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Abstract

Modeling of sophisticated applications, such as coupled problems arising from nano-
electronics can lead to quadratic differential algebraic equations (DAEs). The quadratic
DAEs may also be parametrized, due to variations in material properties, system con-
figurations, etc., and they are usually subject to multi-query tasks, such as optimization,
or uncertainty quantification. Model order reduction (MOR), specifically parametric
model order reduction (pMOR), is known as a useful tool for accelerating the simula-
tions in a multi-query context. However, pMOR dedicated to this particular structure,
has not yet been systematically studied. Directly applying the existing pMOR meth-
ods may produce parametric reduced-order models (pROMs) which are less accurate,
or may be very difficult to simulate. The same problem was already observed for lin-
ear DAEs, and could be eliminated by introducing splitting MOR techniques such as
the index-aware MOR (IMOR) methods. We extend the IMOR methods to parame-
terized quadratic DAEs, thereby producing accurate and easy to simulate index-aware
parametric reduced-order models (IpROMs). The proposed approach is so far limited to
index-1 one-way coupled problems, but these often appear in computational nanoelec-
tronics. We illustrate the performance of the new approach using industrial models for
nanoelectronic structures.

Keywords:
model order reduction, quadratic differential-algebraic equations, tractability index

1. Introduction

DAEs arise in a variety of applications such as nanoelectronics, electrical networks,
gas transport networks, etc, and can be either linear or nonlinear. We consider a special
class of nonlinear DAEs in (1) which are quadratic and parameterized by a vector µ ∈
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Rd, where d is the number of parameters

E(µ)x′ = A(µ)x + xTF(µ)x + B(µ)u, x(0) = x0, (1a)
y = C(µ)x + D(µ)u, (1b)

where x ∈ Rn is the state vector, the matrix E(µ) ∈ Rn×n is singular for every parameter
vector µ, thus (1) is a system of DAEs. The initial condition x0 must be a consistent
initial condition, since the initial conditions of DAEs have to satisfy hidden constraints.
The system matrices are A(µ) ∈ Rn×n,B(µ) ∈ Rn×m,C(µ) ∈ R`×n,D(µ) ∈ R`×m, and the

tensor F(µ) =
[
F1(µ)T, . . . ,Fn(µ)T

]T
∈ Rn×n×n is a 3-D array consisting of n matrices

Fi(µ) ∈ Rn×n. Each element in xTF(µ)x ∈ Rn is a scalar xTFi(µ)x ∈ R, i = 1, . . . , n.
The vector µ ∈ Rd models the parameter variations. We assume that the matrices
(E(µ),A(µ),B(µ),C(µ),D(µ)) and the tensor F(µ) have an affine parameter dependence,
i.e.,

M(µ) = M0 +

m∑
i=1

fi(µ)Mi, (2)

where the scalar functions fi determine the parameter dependency, which can be non-
linear functions of µ, and Mi can be either a constant matrix or a constant tensor.
u = u(t) ∈ Rm and y = y(t, µ) ∈ R` are the inputs (excitations) and the desired
outputs (observations), respectively. In order to ensure the uniqueness and existence of
the solution of (1), the matrix pencil λE(µ) − A(µ) must be regular for each parameter
µ, where λ ∈ C, i.e., the polynomial P(λ, µ) = det(λE(µ) −A(µ)) is not identically zero.

In practice, realistic models have very large dimension n compared to the number
of inputs m and desired outputs `. Despite the ever increasing computational power,
simulation of these systems in acceptable time is very difficult, in particular if multi-
query tasks are required. MOR aims to reduce this computational burden by generating
reduced-order models (ROMs) that are faster and cheaper to simulate, yet accurately
represent the original large-scale system behavior [1]. The goal of pMOR is to generate
low cost but accurate ROMs that characterize the system response for different values
of the parameters. pMOR replaces (1) by a pROM

Er(µ)xr
′ = Ar(µ)xr + xT

r Fr(µ)xr + Br(µ)u, xr(0) = xr0, (3a)
yr = Cr(µ)xr + Dr(µ)u, (3b)

where µ is symbolically preserved and Er(µ),Ar(µ) ∈ Rr×r,Br(µ) ∈ Rr×m,Cr(µ) ∈

R`×r,Dr(µ) ∈ R`×m. The 3D tensor Fr(µ) =
[
FT

r1
(µ), . . . ,FT

rr
(µ)

]T
∈ Rr×r×r consists of

r matrices Fri(µ) ∈ Rr×r, and xr ∈ R
r is the reduced state vector of the pROM. The di-

mension r � n of the pROM in (3) is much smaller than that of the original model (1).
A good pROM should have small approximation error ‖y−yr‖ in a suitable norm ‖·‖ for
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arbitrary input u and every varying parameter µ. There exist many pMOR techniques
which can be used to construct the pROM (3) such as the reduced basis method, Proper
Orthogonal Decomposition (POD), the implicit multi-moment-matching method, a sur-
vey can be found in [1]. Almost all these methods are based on (Petrov-) Garlerkin
projection.

pMOR based on Galerkin projection is done by constructing a projection matrix
V ∈ Rn×r so that VTV = I. Then, the pROM of (1) is written in the form

Er(µ)xr
′ = Ar(µ)xr + VT[xT

r F̃(µ)xr
]
+ Br(µ)u, xr(0) = VTx0, (4a)

yr = Cr(µ)xr + Dr(µ)u, (4b)

with the matrices Er(µ) = VTE(µ)V, Ar(µ) = VTA(µ)V, Br(µ) = VTB(µ), and the
tensor F̃ = VTF(µ)V ∈ Rr×r×n. In order to project the original consistent initial values
onto the initial values for the ROM, the matrix V is constructed by first transforming
(1) into a zero initial condition system, for details see [2]. From, system (4a) we
observe that even if the order of the state vector is reduced, the nonlinear part has a
computational cost of full dimension O(n). This problem can be eliminated using the
fact that VT[xT

r F̃(µ)xr
]

can be transformed into xT
r F(µ)xr, where Fr ∈ R

r×r×r, using the
transformation below.

Proposition 1. Let W ∈ Rn×r be a matrix, F̃ ∈ Rr×r×n be a 3D tensor, and xr ∈ R
r, then

there exists a 3D tensor Fr ∈ R
r×r×r such that:

WT
(
xr

TF̃xr

)
= xr

TFrxr. (5)

Proof. Let W =
[
wi j

]
∈ Rn×r and F̃ =

[
F̃T

1 , . . . , F̃
T
n

]T
with F̃i ∈ R

r×r, then

WTxr
TF̃xr = xr

T

 n∑
i=1

F̃T
i wi1, . . . ,

n∑
i=1

F̃T
i wi j, . . . ,

n∑
i=1

F̃T
i wir

T

xr,

= xr
T
[
FT

r1
, . . . ,FT

rr

]T
xr, where Fr j =

n∑
i=1

wi jF̃i ∈ R
r×r, j = 1, . . . , r.

Hence, Fr =
[
FT

r1
, . . . ,FT

rr

]T
∈ Rr×r×r. �

The above transformation is numerically feasible, hence, system (4) can be refor-
mulated as in (3). Although existing pMOR methods can be directly applied to param-
eterized quadratic DAEs, they may produce pROMs which are less accurate or are hard
to simulate. This problem used to appear for the case of linear DAEs and it was solved
by MOR based on first splitting the DAEs into differential and algebraic subsystems,
e.g. the index-aware MOR methods (IMOR) based on admissible projectors [3, 4] and
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balanced truncation model reduction for descriptor systems based on spectral projectors
[5]. Applying spectral projectors efficiently to DAEs is described e.g., in the recent sur-
vey [6], but this depends on the structure of the singular matrix of the DAE, and may not
always be possible. The MOR methods based on splitting techniques always preserve
the index structure of the DAEs which guarantees the accuracy of the ROMs.

In this paper, we extend the ideas of the IMOR method proposed in [7] to param-
eterized quadratic DAEs. We call this method index-aware parameterized model order
reduction (IpMOR) for quadratic DAEs. For simplicity, we assume that the index of the
system (1) of DAEs is independent of the parameter µ and its nonlinearity. Thus, its
index can be computed using the index concepts for linear DAEs such as the tractabil-
ity index [7]. For convenience, we shall write E = E(µ),A = A(µ),B = B(µ),C =

C(µ),D = D(µ) and F = F(µ), unless otherwise stated. The rest of the paper is orga-
nized as follows. In Section 2, we review the decoupling procedure for linear DAEs.
Then, in Section 3, we extend the decoupling procedure for linear DAEs to nonlin-
ear quadratic DAEs. Section 4 describes the implicit decoupling of index-1 quadratic
DAEs. We introduce the IpMOR for quadratic DAEs in Section 5. Section 6 discusses
the construction of projection matrices for pMOR of differential and algebraic subsys-
tems, respectively. Finally, we present some numerical experiments and conclusions.

2. Decoupling of index-1 linear DAEs

In this section, we review the decoupling of linear DAEs using projectors and cor-
responding bases proposed in [3, 4]. Here, we assume F = 0 in (1), thus system (1) can
be written as a linear system of DAEs as below

Ex′ = Ax + Bu, x(0) = x0, (6a)
y = Cx + Du. (6b)

It is well known that for linear DAEs of the form (6a), all index concepts (differential,
perturbation, strangeness, tractability, etc. ) coincide. Thus the tractability index can
be chosen without loss of generality in this case. According to [3], in order to decouple
linear DAEs into differential and algebraic parts, we use the definition of the tractability
index to construct a matrix and projector chain. A square matrix Q ∈ Rn×n is called
projector if and only if Q2 = Q. A projector Q is called projector onto a subspace
S ⊂ Rn if S is the column space of Q. It is called projector along a subspace S ⊂ Rn if
S is the null space of Q.

Definition 1 (Tractability index [8]). Assume that (6) is solvable, i.e., the matrix pair
(E,A) is regular. We define a matrix and projector chain by setting E0 := E and A0 := A
given by

E j+1 := E j − A jQ j, A j+1 := A jP j, for j ≥ 0, (7)
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where Q j ∈ R
n×n is a projector onto the null space of E j and P j = I − Q j ∈ R

n×n.
Then there exists an index γ such that Eγ is nonsingular and all E j are singular for all
0 ≤ j < γ − 1. This type of index is called the tractability index.

Next, we use the matrix and projector chain defined in (7) to decouple (6) as follows.
For the initial step, we set: E0 := E, A0 := A. Then (6) can be written as

E0x
′ = A0x + Bu, x(0) = x0,

y = Cx + Du.
(8)

We then choose the projector Q0 such that it projects onto the null space of E0, and its
complementary projector is P0 := I−Q0. Using Definition 1, we can define the matrices,
E1 := E0 − A0Q0, A1 := A0P0. Then (8) can be written as

E1

[
P0x

′ + Q0x
]

= A1x + Bu, x(0) = x0,

y = C
[
P0x + Q0x

]
+ Du.

(9)

Assume that E1 is nonsingular, then (9) can be written as

P0x
′ + Q0x = E−1

1 A1x + E−1
1 Bu, x(0) = x0, (10a)

y = CP0x + CQ0x + Du. (10b)

Since E1 is nonsingular, the system of DAEs in (6) is of tractability index-1 or is an
index-1 system of DAEs. If we left multiply (10a) by P0 and Q0, separately, we obtain
the decoupled equivalent system of (6):

ẋP = P0E−1
1 A0xP + P0E−1

1 Bu, xP(0) = P0x0, (11a)

xQ = Q0E−1
1 A0xP + Q0E−1

1 Bu, (11b)
y = CxP + CxQ + Du, (11c)

where xP := P0x and xQ := Q0x. Here (11a) and (11b) are the differential and algebraic
parts of system (6), respectively, and the output can be obtained through (11c).

Note that the decoupled system (11) is of dimension 2n while the system (6) is of dimen-
sion n. This implies that decoupling using projectors does not preserve the dimension
of the original system. In [7], a remedy to this problem is proposed by using the linearly
independent columns of projectors Q0,P0 ∈ R

n×n. Let nq be the dimension of the null
space of E0, and np = n− nq. Define matrices q0 ∈ R

n×nq and p0 ∈ R
n×np whose columns

are linearly independent and span the column spaces of Q0 and P0, respectively. Then,
we can build an invertible matrix (p0,q0) ∈ Rn×n, whose linearly independent columns
form a basis of Rn. The state vector x can then be represented with respect to the column
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vectors of p0,q0 as x = q0ξq + p0ξp, ξq ∈ R
nq , ξp ∈ R

np , which implies that xP = p0ξp

and xQ = q0ξq.

Let the inverse (p0,q0)−1 be defined and partitioned as (p0,q0)−1 :=
(
p∗0,q

∗
0

)
, where

p∗0 ∈ R
n×np , q∗0 ∈ R

n×nq , then we have

q∗T0 q0 = Inq , q∗T0 p0 = 0, p∗T0 q0 = 0, p∗T0 p0 = Inp .

Therefore, q∗T0 and p∗T0 are actually the left inverses of q0 and p0, respectively. From
q∗T0 p0 = 0 and p∗T0 q0 = 0, we obtain

p∗T0 P0 = p∗T0 , q∗T0 Q0 = q∗T0 . (12)

Substituting xP = p0ξp and xQ = q0ξq into (11), and simplifying using (12) leads to
a decoupled system given by

ξ′p = Apξp + Bpu, ξp(0) = p∗T0 xP(0),

ξq = Aqξp + Bqu,

y = Cpξp + Cqξq + Du,

(13)

where Ap = p∗T0 E−1
1 A0p0 ∈ R

np×np , Bp = p∗T0 E−1
1 B ∈ Rnp×m, Aq = q∗T0 E−1

1 A0p0 ∈

Rnq×np , Bq = q∗T0 E−1
1 B ∈ Rnq×m, Cp = Cp0 ∈ R

`×np , Cq = Cq0 ∈ R
`×nq . The total di-

mension of the decoupled system is n = np + nq, hence it preserves the dimension of
system (6). In [7], the decoupled system (13) is used to derive the so called index-aware
MOR (IMOR) method for index-1 systems.

However, the above decoupling procedure is computationally expensive and needs large
storage requirements since it involves the inverse of E1. This motivated the implicit
version of the IMOR method proposed in [9], which does not involve E−1

1 , and is called
the implicit-IMOR (IIMOR) method. Its decoupling procedure can be summarized as
follows. Instead of using system (10) to decouple the DAE in (6), system (9) can be used
which does not involve inversion of E1. Consider another set of matrices p̂0 ∈ R

n×np and
q̂0 ∈ R

n×nq whose columns are linearly independent and span the null spaces of the
matrices qT

0 AT
0 ∈ R

nq×n and ET
0 ∈ R

n×n, respectively. Then (6) can be written into an
equivalent decoupled system given by

Epξ
′
p = Apξp + Bpu, ξp(0) = p∗T0 xP(0), (14a)

Eqξq = Aqξp + Bqu, (14b)
y = Cpξp + Cqξq + Du, (14c)

where Ep = p̂T
0 E0p0, Ap = p̂T

0 A0p0 ∈ R
np×np , Bp = p̂T

0 B ∈ Rnp×m, Eq = −q̂T
0 A0q0 ∈

Rnq×nq , Aq = q̂T
0 A0p0 ∈ R

np×nq , Bq = q̂T
0 B ∈ Rnq×m. We observe that (14) is an implicit
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version of the decoupled system (13) and their solutions must coincide. However, in
practice it is computationally cheaper to derive (14) than (13). Both decoupled systems
preserve the dimension and the stability of DAEs. System (14) was used to develop the
implicit-IMOR method for linear DAEs, see [9]. In the next section, we intend to extend
the above decoupling procedures to quadratic nonlinear DAEs.

3. Decoupling of index-1 quadratic DAEs

In this section, we extend the implicit and explicit decoupling proposed in [7] and
[9], respectively, to quadratic DAEs. Assume system (1) to be of tractability index 1
and its index to be independent of the nonlinearity. Setting E0 = E,A0 = A and using
the fact that I = P0 + Q0, where Q0 and P0 are projectors as defined in Section 2, then
system (1) can be written as

E0 [P0 + Q0]x′ = A0 [P0 + Q0]x + xT [P0 + Q0]T F [P0 + Q0]x + Bu, (15a)

y = C
[
P0x + Q0x

]
+ Du, (15b)

with consistent initial condition x(0) = x0. Using Definition 1, we can define matrices
E1 := E0 − A0Q0, A1 := A0P0, which satisfy the identities

E1P0 = E0, A1 − E1Q0 = A0. (16)

Substituting the identities (16) into (15a) and simplifying, we obtain:

E1
[
P0x

′ + Q0x
]

= A1x + xT [P0 + Q0]T F [P0 + Q0]x + Bu. (17)

Here, and below, for any two matrices W ∈ Rn1×n,V ∈ Rn×n2 , we use the notation

WFV :=
[
(WF1V)T, . . . , (WFnV)T

]T
∈ Rn1×n2×n,

which is a 3D tensor with Fi ∈ R
n×n, i = 1, . . . , n. Expanding the nonlinear quadratic

part of (17), we obtain

[P0 + Q0]T F [P0 + Q0] = PT
0FP0 + PT

0FQ0 + QT
0FP0 + QT

0FQ0. (18)

Let FP = PT
0FP0 ∈ R

n×n×n,FPQ = PT
0FQ0 ∈ R

n×n×n,FQP = QT
0FP0 ∈ R

n×n×n,FQ =

QT
0FQ0 ∈ R

n×n×n, and substitute (18) into (17), we obtain

E1
[
P0x

′ + Q0x
]

= A1x + xTFPx + xTFQPx + xTFPQx + xTFQx + Bu. (19)

The matrix E1 is nonsingular due to Definition 1 since we have already assumed that (1)
is index-1. Otherwise the iteration continues until a nonsingular matrix Eµ is obtained.
Thus (19) can be written as

P0x
′ + Q0x = E−1

1 A1x + E−1
1 xTFPx

+ E−1
1 xTFQPx + E−1

1 xTFPQx + E−1
1 xTFQx + E−1

1 Bu. (20)
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Left multiplying (20) by P0 and Q0, respectively, we obtain the differential and algebraic
parts of system (1). Let xP = P0x and xQ = Q0x, then (1) can be written as

x′P = P0E−1
1 A1xP + P0E−1

1 xT
PFPxP + P0E−1

1 xT
QFQPxP

+ P0E−1
1 xT

PFPQxQ + P0E−1
1 xT

QFQxQ + P0E−1
1 Bu, (21a)

xQ = Q0E−1
1 A1xP + Q0E−1

1 xT
PFPxP + Q0E−1

1 xT
QFQPxP

+ Q0E−1
1 xT

PFPQxQ + Q0E−1
1 xT

QFQxQ + Q0E−1
1 Bu, (21b)

y = CxP + CxQ + Du, (21c)

with initial condition xP(0) = P0x0. Inspecting (21), we can observe that there are still
cross couplings between the state variables of the differential part (21a) and the algebraic
part (21b). For the linear part, we can obtain a complete decoupling if we choose the
projector Q0 to be the canonical projector [10] in advance, i.e., it satisfies the condition
Q0 = −Q0E−1

1 A0. Then, it can easily be proved that Q0E−1
1 A1 = 0 [10]. Thus assuming,

Q0 is a canonical projector simplifies (21) to

x′P = P0E−1
1 A1xP + P0E−1

1 xT
PFPxP + P0E−1

1 xT
QFQPxP

+ P0E−1
1 xT

PFPQxQ + P0E−1
1 xT

QFQxQ + P0E−1
1 Bu, (22a)

xQ =Q0E−1
1 xT

PFPxP + Q0E−1
1 xT

QFQPxP + Q0E−1
1 xT

PFPQxQ

+ Q0E−1
1 xT

QFQxQ + Q0E−1
1 Bu, (22b)

y = CxP + CxQ + Du, (22c)

with initial condition xP(0) = P0x0. Considering (22), we need to make some assump-
tions on the tensor F such that we can obtain at least a one-way coupling between the
differential and algebraic parts in order to avoid cross-coupling. This can be done as
follows.

(i) Coupling from differential to algebraic parts
In order to obtain this coupling, we require the assumption that FQP = 0,FPQ =

0,FQ = 0. Thus (22) simplifies to

x′P = P0E−1
1 A1xP + P0E−1

1 xT
PFPxP + P0E−1

1 Bu, xP(0) = P0x0, (23a)

xQ = Q0E−1
1 xT

PFPxP + Q0E−1
1 Bu, (23b)

y = CxP + CxQ + Du. (23c)

(ii) Coupling from algebraic to differential part
In order to obtain this coupling, we require the assumption that FQP = 0,FPQ =

0,FP = 0. Then (22) simplifies to

xQ = Q0E−1
1 xT

QFQxQ + Q0E−1
1 Bu, (24a)

x′P = P0E−1
1 A1xP + P0E−1

1 xT
QFQxQ + P0E−1

1 Bu, xP(0) = P0x0, (24b)

y = CxP + CxQ + Du. (24c)
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We note the above one-way couplings depend on the structure of the tensor F. One may
wonder if such tensors exist in practice, fortunately they do exist in applications such as
the electro-thermal coupled models as illustrated in Section 7. We can observe that the
above decoupled systems double the dimension of the quadratic DAE (1a). However,
we can use the same technique as for the linear case in the previous section to avoid
this. If we substitute xP = p0ξp and xQ = q0ξq into (23) and (24) respectively, then we
obtain:

(i) Coupling from differential to algebraic parts

ξ′p = Apξp + p∗T0 E−1
1 ξ

T
pFpξp + Bpu, ξp(0) = p∗T0 x0, (25a)

ξq = q∗T0 E−1
1 ξ

T
pFpξp + Bqu, (25b)

y = Cpξp + Cqξq + Du, (25c)

where Ap = p∗T0 E−1
1 A0p0 ∈ R

np×np , Fp = pT
0FPp0 ∈ R

np×np×n, Bp = p∗T0 E−1
1 B ∈

Rnp×m, Bq = q∗T0 E−1
1 B ∈ Rnq×m, Cp = Cp0 ∈ R

`×np , Cq = Cq0 ∈ R
`×nq . Using the

transformation (5), we can rewrite the nonlinear terms of (25) as

p∗T0 E−1
1 ξ

T
pFpξp = ξT

pfpξp and q∗T0 E−1
1 ξ

T
pFpξp = ξT

pfqpξp,

where fp ∈ R
np×np×np , fqp ∈ R

np×np×nq . Thus, system (25) can be rewritten as

ξ′p = Apξp + ξT
pfpξp + Bpu, ξp(0) = p∗T0 x0, (26a)

ξq = ξT
pfqpξp + Bqu, (26b)

y = Cpξp + Cqξq + Du. (26c)

From (24), we obtain
(ii) Coupling from algebraic to differential part

ξq = q∗T0 E−1
1 ξ

T
qFqξq + Bqu, (27a)

ξ′p = Apξp + p∗T0 E−1
1 ξ

T
qFqξq + Bpu, ξp(0) = p∗T0 x0, (27b)

y = Cqξq + Cpξp + Du, (27c)

where Fq = qT
0FQq0 ∈ R

nq×nq×n, Bq = q∗T0 E−1
1 B ∈ Rnq×m, Ap = p∗T0 E−1

1 A0p0 ∈

Rnp×np , Bp = p∗T0 E−1
1 B ∈ Rnp×m. Using the transformation (5), we can rewrite the

nonlinear terms of (27) as

q∗T0 E−1
1 ξ

T
qFqξq = ξT

q fqξq and p∗T0 E−1
1 ξ

T
qFqξq = ξT

q fpqξq,

where fq ∈ R
nq×nq×nq , fpq ∈ R

nq×nq×np . Thus system (27) can be rewritten as

ξq = ξT
q fqξq + Bqu, (28a)

ξ′p = Apξp + ξT
q fpqξq + Bpu, ξp(0) = p∗T0 x0, (28b)

y = Cqξq + Cpξp + Du. (28c)
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We see that both of the above decoupled systems (26) and (28) involve the inverse of
E1, which might be computationally very expensive for large-scale applications. In the
next section we discuss decoupling avoiding matrix inversion.

4. Implicit-decoupling of index-1 quadratic DAEs

In this section, we derive decoupled systems by using (19) instead of (20).

4.1. Coupling from differential to algebraic parts
Here, we also assume that FQP = 0,FPQ = 0,FQ = 0, thus (19) simplifies to

E1
[
P0x

′ + Q0x
]

= A0P0x + xTFPx + Bu. (29)

Substituting x =
(
p0 q0

) (
ξT

p ξT
q

)T
into (29), we obtain

(
E1p0 0

) (ξp

ξq

)′
=

(
A0p0 −E1q0

) (ξp

ξq

)
+

(
ξT

p ξT
q

) (pT
0

qT
0

)
FP

(
p0 q0

) (ξp

ξq

)
+ Bu. (30)

Consider another set of matrices p̂0 ∈ R
n×np and q̂0 ∈ R

n×nq , whose columns are linearly
independent, respectively. Then left multiplying (30) by

(
p̂0 q̂0

)T
∈ Rn×n, we obtain(

p̂T
0 E1p0 0

q̂T
0 E1p0 0

) (
ξp

ξq

)′
=

(
p̂T

0 A0p0 −p̂T
0 E1q0

q̂T
0 A0p0 −q̂T

0 E1q0

) (
ξp

ξq

)
+

(
p̂T

0ξ
T
ppT

0Fp0ξp

q̂T
0ξ

T
ppT

0Fp0ξp

)
+

(
p̂T

0 B
q̂T

0 B

)
u, (31)

since pT
0FPq0 = 0,qT

0FPp0 = 0,qT
0FPq0 = 0 and pT

0FPp0 = pT
0Fp0. Note that if

q̂T
0 E1p0 = 0 and p̂T

0 E1q0 = 0, we obtain a one-way coupled system from (31). This
is archived by constructing p̂0 and q̂0 such that their linearly independent columns span
the null spaces of qT

0AT
0 and pT

0 ET
0 , respectively. Let Fp = pT

0Fp0 ∈ R
np×np×n, then (31)

simplifies to(
p̂T

0 E1p0 0
0 0

) (
ξp

ξq

)′
=

(
p̂T

0 A0p0 0
q̂T

0 A0p0 −q̂T
0 E1q0

) (
ξp

ξq

)
+

(
p̂T

0ξ
T
pFpξp

q̂T
0ξ

T
pFpξp

)
+

(
p̂T

0 B
q̂T

0 B

)
u. (32)

Using (5), we get the transformation p̂T
0ξ

T
pFpξp = ξT

pfpξp, q̂T
0ξ

T
pFpξp = ξT

pfqpξp, where
fp ∈ R

np×np×np , fqp ∈ R
np×np×nq . Using the fact that E1 = E0 −A0Q0, (32) simplifies to an

implicitly decoupled system equivalent to (1) given by

Epξ
′
p = Apξp + ξT

pfpξp + Bpu, ξp(0) = p∗T0 x0, (33a)

Eqξq = Aqξp + ξT
pfqpξp + Bqu, (33b)

y = Cpξp + Cqξq + Du, (33c)

where Ep = p̂T
0 E0p0, Ap = p̂T

0 A0p0 ∈ R
np×np , Bp = p̂T

0 B ∈ Rnp×m, Eq = −q̂T
0 A0q0 ∈

Rnq×nq , Aq = q̂T
0 A0p0 ∈ R

nq×np , Bq = q̂T
0 B ∈ Rnq×m, Cp = Cp0 ∈ R

`×np , Cq = Cq0 ∈

R`×nq .
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4.2. Coupling from algebraic to differential part
To obtain this coupling, we assume that FQP = 0,FPQ = 0,FP = 0, thus (19)

simplifies to

E1
[
P0x

′ + Q0x
]

= A0P0x + xTFQx + Bu. (34)

Substituting x =
(
q0 p0

) (
ξT

q ξT
p

)T
into (34), we obtain

(
0 E1p0

) (ξq

ξp

)′
=

(
−E1q0 A0p0

) (ξq

ξp

)
+

(
ξT

q ξT
p

) (qT
0

pT
0

)
FQ

(
q0 p0

) (ξq

ξp

)
+ Bu. (35)

Consider another set of matrices p̂0 ∈ R
n×np and q̂0 ∈ R

n×nq , whose columns are linearly
independent, respectively. Left multiplying (35) by

(
q̂0 p̂0

)T
∈ Rn×n, we obtain:(

0 q̂T
0 E1p0

0 p̂T
0 E1p0

) (
ξq

ξp

)′
=

(
−q̂T

0 E1q0 q̂T
0 A0p0

−p̂T
0 E1q0 p̂T

0 A0p0

) (
ξq

ξp

)
+

(
q̂T

0ξ
T
q qT

0Fq0ξq

p̂T
0ξ

T
q qT

0Fq0ξq

)
+

(
q̂T

0 B
p̂T

0 B

)
u. (36)

Analogous to (31), if q̂T
0 A0p0 = 0 and p̂T

0 E1q0 = −p̂T
0 A0q0 = 0, we can obtain a one-

way coupled system from (36). Similarly, we construct p̂0 and q̂0 such that their linearly
independent columns span the null spaces of qT

0AT
0 and pT

0 AT
0 , respectively. Let Fq =

qT
0Fq0 ∈ R

nq×nq×n, then (36) can be written as(
0 0
0 p̂T

0 E1p0

) (
ξq

ξp

)′
=

(
−q̂T

0 E1q0 0
0 p̂T

0 A0p0

) (
ξq

ξp

)
+

(
q̂T

0ξ
T
qFqξq

p̂T
0ξ

T
qFqξq

)
+

(
q̂T

0 B
p̂T

0 B

)
u. (37)

Using (5), we get the transformation q̂T
0ξ

T
qFqξq = ξT

q fqξq, p̂T
0ξ

T
qFqξq = ξT

q fpqξq, where
fq ∈ R

nq×nq×nq , fpq ∈ R
nq×nq×np . Using the fact that E1 = E0 − A0Q0, (37) simplifies to an

implicit decoupled system equivalent to (1) given by

Eqξq = ξT
q fqξq + Bqu, (38a)

Epξ
′
p = Apξp + ξT

q fpqξq + Bpu, ξp(0) = p∗T0 x0, (38b)

y = Cpξp + Cqξq + Du, (38c)

where Ep = p̂T
0 E0p0, Ap = p̂T

0 A0p0 ∈ R
np×np , Bp = p̂T

0 B ∈ Rnp×m, Eq = −q̂T
0 A0q0 ∈

Rnq×nq , Bq = q̂T
0 B ∈ Rnq×m, Cp = Cp0 ∈ R

`×np , Cq = Cq0 ∈ R
`×nq .

Due to their equivalence, system (38) is solvable if and only if (1) is solvable. We
observe that,since Eq is nonsingular, (38a) can be re-written into a classical fixed point
equation which can, e.g., be solved using Newton’s method. After solving (38a), ξT

q fpqξq

can be considered an extra input for the differential subsystem (38b) which can be solved
using any existing numerical integration technique, such as implicit Euler method. Fi-
nally, the output solution is obtained through (38c).
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5. Index-aware pMOR (IpMOR) method for quadratic parameterized DAEs

After decoupling system (1) into a one-way coupled system, we are ready to apply
model order reduction to the one-way coupled system rather than to (1). Here, we
propose an IpMOR method for quadratic parametrized DAEs. The IpMOR method is
an extension of the IMOR method for DAEs proposed in [3, 9]. We consider the weakly
coupled systems (33) and (38) discussed in Section 4 to construct the corresponding
IpROMs for weakly coupled systems from the differential to algebraic part, and from
the algebraic to differential part, respectively. In order to obtain an IpROM for the
system coupled from the differential to the algebraic part, we consider system (33) in
parametrized form

Ep(µ)ξ′p = Ap(µ)ξp + ξT
pfp(µ)ξp + Bp(µ)u, ξp(0) = p∗T0 x0, (39a)

Eq(µ)ξq = Aq(µ)ξp + ξT
pfqp(µ)ξp + Bq(µ)u, (39b)

y = Cpξp(µ) + Cq(µ)ξq + D(µ)u. (39c)

We construct projection matrices Vp ∈ R
np×r1 , r1 � np and Vq ∈ R

nq×r2 , r2 � nq for
the differential and algebraic parts, respectively, using the existing pMOR based on
Galerkin projection. The reduced-order system is as below,

Epr (µ)ξ′pr
= Apr (µ)ξpr + ξT

pr
f̂pr (µ)ξpr + Bpr (µ)u, ξpr (0) = VT

pξp(0), (40a)

Eqr (µ)ξqr = Aqr (µ)ξqr + ξT
pr

f̂qpr
(µ)ξpr + Bqr (µ)u, (40b)

yr = Cprξpr (µ) + Cqr (µ)ξqr + D(µ)u, (40c)

where Epr (µ) = VT
pEp(µ)Vp,Apr (µ) = VT

pAp(µ)Vp ∈ R
r1×r1 , Bpr (µ) = VT

pBp(µ) ∈ Rr1×m,
Eqr (µ) = VT

q Eq(µ)Vq ∈ R
r2×r2 , Aqr (µ) = VT

q Aq(µ)Vq ∈ R
r1×r2 , Bqr (µ) = VT

q Bq(µ) ∈ Rr2×m

and Cpr (µ) = Cp(µ)Vp ∈ R
r1×`, Cqr (µ) = Cq(µ)Vq ∈ R

r2×`. The nonlinear terms are
obtained using the transformation (5) leading to: VT

pξ
T
pr

fpr (µ)ξpr = ξT
pr

f̂pr (µ)ξpr where
fpr (µ) = VT

pfp(µ)Vp ∈ R
r1×r1×np , f̂pr ∈ R

r1×r1×r1 and VT
qξ

T
pr

fqpr
(µ)ξpr = ξT

pr
f̂qpr

(µ)ξpr where
fqpr

(µ) = VT
pfqp(µ)Vp ∈ R

r1×r1×nq , f̂qpr
∈ Rr1×r1×r2 .

Next, we obtain an IpROM for the system (38) coupled from the algebraic to the
differential part,

Eq(µ)ξq = ξT
q fq(µ)ξq + Bq(µ)u, (41a)

Ep(µ)ξ′p = Ap(µ)ξp + ξT
q fpq(µ)ξq + Bp(µ)u, ξp(0) = p∗T0 x0, (41b)

y = Cp(µ)ξp + Cq(µ)ξq + D(µ)u. (41c)

Likewise, the projection matrices Vq ∈ R
nq×r1 , r1 � nq, and Vp ∈ R

np×r2 , r2 � np for
the algebraic and differential parts, are constructed separately, using the existing pMOR
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methods. The resulting reduced-order system is

Eqr (µ)ξqr = ξT
qr

f̂qr (µ)ξqr + Bqr (µ)u, (42a)

Epr (µ)ξ′pr
= Apr (µ)ξpr + ξT

qr
f̂pqr

(µ)ξqr + Bpr (µ)u, ξpr (0) = VT
pξp(0), (42b)

yr = Cp(µ)ξpr + Cqr (µ)ξqr + D(µ)u, (42c)

where Epr (µ) = VT
pEp(µ)Vp,Apr (µ) = VT

pAp(µ)Vp ∈ R
r2×r2 , Bpr (µ) = VT

pBp(µ) ∈ Rr2×m,
Eqr (µ) = VT

q Eq(µ)Vq ∈ R
r1×r1 , Bqr (µ) = VT

q Bq(µ) ∈ Rr1×m and Cpr (µ) = Cp(µ)Vp ∈

Rr2×`, Cqr (µ) = Cq(µ)Vq ∈ R
r1×`. The nonlinear terms are obtained using the trans-

formation (5) leading to: VT
qξ

T
qr

fqr (µ)ξqr = ξT
qr

f̂qr (µ)ξqr , where fqr (µ) = VT
q fq(µ)Vq ∈

Rr1×r1×nq , f̂qr ∈ R
r1×r1×r1 and VT

pξ
T
qr

fpqr
(µ)ξqr = ξT

qr
f̂pqr

(µ)ξqr ,where fpqr
(µ) = VT

pfqp(µ)Vp ∈

Rr1×r1×np , f̂pqr
∈ Rr1×r1×r2 .

The next step is to construct projection matrices Vp and Vq that lead to a good
ROM with small approximation error ‖y − yr‖ in a suitable norm ‖.‖ for every arbitrary
input u(t) and parameter µ. There are many existing pMOR methods such as the ro-
bust pMOR algorithm in [11], based on implicit multi-moment matching or snapshot
methods such as the reduced basis methods [12]. See [1] for a general discussion of
pMOR methods. The snapshot methods are not flexible for input dependent systems
as considered in this work, since the snapshots depends on proper sampling of the in-
puts. As a result, the ROM may only be accurate for those training inputs which are
used to generate the snapshots, and may loose accuracy for the inputs other than the
training inputs. Therefore, input-independent pMOR methods are more appropriate for
input-dependent systems. Here, we choose the pMOR method based on implicit multi-
moment-matching, because of its simplicity, low complexity, and input independency,
but other pMOR approaches could also be used, such as interpolation of local bases and
interpolation of local matrices, see, e.g., [1].

6. Construction of projection matrices using the implicit moment-matching method

In this section, we discuss how to construct the projection matrices Vp and Vq for
the differential and algebraic subsystems, respectively, using the pMOR method based
on implicit multi-moment matching.

6.1. Construction of the projection matrix Vp

We discuss constructing the projection matrix Vp for either (40) or (42). We can
observe that the nonlinear term ξT

q fpq(µ)ξq can be treated as part of the input of the dif-
ferential subsystem (41b), since it is known after first simulating the algebraic subsystem
(41a). In general, we cannot ignore the nonlinear term in (39a) during the reduction but
for most of our applications, ξT

pfp(µ)ξp is negligible. Thus, we consider only the linear
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part of the differential subsystem in (39a) or (41b),

Ep(µ)ξ′p = Ap(µ)ξp + Bp(µ)u, ξp(0) = ξp0 , (43a)

yp = Cp(µ)ξp. (43b)

Taking the Laplace transform of (43a) and assuming ξp(0) = 01, we obtain

(sEp(µ) − Ap(µ))Xp(s) = Bp(µ)U(s). (45)

The state Xp(s) is the Laplace transform of the unknown vector ξp(t) in (43a). Assuming
each of Ep(µ),Ap(µ),Bp(µ) exhibits an affine dependence w.r.t. the parameter µ, then
also (45) exhibits an affine dependence of the form

(Ẽ0 + s̃1Ẽ1 + · · · + s̃αẼα)Xp(s) = (B̃0 + s̃1B̃1 + · · · + s̃βB̃β)U(s), (46)

where Ẽi and B̃i are the coefficients of (45) after substituting the affine expansion (2)
of each of Ep(µ),Ap(µ),Bp(µ). Here, the newly defined parameters s̃i, i = 1, . . . , k,
where k = max(α, β), might be some functions (rational, polynomial) of the original
parameters µ and the Laplace variable s. The state Xp(s) in (46) can be expanded into a
Taylor series at an expansion point s̃0 = (s̃0

1, s̃
0
2, . . . , s̃

0
k), as follows:

Xp(s) = [I − (σ1M1 + · · · + σαMα)]−1 Ẽ−1
[
B̃ + σ1B̃1 + · · · + σβB̃β

]
U(s),

=

∞∑
m=0

[σ1M1 + · · · + σαMα]m
[
BM0 + σ1BM1 + · · · + σβBMβ

]
U(s),

=
[
BM0 + σ1BM1 + · · · + σβBMβ

]
U(s)

+ [σ1M1 + · · · + σαMα]
[
BM0 + σ1BM1 + · · · + σβBMβ

]
U(s) + · · ·

+ [σ1M1 + · · · + σαMα] j
[
BM0 + σ1BM1 + · · · + σβBMβ

]
U(s) + · · · , (47)

where σi = s̃i − s̃0
i , Ẽ = Ẽ0 + s̃0

1Ẽ1 + · · · + s̃0
αẼα, Mi = −Ẽ−1Ẽi, i = 1, 2, . . . , α, and

BM0 = Ẽ−1B̃,BMi = Ẽ−1B̃i, i = 1, 2, . . . , β, B̃ = B̃0 + s̃0
1B̃1 + · · · + s̃0

βB̃β. Using the
coefficients in (47) we can define a subspace R spanned by the vectors in R j given by

R = colspan{R0,R1, . . . ,Rj, . . . ,Rm},

1Let ξp = ξ̃p − ξp0 , then system (43) can be transformed into a system with zero initial condition given
by [2]

Ep(µ)ξ̃′p = Ap(µ)ξ̃p + B̃p(µ)ũ, yp = Cpξ̃p(µ) + Cpξp0 , ξ̃p(0) = 0, (44)

where B̃p(µ) =
[
Bp(µ),Apξp0

]
∈ Rnp×(m+1), ũ =

[
uT , 1

]T
.
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where

R0 =
[
BM0 ,BM1 , . . . ,BMβ

]
,R1 = [M1R0,M2R0, . . . ,MαR0] , . . . ,

Rm = [M1Rm−1,M2Rm−1, . . . ,MαRm−1] . (48)

The columns of the required projection matrix Vp constitute an orthonormal basis of the
subspace R that can be constructed by the Algorithm 1 in [11]. Note that the size of
the ROM is equal to the number of columns in Vp. To avoid exponential increase of the
number of columns in Vp, it is preferred to use only the first few R j. However, this may
lead to ROMs which are not accurate for the whole frequency range. Therefore, multiple
expansion points need to be used. Given a group of expansion points s̃0

i , i = 1, . . . , `,
where i indicates the ith expansion point, a matrix Vs̃0

i
can be computed for each s̃0

i as

range{Vs̃0
i
} = colspan{R0,R1, . . . ,Rr}s̃0

i
. (49)

The desired orthonormal basis matrix Vp is obtained from orthogonalization of the col-
umn vector in all matrices Vs̃0

i
, i.e.,

Vp = orth{Vs̃0
1
,Vs̃0

2
, . . . ,Vs̃0

`
}.

6.2. Construction of the projection matrix Vq

The same technique discussed in the previous subsection to construct Vp for the
differential subsystem can also be used to construct the projection matrix Vq for the al-
gebraic subsystem of either (39) or (41). Taking the algebraic part (39b) as an example,
we consider also the linear part,

Eq(µ)ξq = Aq(µ)ξp + Bq(µ)u, (50a)
yq = Cq(µ)ξq. (50b)

Substituting ξp = Vpξpr into (50a), where Vp is the already computed projection matrix
for the differential subsystem, leads to

Eq(µ)ξ̃q = Aq(µ)Vpξpr + Bq(µ)u. (51)

where ξ̃q approximates the algebraic variable ξq in (50). Here, ξpr can be considered as
an input from the differential subsystem. Then (51) can be written as

Eq(µ)ξ̃q = B̃q(µ)ũ, (52)

where B̃q(µ) =
(
Aq(µ)Vp Bq(µ)

)
and ũ =

(
ξT

pr
uT

)T
.Assume that each of Eq(µ), B̃q(µ)

exhibits an affine dependence, then (52) can also exhibit an affine dependence of the
form

(Ã0 + s̃1Ã1 + . . . + s̃αÃα)ξ̃q = (B̃0 + s̃1B̃1 + . . . + s̃βB̃β)ũ(t), (53)
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where Ãi and B̃i are the coefficients of (52) after substituting the affine expansion (2)
of each of Eq(µ), B̃q(µ). Here, the newly defined parameters s̃i, i = 1, . . . , k, where k =

max(α, β), only depends on the original parameters µ. It is easy to see that the system in
(53) is of the same form as the system in (46). Therefore, the algebraic state ξ̃q can also
be written in the form (47). Hence, the projection matrix Vq can be constructed similarly
as in (48). The construction of Vq for the coupling from the algebraic to the differential
part can be deduced from the above discussion. Note that ROMs of systems (26) and
(28) can also be derived based on the implicit moment-matching pMOR method. Since
(26) and (28) are not computationally efficient, construction of the ROMs based on them
will not be discussed.

It is clear, that different expansion points s̃i may lead to ROMs with different accu-
racy due to the varying dimension of the projection matrices Vp and Vq for the differen-
tial and algebraic parts, respectively. The construction of these projection matrices can
be automated by adaptively selecting the expansion points using the global a posteriori
error bound ∆(µ, s) derived in [13], which is used to produce the simulation results in
the next section.

For completeness, we introduce Algorithm 1 from [13] as below:

Algorithm 1 Automatically computing projection matrix V
1: V = []; Vdu = [];
2: Set ε > εtol;
3: Initial expansion points ˆ̃s;
4: Ξtrain : a large set of samples of s̃ taken over the interesting domain;
5: r : Determines the number of R j or Rdu

j ;
6: while ε > εtol do
7: range(V ˆ̃s) = colspan{R0, · · · ,Rr};
8: range(Vdu

ˆ̃s
) = colspan{Rdu

0 , · · · ,R
du
r };

9: V = orth{V,V ˆ̃s};
10: Vdu = orth{Vdu,Vdu

ˆ̃s
};

11: ˆ̃s = arg max
s̃∈Ξtrain

∆(s̃);

12: ε = ∆( ˆ̃s);
13: end while

In Algorithm 1, Rdu
j are the vector sequences (48) computed using the matrices from

the parametric dual system of (45) (see [13] for details), while ˆ̃s are the expansion
points we need to select, because of (47) in order to obtain V automatically. Note that
to implement Algorithm 1, a training set Ξtrain of the parameter samples must be given
as one of the inputs to the algorithm. They can be randomly or equidistantly selected,
and should cover the whole parameter domain.
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7. Numerical experiments

In this section, we illustrate the robustness of the IpMOR method using coupled
problems from industry. We consider electro-thermal simulation of a power-MOS de-
vice model and a package model as shown in Figure 1, originating from [14, 13].

(a) A power-MOS device. (b) A package.

Figure 1: Physical models considered in the numerical tests.

Mathematical modeling of these problems leads to the electro-thermal (ET) coupled
systems in the form of (1) with system matrices

E(µ) =

(
0 0
0 E22(µ)

)
, A(µ) =

(
A11(µ) 0

0 A22(µ)

)
, B(µ) =

(
B1(µ)
B2(µ)

)
, C =

(
C1(µ) C2(µ)

)
,

F(µ) =
[
0, . . . , 0,FT

n1+1(µ), . . .FT
n (µ)

]T
, (54)

where Fi =

(
Fi

11(µ) 0
0 0

)
∈ Rn×n,Fi

11(µ) ∈ Rn1×n1 , i = n1 + 1, . . . , n, E22(µ), A22(µ) ∈

Rn2×n2 , A11(µ) ∈ Rn1×n1 ,B1(µ) ∈ Rn1×m, B2(µ) ∈ Rn2×m, C1(µ) ∈ R`×n1 ,C2(µ) ∈ R`×n2 .
Here, E22(µ) and A11(µ) are nonsingular matrices for each µ. If x is also partitioned
according to (54) as x =

(
xT

1 ,x
T
2

)T
, the consistent initial condition is given by x(0) =(

x1(0)T,x2(0)T
)T
. This system can be decoupled as follows. We observe that the index

of the matrix pencil (E(µ),A(µ)) of (54) is independent of its nonlinearity and parameter
µ. Let E0 := E(µ) and A0 := A(µ), then we can choose the projectors

Q0 =

(
I 0
0 0

)
, P0 =

(
0 0
0 I

)
(55)
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such that Q0 is a projector onto the null space of E0, and obtain the complementary
projector as P0 = I −Q0. Using (7), we obtain

E1 = E0 − A0Q0 =

(
−A11(µ) 0

0 E22(µ)

)
,

so that E1 is uniformly nonsingular, which implies that (54) is an index-1 system. The
next step is to check the type of coupling in the nonlinear part. Since FQP = QT

0F(µ)P0 =

0,FPQ = P0F(µ)Q0 = 0,FP = PT
0F(µ)P0 = 0 and FQ = QT

0F(µ)Q0 , 0, the decoupled
system will take either the form (27) or (38) which is a one-way coupling from the
algebraic to the differential part. Here, we only consider deriving the computation-
ally cheaper decoupled system (38). The column matrices p0 and q0 are the linearly
independent columns of the projectors P0 and Q0 in (55) given by p0 =

(
0 I

)T
and

q0 =
(
I 0

)T
, respectively. The inverse of the matrix (p0,q0) is given by

(p0,q0)−1 =

0 I

I 0

 =
(
p∗0,q

∗
0
)
,

where p∗T0 =
(
0 I

)
and q∗T0 =

(
I 0

)
are the left inverses of p0 and q0, respectively. In

order to obtain the decoupled system of the form (38), we need to construct another pair
of matrices q̂0 =

(
I 0

)T
and p̂0 =

(
0 I

)T
, whose columns span the null spaces of ET

0

and qT
0 AT

0 , respectively. Substituting the above projectors and bases into (38) and since
fq(µ) = 0, we obtain,

−A11(µ)ξq = B1(µ)u, (56a)

E22(µ)ξ′p = A22(µ)ξp + ξT
q fpq(µ)ξq + B2(µ)u, ξp(0) = x2(0), (56b)

y = C1(µ)ξq + C2(µ)ξp + D(µ)u, (56c)

where fpq(µ) =
[
Fn1+1T

11 (µ), . . . ,FnT

11(µ)
]T
∈ Rn1×n1×n2 . From (56) we see that the system of

quadratic DAEs (54) is decoupled into nq = n1 algebraic equations (56a) and np = n2

differential equations (56b), with n = n1 + n2. Here, the initial condition x1(0) = ξq(0)
must satisfy the hidden constraint ξq(0) = −A11(µ)−1B1(µ)u(0) and x2(0) = ξp(0) can
be arbitrarily chosen. We can now apply the proposed IpMOR method for quadratic
DAEs to (56) instead of (54).This is illustrated in Examples 7.1 and 7.2, for the case of
the device and the package models, respectively.

Remark 1. Note that with the special structure of (54), the one-way decoupled system
in (56) can be directly obtained by inserting the partition of x =

(
ξT

q , ξ
T
p

)T
into (54). The

above analysis shows a formal derivation of (56) without taking advantage of the special
form of (54). In particular, if the structure of the tensor F is unclear, then derivation of
(56) cannot be straightforward.
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All simulations were done using in MATLAB R©Version 2012b on a Laptop with
6GB RAM, CPU@ 2.00 GHz. The sparse tensor computations were performed with
the MATLAB Tensor Toolbox [15, 16]. All used methods are defined as follows:

(a) We use D-pMOR to denote the method directly applying the existing pMOR based
on multi-moment-matching (Algorithm 1) to the original system of quadratic DAEs
in (54).

(b) IpMOR is the proposed method in Section 5, where pMOR using Algorithm 1 is
applied to the subsystems (56a) and (56b) separately.

(c) For the power-MOS device model, we will see from Remark 2 that the differential
subsystem (56b) can be approximately considered as a non-parametric system, so
that MOR based on moment-matching, such as PRIMA [17], rather than pMOR
based on multi-moment-matching, can be applied to construct the ROM of (56b).
Therefore, for this special structure, we apply pMOR (Algorithm 1) to (56a), and
apply PRIMA to (56b). We call this method IpMOR-PRIMA.

Example 7.1. In this example, we consider a power-MOS device model illustrated in
Figure 1a. It is a parameterized quadratic system described in (1) with matrices and
tensor in the form of (54) and n = 13216 state variables. There are m = 6 and ` =

12 inputs and outputs, respectively. The matrices E(µ),A(µ),B(µ),C(µ),D(µ) and the
tensor F(µ) exhibit a parameter dependence of an affine form given by

M(µ) = M0 + µM1, (57)

where M(µ) indicates any parametrized matrix or tensor in (1) and Mi are parameter-
independent coefficients. For this example, µ = σ describes the electrical conductivity
of the selected materials of the power-MOS device. The system is excited by the input
u(t) = (u1(t), . . . ,u6(t))T, where u1(t) = u3(t) = 0, u4(t) = u5(t) = u6(t) = 300

and u2(t) =

107t, if 0 ≤ t ≤ 10−6,

10, Otherwise.
This system is decoupled into the form (56) with

np = n1 = 11556 differential equations, and nq = n2 = 1660 algebraic equations. The
initial condition for the algebraic subsystem has to satisfy (56a) at t = 0 and the initial
condition for the differential system is 300 for all variables since it can be arbitrarily
chosen. We intend to reduce the decoupled power-MOS model using the proposed
IpMOR method combined with Algorithm 1, so that the projection matrices Vq ∈ R

nq×r1

and Vp ∈ R
np×r2 are automatically constructed for (56a) and (56b), respectively. To

construct Vq we use a training set of 100 randomly distributed parameter samples (s̃ =

σ) in the interval σ ∈
[
106, 107] for Algorithm 1. To construct Vp, we pair 10 randomly

distributed samples of frequency f with 10 random samples of parameter σ ∈
[
106, 107]

to form the training set. Then samples of s are obtained from the relation s = 2π  f ,
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where  =
√
−1(s̃ = (σ, s)). In addition, we use r = 2 and r = 4 in (49) to construct Vq

and Vp, respectively.

Table 1: Convergence behavior of Algorithm 1 using IpMOR.

Algebraic subsystem, nq = 1660, εtol = 10−12 Differential subsystem, np = 11556, εtol = 10−6

Iterations Selected sample σ̂ Error bound r1 Selected pair (σ̂, ŝ) Error bound r2

1 1.3396 × 106 9.70 × 10−10 2 (9.1263 × 106, 4.9450 × 107 ) 2.68 × 102 6
2 9.9917 × 106 6.28 × 10−12 4 (1.7314 × 106, 2.0427 × 107 ) 2.59 × 101 12
3 − − − (8.5282 × 106, 3.5865 × 107 ) 2.88 × 100 18
4 − − − (9.1829 × 106, 5.7256 × 107 ) 2.08 × 10−1 24
5 − − − (1.7314 × 106, 2.9001 × 107 ) 2.52 × 10−3 30
6 − − − (1.7314 × 106, 5.4763 × 107 ) 1.93 × 10−4 34
7 − − − (3.7886 × 106, 2.9760 × 107 ) 1.03 × 10−5 38
8 − − − (9.1263 × 106, 3.7540 × 107 ) 2.76 × 10−8 42

Table 1 shows the selected expansion point: ( ˆ̃s = σ̂) or ( ˆ̃s = (σ̂, ŝ)), the calculated
output error bound and the number of columns (r1, r2) of the projection matrices for
each iteration. Algorithm 1 terminates after 2 and 8 iterations with the reduced order
of 4 and 42 for the algebraic and differential subsystems, respectively. Thus using the
proposed IpMOR method, the algebraic subsystem is reduced from order 1160 to order
4, and the differential subsystem is reduced from order 11556 to order 42. Hence the
power-MOS model is reduced from order 13216 to order 46.

Remark 2. We note that, in general, the parameter dependence of the power-MOS
device model takes the form (57). However, after being decoupled into the one-way
coupled system (56), we observe that the system matrices of the differential subsystem
are of the form M(σ) = M0 + σM1, (M = E22,A22,B2,C2), with

[
M1

]
i j < εmach,

where εmach is the machine precision. Therefore, the parameter part σM1 can be ig-
nored, so that M(σ) ≈ M0 for the differential subsystem. This implies that we can
apply Algorithm 1 to the algebraic subsystem and conventional MOR such as PRIMA
[17] to reduce the non-parametric differential subsystem, which constitutes the IpMOR-
PRIMA method mentioned before. We construct Vq as before and construct Vp using
PRIMA by matching 10 moments associated with the expansion point at f = 102 [17].
We were able to reduce the algebraic subsystem from order 1160 to order 4, and the dif-
ferential subsystem from order 11556 to order 44, respectively. This leads to a pROM
of order 48 using the IpMOR method.

For comparison, we also use D-pMOR to construct the ROM of (54), i.e., we apply
Algorithm 1 to the linear part of (54) with M(σ) = M0+σM1, (M = E,A,B,F,C,D),
using the same training set used by the IpMOR method for the differential subsystem.
Table 2 shows the selected expansion points, calculated output error bound and the num-
ber of columns of the projection matrix V ∈ Rn×r at each iteration. We observe that the
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algorithm terminates after 8 iterations with r = 48 columns of V at an accuracy of
εtol = 10−8. Hence the power-MOS device model is reduced from 13216 to 48, using
D-pMOR.

Table 2: Convergence behavior of Algorithm 1 using D-pMOR.

n=13216, εtol = 10−6.

Iterations Selected samples (σ0, s0) Error bound r

1 (9.1263 × 106, 4.9450 × 107 ) 2.68 × 102 8
2 (9.1263 × 106, 2.0427 × 107 ) 3.32 × 101 14
3 (9.8768 × 106, 5.7256 × 107 ) 4.34 × 100 21
4 (1.9860 × 106, 2.9001 × 107 ) 1.59 × 10−1 29
5 (1.2646 × 106, 3.7540 × 107 ) 2.95 × 10−3 35
6 (9.8768 × 106, 5.4763 × 107 ) 2.40 × 10−4 39
7 (3.7886 × 106, 2.9760 × 107 ) 9.02 × 10−6 44
8 (9.1263 × 106, 3.5865 × 107 ) 3.34 × 10−8 48

Table 3: Simulation efficiency comparison.

Original model Reduced order

pMOR methods n m ` r Speed-up Reduction rate (%) Error
D-pMOR 13,216 6 12 48 538.9 99.6 7.5 × 10−2

IpMOR 13,216 6 12 46 2116.5 99.7 4.1 × 10−3

IpMOR-PRIMA 13,216 6 12 48 1288.3 99.6 5.1 × 10−3

Next, we simulate all the above three ROMs within the time interval t ∈
[
0, 10−6] and

the electrical conductivity σ ∈
[
106, 108]. We discretized the time and the electrical con-

ductivity into 100 and 50 grid points, respectively, using the implicit Euler integration
method for the differential subsystem. The efficiency comparison of these ROMs are
summarized in Table 3 and the error is defined as

max
µ∈[106,1010]

max
j∈{1,...,`}

‖y j(µ) − y jr (µ)‖2/‖y j(µ)‖2, (58)

where y j(µ) and y jr (µ) are the outputs of the original large model and ROM, respectively
at port j depending on the electrical conductivity µ = σ of the power-MOS device. They
are vectors containing the output values at ti, i = 1, . . . ,N uniform time instances in the
time interval [0, 10−6s].

It is seen that the ROMs derived by IpMOR and IpMOR-PRIMA are much faster to
be simulated and more accurate than is ROM derived from D-pMOR. Figure 3 shows the
comparison of the thermal flux density and its relative error at port 9 for each method.
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(a) Thermal flux at port 9, y9.
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(b) Relative error of D-pMOR.
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(c) Relative error of IpMOR.
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(d) Relative error of the IpMOR-PRIMA.

Figure 2: Comparison of thermal flux and its relative error at port 9.

Example 7.2. We consider a package model [18] illustrated in Figure 1b. It is also
a system with matrices and tensor of the form (54) with dimension n = 9193. This
system has m = 34 and ` = 68 inputs and outputs, respectively. The system matri-
ces and tensor exhibit affine parameter dependence M(h) = M0 + hM1 + 1

hM2, where
M(h) is any parametrized matrix or tensor in (1) and Mi are parameter-independent
coefficients. For this example, h represents the different thicknesses of the top layer
of the package. The system is excited by the input u(t) = (u1(t), . . . ,u34(t))T, where
u1(t) = 1,u2(t) = · · · = u17(t) = 0, and u19(t) = · · · = u34(t) = 348.15,

u18(t) =

75 × 108t + 348.15, if t ≤ 10−8,

423.15, if t > 10−8.
The initial condition for the algebraic subsystem has to satisfy (56a) at t = 0 and the ini-
tial condition for the differential system is 348.15 for all variables since it can arbitrarily
chosen. This system can also be decoupled into a one-way coupled system of the form
(56) with np = n1 = 8071 differential and nq = n2 = 1122 algebraic equations. The pro-
jection matrices Vq ∈ R

nq×r1 and Vp ∈ R
np×r2 are constructed by the IpMOR method with

Algorithm 1 for (56a) and (56b), respectively. To construct Vq we use 100 randomly
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distributed parameter samples (s̃ = h) of h ∈
(
0, 100

]
as training set for Algorithm 1. To

construct Vp, we pair 5 randomly distributed samples of s = 2π  f , f ∈
[
0, 104] with 10

random samples of the parameter h ∈
(
0, 100

]
to form the training set of Algorithm 1

(s̃ = (h, s)). We used r = 4 and r = 2 in (49) to construct Vq and Vp, respectively.

Table 4: Convergence behavior of Algorithm 1 using IpMOR, εtol = 10−5.

Algebraic subsystem , nq = 1122 Differential subsystem, np = 8071

Iterations Selected sample ĥ Error bound r1 Selected pair (ĥ, ŝ) Error bound r2

1 99.9743 3.86 × 10−9 24 (77.1617, 1.7189 × 104 ) 4.07 × 101 98
2 − − − (5.3648, 5.7132 × 104 ) 5.37 × 10−1 196
3 − − − (48.757, 5.7132 × 104 ) 2.39 × 10−2 294
4 − − − (8.9365, 5.7132 × 104 ) 1.87 × 10−3 392
5 − − − (5.3648, 4.1597 × 104 ) 3.36 × 10−4 490
6 − − − (77.1617, 5.7132 × 104 ) 5.02 × 10−5 588
7 − − − (5.3648, 1.7189 × 104 ) 2.60 × 10−6 675

Table 4 shows the selected expansion point, the calculated output error bound and the
number of columns (r1, r2) of the projection matrices for each iteration. Algorithm 1
terminates after 1 and 7 iterations with the reduced order of 24 and 675 for the algebraic
and differential subsystems, respectively. Thus using the proposed adaptive IpMOR
method, the algebraic subsystem is reduced from order 1122 to order 24, and the dif-
ferential subsystem is reduced from order 8071 to order 675. Hence the package model
is reduced from order 9193 to order 699. For comparison, we apply D-pMOR to the
linear part of the quadratic DAEs in (54), by making use of the same training set which
we applied for the IpMOR method on the differential subsystem. Table 5 shows the se-
lected expansion point, calculated output error bound and the number of columns of the
projection matrix V ∈ Rn×r at each iteration. The algorithm terminates after 6 iterations
with r = 48 number of columns of V. Hence this model is reduced from 9193 to 719.

Table 5: Convergence behavior of Algorithm 1 using D-pMOR.

n=9193, εtol = 10−5.

Iterations Selected samples (h0, s0) Error bound r

1 (77.1617, 1.7189 × 104 ) 5.49 × 10−1 124
2 (5.3648, 5.7132 × 104 ) 1.60 × 10−2 248
3 (77.1617, 5.7132 × 104 ) 5.69 × 10−3 372
4 (48.757, 5.7132 × 104 ) 6.34 × 10−4 496
5 (8.9365, 5.7132 × 104 ) 2.94 × 10−5 619
6 (5.3648, 4.1597 × 104 ) 2.94 × 10−6 719
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Table 6: Simulation efficiency comparison.

Original model Reduced order

pMOR methods n m ` r Speed-up Reduction rate (%) Error
D-pMOR 9193 34 68 719 − 92.2 −

IpMOR 9193 34 68 699 6.4 92.4 7.7 × 10−3
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(a) Output solution of the IpROM.
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(b) Relative error of the outputs.

Figure 3: Output solution and relative error of the IpMOR for the package model.

We tried to simulate both parametric ROMs in the time interval t ∈
[
0, 2 × 10−3s

]
and

thickness interval h ∈
(
0, 102], using the implicit Euler integration method on the same

grid points. It is observed that it is impossible to simulate the ROM constructed by
D-pMOR while the ROM derived by IpMOR is easy to be simulated, and results in a
speed-up of 6.4 as shown in Table 6. This is due to that fact that applying D-pMOR to
the system of quadratic DAEs leads to a ROM of ODEs which behaves like a system of
DAEs with higher index. In Table 6, we used the same error definition as in (58) with
µ = h in the time interval t ∈

[
0, 2 × 10−3]. Figure 3 shows the thermal flux density

produced by IpMOR, and its relative error at port 45 at different thicknesses of the top
layer, indicating that the proposed IpMOR method is sufficiently accurate.

8. Conclusions

We have proposed an index-aware parametric model order reduction (IpMOR) method,
and have illustrated its superiority over the existing approaches with examples from in-
dustry. We have observed that IpMOR is computationally cheaper and more accurate
than directly applying pMOR to the original coupled system, and it always preserves the
index-structure of the original quadratic DAEs. This technique accelerates uncertainty
quantification and simulation of quadratic parameterized DAEs. Note that the IpMOR
method is independent of the choice of the existing pMOR method used to reduced the
subsystems. However, for more general structured DAEs, one has to be aware that the
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numerical computation of the bases for the decoupling may involve serious difficulties
because of the accuracy sensitive rank decisions. Finally, our method could be extended
to more complicated quadratic DAEs whose index always depends on the nonlinearity,
and those DAEs with higher index. This could be a topic in the future.
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