form

(1.1) Σ :




ẋ(t) = Ax(t) +H (x(t)⊗ x(t)) +

m∑

k=1

Nkx(t)uk(t) +Bu(t),

y(t) = Cx(t), x(0) = 0,

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp are the states, inputs, and outputs of
the system at time t, respectively; uk is the kth component of u; and n is the state
dimension. Furthermore, A,Nk ∈ Rn×n for k ∈ {1, . . . ,m}, H ∈ Rn×n2

, B ∈ Rn×m,
and C ∈ Rp×n.

There is a variety of applications where the system inherently contains a quadratic
nonlinearity, which can be modeled in the QB form (1.1) e.g., spatial discretizations of
the Burgers’ equation, the Allen–Cahn or Chafee–Infante equation, and many other
models from engineering and physics. Moreover, a large class of smooth nonlinear
systems, involving combinations of elementary functions like exponential, trigono-
metric, polynomial functions, etc., can be equivalently rewritten as QB systems (1.1)
as shown in [10, 23]. This is achieved by introducing some new appropriate state vari-
ables to simplify the nonlinearities present in the underlying control system and by
deriving differential equations corresponding to the newly introduced variables, or by
using appropriate algebraic constraints. When algebraic constraints are introduced in
terms of the state and the newly defined variables, the system contains algebraic equa-
tions along with differential equations. Such systems are called differential-algebraic
equations (DAEs) or descriptor systems [34]. MOR procedures for DAEs become in-
evitably more complicated, even in the linear and bilinear settings; e.g., see [12, 25].
In this article, we restrict ourselves to QB ODE systems and leave MOR for QB
descriptor systems as a future research topic.

For a given QB system (1.1) Σ of order n, our aim is to construct a reduced-order
system

(1.2) Σ̂ :





˙̂x(t) = Âx̂(t) + Ĥ (x̂(t)⊗ x̂(t)) +

m∑

k=1

N̂kx̂(t)uk(t) + B̂u(t),

ŷ(t) = Ĉx̂(t), x̂(0) = 0,

where Â, N̂k ∈ Rr×r for k ∈ {1, . . . ,m}, Ĥ ∈ Rr×r2 , B̂ ∈ Rr×m, and Ĉ ∈ Rp×r with
r � n such that the outputs of the system (1.1) and (1.2), y and ŷ, are close in a
proper norm for all admissible inputs uk ∈ L2[0,∞[.

Similar to the linear and bilinear cases, we construct the reduced-order sys-
tem (1.2) via projection. Toward this goal, we construct two model reduction basis
matrices V,W ∈ Rn×r such that WTV is invertible. Then, the reduced matrices
in (1.2) are given by
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Â = (WTV )−1WTAV, N̂k = (WTV )−1WTNkV for k ∈ {1, . . . ,m},
Ĥ = (WTV )−1WTH(V ⊗ V ), B̂ = (WTV )−1WTB, and Ĉ = CV.

It can be easily seen that the quality of the reduced-order system depends on the
choice of the reduction subspaces spanned by the columns of V and W , respectively.
There exist various MOR approaches in the literature to determine these subspaces.
One of the earlier and popular methods for nonlinear systems is proper orthogonal
decomposition (POD); see, e.g., [3, 19, 28, 33]. POD relies on the Galerkin projection
P = VVT , where V is determined based on extracting the dominant modes of the
system dynamics from a selection of snapshots of the solution trajectories computed
using some training input. A Petrov–Galerkin-type projection can be obtained us-
ing the dual/adjoining system in either time or frequency domain [40, 46]. Another
widely used method for nonlinear systems is the trajectory piecewise linear method;
e.g., see [39]. For this method, the nonlinear system is replaced by a weighted sum of
linear systems; these linear systems can then be reduced by using well-known meth-
ods for linear systems such as BT, or interpolation methods; e.g., see [2]. However,
the abovementioned methods require some snapshots or solution trajectories of the
original systems for particular inputs. This indicates that the resulting reduced-order
system depends on the choice of inputs, which may make the reduced-order system
inadequate in many applications such as control and optimization, where the variation
of the input is inherent to the problem.

MOR methods based on interpolation or moment-matching have been extended
from linear systems to QB systems, with the aim of capturing the input-output behav-
ior of the underlying system independent of a training input. One-sided interpolatory
projection for QB systems is studied in [4, 23, 37, 38], and has been recently extended
to a two-sided interpolatory projection in [9, 10]. These methods result in reduced-
order systems that do not rely on the training data for a control input; see also the
survey [6] for some related approaches. Thus, the resulting reduced-order systems can
be used in input-varying applications. In the aforementioned references, the authors
have shown how to construct an interpolating reduced-order system for a given set of
interpolation points. But it is still an open problem how to choose these interpolation
points optimally with respect to an appropriate norm. Furthermore, the two-sided
interpolatory projection method [10] is only applicable to single-input single-output
(SISO) systems, which is very restrictive, and additionally, the stability of the re-
sulting reduced-order systems also remains another major issue. We note here that
the method proposed in this paper does not resolve this issue. It remains an open
problem, even in the case of linear systems, to give general conditions for stability
preservation of two-sided projection methods.

Very recently, BT has been extended from linear/bilinear systems to QB sys-
tems [13]. This method first determines the states which are hard to control and
observe, and constructs the reduced model by truncating those states. Importantly,
balance truncation yields locally Lyapunov stable reduced-order systems, and an ap-
propriate order of the reduced-order system can be determined based on the singular
values of the Gramians of the system. But unlike in the linear case, the resulting
reduced-order systems do not retain other desirable properties such as an a priori er-
ror bound. Moreover, in order to apply BT to QB systems, we require the solutions of
four conventional Lyapunov equations, which could be computationally cumbersome
in large-scale settings, although there have been many advancements in recent times
related to computing the low-rank solutions of Lyapunov equations [16, 44].
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986 PETER BENNER, PAWAN GOYAL, AND SERKAN GUGERCIN

Another popular input-independent MOR approach for linear and bilinear sys-
tems is based on computing models that satisfy optimality conditions for the best
approximation in the H2 system norm. Therefore, in this paper, we study the H2-
optimal approximation problem for QB systems. Precisely, we show how to choose the
model reduction bases in a two-sided projection framework for QB systems so that
the reduced-order system approximately minimizes the cost encoding the approxi-
mation error in the H2-norm. Our main contributions are threefold. In section 2,
we derive various expressions and formulas related to Kronecker products, which are
later heavily utilized in deriving the optimality conditions. In section 3, we first de-
fine the H2-norm of the QB system (1.1) based on the kernels of its Volterra series
(input/output mapping), and also derive an expression for a truncated H2-norm for
QB systems. Subsequently, based on the truncated H2-norm of the error system, we
derive first-order necessary conditions for optimal model reduction of QB systems.
We then propose an iterative algorithm to construct reduced-order systems that ap-
proximately satisfy the newly derived optimality conditions. Furthermore, we discuss
an efficient alternative way to compute reduced Hessians as compared with the one
proposed in [10]. In section 4, we illustrate the efficiency of the proposed method for
various semidiscretized nonlinear PDEs and compare it with existing methods such
as BT [13] as well as the one-sided and two-sided interpolatory projection methods
for QB systems [10, 23]. We conclude the paper with a short summary and potential
future directions in section 5.

Notation: Throughout the paper, we make use of the following notation:

• Iq denotes the identity matrix of size q× q, and its pth column is denoted by eqp.
• vec (·) denotes vectorization of a matrix, and Im denotes vec (Im).
• ⊗ denotes the Kronecker product of two matrices (including vectors as special

cases).
• tr (·) refers to the trace of a matrix.
• Using MATLAB® notation, we denote the jth column of the matrix A by A(:, j).
• 0 is a zero matrix of appropriate size.
• We denote the full-order system (1.1) and reduced-order system (1.2) by Σ and

Σ̂, respectively.
• orth (A) returns an orthonormal basis for the range of the matrix A.

2. Tensor matricizations and their properties. We first review some basic
concepts from tensor algebra. First, we note the following important properties of the
vec (·) operator:

tr
(
XTY

)
= vec (X)

T
vec (Y ) = vec (Y )

T
vec (X) and(2.1a)

vec (XY Z) = (ZT ⊗X) vec (Y ) .(2.1b)

Next, we review the concepts of matricization of a tensor. Since the Hessian H
of the QB system in (1.1) is a third-order tensor, we focus on three-way tensors
Xn×n×n. However, most of the concepts can be extended to general kth-order tensors.
Similar to how rows and columns are defined for a matrix, one can define a fiber of
X by fixing all indices but one, e.g., X (:, i, j),X (i, :, j), and X (i, j, :). Mathematical
operations involving tensors are easier to perform using their corresponding matrix
representations. For this purpose, there exists a very well-known process of unfolding
a tensor into a matrix, called matricization of a tensor. For a third-order tensor, there
are three different ways to unfold it, depending on the mode-µ fibers that are used for
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X1 ∈ Rn×n

X2 ∈ Rn×n

Xn ∈ Rn×n

Fig. 2.1. Representation of a tensor using frontal slices [32].

the unfolding. If the tensor is unfolded using its mode-µ fibers, it is called the mode-µ
matricization of X . We refer to [30, 32] for more details on these basic concepts of
tensor theory.

In the following example, we illustrate how a third-order tensor X ∈ Rn×n×n can
be unfolded into different matrices.

Example 2.1. Consider a third-order tensor Xn×n×n whose frontal slices are given
by matrices Xi ∈ Rn×n, as shown in Figure 2.1. Then, its mode-µ matricizations,
µ ∈ {1, 2, 3}, are given by

X (1) = [X1, X2, . . . , Xn], X (2) = [XT
1 , X

T
2 , . . . , X

T
n ], and

X (3) = [vec (X1) , vec (X2) , . . . , vec (Xn)]T .

Similar to the matrix-matrix product, one can also perform a tensor-matrix or
tensor-tensor multiplication. Of particular interest in this paper are tensor-matrix
multiplications, which can be performed by means of matricizations; see, e.g., [32].
For a given tensor X ∈ Rn×n×n and a matrix A ∈ Rn1×n, the µ-mode matrix product
is denoted by X ×µ A =: Y, i.e., Y ∈ Rn1×n×n for µ = 1. In the case of the µ-mode
matrix multiplication, the mode-µ fiber is multiplied with the matrix A, which can
be written as

Y = X ×µ A ⇔ Y(µ) = AX (µ).

Furthermore, if a tensor is given as

(2.2) Z = X ×1 A×2 B ×3 C,

where A ∈ Rn1×n, B ∈ Rn2×n, and C ∈ Rn3×n, then the mode-µ matriciziations of Z
satisfy

(2.3) Z(1) = AX (1)(C ⊗ B)T , Z(2) = BX (2)(C ⊗ A)T , Z(3) = CX (3)(B ⊗A)T .

Using these properties of the tensor products, we now introduce our first result on
tensor matricizations.

Lemma 2.2. Consider tensors X ,Y ∈ Rn×n×n and let X (i) and Y(i) denote, re-
spectively, their mode-i matricizations. Then,

tr
(
X (1)(Y(1))T

)
= tr

(
X (2)(Y(2))T

)
= tr

(
X (3)(Y(3))T

)
.
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988 PETER BENNER, PAWAN GOYAL, AND SERKAN GUGERCIN

Proof. We begin by denoting the ith frontal slice of X and Y by Xi and Yi,
respectively; see Figure 2.1. Thus,

tr
(
X (1)(Y(1))T

)
= tr

([
X1, X2, . . . , Xn

] [
Y1, Y2, . . . , Yn

]T)

=

n∑

i=1

tr
(
XiY

T
i

)
=

n∑

i=1

tr
(
XT
i Yi

)

= tr
([
XT

1 , X
T
2 , . . . , X

T
n

] [
Y T1 , Y

T
2 , . . . , Y

T
n

]T)
= tr

(
X (2)(Y(2))T

)
.

Furthermore, since tr
(
XTY

)
= vec (X)

T
vec (Y ), this allows us to write

tr
(
X (1)(Y(1))T

)
=

n∑

i=1

tr
(
XT
i Yi

)
=

n∑

i=1

vec (Xi)
T

vec (Yi) .

Since the ith rows of X (3) and Y(3) are given by vec (Xi)
T

and vec (Yi)
T

, respectively,

it holds that
∑n
i=1 vec (Xi)

T
vec (Yi) = tr

(
X (3)(Y(3))T

)
. This concludes the proof.

Recall that the Hessian H in the QB system (1.1) is of size n × n2; thus, it can
be interpreted as an unfolding of a tensor Hn×n×n. Without loss of generality, we
assume the Hessian H to be the mode-1 matricization of H, i.e., H = H(1). Also, we
assume H to be symmetric. This means that for given vectors u and v,

H(u⊗ v) = H(1)(u⊗ v) = H(1)(v ⊗ u) = H(v ⊗ u).(2.4)

This provides the additional information that the other two matricization modes of
H are the same, i.e.,

H(2) = H(3).(2.5)

In general, it is not necessary that the Hessian H (mode-1 matrizication of the tensor
H) obtained from the discretization of the governing PDEs satisfies (2.4). However,
as shown in [10], the Hessian H can be modified in such a way that the modified

Hessian H̃ satisfies (2.4) without any change in the dynamics of the system; thus,
for the rest of the paper, without loss of generality, we assume that the tensor H is
symmetric.

The additional property that the Hessian is symmetric will allow us to derive
some new relationships between matricizations and matrices that will prove to be
crucial ingredients in simplifying the expressions arising in the derivation of optimality
conditions in section 3.

Lemma 2.3. Let H ∈ Rn×n×n be a third-order tensor, satisfying (2.4) and (2.5),
and consider matrices A,B, C ∈ Rn×n. Then,

H(1)(B ⊗ C)
(
H(1)

)T
= H(1)(C ⊗ B)

(
H(1)

)T
(2.6)

and

(vec (B))
T

vec
(
H(2)(C ⊗ A)(H(2))T

)
= (vec (C))T vec

(
H(2)(B ⊗A)(H(2))T

)

= (vec (A))
T

vec
(
H(1)(C ⊗ B)(H(1))T

)
.
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Proof. We begin by proving the relation in (2.6). The order in the Kronecker
product can be changed via pre- and post-multiplication of appropriate permutation
matrices; see [27, sect. 3]. Thus,

B ⊗ C = S(C ⊗ B)ST ,

where S is the permutation matrix S =
∑n
i=1((eni )T ⊗ In ⊗ eni ). We can then write

H(1)(B ⊗ C)
(
H(1)

)T
= H(1)S(C ⊗ B)

(
H(1)S

)T
.(2.7)

We now manipulate the term H(1)S:

H(1)S =

n∑

i=1

H(1)((eni )T ⊗ In ⊗ eni ).(2.8)

Furthermore, we can write In as the Kronecker product

(2.9) In =

n∑

j=1

(enj )T ⊗ enj ,

and since for a vector f ∈ Rq, fT ⊗ f = ffT , we can write (2.9) in another form as

(2.10) In =

n∑

j=1

enj (enj )T .

Substituting these relations in (2.8) leads to

H(1)S =

n∑

i=1

n∑

j=1

H(1)((eni )T ⊗ (enj )T ⊗ enj ⊗ eni )

=

n∑

i=1

n∑

j=1

H(1)
(
enj ⊗ eni

) (
(eni )T ⊗ (enj )T

) (
∵ for f ∈ Rq, fT ⊗ f = ffT

)

=

n∑

i=1

n∑

j=1

H(1)(eni ⊗ enj )((eni )T ⊗ (enj )T ). (∵ the relation (2.4))(2.11)

Next, we use a tensor-multiplication property in the above equation, namely,

(2.12) (P ⊗Q)(R⊗ S) = (PR⊗QS),

where P,Q,R, and S are of compatible dimensions. Using the Kronecker product
property (2.12) in (2.11), we obtain

H(1)S = H(1)




n∑

i=1

eni (eni )T ⊗
n∑

j=1

enj (enj )T




= H(1)(In ⊗ In) = H(1). (from (2.10))

Substituting the above relation in (2.7) proves (2.6). For the second part, we utilize
the trace property (2.1a) to obtain

(vec (B))
T

vec
(
H(2)(C ⊗ A)(H(2))T

)
= tr


BTH(2)(C ⊗ A)︸ ︷︷ ︸

=L(2)

(H(2))T
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where L(2) ∈ Rn×n2

can be considered as a mode-2 matricization of a tensor Ln×n×n.
Using Lemma 2.2 and the relations (2.3), we obtain

tr

(
L(2)

(
H(2)

)T)
= tr

(
L(3)

(
H(3)

)T)
= tr

(
CTH(3)(B ⊗A)

(
H(3)

)T)

= tr

(
CTH(2)(B ⊗A)

(
H(2)

)T)
(using (2.5))

= (vec (C))T vec

(
H(2)(B ⊗A)

(
H(2)

)T)
.

Furthermore, we also have

tr

(
L(2)

(
H(2)

)T)
= tr

(
L(1)

(
H(1)

)T)
= tr

(
ATH(1)(C ⊗ B)

(
H(1)

)T)

= (vec (A))
T

vec

(
H(1)(C ⊗ B)

(
H(1)

)T)
,

which completes the proof.

Next, we prove the connection of a certain permutation matrix to the Kronecker
product.

Lemma 2.4. Consider two matrices X,Y ∈ Rn×m. Define the permutation ma-
trix T(n,m) ∈ {0, 1}n

2m2×n2m2

as

(2.13) T(n,m) = Im ⊗
[
Im ⊗ en1 , . . . , Im ⊗ enn

]
⊗ In.

Then,

vec (X ⊗ Y ) = T(n,m) (vec (X)⊗ vec (Y )) .

Proof. Let us denote the ith columns of X and Y by xi and yi, respectively. We
can then write

vec (X ⊗ Y ) =




vec (x1 ⊗ Y )
...

vec (xm ⊗ Y )


 .(2.14)

Now we concentrate on the ith block row of vec (X ⊗ Y ), which, using (2.1b) and
(2.12), can be written as

vec (xi ⊗ Y ) = vec ((xi ⊗ In)Y ) = (Im ⊗ xi ⊗ In) vec (Y )

=
(
Im ⊗

[
x

(1)
i en1 + · · ·+ x

(n)
i enn

]
⊗ In

)
vec (Y ) ,(2.15)

where x
(j)
i is the (j, i)th entry of the matrix X. An alternative way to write (2.15) is

vec (xi ⊗ Y ) = [Im ⊗ en1 ⊗ In, . . . , Im ⊗ enn ⊗ In] (xi ⊗ Inm) vec (Y )

= ([Im ⊗ en1 , . . . , Im ⊗ enn]⊗ In) (xi ⊗ vec (Y )).
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This yields

vec (X ⊗ Y ) =




([Im ⊗ en1 , . . . , Im ⊗ enn]⊗ In) (x1 ⊗ vec (Y ))
...

([Im ⊗ en1 , . . . , Im ⊗ enn]⊗ In) (xm ⊗ vec (Y ))




= (Im ⊗ [Im ⊗ en1 , . . . , Im ⊗ enn]⊗ In)



x1 ⊗ vec (Y )

...
xm ⊗ vec (Y )




= (Im ⊗ [Im ⊗ en1 , . . . , Im ⊗ enn]⊗ In)






x1

...
xm


⊗ vec (Y )




= (Im ⊗ [Im ⊗ en1 , . . . , Im ⊗ enn]⊗ In) (vec (X)⊗ vec (Y )) ,

which proves the assertion.

Lemma 2.4 will be utilized in simplifying the error expressions in the next section.

3. H2-Norm for QB systems and optimality conditions. In this section,
we first define the H2-norm for the QB systems (1.1) and its truncated version. Then,
based on the truncated H2 measure, we derive first-order necessary conditions for op-
timal model reduction. These optimality conditions will naturally lead to a numerical
algorithm to construct quasi-optimal reduced models for QB systems that are in-
dependent of training data. The proposed model reduction framework extends the
optimal H2 methodology from linear [24] and bilinear systems [8, 22] to QB nonlinear
systems.

3.1. H2-norm of QB systems. In order to define the H2-norm for QB systems
and its truncated version, we first require the input/output representation for QB
systems. In other words, we aim at obtaining the solution of QB systems with the
help of Volterra series as has been done for bilinear systems, e.g., as in [41, sect. 3.1].
For this, one can utilize variational analysis [41, sect. 3.4]. Since the QB system falls
under the class of linear-analytic systems, for a scalar α, we can write the solution
x(t) of (1.1) for an input αu(t) as

x(t) =

∞∑

s=1

αsxs(t),

where xs(t) ∈ Rn. Thus, we obtain

∞∑

s=1

αsẋs(t) = A

( ∞∑

s=1

αsxs(t)

)
+H

(( ∞∑

s=1

αsxs(t)

)
⊗
( ∞∑

s=1

αsxs(t)

))

+

m∑

k=1

αNk

∞∑

s=1

(αsxs(t))uk(t) + αBu(t).(3.1)

Since the expression (3.1) holds for arbitrary α, the coefficients of αi, i ∈ {1, 2, . . .},
can be equated on both sides of (3.1), leading to
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ẋ1(t) = Ax1(t) +Bu(t),

ẋ2(t) = Ax2(t) +H (x1(t)⊗ x1(t)) +

m∑

k=1

Nkx1uk(t), and

ẋs(t) = Axs(t) +
∑

i,j≥1
i+j=s

H (xi(t)⊗ xj(t)) +

m∑

k=1

Nkxs−1(t)uk(t), s ≥ 3.(3.2)

Then, let α = 1 so that x(t) =
∑∞
s=1 xs(t), where xs(t) solves the coupled linear

differential equation (3.2). The equation for x1(t) corresponds to a linear system,
thus allowing us to write the expression for x1(t) as a convolution:

x1(t) =

∫ t

0

eAt1Bu(t− t1)dt1.(3.3)

Using the expression for x1(t), we can obtain an explicit expression for x2(t):

x2(t) =

m∑

k=1

t∫

0

t−t2∫

0

eAt2Nke
At1Bu(t− t1 − t2)uk(t− t2)dt1dt2

+

t∫

0

t−t3∫

0

t−t3∫

0

eAt3H
(
eAt2B ⊗ eAt1B

)
u(t− t2 − t3)⊗ u(t− t1 − t3)dt1dt2dt3.

Similarly, one can write down explicit expressions for xs(t), s ≥ 3, as well, but the
notation and expression become tedious, and we skip them for brevity. Then, we
can write the output y(t) of the QB system as y(t) =

∑∞
s=1 Cxs(t), leading to the

input/output relation of the QB system (1.1)

y(t) =

t∫

0

CeAt1Bu(t− t1)dt1

(3.4)

+

t∫

0

t−t2∫

0

CeAt2
[
N1, . . . , Nm

] (
Im ⊗ eAt1B

)
(u(t− t2)⊗ u(t− t1 − t2)) dt1dt2

+

t∫

0

t−t3∫

0

t−t3∫

0

CeAt3H
(
eAt2B ⊗ eAt1B

)

× u(t− t2 − t3)⊗ u(t− t1 − t3)dt1dt2dt3 + · · · .

Examining the structure of (3.4) reveals that the kernels fi(t1, . . . , ti) of (3.4) are
given by the recurrence formula

(3.5) fi(t1, . . . , ti) = Cgi(t1, . . . , ti),

where

g1(t1) = eAt1B,

g2(t1, t2) = eAt2
[
N1, . . . , Nm

] (
Im ⊗ eAt1B

)
,
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gi(t1, . . . , ti) = eAti
[
H [g1(t1)⊗ gi−2(t2, . . . , ti−1), . . . , gi−2(t1, . . . , ti−2)⊗ g1(ti−1)] ,

[
N1, . . . , Nm

]
(Im ⊗ gi−1)

]
, i ≥ 3.(3.6)

As shown in [48], the H2-norm of a bilinear system can be defined in terms of an
infinite series of kernels, corresponding to its input/output mapping. Inspired by this
definition, next we introduce the H2-norm of a QB system based on these kernels.

Definition 3.1. Consider the QB system (1.1) with its Volterra kernels, defined
in (3.5). Then, we define the H2-norm of the QB system by

(3.7) ‖Σ‖H2 :=

√√√√tr

( ∞∑

i=1

∫ ∞

0

· · ·
∫ ∞

0

fi(t1, . . . , ti)fTi (t1, . . . , ti)dt1 . . . dti

)
.

Even though this definition naturally extends theH2-norm to QB system, it is not
suitable for computation. Fortunately, we can find an alternative way to compute the
norm in a numerically efficient way using matrix equations. We know from the cases
of linear and bilinear systems that the H2-norms of these systems can be computed
in terms of certain system Gramians. We next show that this is also the case for QB
systems. The algebraic Gramians for QB systems have recently been studied in [13].
So, in the following, we extend such relations between theH2-norm (see Definition 3.1)
and the systems Gramians to QB systems.

Lemma 3.2. Consider a QB system with a stable matrix A, and let P and Q,
respectively, be the controllability and observability Gramians of the system, which are
the unique positive semidefinite solutions of the following quadratic-type Lyapunov
equations:

AP + PAT +H(P ⊗ P )HT +

m∑

k=1

NkPN
T
k +BBT = 0 and(3.8)

ATQ+QA+H(2)(P ⊗Q)
(
H(2)

)T
+

m∑

k=1

NT
k QNk + CTC = 0.(3.9)

Assuming the H2-norm of the QB system exists, i.e., the infinite series in (3.7) con-
verges, then the H2-norm of the QB system can be computed as

(3.10) ‖Σ‖H2
:=
√

tr (CPCT ) =
√

tr (BTQB).

Proof. We begin with the definition of the H2-norm of a QB system, that is,

‖Σ‖H2
=

√√√√tr

( ∞∑

i=1

∫ ∞

0

· · ·
∫ ∞

0

fi(t1, . . . , ti)fTi (t1, . . . , ti)dt1 . . . dti

)

=

√√√√tr

(
C

( ∞∑

i=1

∫ ∞

0

· · ·
∫ ∞

0

gi(t1, . . . , ti)gTi (t1, . . . , ti)dt1 . . . dti

)
CT

)
,

where fi(t1, . . . , ti) and gi(t1, . . . , ti) are defined in (3.5) and(3.6), respectively. It is
shown in [13] that

(3.11)

∞∑

i=1

∫ ∞

0

· · ·
∫ ∞

0

gi(t1, . . . , ti)g
T
i (t1, . . . , ti)dt1 . . . dti = P,

where P solves (3.8) if the series in (3.11) converges. Thus,
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‖Σ‖H2 =
√

tr (CPCT ).

Next, we prove that tr
(
CPCT

)
= tr

(
BTQB

)
, where Q solves (3.9). Making use of

the Kronecker product properties (2.1), we can write tr
(
CPCT

)
as

tr
(
CPCT

)
= ITp (C ⊗ C) vec (P ) .

Vectorizing both sides of (3.8) yields
(3.12)(
A⊗ In + In ⊗A+

m∑

k=1

Nk ⊗Nk
)

vec (P ) + (H ⊗H) vec (P ⊗ P ) + (B⊗B)Im = 0.

Using Lemma 2.4 in the above equation and performing some simple manipulations
yield an expression for vec (P ) as

vec (P ) = G−1(B ⊗B)Im =: Pv,

where

G = −
(
A⊗ In + In ⊗A+

m∑

k=1

Nk ⊗Nk + (H ⊗H)T(n,n)(In2 ⊗ vec (P ))

)
.

Thus,

(3.13) tr
(
CPCT

)
= ITp (C ⊗ C)G−1(B ⊗B)Im = ITm(BT ⊗BT )G−T (CT ⊗ CT )Ip.

Now, let Qv = G−T (CT ⊗ CT )ITp . As a result, we obtain

(CT ⊗ CT )ITp = vec
(
CTC

)
= GTQv

= −
(
AT ⊗ In + In ⊗AT +

m∑

k=1

NT
k ⊗NT

k

)
Qv

+
(
(H ⊗H)T(n,n) (In2 ⊗ Pv)

)T
Qv.

Next, we consider a matrix Q̃ such that (Q̃) = Qv, which further simplifies the above
equation as

vec
(
CTC

)
= − vec

(
AT Q̃+ Q̃A+

m∑

k=1

NT
k Q̃Nk

)
−
(
(H ⊗H)T(n,n)(In2 ⊗ Pv)

)T
Qv.

(3.14)

Now, we focus on the transpose of the second part of (3.14), that is,

QTv (H ⊗H)T(n,n) (In2 ⊗ vec (P ))

= QTv (H ⊗H)T(n,n)

[
en

2

1 ⊗ vec (P ) , . . . , en
2

n2 ⊗ vec (P )
]

= QTv (H ⊗H)
[
vec (Ψ1 ⊗ P ) , . . . , vec (Ψn2 ⊗ P )

]
=: Ξ, (using Lemma 2.4)

where Ψi ∈ Rn×n is such that en
2

i = vec (Ψi). Using (2.1) and Lemma 2.3, we further
analyze the above equation:
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Ξ = vec
(
Q̃
)T [

vec
(
H (Ψ1 ⊗ P )HT

)
, . . . , vec

(
H (Ψn2 ⊗ P )HT

)]

= vec
(
Q̃
)T [

vec
(
H (P ⊗Ψ1)HT

)
, . . . , vec

(
H (P ⊗Ψn2)HT

)]

=
[

vec (Ψ1)
T

vec
(
H(2)

(
P ⊗ Q̃

)
(H(2))T

)
, . . . ,

vec (Ψn2)
T

vec
(
H(2)

(
P ⊗ Q̃

)
(H(2))T

) ]

=

[(
en

2

1

)T
vec
(
H(2)

(
P ⊗ Q̃

)
(H(2))T

)
, . . . ,

(
en

2

n2

)T
vec
(
H(2)

(
P ⊗ Q̃

)
(H(2))T

)]

=
(

vec
(
H(2)

(
P ⊗ Q̃

)
(H(2))T

))T
.

Substituting this relation into (3.14) yields

vec
(
CTC

)
= − vec

(
AT Q̃+ Q̃A+

m∑

k=1

NT
k Q̃Nk +H(2)

(
P ⊗ Q̃

)
(H(2))T

)
,

which shows that Q̃ solves (3.9) as well. Since it is assumed that Eq. (3.9) has a

unique solution, we get Q̃ = Q. Replacing G−T (CT ⊗CT )ITp by vec (Q) in (3.13) and
using (2.1) results in

tr
(
CPCT

)
= ITm(BT ⊗BT ) vec (Q) = tr

(
BTQB

)
.

This concludes the proof.

It can be seen that if H is zero, the expression (3.10) boils down to the H2-norm
of bilinear systems, and if all Nk are also set to zero then it provides us the H2-norm
of stable linear systems as one would expect.

Remark 3.3. In Lemma 3.2, we have assumed that the solutions of (3.8) and
(3.9) exist and that they are unique and positive semidefinite. Equivalently, the series
appearing in the definition of the H2-norm is finite (see Definition 3.1); hence, the
H2-norm exists. Naturally, the stability of the matrix A is necessary for the existence
of Gramians, and a detailed study of the solutions of (3.8) and (3.9) has been carried
out in [13]. However, as for bilinear systems, these Gramians may not have the desired
properties such as uniqueness and positive semidefiniteness when ‖Nk‖ and ‖H‖ are
large.

Nonetheless, from a MOR viewpoint, a solution of these problems can be obtained
via rescaling of the system as has been done in the bilinear case [20]. For this, we
need to rescale the input variable u(t) as well as the state vector x(t). More precisely,
in (1.1), we can replace x(t) and u(t) with x(t) =: γx̃(t) and u(t) =: γũ(t), respectively.
This leads to

(3.15)
γ ˙̃x(t) = γAx̃(t) + γ2H (x̃(t)⊗ x̃(t)) + γ2

m∑

k=1

Nkx̃(t)ũk(t) + γBũ(t),

y(t) = γCx̃(t), x̃(0) = 0.

For γ 6= 0, we get a scaled system as follows:

(3.16)
˙̃x(t) = Ax̃(t) + (γH) (x̃(t)⊗ x̃(t)) +

m∑

k=1

(γNk)x̃(t)ũk(t) +Bũ(t),

ỹ(t) = Cx̃(t), x̃(0) = 0,
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where ỹ(t) = y(t)/γ. Comparing the systems (1.1) and (3.16) shows that the in-
put/output mappings differ by the scaling factor γ. Hence, we can use the system
(3.16) as an auxiliary system during the MOR process; more precisely, to compute the
model reduction bases. However, note that the reduced-order system is constructed
by applying Petrov–Galerkin projection applied to the original, unscaled matrices in
(1.1).

Our primary aim is to determine a reduced-order system that minimizes the H2-
norm of the error system. From the derived H2-norm expression for the QB system,
it is clear that the true H2-norm has a complicated structure as defined in (3.7) and
does not lend itself well to deriving necessary conditions for optimality. Therefore, to
simplify the problem, we focus only on the first three leading terms of the series (3.4).
The main reason for considering the three terms is that it is the minimum number of
terms containing contributions from all the system matrices (A,H,Nk, B, C); in other
words, linear, bilinear, and quadratic terms are already contained in these first three
terms. Our approach is also inspired by [22], where a truncated H2-norm is defined for
bilinear systems and used to construct high-fidelity reduced-order models minimizing
corresponding error measures. Therefore, based on these three leading terms, we
define a truncated H2-norm for QB systems, denoted by ‖Σ‖H(T )

2
. Precisely, the

truncated norm can be defined as follows:

(3.17) ‖Σ‖H(T )
2

:=

√√√√tr

(
3∑

i=1

∫ ∞

0

· · ·
∫ ∞

0

f̃i(t1, . . . , ti)
(
f̃i(t1, . . . , ti)

)T
dt1 · · · dti

)
,

where

(3.18) f̃i(t1, . . . , ti) = Cg̃i(t1, . . . , ti), i ∈ {1, 2, 3},
and

g̃1(t1) = eAt1B, g̃2(t1, t2) = eAt2
[
N1, . . . , Nm

] (
Im ⊗ eAt1B

)
,

g̃3(t1, t2, t3) = eAt3H(eAt2B ⊗ eAt1B
)
.

Analogous to theH2-norm of the QB system, a truncatedH2-norm of QB systems
can be determined by truncated controllability and observability Gramians associated
with the QB system, denoted by PT and QT , respectively [13]. If the matrix A is
stable, these truncated Gramians exist (see [13] for the integral form) and are the
unique and positive semidefinite solutions of the following Lyapunov equations:

APT + PT A
T +

m∑

k=1

NkPlN
T
k +H(Pl ⊗ Pl)HT +BBT = 0,(3.19a)

ATQT +QT A+

m∑

k=1

NT
k QlNk +H(2)(Pl ⊗Ql)

(
H(2)

)T
+ CTC = 0,(3.19b)

where H(2) is the mode-2 matricization of the QB Hessian and Pl and Ql are the
unique solutions of the following Lyapunov equations:

APl + PlA
T +BBT = 0,(3.20a)

ATQl +QlA+ CTC = 0.(3.20b)

In what follows, we show the connection between the truncated H2-norm and the
defined truncated Gramians for QB systems.
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Lemma 3.4. Let Σ be the QB system (1.1) with a stable A matrix. Then the
truncated H2-norm based on the first three terms of the Volterra series is given by

‖Σ‖H(T )
2

=
√

tr (CPT CT ) =
√

tr (BTQT B),

where PT and QT are truncated controllability and observability Gramians of the
system, satisfying (3.19).

Proof. First, we note that (3.19) and (3.20) are standard Lyapunov equations.
As A is assumed to be stable, these equations have unique solutions [5]. Next, let Ri
be

Ri =

∫ ∞

0

· · ·
∫ ∞

0

f̃i(t1, . . . , ti)
(
f̃i(t1, . . . , ti)

)T
dt1 · · · dti,

where f̃i(t1, . . . , ti) are as defined in (3.18). Thus, ‖Σ‖2H(T )
2

= tr (C(
∑3
i=1Ri)CT ). It

is shown in [13] that
∑3
i=1Ri = PT solves the Lyapunov equation (3.19a). Hence,

‖Σ‖2H(T )
2

= tr
(
CPT C

T
)
.

Next, we show that tr
(
CPT CT

)
= tr

(
BTQT B

)
. For this, we use the trace prop-

erty (2.1b) to obtain

tr
(
CPT C

T
)

= (Ip)T (C ⊗ C) vec (PT ) and tr
(
BTQT B

)
= (vec (QT ))

T
(B ⊗B)Im.

Applying vec (·) to both sides of (3.19) results in

vec (PT ) = L−1

(
(B ⊗B) Im +

m∑

k=1

(Nk ⊗Nk)L−1 (B ⊗B) Im

+ vec
(
H (Pl ⊗ Pl)HT

)
)

and

vec (QT ) = L−T
(

(C ⊗ C)TIp +

m∑

k=1

(Nk ⊗Nk)TL−T (C ⊗ C)TIp

+ vec

(
H(2)(Pl ⊗Ql)

(
H(2)

)T)
)
,

where L = −(A⊗ In + In ⊗A) and Pl and Ql solve (3.20). Thus,

(3.21)

tr
(
BTQT B

)
=

(
(Ip)T (C ⊗ C) + (Ip)T (C ⊗ C)L−1

m∑

k=1

(Nk ⊗Nk)

+

(
vec

(
H(2)(Pl ⊗Ql)

(
H(2)

)T))T
)
L−1(B ⊗B)Im.

Since Pl and Ql are the unique solutions of (3.20a) and (3.20b), this gives vec (Pl) =
L−1(B ⊗B)Im and vec (Ql) = L−T (C ⊗ C)TIp. This implies that
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(
vec

(
H(2)(Pl ⊗Ql)

(
H(2)

)T))T
vec (Pl)

= vec (Pl)
T

vec

(
H(2)(Pl ⊗Ql)

(
H(2)

)T)

= vec (Ql)
T

vec
(
H(Pl ⊗ Pl)HT

)
(using Lemma 2.2)

= (Ip)T (C ⊗ C)L−1 vec
(
H(Pl ⊗ Pl)HT

)
.

Substituting the above relation in (3.21) yields

tr
(
BTQT B

)
= (Ip)T (C ⊗ C)L−1

(
(B ⊗B)Im +

m∑

k=1

(Nk ⊗Nk)L−1(B ⊗B)Im

+ vec
(
H(Pl ⊗ Pl)HT

) )

= (Ip)T (C ⊗ C) vec (PT ) = tr
(
CPT C

T
)
.

This concludes the proof.

Remark 3.5. One can consider the first M terms of the corresponding Volterra
series and, based on these M kernels, another truncated H2-norm can be defined.
However, this significantly increases the complexity of the problem. In this paper,
we stick to the truncated H2-norm for the QB system that depends on the first
three terms of the input/output mapping. We intend to construct reduced-order
systems (1.2) such that this truncated H2-norm of the error system is minimized.
Another motivation for the derived truncated H2-norm for QB systems is that for
bilinear systems, the authors in [22] showed that the H2-optimal model reduction
based on a truncated H2-norm (with only two terms of the Volterra series of a bilinear
system) also mimics the accuracy of the true H2-optimal approximation very closely.

3.2. Optimality conditions based on the truncated H2-norm. We now
derive necessary conditions for optimal model reduction based on the truncated H2-
norm of the error system. First, we define the QB error system. For the full QB
model Σ in (1.1) and the reduced QB model Σ̂ in (1.2), we can write the error system
as
(3.22)[
ẋ(t)
˙̂x(t)

]
=

[
A 0

0 Â

]

︸ ︷︷ ︸
Ae

[
x(t)
x̂(t)

]

︸ ︷︷ ︸
xe(t)

+

[
H (x(t)⊗ x(t))

Ĥ (x̂(t)⊗ x̂(t))

]
+

m∑

k=1

[
Nk 0

0 N̂k

]

︸ ︷︷ ︸
Ne

k

[
x(t)
x̂(t)

]
uk(t)+

[
B

B̂

]

︸︷︷︸
Be

u(t),

ye(t) = y(t)− ŷ(t) =
[
C −Ĉ

]

︸ ︷︷ ︸
Ce

[
xT (t) x̂T (t)

]T
, xe(0) = 0.

It can be seen that the error system (3.22) is not in the conventional QB form due
to the absence of the quadratic term xe(t) ⊗ xe(t). However, we can rewrite the
system (3.22) into a regular QB form by using an appropriate Hessian of the error
system (3.22) as follows:
(3.23)

Σe :=




ẋe(t) = Aexe(t) +He (xe(t)⊗ xe(t)) +

m∑

k=1

Ne
kx

e(t)uk(t) +Beu(t),

ye(t) = Cexe(t), xe(0) = 0,
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where He =
[
HF
ĤF̂
]

with F =
[
In 0

]
⊗
[
In 0

]
and F̂ =

[
0 Ir

]
⊗
[
0 Ir

]
. Next, we

consider the truncated H2-norm, as defined in Lemma 3.4, for the error system (3.23).
For the existence of this norm for the system (3.23), it is necessary to assume that the

matrix Ae is stable, i.e., the matrices A and Â are stable. Further, we assume that
the matrix Â is diagonalizable. Then, by performing basic algebraic manipulations
and making use of Lemma 2.4, we obtain the expression for the error functional E
based on the truncated H2-norm of the error system (3.23) as shown next.

Corollary 3.6. Let Σ be the original system, having a stable matrix A, and let
Σ̂ be the reduced-order system, having a stable and diagonalizable matrix Â. Then

E2 := ‖Σe‖2H(T )
2

= (Ip)T (Ce ⊗ Ce)(−Ae ⊗ In+r − In+r ⊗Ae)−1
(

(Be ⊗Be)Im

+

m∑

k=1

(Ne
k ⊗Ne

k) vec (P el ) + vec
(
He(P el ⊗ P el ) (He)

T
))

,(3.24)

where P el solves

AeP el + P el (Ae)T +Be(Be)T = 0.

Furthermore, let Â = R̂Λ̂R̂−1 be the spectral decomposition of Â, and define B̃ =
R̂−1B̂, C̃ = ĈR̂, Ñk = R̂−1N̂kR̂, and H̃ = R̂−1Ĥ(R̂ ⊗ R̂). Then, the error can be
rewritten as

(3.25)

E2 = (Ip)T
(
C̃e ⊗ C̃e

)(
−Ãe ⊗ In+r − In+r ⊗ Ãe

)−1 ((
B̃e ⊗ B̃e

)
Im

+

m∑

k=1

(
Ñe
k ⊗ Ñe

k

)
Pl +

(
H̃e ⊗ H̃e

)
T(n+r,n+r)(Pl ⊗ Pl)

)
,

where

Ãe =

[
A 0
0 Λ

]
, Ñe

k =

[
Nk 0

0 Ñk

]
, H̃e =

[
HF
H̃F̂

]
, B̃e =

[
B

B̃

]
, C̃e =

[
CT

−C̃T
]T

,

Pl =

[
P(1)
l

P(2)
l

]
=




(
−A⊗ In+r − In ⊗ Ãe

)−1 (
B ⊗ B̃e

)
Im(

−Λ⊗ In+r − Ir ⊗ Ãe
)−1 (

B̃ ⊗ B̃e
)
Im


 , and(3.26)

T(n+r,n+r) = In+r ⊗
[
In+r ⊗ en+r

1 , . . . , In+r ⊗ en+r
n+r

]
⊗ In+r.

The above spectral decomposition for Â is computationally useful in simplifying
the expressions, as we will see later. It reduces the number of optimization variables
by r(r−1) since Λ becomes a diagonal matrix without changing the value of the cost
function (this is a state-space transformation of the reduced model, which does not
change the input-output mapping). Even though it limits the reduced-order systems

to those only having diagonalizable Â, as observed in the linear [24] and bilinear
cases [8, 22], it is extremely rare in practice that the optimal H2 models will have a

nondiagonalizable Â; therefore, this diagonalizability assumption does not incur any
restriction from a practical perspective.

Our aim is to choose the optimization variables Λ, B̃, C̃, Ñk, and H̃ such that
the ‖Σ − Σ̂‖H(T )

2
, i.e., equivalently the error expression (3.25), is minimized. Before
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we proceed further, we introduce a particular permutation matrix

(3.27) Mpqr =

[
Ip ⊗

[
Iq
0

]
Ip ⊗

[
0
Ir

]]
,

which will prove helpful in simplifying the expressions related to the Kronecker prod-
uct of block matrices. For example, consider matrices A ∈ Rp×p, B ∈ Rq×q, and
C ∈ Rr×r. Then, the following relation holds:

MT
pqr

(
A⊗

[
B 0
0 C

])
Mpqr =

[
A⊗ B 0

0 A⊗ C

]
.

Similar block structures can be found in the error expression E in Corollary 3.6, which
can be simplified analogously. Moreover, due to the presence of many Kronecker
products, it will be convenient to derive necessary conditions for optimality in the
Kronecker product formulation itself. Furthermore, these conditions can be easily
translated into a theoretically equivalent framework of Sylvester equations, which are
more concise, are more easily interpretable, and, more importantly, automatically lead
to an effective numerical algorithm for model reduction. To this end, let Vi ∈ Rn×r and
Wi ∈ Rn×r, i ∈ {1, 2} be the solutions of the following standard Sylvester equations:

V1(−Λ)−AV1 = BB̃T ,(3.28a)

W1(−Λ)−ATW1 = CT C̃,(3.28b)

V2(−Λ)−AV2 =

m∑

k=1

NkV1Ñ
T
k +H(V1 ⊗ V1)H̃T , and(3.28c)

W2(−Λ)−ATW2 =

m∑

k=1

NT
k W1Ñk + 2 · H(2)(V1 ⊗W1)(H̃(2))T ,(3.28d)

where Λ, Ñk, B̃, and C̃ are as defined in Corollary 3.6. Furthermore, we define trial
and test basis matrices V ∈ Rn×r and W ∈ Rn×r as

(3.29) V = V1 + V2 and W = W1 +W2.

We also define V̂ ∈ Rr×r and Ŵ ∈ Rr×r (which will appear in the optimality condi-
tions as we see later) as follows:

(3.30) V̂ = V̂1 + V̂2 and Ŵ = Ŵ1 + Ŵ2,

where V̂i ∈ Rr×r, Ŵi ∈ Rr×r, i ∈ {1, 2}, are the solutions of the set of equations
in (3.28) but with the original system’s state-space matrices being replaced with the

reduced-order system ones; for example, A with Â and B with B̂, etc. Next, we
present first-order necessary conditions for optimality, which aim at minimizing the
error expression (3.25). The following theorem extends the truncated H2 optimal
conditions from the bilinear case to the much more general QB nonlinearities.

Theorem 3.7. Let Σ and Σ̂ be the original and reduced-order systems as defined
in (1.1) and (1.2), respectively. Let Λ̂ = R̂−1ÂR̂ be the spectral decomposition of

Â, and define H̃ = R̂−1Ĥ(R̂ ⊗ R̂), Ñk = R̂−1N̂kR̂, C̃ = ĈR̂, B̃ = R̂−1B̂. If Σ̂ is a
reduced-order system that minimizes the truncated H2-norm of the error system (3.23)

subject to Â being diagonalizable, then Σ̂ satisfies the following conditions:
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tr
(
CV eri

(
epj
)T)

= tr
(
ĈV̂ eri

(
epj
)T)

, i ∈ {1, . . . , r}, j ∈ {1, . . . , p},
(3.31a)

tr
(
BTWeri

(
emj
)T)

= tr
(
B̂T Ŵeri

(
emj
)T)

, i ∈ {1, . . . , r}, j ∈ {1, . . . ,m},
(3.31b)

(W1(:, i))TNkV1(:, j) = (Ŵ1(:, i))T N̂kV̂1(:, j), i, j ∈ {1, . . . , r}, k ∈ {1, . . . ,m},
(3.31c)

(W1(:, i))TH(V1(:, j)⊗ V1(:, l)) = (Ŵ1(:, i))T Ĥ(V̂1(:, j)⊗ V̂1(:, l)),

(3.31d)

i, j, l ∈ {1, . . . , r},

(W1(:, i))TV (:, i) + (W2(:, i))
T
V1(:, i) = (Ŵ1(:, i))T V̂ (:, i) +

(
Ŵ2(:, i)

)T
V̂1(:, i),

(3.31e)

i ∈ {1, . . . , r}.
Proof. The proof is given in Appendix B.

3.3. Truncated QB iterative rational Krylov algorithm. The remaining
challenge is now to develop a numerically efficient model reduction algorithm to con-
struct a reduced QB system satisfying the first-order optimality conditions in Theo-
rem 3.7. However, as in the linear [24] and bilinear [8, 22] cases, since the optimality

conditions involve the matrices V,W, V̂ , Ŵ , which depend on the reduced-order sys-
tem matrices we are trying to construct, it is not a straightforward task to determine
a reduced-order system directly that satisfies all the necessary conditions for optimal-
ity, i.e., (3.31a)–(3.31e). We propose Algorithm 3.1, which upon convergence leads to
reduced-order systems that approximately satisfy the first-order necessary conditions
for optimality given in Theorem 3.7. Throughout the paper, we denote the algorithm
by truncated QB-IRKA or TQB-IRKA.

Remark 3.8. Ideally, upon convergence implies that the reduced-order quantities
Â, Ĥ, N̂k, B̂, Ĉ in Algorithm 3.1 stagnate. In a numerical implementation, one can
check the stagnation based on the change of eigenvalues of the reduced matrix Â and
terminate the algorithm once the relative change in the eigenvalues of Â is of the
order of the machine precision. However, in all of our numerical experiments, we
run TQB-IRKA until the relative change in the eigenvalues of Â is less than 10−5.
We observe that the quality of reduced-order systems does not change significantly
thereafter, as in the cases of IRKA, B-IRKA, and TB-IRKA.

Our next goal is to show how the reduced-order system resulting from TQB-IRKA
upon convergence relates to the first-order optimality conditions (3.31). As a first
step, we provide explicit expressions showing how far away the resulting reduced-order
system is from satisfying the optimality conditions. Later, based on these expressions,
we discuss how far the reduced-order systems, obtained from TQB-IRKA for weakly
nonlinear QB systems, satisfy the optimality condition with small perturbations. We
also illustrate using our numerical examples in section 4 that, in practice, the reduced-
order system seemingly often satisfies optimality conditions quite accurately.

Theorem 3.9. Let Σ be a QB system (1.1) and let Σ̂ be the reduced-order QB
system (1.2), computed by TQB-IRKA upon convergence. Let Vi,Wi, for i ∈ {1, 2}, be
the matrices that solve (3.28), and let V and W be the matrices defining the projection
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Algorithm 3.1. TQB-IRKA for QB systems.

Input: The system matrices: A,H,N1, . . . , Nm, B,C.
Output: The reduced matrices: Â, Ĥ, N̂1, . . . , N̂m, B̂, Ĉ.

1: Symmetrize the Hessian H and determine its mode-2 matricization H(2).
2: Make an initial guess for the reduced matrices Â, Ĥ, N̂1, . . . , N̂m, B̂, Ĉ with Â

being diagonalizable.
3: while not converged do
4: Perform the spectral decomposition of Â and define:

Λ̂ = R̂−1ÂR̂, Ñk = R̂−1N̂kR̂, H̃ = R̂−1Ĥ
(
R̂⊗ R̂

)
, B̃ = R̂−1B̂, C̃ = ĈR̂.

5: Compute mode-2 matricization H̃(2).
6: Solve for V1 and V2:

−V1Λ−AV1 = BB̃T ,

−V2Λ−AV2 = H(V1 ⊗ V1)H̃T +
m∑
k=1

NkV1Ñ
T
k .

7: Solve for W1 and W2:
−W1Λ−ATW1 = CT C̃,

−W2Λ−ATW2 = 2 · H(2)(V1 ⊗W1)(H̃(2))T +
m∑
k=1

NT
k W1Ñk.

8: Compute V and W :
V := V1 + V2, W := W1 +W2.

9: V = orth (V ), W = orth (W ).
10: Determine the reduced matrices:

Â = (WTV )−1WTAV, Ĥ = (WTV )−1WTH(V ⊗ V ),

N̂k = (WTV )−1WTNkV, B̂ = (WTV )−1WTB, Ĉ = CV .
11: end while

used for MOR, as defined in (3.29). Similarly, let V̂i, Ŵi, for i ∈ {1, 2}, be the matrices
that solve (3.28), where the original system’s state-space matrices are being replaced

with their reduced-order counterparts. Moreover, let V̂ and Ŵ be the matrices defined
in (3.30). Assume that σ(Â) ∩ σ(−ΠA) = ∅ and σ(Â) ∩ σ(−ΠTAT ) = ∅, where Π =
V (WTV )−1WT and σ(·) denotes the eigenvalue spectrum of a matrix. Furthermore,
assume Πv = V1(WTV1)−1WT and Πw = W1(V TW1)−1V T exist. Then, the reduced-

order system Σ̂ satisfies the following relations:

tr
(
CV eri

(
epj
)T)

= tr
(
ĈV̂ eri

(
epj
)T)

+ ε
(i,j)
C , i ∈ {1, . . . , r}, j ∈ {1, . . . , p},

(3.32a)

tr
(
BTWeri

(
emj
)T)

= tr
(
B̂T Ŵeri

(
emj
)T)

+ ε
(i,j)
B , i ∈ {1, . . . , r}, j ∈ {1, . . . ,m},

(3.32b)

(W1(:, i))TNkV1(:, j) = (Ŵ1(:, i))T N̂kV̂1(:, j) + ε
(i,j,k)
N ,

(3.32c)

i, j ∈ {1, . . . , r}, k ∈ {1, . . . ,m},

(W1(:, i))TH(V1(:, j)⊗ V1(:, l)) = (Ŵ1(:, i))T Ĥ(V̂1(:, j)⊗ V̂1(:, l)) + ε
(i,j,l)
H ,

(3.32d)

i, j, l ∈ {1, . . . , r},D
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(W1(:, i))TV (:, i) + (W2(:, i))
T
V1(:, i) = (Ŵ1(:, i))T V̂ (:, i) +

(
Ŵ2(:, i)

)T
V̂1(:, i) + ε

(i)
λ ,

(3.32e)

i ∈ {1, . . . , r},

where

ε
(i,j)
C = − tr

(
CV Γve

r
i

(
epj
)T)

,

ε
(i,j)
B = − tr

(
BTW (WTV )−TΓwe

r
i

(
emj
)T)

,

ε
(i,j,k)
N = (εw(:, i))

T
Nk(V1(:, j)− εv(:, j)) + (W1(:, i))

T
Nk(εv(:, j)),

ε
(i,j,l)
H = (W1(:, i)− εw(:, i))

T
H(εv(:, j)⊗ (V1(:, l)− εv(:, l)) + V1(:, j)⊗ εv(:, l))

+ (εw(:, i))
T
H((V (:, j)− εv(:, j))⊗ (V1(:, l)− εv(:, l))), and

ε
(i)
λ = −

(
Ŵ (:, i)

)T
Γv(:, i)− (Γw(: .i))

T
(
V̂ (:, i)− Γv(:, i)

)

− (W2(:, i))TV2(:, i) + (Ŵ2(:, i))T V̂2(:, i),

in which εv, εw, Γv, and Γw, respectively, solve

εvΛ + ΠAεw = (Π−Πv)(AV1 +BB̃T ),(3.33a)

εwΛ + (AΠ)T εw = (ΠT −Πw)(ATW1 + CT C̃),(3.33b)

ΓvΛ + ÂΓv = −(WTV )−1WT

( m∑

k=1

NkεvÑ
T
k +H(εv ⊗ (V1 + εv)(3.33c)

+ V1 ⊗ εv)H̃T

)
,

ΓwΛ + ÂTΓw = V T
( m∑

k=1

NT
k εwÑk +H(2)(εv ⊗ (W1 + εw),(3.33d)

+ V1 ⊗ εw)
(
H(2)

)T )
.

Proof. The proof is given in Appendix C.

Remark 3.10. In Theorem 3.9, we have presented measures, e.g., the distance be-

tween tr
(
CV eri (e

p
j )
T
)

and tr
(
ĈV̂ eri (e

p
j )
T
)

, denoted by ε
(i,j)
C , with which the reduced-

order system via TQB-IRKA satisfies the optimality conditions (3.31). But Theo-
rem 3.9 in general does not provide a guarantee for the smallness of these distances.
However, we provide intuition for the weakly nonlinear QB systems, i.e., QB systems
for which ‖H‖ and ‖Nk‖ are small with respect to ‖B‖ and ‖C‖. Recall that V1

and V2 solve the Sylvester equations (3.28a) and (3.28c), respectively, and the right-
hand side for V2 is quadratic in H and Nk. Therefore, for a weakly nonlinear QB
system, ‖V2‖ will be relatively small compared with ‖V1‖. Hence, V is expected to
be close to V1. Thus, one could anticipate that the projectors Π = V (WTV )WT and
Πv = V1(WTV1)WT will be close to each other. As a result, the right-hand side of
the Sylvester equation (3.33a) will be small, and hence so is εv. In a similar way, one
can argue that εw in (3.33b) will be small. Therefore, it can be shown that in the case

of weakly nonlinear QB systems (1.1), all ε’s in (3.32) such as ε
(i,j)
C should be small.
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1004 PETER BENNER, PAWAN GOYAL, AND SERKAN GUGERCIN

Indeed, the situation in practice proves much better. We observe in our numerical
results (see section 4) that even for strongly nonlinear QB systems, i.e., ‖H‖ and ‖Nk‖
are comparable or even much larger than ‖B‖ and ‖C‖, Algorithm 3.1 still yields
reduced-order systems which satisfy the optimality conditions (3.31) almost exactly
with negligible perturbations.

Remark 3.11. Algorithm 3.1 can be seen as an extension of the truncated B-IRKA
with truncation index 2 [22, Algo. 2] from bilinear systems to QB systems. In [22], the
truncation index N , which denotes the number of terms in the underlying Volterra
series for bilinear systems, is free, and as N → ∞, all the perturbations go to zero.
However, it is shown in [22] that in most cases a small N , for example 2 or 3, is
enough to satisfy all optimality conditions closely. In our case, a similar convergence
will occur if we let the number of terms in the underlying Volterra series of the QB
system grow; however, this is not numerically feasible since the subsystems in the
QB case become rather complicated after the first three terms. Indeed, because of
this, [23], [10], [1] have considered the interpolation of multivariate transfer functions
corresponding to only the first two subsystems. Moreover, even in the case of balanced
truncation for QB systems [13], it is shown by means of numerical examples that the
truncated Gramians for QB systems based on the first three terms of the underlying
Volterra series produce quantitatively accurate reduced-order systems. Our numerical
examples show that this is the case here as well.

Remark 3.12. So far, in all of our discussions we have assumed that the reduced
matrix Â is diagonalizable. This is a reasonable assumption since nondiagonalizable
matrices lie in a set of Lebesgue measure zero. The probability of entering this set by
any numerical algorithm including TQB-IRKA is zero with respect to the Lebesgue
measure. Thus, TQB-IRKA can be considered safe in this regard.

Furthermore, throughout the analysis, it has been assumed that the reduced
matrix Â is Hurwitz. However, in case Â is not Hurwitz, then the truncated H2-norm
of the error system will be unbounded; thus the reduced-order systems indeed cannot
be (locally) optimal. In general, the stability of Â obtained from iterative schemes
to compute H2-suboptimal approximations is still under investigation, even for linear
systems. Guaranteeing asymptotic stability for a quadratic-nonlinear system is also
an open question except for the special and simple case of A = A∗ and A is negative
definite; in this case, a Galerkin projection preserves stability. However, a simple fix
to this problem is to reflect the unstable eigenvalues of Â in every step back to the
left-half plane. Also, see [31] for a more involved approach to stabilize a reduced-order
system.

Theorem 3.9 assumes that TQB-IRKA has converged. As stated in Remark 3.11,
TQB-IRKA extends IRKA, B-IRKA, and TB-IRKA to the kind of QB systems we
consider. Even for the linear case, i.e., for IRKA, convergence cannot be theoretically
guaranteed despite overwhelming numerical evidence that IRKA (and (T)B-IRKA),
in most cases, converge rapidly to a local minimum. Convergence of IRKA can be
guaranteed theoretically only for the symmetric case [21]. Moreover, in [7] and [21],
variants of IRKA with guaranteed global convergence have been introduced; however,
due to the success of regular IRKA and its simple implementation, these modifications
have not been as widely used. Therefore, guaranteed theoretical convergence in this
iterative setting is an open issue even for the linear and bilinear cases, and naturally
for the QB case as well.

Remark 3.13. As mentioned above, so far the analysis is based on the assumption
that the reduced matrix Â is diagonalizable. For a reduced matrix Â with Jordan
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H2-QUASI-OPTIMAL MOR FOR QB CONTROL SYSTEMS 1005

blocks, one would need to extend the derivation of the Sylvester-equation–based H2

optimality conditions in [47], where Wilson [47] differentiates the H2 error with re-

spect to the reduced matrix Â as opposed to individual eigenvalues {λi} as we do
here. An interpolation interpretation of the Jordan blocks in the linear case has also
been established; see [45]. However, since the Jordan blocks in the optimal reduced
models so far have never been observed in practice, extensions of the H2 theory to the
bilinear case have focused on the diagonalizabilty assumption; thus, we keep the same
assumption here. However, based on how the Sylvester-equation based conditions for
the linear case appear, for QB systems with nondiagonalizable Â, one can reasonably
expect an algorithm similar to Algorithm 3.1, where the steps 6 and 7 are replaced
by solving consecutively for V1, V2,W1,W2 in the following Sylvester equations:

−V1Â−AV1 = BB̂T ,

−V2Â−AV2 = H(V1 ⊗ V1)ĤT +
∑m

k=1
NkV1N̂

T
k ,

−W1Â
T −ATW1 = CT Ĉ,

−W2Â
T −ATW2 = 2 · H(2)(V1 ⊗W1)(Ĥ(2))T +

∑m

k=1
NT
k W1N̂k.

Note that with this formulation, Â enters into the algorithm directly without di-
agonalization. However, due to the reasons listed before, we leave this theoretical
development for future work.

Remark 3.14. Thus far, we have used E = I in front of ẋ(t) in the QB sys-
tem (1.1); however, in the case of E 6= I, but nonetheless being nonsingular, we can
still employ Algorithm 3.1. One obvious way is to invert E, but this is inadmissible
in the large-scale setting. Moreover, the resulting matrices may be dense, making the
algorithm computationally expensive. Nevertheless, Algorithm 3.1 can be employed
without inverting E. For this, we need to modify steps 6 and 7 in Algorithm 3.1 as
follows:

−EV1Λ−AV1 = BB̃T ,

−EV2Λ−AV2 = H(V1 ⊗ V1)H̃T +
∑m

k=1
NkV1Ñ

T
k ,

−ETW1Λ−ATW1 = CT C̃,

−ETW2Λ−ATW2 = 2 · H(2)(V1 ⊗W1)(H̃(2))T +
∑m

k=1
NT
k W1Ñk,

and replace (WTV )−1 with (WTEV )−1, assuming WTEV is invertible while deter-
mining the reduced-order system matrices in step 9 of Algorithm 3.1. Then, the
modified iterative algorithm with the matrix E also provides a reduced-order system,
approximately satisfying optimality conditions subject to the structure of a reduced-
order system as in (1.2) and the matrix Â to be diagonalizable. We skip the rigorous
proof for the E 6= I case, but it can be proven along the lines of E = I. Indeed, under
the assumption of WTEV being invertible, one does not even need to invert WTEV
by letting the reduced QB system have a reduced E term as WTEV , and the spectral
decomposition of Â is replaced by a generalized eigenvalue decomposition of Ê and
Â. But to keep the notation of Algorithm 3.1 simple, we omit these details.

As noted, we assume that the reduced-order system has the structure as in (1.2).

However, one can consider a general matrix Ê including being singular in front of ˙̂x(t)
in the reduced-order system (1.2) and derive the Wilson-type conditions by taking
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1006 PETER BENNER, PAWAN GOYAL, AND SERKAN GUGERCIN

Algorithm 3.2. Computation of the Hessian of the reduced QB system [10].

1: Determine Y ∈ Rr×n×n, such that Y(1) = WTH.
2: Determine Z ∈ Rr×r×n, such that Z(2) = V TY(2).
3: Determine X ∈ Rr×r×r, such that X (3) = V TZ(3).
4: Then, the reduced Hessian is Ĥ = X (1).

derivatives of the truncated H2-norm with respect to the reduced matrices such as Ê,
Â, etc. This is worth investigating problem for future work.

3.4. Computational issues. The main bottleneck in applying TQB-IRKA is
the computation of the reduced matrices, especially the computational cost related
to Ĥ := WTH(V ⊗ V ) that needs to be evaluated at each iteration. Regarding
this, there is an efficient method, proposed in [10], utilizing the properties of tensor
matricizations, which we summarize in Algorithm 3.2.

Algorithm 3.2 avoids the highly undesirable explicit formulation of V ⊗V for large-
scale systems to compute the reduced Hessian, and the algorithm does not rely on
any particular structure of the Hessian. However, a QB system resulting from semi-
discretization of PDEs usually leads to a Hessian which has a particular structure
related to that particular PDE and the choice of the discretization method.

Therefore, we propose another efficient way to compute Ĥ that utilizes a par-
ticular sparsity structure of the Hessian, arising from the governing PDEs or ODEs.
Generally, the term H(x⊗ x) in the QB system (1.1) can be written as

H(x⊗ x) =

p∑

j=1

(A(j)x) ◦ (B(j)x),

where ◦ denotes the Hadamard product; A(j) and B(j) are sparse matrices, depending
on the nonlinear operators in the underlying PDE and the discretization scheme; and
p is generally a very small integer; for instance, it is equal to 1 in case of Burgers’
equations. Furthermore, using the ith rows of A(j) and B(j), we can construct the ith
row of the Hessian:

H(i, :) =
∑p

j=1
A(j)(i, :)⊗ B(j)(i, :),

where H(i, :), A(j)(i, :), and B(j)(i, :) represent the ith rows of the matrices H, A(j),
and B(j), respectively. This clearly shows that there is a particular Kronecker struc-
ture of the Hessian H, which can be used in order to determine Ĥ. Using the Chafee–
Infante equation as an example, we illustrate how the structure of the Hessian (Kro-

necker product structure) can be exploited to determine Ĥ efficiently.

Example 3.15. Here, we consider the Chafee–Infante equation, which is discretiz-
ed over the spatial domain via a finite difference scheme. The MOR problem for
this example is considered in subsection 4.1, where one can also find the governing
equations and boundary conditions. For this particular example, the Hessian (after
having rewritten the system into the QB form) is given by

H(i, :) = −1

2
eni ⊗ enk+i −

1

2
enk+i ⊗ eni , i ∈ {1, . . . , k},

H(i, :) = −2(eni ⊗ eni ) + eni−k ⊗
[
X(i−k, :) 0

]
+
[
X(i−k, :) 0

]
⊗ eni−k,

i ∈ {k+1, . . . , n},
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Algorithm 3.3. Computation of the reduced Hessian for Chafee–Infante example.

1: Input: V,W ∈ R2k×r, X ∈ Rk×k(as defined in (3.34))
2: Compute Vx := XV (1:k, :), where V (1:k, :) denotes the first k row vectors of V .
3: for i = 1 : k do

4: Hv(i, :) = −1

2
V (i, :)⊗ V (k + i, :)− 1

2
V (i, :)⊗ V (k + i, :),

Hv(k + i, :) = −2 (V (i, :)⊗ V (i, :)) + V (i, :)⊗ Vx(i, :) + Vx(i, :)⊗ V (i, :),
where Hv(q, :) is the qth row vector of Hv and the same holds for other matrices.

5: end for
6: Then, the reduced Hessian is Ĥ = WTHv.
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2
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Utilizing Kronecker product structure Using Algorithm 3.2
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Figure 3.1. The left figure shows the computational time for Ĥ := WTH(V ⊗ V ) by varying
the number of grid points in the spatial domain by fixing the order of the reduced-order system to
r = 20. In the right figure, we show the computational time for different orders of the reduced-order
system using a fixed number of grid points, k = 1000.

matrix H. X(i, :) also denotes the ith row vector of the matrix X ∈ Rk×k811

(3.35) X =




0 1

1 0
. . .

. . .
. . . 1
1 0



.812

The Kronecker product representation of each row of the matrix H allows us to com-813

pute the rows of Hv := H(V ⊗ V ) by selecting only the required rows of V . This814

way, we can determine Hv efficiently in large-scale, sparse settings, and then mul-815

tiply with WT to obtain the desired reduced Hessian. We describe this procedure in816

Algorithm 3.3 that shows how one can determine the reduced Hessian for the Chafee-817

Infante example.818

In order to show the effectiveness of the proposed methodology that uses the special819

Kronecker product structure of the Hessian H, we compute Ĥ = WTH(V ⊗ V ) for820

different orders of original and reduced-order systems and show the required CPU-821

time to compute it in Figure 3.1. The simulations were performed on a board with 4822

Intel® Xeon® E7-8837 CPUs with a 2.67-GHz clock speed using MATLAB 8.0.0.783823

(R2012b).824

Figure 3.1 illustrates that the computational cost for constructing the reduced825

Hessian by using the proposed method, which exploits the Kronecker product structure826

This manuscript is for review purposes only.

Fig. 3.1. The left figure shows the computational time for Ĥ := WTH(V ⊗ V ) by varying the
number of grid points in the spatial domain by fixing the order of the reduced-order system to r = 20.
In the right figure, we show the computational time for different orders of the reduced-order system
using a fixed number of grid points, k = 1000.

where k is the number of grid points, n = 2k, and H(i, :) is the ith row vector of the
matrix H. X(i, :) also denotes the ith row vector of the matrix X ∈ Rk×k

(3.34) X =




0 1

1 0
. . .

. . .
. . . 1
1 0



.

The Kronecker product representation of each row of the matrix H allows us to
compute the rows of Hv := H(V ⊗ V ) by selecting only the required rows of V .
This way, we can determine Hv efficiently in large-scale, sparse settings, and then
multiply with WT to obtain the desired reduced Hessian. We describe this procedure
in Algorithm 3.3 that shows how one can determine the reduced Hessian for the
Chafee–Infante example.

In order to show the effectiveness of the proposed methodology that uses the
special Kronecker product structure of the Hessian H, we compute Ĥ = WTH(V ⊗V )
for different orders of original and reduced-order systems and show the required CPU-
time to compute it in Figure 3.1. The simulations were performed on a board with 4
Intel® Xeon® E7-8837 CPUs with a 2.67-GHz clock speed using MATLAB 8.0.0.783
(R2012b).

Figure 3.1 illustrates that the computational cost for constructing the reduced
Hessian by using the proposed method, which exploits the Kronecker product struc-
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1008 PETER BENNER, PAWAN GOYAL, AND SERKAN GUGERCIN

ture of the Hessian H, grows much slower than the cost in Algorithm 3.2. Therefore,
we conclude here that it is worth exploiting the Kronecker product structure of the
Hessian of the system for an efficient computation of Ĥ in large-scale settings.

4. Numerical results. In this section, we illustrate the behavior of the proposed
model reduction method TQB-IRKA for QB systems, using several semidiscretized
nonlinear PDEs and compare its performance with existing MOR techniques, such as
one-sided and two-sided subsystem-based interpolatory projection methods [10, 23,
38], BT for QB systems [13], and POD [28, 33], in terms of the accuracy of the time-
domain performance and the truncated H2-norm. We iterate Algorithm 3.1 until the
relative change in the eigenvalues of Â becomes smaller than a given tolerance, which
we set to 10−5. Moreover, we determine the interpolation points for the one-sided and
two-sided interpolatory projection methods applying IRKA [24] to the corresponding
linear part, which appear to be a good set of interpolation points as shown in [10].
All the simulations were done on a board with 4 Intel® Xeon® E7-8837 CPUs with a
2.67-GHz clock speed using MATLAB 8.0.0.783 (R2012b). Some more details related
to the numerical examples are as follows.

1. For all time-domain simulations, the original and reduced-order systems are
integrated by the routine ode15s in MATLAB with a relative error tolerance
of 10−8 and an absolute error tolerance of 10−10.

2. We measure the output at 500 equidistant points within the time interval
[0, T ], where T is defined in each numerical example.

3. In order to employ BT, we need to solve four standard Lyapunov equations.
For this, we use mess lyap.m from M.E.S.S.-1.0.1 [42] which is based on one
of the latest ADI methods proposed in [14].

4. We initialize TQB-IRKA (Algorithm 3.1) by choosing an arbitrary reduced

system using the rand command in MATLAB, while ensuring Â is Hurwitz
and diagonalizable.

5. Since POD can be applied to a general nonlinear system, we apply POD to
the original nonlinear system, without transforming it into a QB system as
we observe that this way, POD yields better reduced systems.

6. One of the aims of the numerical examples is to determine the residuals in
Theorem 3.9. For this, we first define ΦeC ∈ Rr×p, ΦeB ∈ Rr×m, ΦeN ∈
Rr×r×m, ΦeH ∈ Rr×r×r, and ΦeΛ ∈ Rr such that ε

(i,j)
C is the (i, j)th entry

of ΦeC , ε
(i,j)
B is the (i, j)th entry of ΦeB , ε

(i,j,k)
N is the (i, j, k)th entry of ΦeN ,

ε
(i,j,k)
H is the (i, j, k)th entry of ΦeH , and ε

(i)
Λ is ith entry of ΦeΛ.

Furthermore, we define ΦC , ΦB , ΦN , ΦH , and ΦΛ to be the terms on the
left-hand side of (3.32a)–(3.32e) in Theorem 3.9, e.g., the (i, j)th entry of ΦC
is tr (CV eri (e

p
j )
T ). As a result, we define relative perturbation measures as

follows:
(4.1)

EC =
‖ΦeC‖2
‖ΦC‖2

, EB =
‖ΦeB‖2
‖ΦB‖2

, EN =
‖Φe(1)

N ‖2
‖Φ(1)

N ‖2
, EH =

‖Φe(1)
H ‖2

‖Φ(1)
H ‖2

, EΛ =
‖ΦeΛ‖2
‖ΦΛ‖2

,

where Φ
(1)
{N,H} and Φ

e(1)
{N,H} are mode-1 matricizations of the tensors Φ{N,H}

and Φe{N,H}, respectively.
7. We also address a numerical issue which one might face while employing

Algorithm 3.1. In step 8 of Algorithm 3.1, we need to take the sum of the
two matrices V1 and V2. If ‖H‖ and ‖Nk‖ are too large, then the norm of
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V2 can be much larger than that of V1. Thus, a direct sum might reduce
the effect of V1. As a remedy we propose using a scaling factor γ for H

and Nk, resulting in matrices V1 and V2 such that
‖V2‖
‖V1‖

∈ O
(
100 − 102

)
.

We have already noted in Remark 3.3 that this scaling just scales the input-
output mapping. Once again we emphasize that we just compute the model
reduction bases V and W using the scaled system, but we project the original,
unscaled system to construct the reduced-order system.

4.1. One–dimensional Chafee–Infante equation. Here, we consider the one-
dimensional Chafee–Infante (Allen–Cahn) equation whose governing equation, initial
condition, and boundary controls are given by

(4.2)
v̇ + v3 = vxx + v, (0, L)× (0, T ), v(0, ·) = u(t), (0, T ),

vx(L, ·) = 0, (0, T ), v(x, 0) = 0, (0, L).

MOR for this system has been considered in various articles; see, e.g., [10, 13]. The
governing equation (4.2) contains a cubic nonlinearity, which can then be rewritten
into QB form as shown in [10]. For more details on the system, we refer to [18, 26].
Next, we utilize a finite difference scheme by using k equidistant points over the length,
resulting in a semidiscretized QB system of order 2k. The output of our interest is
the response at the right boundary, i.e., v(L, t), and we set the number of grid points
to k = 500, leading to an order n = 1000 QB system.

We construct reduced-order systems of order r = 10 using TQB-IRKA, BT, one-
sided and two-sided interpolatory projection methods, and POD. Having initialized
TQB-IRKA randomly, it takes nine iterations to converge, and for this example we
choose the scaling factor γ = 10−3. We compute the reduced Hessian as shown in
Algorithm 3.3. For the POD-based approximation, we collect 500 snapshots of the
true solution for the training input u(1)(t) = (1 + sin(πt)) exp(−t/5) and compute the
projection by taking the 10 dominant basis vectors.

In order to compare the quality of these reduced-order systems with respect to
the original system, we first simulate them using the same training input used to
construct the POD basis, i.e., u(1)(t) = (1 + sin(πt)) exp(−t/5). We plot the transient
responses and relative output errors for this input in Figure 4.1. As expected, since
we are comparing the reduced models for the same forcing term used to train POD,
Figure 4.1 shows that the POD approximation outperforms the other methods for the
input u(1). However, the interpolatory methods also provide adequate reduced-order
systems for u(1) even though the reduction is performed without any knowledge of
u(1)(t).

To test the robustness of the reduced systems, we compare the time-domain sim-
ulations of the reduced systems with the original one in Figure 4.2 for a slightly
different input, namely u(2)(t) = 25 (1 + sin(πt)). First, observe that the POD ap-
proximation fails to reproduce the system’s dynamics for the input u(2)(t) accurately
as POD is input-dependent. Moreover, the one-sided interpolatory projection method
also performs worse for the input u(2)(t). On the other hand, TQB-IRKA, BT, and
the two-sided interpolatory projection method all yield very accurate reduced-order
systems of comparable qualities; TQB-IRKA produces marginally better reduced sys-
tems. Once again it is important to emphasize that neither u(1)(t) nor u(2)(t) has
entered the model reduction procedure in TQB-IRKA. To give a quantitative com-
parison of the reduced systems for both inputs, u(1)(t) and u(2), we report the mean
relative errors in Table 4.1 as well, which also provides us a similar information.
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Orig. sys. TQB-IRKA BT
One-sided proj. Two-sided proj. POD
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Figure 4.1. Chafee-Infante: comparison of responses for the boundary control input u(1)(t) =
(1 + sin(πt)) exp(−t/5).
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Figure 4.2. Chafee-Infante: comparison of responses for the boundary control input u(2)(t) =
25(1 + sin(πt)).

Input TQB-IRKA BT One-sided Two-sided POD

u(1)(t) 6.54 · 10−5 1.40 · 10−2 4.30 · 10−3 3.51 · 10−3 2.87 · 10−8

u(2)(t) 1.63 · 10−3 1.43 · 10−2 4.59 · 10−1 6.65 · 10−3 6.70 · 10−2

Table 4.1
Chafee-Infante: the mean relative errors of the output.

Furthermore, we study the impact of the scaling factor γ, as discussed in Re-918

mark 3.3, on the performance reduced-order systems obtained via TQB-IRKA. For919

the same inputs u(i), i ∈ {1, 2}, we plot the relative errors in the time-domain re-920

sponses for different values of the scaling factor in Figure 4.3. For this example, we921

observe that for γ = 10−3, TQB-IRKA produces a slightly better reduced-order sys-922

tem in terms of the accuracy of the time-domain simulations than for all other tested923
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Fig. 4.2. Chafee–Infante: comparison of responses for the boundary control input u(2)(t) =
25(1 + sin(πt)).

Table 4.1
Chafee–Infante: The mean relative errors of the output.

Input TQB-IRKA BT One-sided Two-sided POD

u(1)(t) 6.54 · 10−5 1.40 · 10−2 4.30 · 10−3 3.51 · 10−3 2.87 · 10−8

u(2)(t) 1.63 · 10−3 1.43 · 10−2 4.59 · 10−1 6.65 · 10−3 6.70 · 10−2

Furthermore, we study the impact of the scaling factor γ, as discussed in Re-
mark 3.3, on the performance reduced-order systems obtained via TQB-IRKA. For
the same inputs u(i), i ∈ {1, 2}, we plot the relative errors in the time-domain re-
sponses for different values of the scaling factor in Figure 4.3. For this example, we
observe that for γ = 10−3, TQB-IRKA produces a slightly better reduced-order sys-
tem in terms of the accuracy of the time-domain simulations than for all other tested
values of γ; however, all scaling factors γ ∈

{
100, 10−1, . . . , 10−4

}
produce comparable

reduced-order systems. For very small values of γ such as γ = {10−5, 10−6}, TQB-
IRKA yields very poor reduced-order systems. This is expected since by choosing
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Figure 4.3. Chafee-Infante: absolute error between the original and reduced-order systems
(r = 10) obtained by using TQB-IRKA for different scaling factors γ for inputs u(1) and u(2).

Method EC EB EN EH Eλ
TQB-IRKA 2.64 · 10−8 4.75 · 10−12 1.24 · 10−17 2.40 · 10−12 7.62 · 10−12

BT 6.60 · 10−4 6.23 · 10−5 8.62 · 10−16 1.24 · 10−11 7.62 · 10−4

One-Sided 2.43 · 101 6.90 · 10−3 1.09 · 10−10 1.02 · 10−5 8.40 · 10−3

Two-Sided 1.99 · 10−5 2.38 · 10−7 1.45 · 10−16 1.25 · 10−11 1.71 · 10−4

Table 4.2
Chafee-Infante: perturbations to the optimality conditions.

values of γ; however, all scaling factors γ ∈
{

100, 10−1, . . . , 10−4
}

produce comparable924

reduced-order systems. For very small values of γ such as γ = {10−5, 10−6}, TQB-925

IRKA yields very poor reduced-order systems. This is expected since by choosing926

a very small scaling factor, the effect of the quadratic and bilinear terms is reduced927

significantly and the model reduction basis matrices almost correspond to the linear928

term only; hence, poor reduced-order systems result. We have observed that if a929

scaling factor is chosen such that
‖V2‖
‖V1‖

≈ O
(
100–102

)
, then TQB-IRKA not only930

provides a better reduced-order system but also converges faster, although we do not931

have a theoretical justification for this observation yet. Therefore, as future work, it932

would be interesting to investigate the influence of the scaling factor γ on the quality933

of the obtained reduced-order systems also from a theoretical point of view.934

In Theorem 3.9, we have presented the quantities, denoted by εC , εB , ελ, εN , and935

εH , which measure how far a reduced-order system is from satisfying the optimality936

conditions (3.32). We list these quantities for the reduced-order systems obtained via937

TQB-IRKA, BT, and the one-/two-sided interpolatory projection methods. These938

quantities are computed as in (4.1), and are listed in Table 4.2, showing that the939

reduced-order system obtained by TQB-IRKA satisfies the optimality conditions best940

among all the considered methods.941

In Remark 3.10, we have argued that for a weakly nonlinear QB system, we942

expect these quantities to be small. However, even for this example with strong non-943

linearity, i.e., ‖H‖ and ‖Nk‖ are not small at all, the reduced-order system computed944

by TQB-IRKA satisfies the optimality conditions (3.32) very accurately. This result945
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Fig. 4.3. Chafee–Infante: absolute error between the original and reduced-order systems (r =
10) obtained by using TQB-IRKA for different scaling factors γ for inputs u(1) and u(2).

Table 4.2
Chafee–Infante: Perturbations to the optimality conditions.

Method EC EB EN EH Eλ
TQB-IRKA 2.64 · 10−8 4.75 · 10−12 1.24 · 10−17 2.40 · 10−12 7.62 · 10−12

BT 6.60 · 10−4 6.23 · 10−5 8.62 · 10−16 1.24 · 10−11 7.62 · 10−4

One–Sided 2.43 · 101 6.90 · 10−3 1.09 · 10−10 1.02 · 10−5 8.40 · 10−3

Two–Sided 1.99 · 10−5 2.38 · 10−7 1.45 · 10−16 1.25 · 10−11 1.71 · 10−4

a very small scaling factor, the effect of the quadratic and bilinear terms is reduced
significantly and the model reduction basis matrices almost correspond to the linear
term only; hence, poor reduced-order systems result. We have observed that if a scal-

ing factor is chosen such that ‖V2‖
‖V1‖ ≈ O

(
100–102

)
, then TQB-IRKA not only provides

a better reduced-order system but also converges faster, although we do not have a
theoretical justification for this observation yet. Therefore, as future work, it would
be interesting to investigate the influence of the scaling factor γ on the quality of the
obtained reduced-order systems also from a theoretical point of view.

In Theorem 3.9, we presented the quantities, denoted by εC , εB , ελ, εN , and
εH , which measure how far a reduced-order system is from satisfying the optimality
conditions (3.31). We list these quantities for the reduced-order systems obtained via
TQB-IRKA, BT, and the one-/two-sided interpolatory projection methods. These
quantities are computed as in (4.1), and are listed in Table 4.2, showing that the
reduced-order system obtained by TQB-IRKA satisfies the optimality conditions best
among all the considered methods.

In Remark 3.10, we argued that for a weakly nonlinear QB system, we expect these
quantities to be small. However, even for this example with strong nonlinearity, i.e.,
‖H‖ and ‖Nk‖ are not small at all, the reduced-order system computed by TQB-IRKA
satisfies the optimality conditions (3.31) very accurately. This result also strongly
supports the discussion of Remark 3.11 that a small truncation index is expected to
be enough in many cases.

Furthermore, since TQB-IRKA approximately minimizes the truncated H2-norm
of the error system, i.e., ‖Σ − Σ̂‖H(T )

2
, we also compare the truncated H2-norm of
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TQB-IRKA BT One-sided proj. Two-sided proj.
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Figure 4.4. Chafee-Infante: comparison of the truncated H2-norm of the error system, having
obtained reduced systems of different orders via different methods.

also strongly supports the discussion of Remark 3.11 that a small truncation index is946

expected to be enough in many cases.947

Furthermore, since TQB-IRKA approximately minimizes the truncated H2-norm948

of the error system, i.e., ‖Σ − Σ̂‖H(T )
2

, we also compare the truncated H2-norm of949

the error system in Figure 4.4, where the reduced model Σ̂ is constructed by various950

methods of different orders. As mentioned before, the reduced-order systems obtained951

via POD preserve the structure of the original nonlinearities; therefore, the truncated952

H2-norm definition, given in Lemma 3.4, does not apply.953

Figure 4.4 indicates that the reduced-order systems obtained via one-sided in-954

terpolatory projection perform worst in the truncated H2-norm measure. Moreover,955

while BT performs better than TQB-IRKA and the two-sided interpolatory method956

for small reduced orders with respect to the truncated H2-norm, for higher reduced957

orders, the two-sided interpolatory method yields the best reduced systems. How-958

ever, it is important to emphasize that unlike in the case of linear dynamical systems,959

the H2-norm and the L∞-norm of the output for nonlinear systems, including QB960

systems, are not as strongly connected as in the linear case. This can be seen in961

Figure 4.4; for reduced order r = 10, even though BT yields the smallest truncated962

H2 error, in the time-domain simulations for inputs u(1) and u(2), it is not the best963

in terms of the L∞-norm of the output. Furthermore, it can also be noted that for964

r = 10, TQB-IRKA yields a reduced-order system, which satisfies the optimality con-965

ditions most accurately (see Table 4.2), but in the truncated H2-norm, it does not966

perform the best as illustrated in Figure 4.4.967

Nevertheless, we believe that the truncated H2-norm of the error system is a968

robust indicator for the quality of the reduced system, because this norm is defined969

by the kernels, which define the mapping from the input to the output. Thus, if the970

kernels are ensured to be close enough, then one can expect an accurate approximation971

of the output.972

4.2. Nonlinear RC ladder. We consider a nonlinear RC ladder, which consists973

of capacitors and nonlinear I-V diodes. The characteristics of the I-V diodes are974

governed by exponential nonlinearities, which can also be rewritten in the QB form.975

For a detailed description of the dynamics of this electronic circuit, we refer to [4, 23,976

35, 37, 38]. We set the number of capacitors in the ladder to k = 500, resulting in a977

QB system of order n = 1000. Note that the matrix A of the resulting QB system978
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Fig. 4.4. Chafee–Infante: comparison of the truncated H2-norm of the error system, having
obtained reduced systems of different orders via different methods.

the error system in Figure 4.4, where the reduced model Σ̂ is constructed by various
methods of different orders. As mentioned before, the reduced-order systems obtained
via POD preserve the structure of the original nonlinearities; therefore, the truncated
H2-norm definition, given in Lemma 3.4, does not apply.

Figure 4.4 indicates that the reduced-order systems obtained via one-sided in-
terpolatory projection perform worst in the truncated H2-norm measure. Moreover,
while BT performs better than TQB-IRKA and the two-sided interpolatory method
for small reduced orders with respect to the truncated H2-norm, for higher reduced
orders, the two-sided interpolatory method yields the best reduced systems. How-
ever, it is important to emphasize that unlike in the case of linear dynamical systems,
the H2-norm and the L∞-norm of the output for nonlinear systems, including QB
systems, are not as strongly connected as in the linear case. This can be seen in
Figure 4.4; for reduced order r = 10, even though BT yields the smallest truncated
H2 error, in the time-domain simulations for inputs u(1) and u(2), it is not the best
in terms of the L∞-norm of the output. Furthermore, it can also be noted that for
r = 10, TQB-IRKA yields a reduced-order system, which satisfies the optimality con-
ditions most accurately (see Table 4.2), but in the truncated H2-norm, it does not
perform the best, as illustrated in Figure 4.4.

Nevertheless, we believe that the truncated H2-norm of the error system is a
robust indicator for the quality of the reduced system, because this norm is defined
by the kernels, which define the mapping from the input to the output. Thus, if the
kernels are ensured to be close enough, then one can expect an accurate approximation
of the output.

4.2. Nonlinear RC ladder. We consider a nonlinear RC ladder, which consists
of capacitors and nonlinear I–V diodes. The characteristics of the I–V diodes are
governed by exponential nonlinearities, which can also be rewritten in the QB form.
For a detailed description of the dynamics of this electronic circuit, we refer to [4, 23,
35, 37, 38]. We set the number of capacitors in the ladder to k = 500, resulting in a
QB system of order n = 1000. Note that the matrix A of the resulting QB system
has eigenvalues at zero; therefore, the truncated H2-norm may not exist. Moreover,
BT also cannot be employed as we need to solve Lyapunov equations that require
a stable A matrix. Thus, we shift the matrix A to As := A − 0.01In to determine
the projection matrices for TQB-IRKA and BT, but we project the original system
matrices.
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Figure 4.5. RC circuit: comparison of responses for the input u(1)(t) = e−t.

has eigenvalues at zero; therefore, the truncated H2-norm may not exist. Moreover,979

BT also cannot be employed as we need to solve Lyapunov equations that require980

a stable A matrix. Thus, we shift the matrix A to As := A − 0.01In to determine981

the projection matrices for TQB-IRKA and BT, but we project the original system982

matrices.983

We construct reduced-order systems of order r = 10 using all five different meth-984

ods. In this example as well, we initialize TQB-IRKA randomly and it converges after985

27 iterations. We choose the scaling factor γ = 0.01. For this example, we determine986

the reduced Hessian by exploiting the particular structure of the Hessian. In order to987

compute a reduced-order system via POD, we first obtain 500 snapshots of the true988

solution for the training input u(1)(t) = e−t and then use the 10 dominant modes to989

determine the projection.990

We first compare the accuracy of these reduced systems for the same training991

input u(1)(t) = e−t, which is also used to compute the POD basis. Figure 4.5 shows992

the transient responses and relative errors of the output for the input u(1). As one993

would expect, POD outperforms all other methods since the control input u(1) is the994

same as the training input for POD. Nonetheless, TQB-IRKA, BT, and two-sided995

interpolatory projection also yield very good reduced-order systems, considering they996

are obtained without any prior knowledge of the input.997

We also test the reduced-order systems for an input different from the training998

input, precisely, u(2)(t) = 2.5 (sin(πt/5) + 1). Figure 4.6 shows the transient responses999

and relative errors of the output for the input u(2). We observe that POD does1000

perform almost as well as the other methods, such as TQB-IRKA, BT and two-sided1001

interpolatory projection methods even for this input, and the one-sided interpolatory1002

projection method completely fails to capture the system dynamics for the input u(2).1003

This can also be observed from Table 4.3, where the mean relative errors of the outputs1004

are reported.1005

Further, we compute the quantities as defined in (4.1) using the reduced system1006

of order r = 10 obtained from the various investigated methods, and list them in1007

Table 4.4. As in the previous example, the reduced-order system obtained using1008

TQB-IRKA satisfies the optimality conditions (3.32) most accurately among all the1009

considered methods.1010
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Fig. 4.5. RC circuit: comparison of responses for the input u(1)(t) = e−t.

Table 4.3
RC circuit: The mean absolute errors of the output.

Input TQB-IRKA BT One-sided Two-sided POD

u(1)(t) 8.82 · 10−5 3.67 · 10−4 6.50 · 10−2 1.01 · 10−4 7.24 · 10−8

u(2)(t) 1.12 · 10−3 2.15 · 10−3 2.32 · 10−1 7.80 · 10−4 7.8 · 10−3

We construct reduced-order systems of order r = 10 using all five different meth-
ods. In this example as well, we initialize TQB-IRKA randomly and it converges after
27 iterations. We choose the scaling factor γ = 0.01. For this example, we determine
the reduced Hessian by exploiting the particular structure of the Hessian. In order to
compute a reduced-order system via POD, we first obtain 500 snapshots of the true
solution for the training input u(1)(t) = e−t and then use the 10 dominant modes to
determine the projection.

We first compare the accuracy of these reduced systems for the same training
input u(1)(t) = e−t, which is also used to compute the POD basis. Figure 4.5 shows
the transient responses and relative errors of the output for the input u(1). As one
would expect, POD outperforms all other methods since the control input u(1) is the
same as the training input for POD. Nonetheless, TQB-IRKA, BT, and two-sided
interpolatory projection also yield very good reduced-order systems, considering they
are obtained without any prior knowledge of the input.

We also test the reduced-order systems for an input different from the training
input, precisely, u(2)(t) = 2.5 (sin(πt/5) + 1). Figure 4.6 shows the transient responses
and relative errors of the output for the input u(2). We observe that POD does
perform almost as well as the other methods, such as TQB-IRKA, BT, and two-sided
interpolatory projection methods even for this input, and the one-sided interpolatory
projection method completely fails to capture the system dynamics for the input u(2).
This can also be observed from Table 4.3, where the mean relative errors of the outputs
are reported.

Further, we compute the quantities as defined in (4.1) using the reduced system
of order r = 10 obtained from the various investigated methods, and list them in
Table 4.4. As in the previous example, the reduced-order system obtained using
TQB-IRKA satisfies the optimality conditions (3.31) most accurately among all the
considered methods.
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Figure 4.6. RC circuit: comparison of responses for the input u(2)(t) = 2.5 (sin(πt/5) + 1).

Input TQB-IRKA BT One-sided Two-sided POD

u(1)(t) 8.82 · 10−5 3.67 · 10−4 6.50 · 10−2 1.01 · 10−4 7.24 · 10−8

u(2)(t) 1.12 · 10−3 2.15 · 10−3 2.32 · 10−1 7.80 · 10−4 7.8 · 10−3

Table 4.3
RC circuit: the mean absolute errors of the output.

Method EC EB EN EH Eλ
TQB-IRKA 2.50 · 10−8 3.88 · 10−6 3.92 · 10−7 3.37 · 10−8 3.91 · 10−8

BT 5.32 · 10−6 2.95 · 10−5 6.39 · 10−6 3.23 · 10−6 1.36 · 10−5

One-sided 1.00 · 10−2 4.40 · 10−2 2.98 · 10−2 1.43 · 10−2 4.26 · 10−2

Two-sided 6.29 · 10−4 2.30 · 10−3 7.33 · 10−4 5.00 · 10−4 3.57 · 10−4

Table 4.4
RC circuit: perturbations to the optimality conditions.

Next, we also compare the truncated H2-norm of the error system, i.e., ‖Σ −1011

Σ̂‖H(T )
2

, in Figure 4.7, where the reduced models are constructed by various methods1012

of different orders. The figure shows that TQB-IRKA yields the best reduced-order1013

systems with respect to the truncated H2-norm among the investigated methods as1014

well.1015

Note that we apply POD to the original system with exponential nonlinearities;1016

therefore, we cannot compute the truncated H2-norm defined in Lemma 3.4 for the1017

POD approximation. Hence, POD is omitted in Figure 4.7.1018

4.3. The FitzHugh-Nagumo (F-N) system. This example considers the F-1019

N system, describing activation and deactivation dynamics of spiking neurons. This1020

model is a simplification of the Hodgkin-Huxley neuron model. The dynamics of the1021

system are governed by the following nonlinear coupled PDEs:1022

εvt(x, t) = ε2vxx(x, t) + f(v(x, t))− w(x, t) + q,

wt(x, t) = hv(x, t)− γw(x, t) + q
1023
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One-sided 1.00 · 10−2 4.40 · 10−2 2.98 · 10−2 1.43 · 10−2 4.26 · 10−2

Two-sided 6.29 · 10−4 2.30 · 10−3 7.33 · 10−4 5.00 · 10−4 3.57 · 10−4

H2-QUASI-OPTIMAL MOR FOR QB CONTROL SYSTEMS 33

TQB-IRKA BT One-sided proj. Two-sided proj.
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Figure 4.7. RC circuit: comparison of the truncated H2-norm of the error system obtained
via different methods of various orders.

with the nonlinear function f(v(x, t)) = v(v − 0.1)(1 − v), and initial and boundary1024

conditions as follows:1025

v(x, 0) = 0, w(x, 0) = 0, x ∈ (0, L),

vx(0, t) = i0(t), vx(1, t) = 0, t ≥ 0,
1026

where ε = 0.015, h = 0.5, γ = 2, q = 0.05, L = 0.3, and i0(t) is an actuator,1027

acting as a control input. The voltage and recovery voltage are denoted by v and w,1028

respectively. MOR for this model has been considered in [9, 13, 19]. Furthermore,1029

we also consider the same output as considered in [9, 13], which is the limit-cycle at1030

the left boundary, i.e., x = 0. The system can be considered as having two inputs,1031

namely q and i0(t); it has also two outputs, which are v(0, t) and w(0, t). This means1032

that the system is a multi-input multi-output system (MIMO) as opposed to the two1033

previous examples. We discretize the governing equations using a finite difference1034

scheme. This leads to an ODE system, having cubic nonlinearity, which can then be1035

transformed into the QB form. We consider k = 300 grid points, resulting in a QB1036

system of order 3k = 900.1037

We next determine reduced systems of order r = 35 using TQB-IRKA, BT, and1038

POD. We choose the scaling factor γ = 1 in TQB-IRKA, and it requires 26 iterations1039

to converge. For this example, we also utilize the Kronecker product structure of1040

the Hessian to perform an efficient computation of the reduced Hessian. In order to1041

apply POD, we first collect 500 snapshots of the original system for the time interval1042

(0, 10] using i0(t) = 50(sin(2πt) − 1) and then determine the projection based on1043

the 35 dominant modes. The one-sided and two-sided subsystem-based interpolatory1044

projection methods have major disadvantages in the MIMO QB case. The one-sided1045

interpolatory projection approach of [23] can be applied to MIMO QB systems, how-1046

ever the dimension of the subspace V , and thus the dimension of the reduced model,1047

increases quadratically due to the V ⊗ V term. As we mentioned in Section 1, two-1048

sided interpolatory projection is only applicable to single-input single-output (SISO)1049

QB systems. When the number of inputs and outputs are the same, which is the1050

case in this example, one can still employ [10, Algo. 1] to construct a reduced sys-1051

tem. This is exactly what we did here. However, it is important to note that even1052

though the method can be applied numerically, it no longer ensures the theoretical1053

subsystem interpolation property. Despite these drawbacks, for completeness of the1054

This manuscript is for review purposes only.

Fig. 4.7. RC circuit: comparison of the truncated H2-norm of the error system obtained via
different methods of various orders.

Next, we also compare the truncated H2-norm of the error system, i.e., ‖Σ −
Σ̂‖H(T )

2
, in Figure 4.7, where the reduced models are constructed by various methods

of different orders. The figure shows that TQB-IRKA yields the best reduced-order
systems with respect to the truncated H2-norm among the investigated methods as
well.

Note that we apply POD to the original system with exponential nonlinearities;
therefore, we cannot compute the truncated H2-norm defined in Lemma 3.4 for the
POD approximation. Hence, POD is omitted in Figure 4.7.
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4.3. The FitzHugh–Nagumo (F–N) system. This example considers the
F-N system, describing activation and deactivation dynamics of spiking neurons. This
model is a simplification of the Hodgkin–Huxley neuron model. The dynamics of the
system are governed by the following nonlinear coupled PDEs:

εvt(x, t) = ε2vxx(x, t) + f(v(x, t))− w(x, t) + q,

wt(x, t) = hv(x, t)− γw(x, t) + q

with the nonlinear function f(v(x, t)) = v(v − 0.1)(1 − v) and initial and boundary
conditions as follows:

v(x, 0) = 0, w(x, 0) = 0, x ∈ (0, L),

vx(0, t) = i0(t), vx(1, t) = 0, t ≥ 0,

where ε = 0.015, h = 0.5, γ = 2, q = 0.05, L = 0.3, and i0(t) is an actuator,
acting as a control input. The voltage and recovery voltage are denoted by v and w,
respectively. MOR for this model has been considered in [9, 13, 19]. Furthermore,
we also consider the same output as considered in [9, 13], which is the limit-cycle at
the left boundary, i.e., x = 0. The system can be considered as having two inputs,
namely q and i0(t); it has also two outputs, which are v(0, t) and w(0, t). This means
that the system is a multi-input multi-output system (MIMO) as opposed to the two
previous examples. We discretize the governing equations using a finite difference
scheme. This leads to an ODE system, having cubic nonlinearity, which can then be
transformed into the QB form. We consider k = 300 grid points, resulting in a QB
system of order 3k = 900.

We next determine reduced systems of order r = 35 using TQB-IRKA, BT, and
POD. We choose the scaling factor γ = 1 in TQB-IRKA, and it requires 26 iterations
to converge. For this example, we also utilize the Kronecker product structure of the
Hessian to perform an efficient computation of the reduced Hessian. In order to apply
POD, we first collect 500 snapshots of the original system for the time interval (0, 10]
using i0(t) = 50(sin(2πt)−1) and then determine the projection based on the 35 dom-
inant modes. The one-sided and two-sided subsystem-based interpolatory projection
methods have major disadvantages in the MIMO QB case. The one-sided interpola-
tory projection approach of [23] can be applied to MIMO QB systems; however, the
dimension of the subspace V , and thus the dimension of the reduced model, increases
quadratically due to the V ⊗V term. As we mentioned in section 1, two-sided interpo-
latory projection is only applicable to SISO QB systems. When the number of inputs
and outputs are the same, which is the case in this example, one can still employ [10,
Alg. 1] to construct a reduced system. This is exactly what we did here. However, it
is important to note that even though the method can be applied numerically, it no
longer ensures the theoretical subsystem interpolation property. Despite these draw-
backs, for completeness of the comparison, we still construct reduced models using
both one-sided and two-sided subsystem-based interpolatory projections.

Since the F-N system has two inputs and two outputs, each interpolation point
yields 6 columns of the projection matrices V and W . Thus, to apply the two-sided
projection, we use 6 linear H2-optimal points and determine the reduced system of
order 35 by taking the 35 dominant vectors. We do the same for the one-sided
interpolatory projection method to compute the reduced-order system.

Next, we compare the quality of the reduced-order systems and plot the transient
responses and the absolute errors of the outputs in Figure 4.8 for the training input
i0(t) = 50(sin(2πt)− 1).
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Figure 4.8. The FitzHugh-Nagumo system: comparison of the limit-cycle at the left boundary,
x = 0 for i0(t) = 50(sin(2πt)− 1).
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Figure 4.9. The FitzHugh-Nagumo system: comparison of the limit-cycle at the left boundary,
x = 0 for i0(t) = 5 · 104t3 exp(−15t).

comparison, we still construct reduced models using both one-sided and two-sided1055

subsystem-based interpolatory projections.1056

Since the F-N system has two inputs and two outputs, each interpolation point1057

yields 6 columns of the projection matrices V and W . Thus, in order to apply the1058

two-sided projection, we use 6 linear H2-optimal points and determine the reduced1059

system of order 35 by taking the 35 dominant vectors. We do the same for the1060

one-sided interpolatory projection method to compute the reduced-order system.1061

Next, we compare the quality of the reduced-order systems and plot the transient1062

responses and the absolute errors of the outputs in Figure 4.8 for the training input1063

i0(t) = 50(sin(2πt)− 1).1064

As anticipated, POD provides a very good reduced-order system since the POD1065

basis is constructed by using the same trajectory. Note that despite not reporting1066

CPU times for the offline phases in this paper, due to the very different levels of the1067

implementations used for the various methods, we would like to mention that in this1068

example the construction of the POD basis with the fairly sophisticated MATLAB in-1069

tegrator ode15s takes roughly 1.5 more CPU time than constructing the TQB-IRKA1070
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comparison, we still construct reduced models using both one-sided and two-sided1055

subsystem-based interpolatory projections.1056

Since the F-N system has two inputs and two outputs, each interpolation point1057

yields 6 columns of the projection matrices V and W . Thus, in order to apply the1058

two-sided projection, we use 6 linear H2-optimal points and determine the reduced1059

system of order 35 by taking the 35 dominant vectors. We do the same for the1060

one-sided interpolatory projection method to compute the reduced-order system.1061

Next, we compare the quality of the reduced-order systems and plot the transient1062

responses and the absolute errors of the outputs in Figure 4.8 for the training input1063

i0(t) = 50(sin(2πt)− 1).1064

As anticipated, POD provides a very good reduced-order system since the POD1065

basis is constructed by using the same trajectory. Note that despite not reporting1066

CPU times for the offline phases in this paper, due to the very different levels of the1067

implementations used for the various methods, we would like to mention that in this1068

example the construction of the POD basis with the fairly sophisticated MATLAB in-1069

tegrator ode15s takes roughly 1.5 more CPU time than constructing the TQB-IRKA1070
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Figure 4.10. The FitzHugh-Nagumo system: limit-cycle behavior of the original and reduced-
order systems in the spatial domain.

reduced-order model with our vanilla implementation.1071

Comparing TQB-IRKA and BT, TQB-IRKA gives a marginally better reduced-1072

order system as compared to BT for i0(t) = 50(sin(2πt) − 1), but still both are1073

very competitive. In contrast, the one-sided and two-sided interpolatory projection1074

methods produce unstable reduced-order systems and are therefore omitted from the1075

figures.1076

To test the robustness of the obtained reduced-order systems, we choose a different1077

control input, i0(t) = 5 · 104t3 exp(−15t), and compare the transient responses in1078

Figure 4.9. In this figure, we observe that BT performs the best among all methods for1079

i0(t) = 5 ·104t3 exp(−15t), and POD and TQB-IRKA produce reduced-order systems1080

of almost the same quality. One-sided and two-sided projection result in unstable1081

reduced-order systems for i0(t) = 5 · 104t3 exp(−15t) as well. Furthermore, we also1082

show the limit-cycles on the full space obtained from the original and reduced-order1083

systems in Figure 4.10 for i0(t) = 5 · 104t3 exp(−15t), and observe that the reduced-1084

order systems obtained using POD, TQB-IRKA, and BT, enable us to reproduce the1085

limit-cycles, which is a typical neuronal dynamics as shown in Figures 4.8 and 4.101086

As shown in [9], for particular interpolation points and higher-order moments,1087

it might be possible to construct reduced-order systems via one-sided and two-sided1088

interpolatory projection methods, which can reconstruct the limit-cycles. But as1089

discussed in [9], stability of the reduced-order systems is highly sensitive to these1090

specific choices and even slight modifications may lead to unstable systems. For the1091

H2 linear optimal interpolation points selection we made here, the one-sided and two-1092

sided approaches were not able to reproduce the limit-cycles; thus motivating the1093

usage of TQB-IRKA and BT once again, especially for the MIMO case.1094

Moreover, we report how far the reduced systems of order r = 35 due to TQB-1095

IRKA, BT, one-sided and two-sided projection methods are from satisfying the opti-1096

mality conditions (3.32). For this, we compute the perturbations (4.1) and list them1097

in Table 4.5. Following the trend in the first two examples, the reduced-order sys-1098

tem obtained by using TQB-IRKA satisfies the optimality conditions most accurately.1099

Moreover, it can also be noticed that two-sided interpolatory projection method sat-1100

isfies the optimality conditions very poorly, indicating a poor reduced-order model.1101

Lastly, we measure the truncatedH2-norm of the error systems, using the reduced-1102

order systems obtained via different methods of various orders. We plot the relative1103

truncated H2-norm of the error systems in Figure 4.11. We observe that TQB-IRKA1104
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Fig. 4.10. The FitzHugh–Nagumo system: limit-cycle behavior of the original and reduced-order
systems in the spatial domain.

As anticipated, POD provides a very good reduced-order system since the POD
basis is constructed by using the same trajectory. Note that despite not reporting
CPU times for the offline phases in this paper, due to the very different levels of the
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Table 4.5
The FitzHugh–Nagumo system: Perturbations to the optimality conditions.

Method EC EB EN EH Eλ
TQB-IRKA 8.76 · 10−8 7.35 · 10−9 1.78 · 10−11 4.27 · 10−9 9.14 · 10−10

BT 1.10 · 10−6 1.73 · 10−8 3.36 · 10−9 3.56 · 10−5 5.49 · 10−9

One-sided 4.10 · 10−3 7.40 · 10−3 9.26 · 10−17 5.10 · 10−3 6.36 · 10−4

Two-sided 1.62 · 103 4.10 · 10−3 1.65 · 10−10 1.94 · 109 2.57 · 100

implementations used for the various methods, we would like to mention that in this
example the construction of the POD basis with the fairly sophisticated MATLAB in-
tegrator ode15s takes roughly 1.5 more CPU time than constructing the TQB-IRKA
reduced-order model with our vanilla implementation.

Comparing TQB-IRKA and BT, TQB-IRKA gives a marginally better reduced-
order system as compared with BT for i0(t) = 50(sin(2πt) − 1), but still both are
very competitive. In contrast, the one-sided and two-sided interpolatory projection
methods produce unstable reduced-order systems and are therefore omitted from the
figures.

To test the robustness of the obtained reduced-order systems, we choose a different
control input, i0(t) = 5 · 104t3 exp(−15t), and compare the transient responses in
Figure 4.9. In this figure, we observe that BT performs the best among all methods for
i0(t) = 5 ·104t3 exp(−15t), and POD and TQB-IRKA produce reduced-order systems
of almost the same quality. One-sided and two-sided projections result in unstable
reduced-order systems for i0(t) = 5 · 104t3 exp(−15t) as well. Furthermore, we also
show the limit-cycles on the full space obtained from the original and reduced-order
systems in Figure 4.10 for i0(t) = 5 · 104t3 exp(−15t), and observe that the reduced-
order systems obtained using POD, TQB-IRKA, and BT enable us to reproduce the
limit-cycles, which is a typical neuronal dynamics, as shown in Figures 4.8 and 4.10.

As shown in [9], for particular interpolation points and higher-order moments,
it might be possible to construct reduced-order systems via one-sided and two-sided
interpolatory projection methods, which can reconstruct the limit-cycles. But as
discussed in [9], stability of the reduced-order systems is highly sensitive to these
specific choices, and even slight modifications may lead to unstable systems. For
the H2 linear optimal interpolation points selection we made here, the one-sided and
two-sided approaches were not able to reproduce the limit-cycles, thus motivating the
usage of TQB-IRKA and BT once again, especially for the MIMO case.

Moreover, we report how far the reduced systems of order r = 35 due to TQB-
IRKA, BT, one-sided and two-sided projection methods are from satisfying the opti-
mality conditions (3.31). For this, we compute the perturbations (4.1) and list them
in Table 4.5. Following the trend in the first two examples, the reduced-order sys-
tem obtained by using TQB-IRKA satisfies the optimality conditions most accurately.
Moreover, it can also be noticed that two-sided interpolatory projection method sat-
isfies the optimality conditions very poorly, indicating a poor reduced-order model.

Lastly, we measure the truncatedH2-norm of the error systems, using the reduced-
order systems obtained via different methods of various orders. We plot the relative
truncated H2-norm of the error systems in Figure 4.11. We observe that TQB-IRKA
produces better reduced-order systems with respect to the truncatedH2-norm as com-
pared with BT and one-sided interpolatory projection as well. Furthermore, since we
require stability of the matrix Â in the reduced QB system (1.2) to be able to compute
the truncated H2-norm of the error systems, we could not achieve this in the case of
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Method EC EB EN EH Eλ
TQB-IRKA 8.76 · 10−8 7.35 · 10−9 1.78 · 10−11 4.27 · 10−9 9.14 · 10−10

BT 1.10 · 10−6 1.73 · 10−8 3.36 · 10−9 3.56 · 10−5 5.49 · 10−9

One-sided 4.10 · 10−3 7.40 · 10−3 9.26 · 10−17 5.10 · 10−3 6.36 · 10−4

Two-sided 1.62 · 103 4.10 · 10−3 1.65 · 10−10 1.94 · 109 2.57 · 100

Table 4.5
The FitzHugh-Nagumo system: perturbations to the optimality conditions.

TQB-IRKA BT One-sided proj.

15 20 25 30 35 40
10−12

10−4

104

Order of reduced system, r

‖Σ
−

Σ̂
‖ H

(
T

)
2

‖Σ
‖ H

(
T

)
2

Figure 4.11. The FitzHugh-Nagumo system: comparison of the truncated H2-norm of the
error system, having obtained reduced systems of different orders using various methods.

produces better reduced-order systems with respect to the truncated H2-norm as1105

compared to BT and one-sided interpolatory projection as well. Furthermore, since we1106

require stability of the matrix Â in the reduced QB system (1.2) to be able to compute1107

the truncated H2-norm of the error systems, we could not achieve this in the case of1108

two-sided interpolatory projection. For POD, we preserve the cubic nonlinearity in1109

the reduced-order system; hence, the truncatedH2-norm definition in Lemma 3.4 does1110

not apply. Thus, we cannot compute the truncated H2-norm of the error system in1111

the cases of the two-sided interpolatory projection and POD, thereby these methods1112

are not included in Figure 4.11.1113

5. Conclusions. In this paper, we have investigated the optimal model reduc-1114

tion problem for quadratic-bilinear control systems. We have first defined the H2-1115

norm for quadratic-bilinear systems based on the kernels of the underlying Volterra1116

series and introduced a truncated H2-norm. We have then derived the first-order1117

necessary conditions to be satisfied by a minimizer of the newly defined truncated1118

H2-norm of the error system. These optimality conditions lead to the proposed model1119

reduction algorithm (TQB-IRKA), which iteratively constructs reduced order mod-1120

els that approximately satisfy the optimality conditions. We have also discussed the1121

efficient computation of the reduced Hessian, utilizing the Kronecker structure of the1122

Hessian of the QB system. Via several numerical examples, we have shown that1123

TQB-IRKA outperforms the one-sided interpolation method, performs better than1124

the two-sided projection in the majority of the cases, and is comparable to balanced1125

truncation. Furthermore, unlike POD, since TQB-IRKA only depends on the state1126

space quantities and not a specific choice of input, it outperforms POD for input1127

functions that were not in the training set. Even for inputs which are used to train1128

POD, TQB-IRKA still yields satisfactory performance, but is not better than POD1129

This manuscript is for review purposes only.

Fig. 4.11. The FitzHugh–Nagumo system: comparison of the truncated H2-norm of the error
system, having obtained reduced systems of different orders using various methods.

two-sided interpolatory projection. For POD, we preserve the cubic nonlinearity in
the reduced-order system; hence, the truncatedH2-norm definition in Lemma 3.4 does
not apply. Thus, we cannot compute the truncated H2-norm of the error system in
the cases of the two-sided interpolatory projection and POD; thereby these methods
are not included in Figure 4.11.

5. Conclusions. In this paper, we have investigated the optimal model reduc-
tion problem for QB control systems. We have first defined the H2-norm for QB sys-
tems based on the kernels of the underlying Volterra series and introduced a truncated
H2-norm. We have then derived the first-order necessary conditions to be satisfied
by a minimizer of the newly defined truncated H2-norm of the error system. These
optimality conditions lead to the proposed model reduction algorithm (TQB-IRKA),
which iteratively constructs reduced-order models that approximately satisfy the op-
timality conditions. We have also discussed the efficient computation of the reduced
Hessian, utilizing the Kronecker structure of the Hessian of the QB system. Via sev-
eral numerical examples, we have shown that TQB-IRKA outperforms the one-sided
interpolation method, performs better than the two-sided projection in the majority
of the cases, and is comparable with BT. Furthermore, unlike POD, since TQB-IRKA
only depends on the state space quantities and not a specific choice of input, it out-
performs POD for input functions that were not in the training set. Even for inputs
which are used to train POD, TQB-IRKA still yields satisfactory performance, but is
not better than POD as expected. Especially for MIMO QB systems, TQB-IRKA and
BT are the preferred methods of choice to construct reduced systems since the current
framework of two-sided subspace interpolatory projection method is only applicable
to SISO systems and the extension of the one-sided interpolatory projection method
to MIMO QB systems yields reduced models whose dimension increases quadratically
with the number of inputs. Moreover, our numerical experiments reveal that in terms
of stability, the reduced systems via TQB-IRKA and BT are more robust as compared
with the one-sided and two-sided interpolatory projection methods although we do not
have any theoretical justification of this observation yet. Additionally, even though a
stable random initialization of TQB-IRKA has performed well in all of our numerical
examples, a more educated but cheaper initial guess, for example via the two-sided
interpolatory method [10], can further improve the convergence of TQB-IRKA and
the quality of the obtained reduced-order systems.

Even though we have investigated the efficient computation of the reduced Hessian
by utilizing the Kronecker product structure of the Hessian of the QB system, further
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H2-QUASI-OPTIMAL MOR FOR QB CONTROL SYSTEMS 1019

research in this direction using even more sophisticated tools from tensor theory would
prove significant in accelerating the iteration steps in TQB-IRKA. Furthermore, it is
worthwhile to further investigate the convergence of H2 iterative schemes such as
TQB-IRKA, and the asymptotic stability of the reduced systems upon convergence.

Appendix A. Important relations of the Kronecker products. In this
section, we provide some relations between Kronecker products, which will simplify
the optimality conditions in Appendix B.

Lemma A.1 (see [8, Lemma A.1]). Consider f(x) ∈ Rs×n, A(y) ∈ Rn×n, G ∈
Rn×q with x, y ∈ R, and let L(y) be defined as

L(y) = −A(y)⊗ In − In ⊗A(y).

If the functions f and A are differentiable with respect to x and y, respectively, then

∂

∂x

[
(Is)T (f(x)⊗ f(x))L−1(y)(G⊗G)Iq

]

= 2(Is)T
((

∂

∂x
f(x)

)
⊗ f(x)

)
L−1(y)(G⊗G)Iq.

Moreover, let X,Y ∈ Rn×n be symmetric matrices. Then,

∂

∂y

[
vec (X)

T L−1(y) vec (Y )
]

= 2 · vec (X)
T L−1(y)

(
∂

∂y
A(y)⊗ In

)
L−1(y) vec (Y ) .

Lemma A.2. Let F and F̂ be defined as follows:

F =
[
In 0

]
⊗
[
In 0

]
and F̂ =

[
0 Ir

]
⊗
[
0 Ir

]
,

and consider a permutation matrix

(A.1) M =

[
Mnnr 0

0 Mrnr

]
,

where Mpqr is defined in (3.27). Moreover, let the two column vectors x and y be
partitioned as

x =
[
xT1 xT2 xT3 xT4

]T
and y =

[
yT1 yT2 yT3 yT4

]T
,

where x1, y1 ∈ Rn2

, x{2,3}, y{2,3} ∈ Rnr, and x4, y4 ∈ Rr2 . Then, the following
relations hold:

(F̂ ⊗ F)T(n+r,n+r)(M ⊗M)(x⊗ y) = T(n,r)(x3 ⊗ y3) and(A.2)

(F̂ ⊗ F̂)T(n+r,n+r)(M ⊗M)(x⊗ y) = T(r,r)(x4 ⊗ y4),(A.3)

where T(n,m) is also a permutation matrix given by

T(n,m) = Im ⊗
[
Im ⊗ en1 , . . . , Im ⊗ enn

]
⊗ In.

Proof. Let us begin by considering the following equation:

(F̂ ⊗ F)T(n+r,n+r) =
[
0 Ir ⊗

[
0 Ir

]
⊗F

]
(In+r ⊗ G) ,
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1020 PETER BENNER, PAWAN GOYAL, AND SERKAN GUGERCIN

where G =
[
In+r ⊗ en+r

1 , . . . , In+r ⊗ en+r
n+r

]
⊗ In+r. Next, we split In+r as In+r =

[ In 0
0 Ir

], leading to

(A.4)

(F̂ ⊗ F)T(n+r,n+r) =
[
0 Ir ⊗

[
0 Ir

]
⊗F

] [In ⊗ G 0
0 Ir ⊗ G

]

=
[
0
(
Ir ⊗

[
0 Ir

]
⊗F

) (
Ir ⊗ G

)]

=
[
0 Ir ⊗

( ([
0 Ir

]
⊗F

)
G
)]
.

Now, we investigate the following equation (a component of the previous equation):
([

0 Ir
]
⊗F

)
Gi =: Li,

where Gi is the ith block column of the matrix G given by Gi = In+r ⊗ en+r
i ⊗ In+r.

This yields

Li =
([

0 Ir
]
⊗F

) (
In+r ⊗ en+r

i ⊗ In+r

)

=
([

0 Ir
]
In+r

)
⊗
(
F(en+r

i ⊗ In+r)
)

=
[
0 Ir

]
⊗
(
F(en+r

i ⊗ In+r)
)
.

Assuming that 1 ≤ i ≤ n, we can write Li as

Li =
[
0 Ir

]
⊗
(
F
([
eni
0

]
⊗ In+r

))
=
[
0 Ir

]
⊗
([
In ⊗

[
In 0

]
0
] [eni ⊗ In+r

0

])

=
[
0 Ir

]
⊗
[
eni ⊗

[
In 0

]]
=
[
0 Ir ⊗

(
eni ⊗

[
In 0

])]
.

Subsequently, we assume n+ r ≥ i > n, which leads to

Li =
[
0 Ir

]
⊗
(
F
([

0
eri−n

]
⊗ In+r

))

=
[
0 Ir

]
⊗
([
In ⊗

[
In 0

]
0
] [ 0
eri−n ⊗ In+r

])
= 0.

Thus,
([

0 Ir
]
⊗F

)
G =

[
L1,L2, . . . ,Ln,0

]
=: L.

Inserting the above expression in (A.4) yields

(F̂ ⊗ F)T(n+r,n+r) =
[
0 Ir ⊗ L

]
.

Now, we are ready to investigate the following term:

(F̂ ⊗ F)T(n+r,n+r)(M ⊗M) =
[
0 Ir ⊗ L

] [Mnnr ⊗M 0
0 Mrnr ⊗M

]

=
[
0 Ir ⊗ L

] [Mnnr ⊗M 0
0 Mrnr ⊗M

]

=
[
0 (Ir ⊗ L) (Mrnr ⊗M)

]
.

Further, we consider the second block column of the above relation and substitute for
Mnnr and Mrnr using (3.27) to get

(A.5)

(Ir ⊗ L) (Mrnr ⊗M) = (Ir ⊗ L)

[
Ir ⊗

[
In
0

]
⊗M Ir ⊗

[
0
Ir

]
⊗M

]

=

[
(Ir ⊗ L)

(
Ir ⊗

[
In
0

]
⊗M

)
(Ir ⊗ L)

(
Ir ⊗

[
0
Ir

]
⊗M

)]
.
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Our following task is to examine each block column of (A.5). We begin with the first
block; this is

(Ir ⊗ L)

(
Ir ⊗

[
In
0

]
⊗M

)
= Ir ⊗

(
L
([
In
0

]
⊗M

))
= Ir ⊗

(
L
[
In ⊗M

0

])

= Ir ⊗
[
L1M, . . . ,LnM

]
.

We next aim to simplify the term LiM , which appears in the previous equation:

LiM =
[
0 Ir ⊗

[
enj ⊗

[
In 0

]]] [Mnnr 0
0 Mrnr

]

=
[
0
(
Ir ⊗

[
enj ⊗

[
In 0

]])
Mrnr

]

=

[
0
(
Ir ⊗ enj ⊗

[
In 0

]) [
Ir ⊗

[
In
0

]
Ir ⊗

[
0
Ir

]]]

=
[
0
(
Ir ⊗ enj ⊗ In

)
0
]

:= Xi.(A.6)

The second block column of (A.5) can be studied in a similar fashion, and it can be
shown that

(Ir ⊗ L)

(
Ir ⊗

[
0
Ir

]
⊗M

)
= 0.

Summing up all these expressions, we obtain

(F̂ ⊗ F)T(n+r,n+r)(M ⊗M) =
[
0
(
Ir ⊗

[
X1, . . . ,Xn

])
0
]
,

where Xi is defined in (A.6). This gives

(A.7)
(F̂ ⊗ F)T(n+r,n+r)(M ⊗M)(x⊗ y) =

[
0 Ir ⊗

[
X1, . . . ,Xn

]
0
]

(x⊗ y)

=
(
Ir ⊗

[
X1, . . . ,Xn

])
(x3 ⊗ y).

Next, we define another permutation

Q =



Ir ⊗ In ⊗




In2

0
0
0




︸ ︷︷ ︸
Q1

Ir ⊗ In ⊗




0
Inr
0
0




︸ ︷︷ ︸
Q2

Ir ⊗ In ⊗




0
0
Inr
0




︸ ︷︷ ︸
Q3

Ir ⊗ In ⊗




0
0
0
Ir2




︸ ︷︷ ︸
Q4



,

which allows us to write

(x3 ⊗ y) = Q




x3 ⊗ y1

x3 ⊗ y2

x3 ⊗ y3

x3 ⊗ y4


 .

Substituting this into (A.7) results in

(F̂ ⊗ F)T(n+r,n+r)(M ⊗M)(x⊗ y)

=
(
Ir ⊗

[
X1, . . . ,Xn

]) [
Q1 Q2 Q3 Q4

]



x3 ⊗ y1

x3 ⊗ y2

x3 ⊗ y3

x3 ⊗ y4


 .D
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Now, it can be easily verified that
(
Ir ⊗

[
X1, . . . ,Xn

]) [
Q1 Q2 Q4

]
= 0. Thus, we

obtain

(F̂ ⊗ F)T(n+r,n+r)(M ⊗M)(x⊗ y) =
(
Ir ⊗

[
X1, . . . ,Xn

])
Q3(x3 ⊗ y3)

=
(
Ir ⊗

[
X1, . . . ,Xn

])

Ir ⊗ In ⊗




0
0
Inr
0





 (x3 ⊗ y3)

=
(
Ir ⊗

[
Ir ⊗ en1 ⊗ In, . . . , Ir ⊗ en1 ⊗ In

])
(x3 ⊗ y3) = T(n,r)(x3 ⊗ y3).

One can prove the relation (A.2) in a similar manner. However, for brevity, we omit
it. This concludes the proof.

We will find similar expressions as (A.2) and (A.3) in Appendix B, where we then
make use of Lemma A.2 to simplify them.

Appendix B. Proof of Theorem 3.7.

Optimality conditions with respect to C̃. We start with deriving the opti-
mality conditions by taking the derivative of the error functional E (3.25) with respect

to C̃. By using Lemma A.1, we obtain

∂E2

∂C̃ij
= 2(Ip)T

([
0 − epi (erj)T

]
⊗ C̃e

)(
−Ãe ⊗ In+r − In+r ⊗ Ãe

)−1

((
B̃e ⊗ B̃e

)
Im +

m∑

k=1

(
Ñe
k ⊗ Ñe

k

)
Pl +

(
H̃e ⊗ H̃e

)
T(n+r,n+r)(Pl ⊗ Pl)

)
,

where Pl is defined in (3.26). Simplifying this expression, we get

∂E2

∂C̃ij
= 2(Ip)T

(
−epi (erj)T ⊗ C̃e

)(
−Λ⊗ In+r − Ir ⊗ Ãe

)−1 ((
B̃ ⊗ B̃e

)
Im

+

m∑

k=1

(
Ñk ⊗ Ñe

k

)
P(2)
l +

(
H̃F̂ ⊗ H̃e

)
T(n+r,n+r)(Pl ⊗ Pl)

)
,

= 2(Ip)T
(
−epi (erj)T ⊗ C̃e

) (
Mrnr (−JΛ − JA)MT

rnr

)−1
((

B̃ ⊗ B̃e
)
Im

+

m∑

k=1

(
Ñk ⊗ Ñe

k

)
P(2)
l +

(
H̃F̂ ⊗ H̃e

)
T(n+r,n+r)(Pl ⊗ Pl)

)
,(B.1)

where

JΛ =

[
Λ⊗ In 0

0 Λ⊗ Ir

]
, JA =

[
Ir ⊗A 0

0 Ir ⊗ Λ

]
, and

P(2)
l is the lower block row of Pl as shown in (3.26). Furthermore, since Mrnr is a

permutation matrix, this implies MrnrM
T
rnr = I. Using this relation in (B.1), we

obtain
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∂E2

∂C̃ij
= 2(Ip)T

(
−epi (erj)T ⊗

[
C −C̃

])
Mrnr (−JΛ − JA)

−1
(
MT
rnr

(
B̃ ⊗ B̃e

)
Im

+MT
rnr

m∑

k=1

(
Ñk ⊗ Ñe

k

)
P(2)

1 +MT
rnr

(
H̃F̂ ⊗ H̃e

)
T(n+r,n+r)(Pl ⊗ Pl)

)

= 2(Ip)T
([
−epi (erj)T ⊗ C eie

T
j ⊗ C̃

])
(−JΛ − JA)

−1

([
B̃ ⊗B
B̃ ⊗ B̃

]
Im

+

m∑

k=1

[
Ñk ⊗Nk 0

0 Ñk ⊗ Ñk

]
MT
rnrP(2)

1

+




(
H̃F̂ ⊗HF

)
T(n+r,n+r)(M ⊗M)(MT ⊗MT )(Pl ⊗ Pl)

(
H̃F̂ ⊗ H̃F̂

)
T(n+r,n+r)(M ⊗M)(MT ⊗MT )(Pl ⊗ Pl)




 ,(B.2)

where M is the permutation matrix defined in (A.1). The multiplication of MT and
Pl yields

MTPl =

[
MnnrP(1)

l

MrnrP(2)
1

]
=
[
pT1 pT2 pT3 pT4

]T
=: P̃l,

where
(B.3)

p1 = (−A⊗ In − In ⊗A)
−1

(B ⊗B) Im, p2 = (−A⊗ Ir − In ⊗ Λ)
−1
(
B ⊗ B̃

)
Im,

p3 = (−Λ⊗ In − Ir ⊗A)
−1
(
B̃ ⊗B

)
Im, p4 = (−Λ⊗ Ir − Ir ⊗ Λ)

−1
(
B̃ ⊗ B̃

)
Im.

Moreover, note that p3 = vec (V1), where V1 solves (3.28a). Applying the result of
Lemma A.2 in (B.2) yields

∂E2

∂C̃ij
= 2(Ip)T

(
epi (e

r
j)
T ⊗ C

)
(−Λ⊗ In − Ir ⊗A)

−1
(

(B̃ ⊗B)Im +
m∑

k=1

(Ñk ⊗Nk)p3

+ (H̃ ⊗H)T(n,r)(p3 ⊗ p3)
)
− 2(Ip)T

(
epi (e

r
j)
T ⊗ C̃

)(
−Λ⊗ In − Ir ⊗ Ã

)−1

×
(

(B̃ ⊗ B̃)Im +

m∑

k=1

(Ñk ⊗ Ñk)p4 + (H̃ ⊗ H̃)T(r,r)(p4 ⊗ p4)
)

= 2(Ip)T
(
epi (e

r
j)
T ⊗ C

)
(−Λ⊗ In − Ir ⊗A)

−1
(

(B̃ ⊗B)Im +

m∑

k=1

(Ñk ⊗Nk)p3

+ (H̃ ⊗H)T(n,r)(p3 ⊗ p3)
)
− 2(Ip)T

(
epi (e

r
j)
T ⊗ Ĉ

)(
−Λ⊗ In − Ir ⊗ Â

)−1

×
(

(B̃ ⊗ B̂)Im +

m∑

k=1

(Ñk ⊗ N̂k)p̂4 + (H̃ ⊗ Ĥ)T(r,r)(p̂4 ⊗ p̂4)
)
,

(B.4)
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where p̂4 = (−Λ ⊗ Ir − Ir ⊗ Â)−1(B̃ ⊗ B̂)Im = vec (V̂1), where V̂1 is as defined in

(3.30). Setting (B.4) equal to zero results in a necessary condition with respect to C̃
as follows:

(B.5)

(Ip)T
(
epi (e

r
j)
T ⊗ C

)
(−Λ⊗ In − Ir ⊗A)

−1
(

(B̃ ⊗B)Im +

m∑

k=1

(Ñk ⊗Nk)p3

+ (H̃ ⊗H)T(n,r)(p3 ⊗ p3)
)

= (Ip)T
(
epi (e

r
j)
T ⊗ Ĉ

)(
−Λ⊗ In − Ir ⊗ Â

)−1

×
(

(B̃ ⊗ B̂)Im +

m∑

k=1

(Ñk ⊗ N̂k)p̂4 + (H̃ ⊗ Ĥ)T(r,r)(p̂4 ⊗ p̂4)
)
.

Now, we first manipulate the left-hand side of (B.5). Using Lemma 2.4 and (2.1),
we get

(Ip)T
(
epi (e

r
j)
T ⊗ C

)
(−Λ⊗ In − Ir ⊗A)

−1

(
(B̃ ⊗B)Im +

m∑

k=1

(Ñk ⊗Nk)p3

+ (H̃ ⊗H)T(n,r)(p3 ⊗ p3)

)

= (Ip)T
(
epi (e

r
j)
T ⊗ C

)
(−Λ⊗ In − Ir ⊗A)

−1

(
vec
(
BB̃T

)
+

m∑

k=1

vec
(
NkV1Ñ

T
k

)

+ (H̃ ⊗H) vec (V1 ⊗ V1)

)

= (Ip)T
(
epi (e

r
j)
T ⊗ C

)
(−Λ⊗ In − Ir ⊗A)

−1

(
vec

(
BB̃T +

m∑

k=1

NkV1Ñ
T
k

)

+ vec
(
H(V1 ⊗ V1)H̃T

))

= (Ip)T
(
epi (e

r
j)
T ⊗ C

)
(vec (V1) + vec (V2)) = tr

(
C(V1 + V2)erj(e

p
i )
T
)

= tr
(
CV erj(e

p
i )
T
)
,

where V2 solves (3.28c) and V = V1 + V2. Using the similar steps, we can show that

the right-hand side of (B.5) is equal to tr (ĈV̂ erj(e
p
i )
T ), where V̂ is defined in (3.30).

Therefore, (B.5) is the same as (3.31a).

Necessary conditions with respect to Λ. By utilizing Lemma A.1, we aim
at deriving the necessary condition with respect to the ith diagonal entry of Λ. We
differentiate E with respect to λi to obtain

∂E2

∂λi
= 2(Ip)T

(
C̃e ⊗ C̃e

)
L−1
e EL−1

e

((
B̃e ⊗ B̃e

)
Im +

m∑

k=1

(
Ñe
k ⊗ Ñe

k

)
Pl

+
(
H̃e ⊗ H̃e

)
T(n+r,n+r)(Pl ⊗ Pl)

)
+ (Ip)T

(
C̃e ⊗ C̃e

)
L−1
e

×
(

2

m∑

k=1

(
Ñe
k ⊗ Ñe

k

)
L−1
e EPl + 4

(
H̃e ⊗ H̃e

)
T(n+r,n+r)

((
L−1
e EPl

)
⊗ Pl

)
)
,
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where

Le = −
(
Ãe ⊗ In+r + In+r ⊗ Ãe

)
and E =

[
0 0
0 eri (e

r
i )
T

]
⊗ In+r.

Performing some algebraic calculations gives rise to the following expression:

∂E2

∂λi
= 2(Ip)T

(
−C̃ ⊗ C̃e

)
Z−1
e Ξn+rZ−1

e

((
B̃ ⊗ B̃e

)
Im +

m∑

k=1

(
Ñk ⊗ Ñe

k

)
P(2)

1

+
(
H̃F̂ ⊗ H̃e

)
T(n+r,n+r)(Pl ⊗ Pl)

)
+ 2(Ip)T

(
−C̃ ⊗ C̃e

)
Z−1
e

×
(

m∑

k=1

(
Ñk ⊗ Ñe

k

)
Z−1
e Ξn+rP(2)

1 + 2
(
H̃F̂ ⊗ H̃e

)
T(n+r,n+r)(L−1

e EPl ⊗ Pl)
)
,

where Ze := − (Λ⊗ In+r + Ir ⊗Ae) and Ξm := (eri (e
r
i )
T ⊗ Im). Next, we utilize

Lemma A.2 and use the permutation matrix M (as done while deriving the necessary

conditions with respect to C̃) to obtain

∂E2

∂λi

= 2(Ip)TS

(
(B̃ ⊗B)Im +

m∑
k=1

(Ñk ⊗Nk)p3 + (H̃ ⊗H)T(n,r)(p3 ⊗ p3)

)

− 2(Ip)T S̃

(
(B̃ ⊗ B̃)Im +

m∑
k=1

(Ñk ⊗ Ñk)p4 + (H̃ ⊗ H̃)T(r,r)(p4 ⊗ p4)

)

+ 2(Ip)T
(
C̃ ⊗ C

)
L−1

(
m∑
k=1

(Ñk ⊗Nk)L−1Ξnp3 + 2(H̃ ⊗H)T(n,r)(L
−1Ξnp3 ⊗ p3)

)

− 2(Ip)T
(
C̃ ⊗ C̃

)
L̃−1

(
m∑
k=1

(Ñk ⊗ Ñk)L̃−1Ξrp4 + 2(H̃ ⊗ H̃)T(r,r)(L̃
−1Ξr(p4 ⊗ p4))

)

= 2(Ip)TS

(
(B̃ ⊗B)Im +

m∑
k=1

(Ñk ⊗Nk)p3 + (H̃ ⊗H)T(n,r)(p3 ⊗ p3)

)

− 2(Ip)T Ŝ

(
(B̃ ⊗ B̂)Im +

m∑
k=1

(Ñk ⊗ N̂k)p̂4 + (H̃ ⊗ Ĥ)Tr,r(p̂4 ⊗ p̂4)

)

+ 2(Ip)T
(
C̃ ⊗ C

)
L−1

(
m∑
k=1

(Ñk ⊗Nk)L−1Ξnp3 + 2(H̃ ⊗H)T(n,r)(L
−1Ξn(p3 ⊗ p3))

)

− 2(Ip)T
(
C̃ ⊗ Ĉ

)
L̂−1

(
m∑
k=1

(Ñk ⊗ N̂k)L̂−1Ξrp̂4 + 2(H̃ ⊗ Ĥ)T(r,r)(L̂
−1Ξr(p̂4 ⊗ p̂4)

)
,

where p3 and p4 are the same as defined in (B.3), and

S :=
(
C̃ ⊗ C

)
L−1(eri (e

r
i )
T ⊗ In)L−1, S̃ :=

(
C̃ ⊗ C̃

)
L̃−1(eri (e

r
i )
T ⊗ Ir)L̃−1,

Ŝ :=
(
C̃ ⊗ Ĉ

)
L̂−1(eri (e

r
i )
T ⊗ Ir)L̂−1, L := − (Λ⊗ In + Ir ⊗A) ,

L̃ := − (Λ⊗ Ir + Ir ⊗ Λ) , L̂ := −
(

Λ⊗ Ir + Ir ⊗ Â
)
.

By using the properties derived in Lemma 2.2, we can simplify the above equation:
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∂E2

∂λi
= 2(Ip)TS

(
(B̃ ⊗B)Im +

m∑
k=1

(Ñk ⊗Nk)p3 + (H̃ ⊗H)T(n,r)(p3 ⊗ p3)
)

− 2(Ip)T Ŝ
(

(B̃ ⊗ B̂)Im +

m∑
k=1

(Ñk ⊗ N̂k)p4 + (H̃ ⊗ Ĥ)T(r,r)(p̂4 ⊗ p̂4)
)

+ 2(Im)T
(
B̃ ⊗B

)
L−TΞnL

−T
(

m∑
k=1

(Ñk ⊗Nk)T q3 + 2(H̃(2) ⊗H(2))T(n,r)(p3 ⊗ q3)

)

− 2(Im)T
(
B̃ ⊗ B̂

)
L̂−TΞrL̂

−T
(

m∑
k=1

(Ñk ⊗ N̂k)T q̂4 + 2(H̃(2) ⊗ Ĥ(2))T(r,r)(p̂4 ⊗ q̂4)

)
,

where

q3 = (−Λ⊗ In − Ir ⊗A)−T
(
C̃ ⊗ C

)
Ip and q̂4 = (−Λ⊗ Ir − Ir ⊗Ar)−T

(
C̃ ⊗ Ĉ

)
Ip.

Once again, we determine an interpolation-based necessary condition with respect
to Λi by setting the last equation equal to zero:

(Ip)TS
(

(B̃ ⊗B)Im +

m∑
k=1

(Ñk ⊗Nk)p3 + (H̃ ⊗H)T(n,r)(p3 ⊗ p3)
)(B.6)

+ (Im)T
(
B̃ ⊗B

)
L−TΞnL

−T
(

m∑
k=1

(Ñk ⊗Nk)T q3 + 2(H̃(2) ⊗H(2))T(n,r)(p3 ⊗ q3)

)

= (Ip)T Ŝ

(
(B̃ ⊗ B̂)Im +

m∑
k=1

(Ñk ⊗ N̂k)p4 + (H̃ ⊗ Ĥ)T(r,r)(p̂4 ⊗ p̂4)

)

+ (Im)T
(
B̃ ⊗ B̂

)
L̂−TΞrL̂

−T
(

m∑
k=1

(Ñk ⊗ N̂k)T q̂4 + 2(H̃(2) ⊗ Ĥ(2))T(r,r)(p̂4 ⊗ q̂4)

)
.

Now, we first simplify the left-hand side of the above equation using Lemma 2.4 and
(2.1). We first focus on the first part of the left-hand side of (B.6). This yields

(Ip)TS
(

(B̃ ⊗B)Im +

m∑

k=1

(Ñk ⊗Nk)p3 + (H̃ ⊗H)T(n,r)(p3 ⊗ p3)
)

= (Ip)T
(
C̃ ⊗ C

)
L−1(eri (e

r
i )
T ⊗ In)

× L−1
(

(B̃ ⊗B)Im +

m∑

k=1

(Ñk ⊗Nk)p3 + (H̃ ⊗H)T(n,r)(p3 ⊗ p3)
)

= (Ip)T
(
C̃ ⊗ C

)
L−1

︸ ︷︷ ︸
=(vec(W1))T

(eri (e
r
i )
T ⊗ In) vec (V ) = tr

(
V eri (e

r
i )
TWT

1

)

= (V1(:, i))
T
W (:, i) = (W1(:, i))

T
V (:, i),

where W1 solves (3.28b). Analogously, we can show that
(B.7)

(Im)T
(
B̃ ⊗B

)
L−TΞnL

−T
( m∑

k=1

(Ñk ⊗Nk)T q3 + 2(H̃(2) ⊗H(2))T(n,r)(p3 ⊗ q3)
)

= (W (:, i))
T
V1(:, i).
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Thus, the left-hand side of (B.6) is equal to (W (:, i))TV1(:, i) + (W1(:, i))TV (:, i).
Using similar steps, we can also show that the right-hand side of (B.6) is equal to

(Ŵ (:, i))T V̂1(:, i) + (Ŵ1(:, i))T V̂ (:, i). Thus, we obtain the optimality conditions with
respect to Λ given in (3.31e).

The necessary conditions with respect to B̃, Ñ , and H̃ can also be determined
in a similar manner as for C̃ and λi. For brevity of the paper, we skip detailed
derivations; however, we state the final optimality conditions. A necessary condition
for optimality with respect to the (i, j)th entry of Ñk is

(Ip)T
(
C̃ ⊗ C

)
L−1

(
(eri (e

r
j)
T ⊗Nk)p3

)
= (Ip)T

(
C̃ ⊗ Ĉ

)
L̂−1

(
(eri (e

r
j)
T ⊗ N̂k)p̂4

)
,

which then yields (3.31c) in the Sylvester equation form. A similar optimality condi-

tion with respect to the (i, j)th entry of H̃ is given by

(Ip)T
(
C̃ ⊗ C

)
L−1

(
(eri (e

r2

j )T ⊗H)T(n,r)(p3 ⊗ p3)
)

= (Ip)T
(
C̃ ⊗ Ĉ

)
L̂−1

(
(eri (e

r2

j )T ⊗ Ĥ)T(r,r)(p̂4 ⊗ p̂4)
)
,

which can be equivalently described as (3.31d). Finally, the necessary condition ap-

pearing with respect to the (i, j)th entry of B̃ is

(Im)T
(
eri (e

m
j )T ⊗B

)
L−T

(
(C̃ ⊗ C)Ip +

m∑

k=1

(Ñk ⊗Nk)T q3

+ 2(H̃(2) ⊗H(2))T(n,r)(p3 ⊗ q3)
)
,

= (Im)T
(
eri (e

m
j )T ⊗ B̂

)
L̂−T

(
(C̃ ⊗ Ĉ)Ip +

m∑

k=1

(Ñk ⊗ N̂k)T q̂4

+ 2(H̃(2) ⊗ Ĥ(2))T(r,r)(p̂4 ⊗ q̂4

)
,

which gives rise to (3.31b).

Appendix C. Proof of Theorem 3.9. We begin by establishing a relationship
between V1 ∈ Rn×r, V̂1 ∈ Rr×r, and V ∈ Rn×r. For this, consider the Sylvester
equation related to V1

(C.1) − V1Λ−AV1 = BB̃T ,

and the oblique projector Πv := V1(WTV1)−1WT . Then, we apply the projector Πv

to the Sylvester equation (C.1) from the left to obtain

−V1Λ−ΠvAV1 = ΠvBB̃
T and

−V1Λ−ΠAV1 = (Πv −Π)AV1 + ΠvBB̃
T ,(C.2)

where Π := V (WTV )−1WT . Now, recall that V̂1 satisfies the Sylvester equation

−V̂1Λ− ÂV̂1 = B̂B̃T .

We next multiply it by V from the left and substitute for Â and B̂ to obtain

(C.3) − V V̂1Λ−ΠAV V̂1 = ΠBB̃T .
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Subtracting (C.2) from (C.3) yields

(V1 − V V̂1)Λ + ΠA(V1 − V V̂1) = (Π−Πv)
(
AV1 +BB̃T

)
.

Since it is assumed that σ(Â) ∩ σ(−ΠA) = ∅, this implies that Λ⊗ In + Ir ⊗ (ΠA) is
invertible. Therefore, we can write

(C.4) V1 = V V̂1 + εv,

where εv solves the Sylvester equation

(C.5) εvΛ + ΠvAεv = (Π−Πv)
(
AV1 +BB̃T

)
.

Similarly, one can show that

(C.6) W1 = W (WTV )−T Ŵ1 + εw,

where εw solves

εwΛ + ΠTAT εw = (ΠT −Πw)(ATW1 + CT C̃),

in which Πw := W1(V TW )V T . Using (C.4) and (C.6), we obtain

Ŵ1(:, i)T N̂kV̂1(:, j) = Ŵ1(:, i)T (WTV )−1WTNkV V̂1(:, j)

= (W1(:, i)− εw(:, i))
T
Nk (V1(:, j)− εv(:, j))

= W1(:, i)TNkV1(:, j)− (εw(:, i))
T
Nk(V1(:, j)− εv(:, j))

− (W1(:, i))
T
Nk(ε(:, j)),

which is (3.32c) in Theorem 3.7. Similarly, one can prove (3.32d). To prove (3.32a),
we consider the following Sylvester equation for V :

V (−Λ)−AV = BB̃T +

m∑

k=1

NkV1Ñ
T
k +H(V1 ⊗ V1)H̃T .(C.7)

Applying Π to both sides of the above Sylvester equation yields

(C.8) V
(
Ir(−Λ)− ÂIr

)
= V

(
B̂B̃T + Y

)
,

where Y = (WTV )−1WT (
∑m
k=1NkV1Ñ

T
k +H(V1 ⊗ V1)H̃T ). This implies that

Ir(−Λ)− ÂIr = B̂B̃T + Y.(C.9)

Next, we consider the Sylvester equation for V̂ ,

V̂ (−Λ)− ÂV̂ = B̂B̃T +

m∑

k=1

N̂kV̂1Ñ
T
k + Ĥ(V̂1 ⊗ V̂1)H̃T .(C.10)

We then subtract (C.10) and (C.9) to obtain

(Ir − V̂ )(−Λ)− Â(Ir − V̂ ) =

m∑

k=1

(WTV )−1WTNk

(
V1 − V V̂1

)
ÑT
k

+ (WTV )−1WTH
(
V1 ⊗ V1 − (V V̂1 ⊗ V V̂1)

)
H̃T .
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Substituting V V̂1 from (C.4) gives

(Ir − V̂ )(−Λ)− Â(Ir − V̂ ) =

m∑

k=1

(WTV )−1WTNkεvÑ
T
k

+ (WTV )−1WTH (εv ⊗ V1 + V1 ⊗ εv + εv ⊗ εv) H̃T .

Since Λ contains the eigenvalues of Â and Â is stable, Λ and −Â cannot have any
common eigenvalues. Hence, the matrix Λ ⊗ Ir + Ir ⊗ Â is invertible. Therefore the
above Sylvester equations for Γ := V̂ − Ir exists and have a unique solution and can
be written as

ΓvΛ + ÂΓv =

m∑

k=1

(WTV )−1WTNkεvÑ
T
k

+ (WTV )−1WTH (εv ⊗ V1 + V1 ⊗ εv + εv ⊗ εv) H̃T .

To prove (3.32a), we observe that

tr
(
ĈV̂ eri

(
epj
)T)

= tr
(
CV (Ir + Γv)e

r
i

(
epj
)T)

= tr
(
CV eri

(
epj
)T)

+ tr
(
CV Γve

r
i

(
epj
)T)

.

Thus,

tr
(
CV eri

(
epj
)T)

= tr
(
ĈV̂ eri

(
epj
)T)

+ ε
(i,j)
C .

Analogously, we can prove that there exists Γw such that Ŵ = (WTV )T + Γw and
that it satisfies

ΓwΛ + ÂTΓw = V T

(
m∑

k=1

NT
k εwÑk +H(2)(εv ⊗ (W1 + εw) + V1 ⊗ εw)

(
H(2)

)T
)
.

To prove (3.32b), we observe that

tr
(
B̂T Ŵeri

(
emj
)T)

= tr
(
BTW (WTV )−T ((WTV )T + Γv)e

r
i

(
epj
)T)

.

Thus,

tr
(
B̂T Ŵeri

(
emj
)T)

= tr
(
BTWT +BTW (WTV )−TΓw)eri

(
epj
)T)

.

Since we now know that V̂ = Ir + Γv and Ŵ = (WTV )T + Γw, we get

(C.11) V V̂ = V + V Γv and W (WTV )−T Ŵ = W +W (WTV )−TΓw.

We make use of (C.11) to prove (3.32e) in the following:

(W1(:, i))TV (:, i) + (W2(:, i))
T
V1(:, i)

= (W (:, i))TV (:, i)− (W2(:, i))TV2(:, i)

=
(
W (WTV )−T

(
Ŵ (:, i)− Γw(: .i)

))T
V
(
V̂ (:, i)− Γv(:, i)

)

− (W2(:, i))TV2(:, i)

=
(
Ŵ (:, i)− Γw(: .i)

)T (
V̂ (:, i)− Γv(:, i)

)
− (W2(:, i))TV2(:, i)
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=
(
Ŵ (:, i)

)T
V̂ (:, i)−

(
Ŵ (:, i)

)T
Γv(:, i)− (Γw(: .i))

T
(
V̂ (:, i)− Γv(:, i)

)

− (W2(:, i))TV2(:, i)

= (Ŵ1(:, i))T V̂ (:, i) +
(
Ŵ2(:, i)

)T
V̂1(:, i) + ε

(i)
λ ,

where

ε
(i)
λ = −

(
Ŵ (:, i)

)T
Γv(:, i)− (Γw(: .i))

T
(
V̂ (:, i)− Γv(:, i)

)

− (W2(:, i))TV2(:, i) + (Ŵ2(:, i))T V̂2(:, i).

This completes the proof.
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