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Abstract

A parametrized reduced-order model is constructed and employed as a surrogate for the full-order model in optimiza-
tion and uncertainty quantification of nonlinear simulated moving bed chromatography. The reduced-order model is
obtained by the reduced basis method using an efficient error estimation. The complexity of the model is reduced by
an empirical interpolation method applied to the nonlinear part of the model. Due to the reduced size and complexity
of the surrogate model, the processes of optimization and uncertainty quantification are sped up by a factor of 10.
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1. Introduction

Simulated moving bed (SMB) chromatography, a
continuous multi-column chromatographic process, has
been recognized as a very useful technology for sep-
aration processes and is widely used in food, fine
chemistry, and pharmaceutical industries at all produc-
tion scales [44]. The separation process is accom-
plished through continuous and counter-current move-
ment of the liquid and solid phases driven by period-
ically switching the positions of the inlet and outlet
streams. Due to the periodic switching procedure, the
regime of the SMB system never reaches a steady state,
but rather a cyclic steady state (CSS). That is, during
the CSS period, the concentration profiles are still vary-
ing over time, but they are identical between two con-
secutive switching periods. To make full use of the
economic potential of the SMB process, efficient de-
sign and optimization of SMB chromatography play an
important role and have gained tremendous attention
during the past years; see, e.g., [2, 3, 12, 13, 25, 28,
44, 49, 50, 51]. It is worth noting that all the works
mentioned are based on high-fidelity models resulting
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from discretization of the physical model (partial dif-
ferential equations). To precisely capture the dynam-
ics of the process, these high-fidelity models are of-
ten of large size and high complexity. The main ad-
vantage of using such large-scale high-fidelity models
is that the accuracy and reliability of the optimization
can be guaranteed. Nevertheless, it is time-consuming
to solve such high-fidelity models, especially in many-
query contexts, e.g., in optimization, uncertainty quan-
tification (UQ), and real-time control settings. To over-
come this obstacle, surrogate models via reduced-order
modeling have gained increasing attention in the past
decades [14, 15, 27, 29, 53].

Model order reduction (MOR) is a useful tool in han-
dling large-scale computations in science and engineer-
ing. MOR aims at constructing a low-cost reduced-
order model (ROM), which can reproduce the main dy-
namics of the large-scale high-fidelity model, called the
full-order model (FOM) in this work. Till now, various
MOR methods have been proposed and successfully ap-
plied to different engineering contexts [1, 5, 7, 8, 39, 43,
48]. However, research on MOR for SMB chromatog-
raphy is limited in the literature. A balanced truncation
MOR method was applied to a linear SMB model in
[14]. Recently, a Krylov-subspace MOR method was
successfully applied, also to linear SMB chromatogra-
phy in [29]. For nonlinear SMB chromatography, the
application of proper orthogonal decomposition (POD)
can be found in [27, 53]. In particular, multi-fidelity

July 4, 2016



surrogate models were discussed in [27]. Nevertheless,
the ROM constructed by the POD or Krylov-subspace
MOR method is reliable locally, i.e., it is valid only in
the neighborhood of the parameter at which the ROM is
constructed. As a result, the ROM needs to be updated
in many-query contexts, e.g., during the trust-region op-
timization process in [27].

In this paper, we present a parametric model order re-
duction (PMOR) method for the nonlinear SMB chro-
matography, namely, the reduced basis (RB) method
[22, 23, 38, 39, 41, 47]. PMOR is designed for a broad
class of problems for which the governing equations
depend on a set of parameters. The parameter enters
the model in many ways, characterizing, e.g., material
properties, geometry configurations, initial conditions,
boundary conditions, source or force terms, etc. Us-
ing PMOR methods, the parameters in the FOM will be
kept as symbolic quantities in the ROM so that the re-
sulting ROM is globally reliable, that is, it is able to re-
produce the main dynamics of the FOM corresponding
to any variation of the parameter in the entire parame-
ter domain. A comprehensive survey of PMOR meth-
ods can be found in [7]. In particular, the RB method
has been recognized as a robust PMOR method and is
widely applied to various problems described by pa-
rameterized partial differential equations (PDEs). Us-
ing the RB method, the ROM construction and simu-
lation using the ROM can be entirely decoupled into
two stages. That is, during the offline stage, all the
high-dimension dependent quantities can be precom-
puted. This process can be expensive, but is performed
only once. During the online stage, given any feasible
parameter value, the output response can be obtained
rapidly by assembling and solving the ROM without re-
sorting to the FOM. This is quite suitable for the afore-
mentioned many-query tasks. In addition, using the RB
method, the ROM is constructed iteratively through a
greedy algorithm. At each iteration, the parameter that
causes the largest error (measured by some error estima-
tor) is selected and used to enrich the current RB. This
process continues until the largest error goes below a
given error tolerance. As a result, the resulting ROM
is accurate enough in the whole parameter domain, and
the dimension of the RB (i.e., the order of the ROM)
can be kept as small as possible when an efficient er-
ror estimator is employed. When the resulting ROM is
employed to solve an optimization problem, one single
ROM is qualified so that there is no need to update the
ROM online, which saves a lot of computational time.

To demonstrate the performance of the parametric
ROM, we use it to accelerate the optimization of SMB
chromatography and to quantify the robustness of the

optimal solution (alternatively, the product purity) under
flow rate uncertainties. As pointed out in [33], uncer-
tainties in the parameters of adsorption isotherm equa-
tions, pump stability, extra-column volumes, and pack-
ing reproducibility are inevitable in every SMB process.
In [33], a robust design of a linear SMB process under
flow rate uncertainties was proposed based on the FOM.
In this work, the ROM is employed for fast UQ of the
product purity of a nonlinear SMB process.

This paper is structured as follows. Section 2 ad-
dresses the SMB model, the corresponding discrete sys-
tem, and the optimization problem. Section 3 shows that
the order and the complexity of the FOM are reduced by
the RB method and the empirical interpolation method
(EIM) [4], respectively. A parametric ROM is derived
for the SMB model. To efficiently construct the ROM,
an a posteriori error estimation is presented in Section 4.
The problems of optimization and UQ are described in
Section 5 considering a case study reported in the liter-
ature. The efficiency of solving the above problems by
using the ROM is presented. Conclusions are drawn in
Section 6.

2. SMB chromatography and optimization

2.1. Model description

An SMB unit typically consists of several identi-
cal chromatographic columns connected in a series, as
shown in Figure 1. Four ports divide the SMB unit
into four zones, which play different roles in a separa-
tion process. The mixture to be separated and the elu-
ent are fed continuously through the two inlets, and the
two purified components are withdrawn also continu-
ously from the two outlets, respectively. The separation
regime is accomplished through simulating a counter
current movement of the liquid and solid phases by syn-
chronously shifting the inlet and outlet ports one col-
umn ahead in the direction of the fluid flow in a certain
switching period f;. For more details and application
examples we refer to [3, 19, 37, 44, 45, 49].

The main dynamics of the fluid flow in all columns in
an SMB unit are the same except for the node balance
relations. We first address the mathematical modeling
of the dynamics in one chromatographic column and
then describe the node balance equations in between. In
this work, we assume that the dynamics of each chro-
matographic column can be described by an axially dis-
persed plug flow model with a limited mass-transfer rate
quantified by a linear driving force (LDF) approxima-
tion. The mass balance in the column k (k = 1, ..., Ncop)



can be given by, [19],
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where ¢, g, are the concentrations of the component
z(z = a,b) in the liquid and solid phases in the kth
column, respectively, Oy the flow rate, A. the cross-
sectional area of the column, L the column length, €
the column porosity, t; the switching period, and Pe the
Péclet number. Note that # and x are in the dimension-
less form, i.e., t = 7/ts, x = X/L (7 is the time coordinate
and X is the axial coordinate along the column). The ad-
sorption rate is described by the LDF approximation as
follows:
9q
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where k, is the mass-transfer coefficient and qu is
the adsorption equilibrium defined by the adsorption
isotherm function
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Different separation processes are described by dif-
ferent adsorption isotherm equations. In this work, the
adsorption equilibrium qEZ is described by the isotherm
equations of bi-Langmuif’ type [19],
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where H;; and K;; (j = 1,2) are the Henry constants
and thermodynamic coeflicients, respectively.
Danckwerts-type boundary conditions are imposed to
equation (1), i.e.,
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where ciznk(t) is the concentration of component z at the
inlet of column k. The system is closed by assuming
uniformly pre-equilibrated columns as the initial condi-
tions,

c4(0,x) = Cg’k,
4:1(0, %) = ¢,

Neglecting dead volumes, the concentrations at the
inlet of a column are equal to the concentrations at the
outlet of the previous column, i.e.,

A (O = et 1), 6)

except for the feed and desorbent nodes. The mass bal-
ances at the inlet and outlet ports can be established as
follows:

Desorbent node:

01 = QO + QOp,
Qlci;ll (®) = Owegn, (6 D). @)
Extract node:
On = 01— Ok,
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Feed node:

Om = O + OF,

i F
Omey iye1 () = OuCepyiny (¢, 1) + ¢; OF. )

Raffinate node:
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Here, k; is the number of columns in the zone J,
Qy is the flow rate in the corresponding zone, J €
{LIL I, IV}, cf is the feed concentration of the solute
z, and Op, O, Or, Qr are the desorbent, extract, feed,
and raffinate flow rate, respectively. Note that the flow
rates within all columns in a certain zone are assumed
to be uniform. For example, for an SMB unit with eight
columns and 2-2-2-2 configurations, the flow rates Oy
(k=1,...,8) in the columns satisfy the following rela-
tions:

01=0=01, 03=04=0,
0Os = Q¢ =Q0m, 0O7=0s=0.

2.2. Numerical discretization

We use the finite volume method to discretize the
SMB model (1)—(5), where the Lax—Friedrichs flux [26]
is used to solve the convection flux, and the central
difference scheme is applied to evaluate the diffusion
flux. For the temporal discretization, we use the Crank—
Nicolson scheme, which yields a second-order accurate
evolution scheme.
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Figure 1: Schematic illustration of an SMB chromatographic process
with four zones and eight columns.

Let At =1/K,t" =nAt,n e K:={0,1,..., K} be the
K + 1 time instants over the time interval [0, 1], Ax =
1/N be the spatial grid size, and (. g7 () € RN be
the numerical approximations of the concentrations (c,
and g, respectively) in the kth column at time instance
t = ¢". Note that the time interval [0, 1] is actually a
dimensionless switching period. The fully discretized
finite volume formulation for the kth chromatographic
column can be written as

Ael (@) = Bi(uel () + 1 (e (™), )
- %Athgkm), (11)

4o (W) = g ) + At (), (12)

where Ai(u), Br(u) € RM*N are tridiagonal matri-
ces, W () = f(ch, (). ¢ ) — ) € RV is a
nonlinear vector-valued function, and r" k(ciz“k(t"),y) =
raaen (™), 0[1,0, -+, 01" € RN with

("At € R.

(13)

The parameter u characterizes the operating condi-

tions of the underlying SMB process (e.g., u =
[O1..., Ow, &) '

It is noteworthy that r;”k(cg‘k(t”), ) in (11) depends on

the information from the connected columns, because
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the inflow of the kth column ciz"‘k(t”) is determined by
the outflow of the (k — 1)st column, k = 2,..., N, and
ci;‘l (") is determined by c, v, (¢, 1)—the concentration
at the outlet of the N.qth column, as detailed in (6)—
(10) in the previous subsection. Thus, the system (11)—
(12) is coupled with the systems corresponding to the
other columns. Assembling all the systems, we obtain
the FOM for the SMB unit as follows:

1 -
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g0 (W) = () + Athl! (), (15)
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AW = diagAi)..... A, () € RMN, B
B(u) + B,(u) with a block diagonal matrix B(u) =
diag(Bi(p), . . ., By, (w) € RNN and a (fairly) sparse
matrix B,(u) resulting from separating an auxiliary vec-
tor

P (), )

PN, ) = = B,(W)c; () + (1)
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into two parts depending on the definition of
rz,k(Ciz?k(t")’ﬂ) in (13), B,(u) € RN #(u) € RV, and
N = N - Neoi. The first part, B,(1)c"(u), linearly de-
pends on ¢ (u) and is determined by (6)—(10). The sec-
ond part, r7(u), only depends on the parameter u, which
leads to an efficient implementation using the ROM, to
be introduced in Section 3.3. Nevertheless, this does not
introduce any extra cost for the FOM simulation.

As mentioned earlier, the regime of the SMB is a
cyclic steady state, which is characterized by identi-
cal transient concentration profiles during two consecu-
tive switching periods. Mathematically, given an initial
state, the system (14)—(15) is solved step by step within
a switching period; at the end of a period, the state
(c®(w), ¢%(w) undergoes a shift, and the shifted vec-
tors (PscX (1), PsgX(w)) are used as the new initial state
to continue the evolution process until the CSS condi-
tions are satisfied. Here P; is a permutation matrix. To
determine the condition of the CSS, the following two
criteria can be used:



1. check whether the concentrations at the beginning
of two consecutive periods are identical, i.e.,

max max{lle () = Pz @l llgz () = Pogz (Il

< &CsSs

where ecss is a user-specified tolerance;

2. check whether the output of interest, e.g., the pu-
rity of the product streams defined in (17), in two
consecutive periods are equal or not.

2.3. Optimization of SMB chromatography

As mentioned earlier, the optimal operation of SMB
chromatography is of practical importance since it al-
lows to exploit the full economic potential of the pro-
cess and to reduce the separation cost. In this work,
we seek the optimal operating conditions that maximize
the feed throughput while respecting the purity require-
ments and the process constraints. The decision vari-
ables in the underlying optimization problem are the
feed flow rate Qg and four dimensionless m values m;,
J =1,...,IV, which represent the ratios of the fluid flow
rates over the solid flow rate. For notational simplicity,
let u := [my,...,my, Qr]. These four m values were
introduced in the frame of the triangle theory in [31],
which is based on the equilibrium theory of chromatog-
raphy. These values are closely related to the flow rates
within four zones of the SMB unit, Qy, i.e.,

_ 1,07 — €Veol
(1 - 6)Vcol ’

Here, V is the volume of a chromatographic column.
Let # ¢ R’ be an admissible parameter domain, the
optimization problem can be formulated as follows:

I}flei;}f(ﬂ) = =0F,

my J=1...,IV.

s.t.  Pugmin — Pu,(u) <0, (16)
Pup min — Pup(u) <0,
QI - Qmax < 0,
where
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are the products’ purity at the extract and the raffinate
outlets, C];,css(t’ 1) and cicss(t, ) are the CSS concen-
trations of ¢, at the extract and the raffinate outlets, re-
spectively. The constraints Puy min, Pupmin, and Omax

will be specified in the numerical experiments in Sec-
tion 5. The output is defined as

Yt ) 1= (ch css (i 1), Chcss (15 1),

(18)

To compute the purity of the products, the large-
scale system (14)—(15) must be simulated many times
during the optimization process, which is very time-
consuming. Instead of using the FOM for the optimiza-
tion, we employ surrogate ROMs. In what follows, we
show how a parametric ROM is generated using the RB
method and the EIM.

3. Model order and complexity reduction

In this section, we review the RB PMOR method,
which constructs a ROM of significantly reduced size
(order). The complexity of the ROM is further reduced
using the EIM.

3.1. Order reduction: reduced basis method

The RB method has been recognized as a robust
PMOR method and is extensively applied in various ap-
plication areas for steady and unsteady problems. For
more details about RB methods, we refer to [22, 39, 47].

Here we address the framework of the RB method for
the SMB model in (14)—(15). We will construct a RB for
(), g7 (1), 7 = a, b, respectively. For this, we rewrite
each equation in the system in a general form:

A () = B () + g (W), ), (19)

where " (1) stands for the unknown vector ¢ (u) in (14)
(resp., ¢7(u) in (15)), A(w), B(u) € RMN are coef-
ficient matrices (for (15), they are identity matrices),
g(-, ) stands for the nonlinear terms, e.g., g(-,u) =
r(u) — =EAT () in (14) and g(-,p) = €Atk () in
(15).

As mentioned earlier, the RB method aims at con-
structing a parametric ROM that can reproduce the
input-output map or the dominant dynamics of the
large-scale FOM under parameter variations. A key as-
sumption for the RB method is that the solution u"(u)
resides in a low-dimensional subspace V of RV. Let
V € RV pe a RB matrix, i.e., its columns consist of
an orthonormal basis of V. A ROM can be obtained by
Galerkin projection as follows:

A (@) = Baou) () + V' g(Vidl (), ), (20)

where A(u) = VIA@)V, B(u) = V' Bu)V € RV are
the reduced matrices, and u"(u) € RY is the unknown



vector of the ROM. For an efficient offline-online com-
putation, we assume that A(u), B(1) depend affinely on
the parameter y, i.e., they can be expressed in a sepa-
rated form,

A =) E/G0A;,

J=1

B4 = ) &G0Bs,
k=1

where A, B are constant matrices, &;(u), {x(u) are the
corresponding time and parameter dependent scalar co-
efficients. This is the case in our applications. The num-
bers n, and n;, are expected to be small. Then

Ay = V7A@V = £G0A;,

’:b‘ @1)
B = V' BWV = ) GGoB,

k=1

where A; = VIA;Vand B, = VIB\V, j=1,...,n.,k =
1,...,n,. Note that once the projection matrix V is
obtained, A ; and Bk can be precomputed, and in turn,
the evaluations of A(u) and B(u) for any parameter u
are independent of the dimension N. However, evalua-
tion of the last term in (20), VTg(Vuf(/J), ), is still N-
dependent, due to the nonlinearity of g and/or its non-
affine dependence on the parameter y. At every time
step, one must compute a long vector g(Vu!'(u), ) €
R¥, which is of complexity N. Consequently, the com-
putational complexity of solving the ROM is not sig-
nificantly reduced. To tackle this problem, the EIM
or its variants, e.g., the discrete empirical interpolation
method [10] or empirical operator interpolation [11],
can be employed, which will be addressed in detail in
the next subsection.

We now address how to compute the RB V. For pa-
rameterized problems, the RB method features in com-
puting V iteratively using a greedy algorithm [52]. A
training set ngn with a finite number of parameter sam-
ples is typically chosen a priori as a substitute of the ad-
missible parameter domain . At each extension step,
a parameter i, that causes the largest error measured
by a proper error indicator (-) is chosen from P§5 . to
enrich the basis. The iteration continues until the error
W(uy) goes below the required accuracy eroy. For time-
dependent problems, the POD-Greedy algorithm [20] is
often employed to construct the RB. Algorithm 1 shows
the basic steps of the POD-Greedy algorithm. Note that
in Step 4, a singular value decomposition (SVD) is per-
formed to compute the first POD mode of U (the first
column of Q), where Q and Y are unitary matrices, and
Y is a rectangular diagonal matrix with non-negative
real numbers on the diagonal.

Algorithm 1 POD-Greedy algorithm for the RB con-
struction
Input:  PRE 11, crom(< 1).
Olltpllt: RBV = [V], ey VN].
1: Initialization: N = 0, us = o, nv(ux) = 1, V. =1[1.

2: while I,DN(IJ*) > grom do

3:  Simulate the FOM at u, to get the solution tra-
jectory: {u"(u )}k .

4:  Perform POD process:

Compute U := [i°,...,a"X], & = u'(uy) —
VVIu'(uy) (@ = u*(uy), if N = 0), n =
0,....,K.

Implement SVD of U: U = QzY7.

Take the first column of Q: vy, = QO(C, 1).

5. Enrichthe RB V :=[V,vy41].
. Update N=N +1.
7. Find p, := arg max ¥y (u).
uePRB

train

8: end while

Remark 3.1. (For Algorithm 1) For an efficient imple-
mentation, a proper error indicator ¥ (-) needs to be
computed. Many efforts have been devoted in this area
in the last decades; see, e.g., [11, 18, 20, 34, 36, 39,
42, 46, 54]. It remains still an active topic in MOR. In
Section 4, we will introduce a recently proposed error
estimation from [55], which will be used as the error
indicator in the POD-Greedy algorithm to construct the
RB V for the SMB model.

Remark 3.2. (For Algorithm 1) The AdSS technique:
The simulation of the SMB model requires a large num-
ber of time steps K in Step 4 of Algorithm 1, leading
to a big matrix U with many columns, which makes
the SVD of U expensive. To tackle this problem, the
technique called adaptive snapshot selection (AdSS) in
[6, 54] can be employed to keep the number of the snap-
shots and in turn the number of the columns of U rela-
tively small. In the meanwhile, almost all the “useful”
information is still contained in the selected snapshots
so that the cost of RB construction can be largely re-
duced without loss of accuracy. The idea of the AdSS
technique is to filter out the linearly dependent infor-
mation from the trajectory before performing the POD
process in Step 4. The basic idea is as follows: assume
that " (w) is the last selected snapshot, there is no need
to include u™(u) (i = 1,2,...) as a new snapshot if it
is “almost” linearly dependent on u"(u) (reflected by a
suitable indicator); on the other hand, once the correla-
tion between (i) and u*(u) is weak, then u"*(u) is
taken as a new snapshot. The indicator can be defined



as, e.g., the angle between the last selected snapshot and
the tested vector, i.e., Z(u"(u), u”“(,u)). By AdSS, the
selected snapshots only consist of the most “represen-
tative” vectors of the solution trajectory, and the result-
ing U has much smaller column size. For more details,
please refer to [6, 54].

3.2. Complexity reduction:
method

empirical interpolation

As discussed previously, the EIM can be employed
to tackle the nonlinear terms in (20) to reduce the com-
plexity. The idea of the EIM or its variants is to con-
struct an additional basis, say, W € RN*M - and ap-
proximate g(Vu'(u), ) by a linear combination of the
basis, i.e., §"'(w) = WB'(u) ~ g(Vul(u),u), where
B () := B (u), 1) € RM is the vector of coefficients.
Then the system in (20) can be rewritten as

A () = B} + GB"w),  (22)

where G = VI'W € RV can be precomputed once the
bases W and V are obtained. The computation of 8" (u)
depends only on N and M and can be done cheaply in
the online stage. System (22) is cheap to solve since
N, M < N, and it is thus considered as the final ROM.

The EIM, introduced in [4], aims at constructing an
affine (namely, parameter-separable) expression to ap-
proximate a (nonaffine) function g(x, u) with sufficient
regularity, i.e., g(,u) € L¥(Q), for all p € P. A
parameter-independent basis W := {w(x), ..., wy(x)},
called collateral reduced basis (CRB), is precom-
puted based on snapshots of nonlinear function evalu-
ations at a set of properly selected parameter samples.
Then an affine approximation is defined by 2(u) :=
Z?ﬁl w(x)Bi(u), where the coefficients 8;(u) can be de-
termined by an enforced interpolation condition that
8(w) interpolates g(x,u) at a set of carefully selected
empirical interpolation (EI) points Xy, := {x}, ..., x}},
ie.,

M
D owiEhBiw = g0, =1, M (23)
i=1

In practical computation, the CRB and the EI points
are usually computed in a finite dimensional discrete
space, say, RV, Let PCRB =y, | y; e P,j =
1,...,nuin} be a training set with a finite number
(Myain) of parameter samples, which is chosen as a
surrogate of the parameter domain . Let G :=
{81, 8nun) be the set of snapshots, where g; :=
[g(x1, 1)), - -, 8(xn, u)IT € RN is the vector of func-

tion evaluations of g(x, ) at the parameter y; € PRB

(j = 1,...,n¢n) on the spatial grid {xj,x2,..., xn}.
Note that in the discrete space, the basis W is actu-
ally a set of constant vectors, wi,..., Wy € RV, and
the EI points X, are corresponding to a few indices
in the spatial grids, denoted as I := {@pi,...,9u}
To use matrix-vector notation, we introduce a vector

B = [Bi(w), ....Buw)]" € RM and a matrix
S =Tleg,..-,e9,]

where e, = [0,...,0,1,0,...,0]" € RV is the p;th col-
umn of the identity matrix in R™V*N_ For any u € P, let

g(w) = [g(x1, 1), ..., g(xn,)]" € RV then the interpo-
lation condition in (23) becomes

STWBw) = ST g(u).

Thus, B(u) = (STW)"'STg(u) and the interpolant de-
fined by the EI basis W reads

8w = W) = W(S"Wy'STe), peP. (24
Note that ST W is invertible because it is actually a lower
triangular matrix with unit diagonal [4, 17]. Given an
error tolerance £crg, the procedure of constructing the
CRB and EI points can be summarized in Algorithm 2.

This interpolant approximation serves to reduce the
complexity of the nonlinear parts of the model, which
cannot be directly reduced by projection. It is crucial
for an efficient offline-online computation for the RB
method and other MOR methods. The EIM has been
extended in recent works; see, e.g., [9, 10, 11, 16, 17,
30, 35, 40]. For time-dependent problems, we do not
treat time as another parameter, but put the time trajec-
tory for all training samples together as the snapshots
to construct the CRB. That is, in Algorithm 2, the in-
put snapshot set is redefined as G := {g(uk(yj),/,tj) |
Hj € Ptcrfif, j=1,...,00n; kK = 0,1,...,K}. Note
that when the total number (K) of the time steps for one
FOM simulation is large, then the number of snapshots
will be (K+1)-nyin if no further snapshot selection strat-
egy is employed, and this number can be huge. This
may render the computation of the CRB very expen-
sive. Again, the adaptive snapshot selection [6, 54] can
be employed to reduce the computational cost, similarly
to the implementation for the RB construction; see Re-
mark 3.2.

3.3. RB scheme for the SMB model

For reduced-order modeling of the SMB model in
(14)—(15), to reduce the order (size), we construct a
RB for each variable, i.e., compute the RB matrices



Algorithm 2 Generation of CRB and EI points (EIM)
Input: G :={g1,..., 8.} EcrB < L.
Output: CRB W = [wy,...,wy] and EI points (in-

dices) I :={p1,...,pum}
1: Initialization: W =[], 8 =[], =0.

.....

W = ‘fm/fm,go,,,y W = [VV’Wm]s S = [S’exom]s I =
LU {pm}.
3: while ||§m|| > gcrp do
4 m=m+l.
5:  For all g; € G, compute the interpolant g; =
W(ESTW)1STg; by (24).

6: Define g, := arg magllgj - jll, and the error
8¢
Em = 8m— gmo
7: if [l€mll < &crp then
8: Stop and set M =m — 1.
9: else
10: Determine the next EI point and basis:
Pm = arg {I}’laX }|§m,i|, W = ft;z/fm,go,,,-
11: Update W = [W,w,], S = [S,e,,1, L =T U
{80171}'
12: endif

13: end while

V., and V,_for the variables c¢; and g, (z = a,b), re-
spectively; to reduce the complexity, we construct the
CRB matrix W, for the nonlinear term /i, (z = a, b). Let

() = Vel (u) and g7 () = V,.q;,(u) be the ap-
proximation to c¢7(u) and ¢7(u), respectively. Applying
Galerkin projection, the ROM for the SMB model can
be formulated as

Acz(ﬂ)cgl(ﬂ) = Bcz(ﬂ)crzl,r(ﬂ) + Rcz QA
l1-€ .

- TAIHCZ,B?(,U), (25)

gt =gt + MH, BN, z=a,b, (26)

where ¢ (), ¢;,(u) are the reduced state vectors of

the ROM, BX(u) := P(c?, (W), q2,(u);p) is the vec-
tor of coefficients in the interpolation of hl(u) (i.e.,

G = WD), and Ae.(u) = VIAWVe, Beu) =

VIBwV..R. = Vle,, H. = VIW., H, =
VqT W, are the reduced matrices. Here, e, =

[0,...,0,1,0,...,0]" € RV is psth column of the iden-
tity matrix in RV (p; corresponds to the location of
the feed node of the SMB unit in the spatial grid), and
Fl(u) is actually a scalar parameter-dependent coeffi-

cient.

As discussed in Section 3.1, the RB scheme is usu-
ally realized by a strategy of offline-online decompo-
sition. That is, the construction of the ROM and the
simulation of the ROM can be completely decoupled
into two stages. During the offline stage, all terms (Iécz,
I-AICZ, I:Iq:, and the parameter-independent components,
e.g., Aj,Bj in (21), in the affine expressions of ACZ(/J)
and BC:(/J)) related to the high dimensional computa-
tion are precomputed and stored. This process can be
expensive, but needs to be performed only once. Dur-
ing the online stage, given any feasible parameter, the
reduced matrices (A..(u), B..(u),R.., H.., and H,) can
be rapidly assembled using the precomputed data in the
offline stage, and a small-sized ROM is solved. This
online simulation is independent of the high dimension
N, which implies that the offline cost can be paid off by
many repeated ROM simulations under parameter vari-
ations. For example, in the optimization process, both
objective and constraints can be cheaply computed by
using the ROM without resorting to the FOM.

In addition, the ROM resulting from the RB method
is expected to be reliable in the whole parameter do-
main. A reliable ROM is guaranteed by an efficient er-
ror estimator, telling us up to which stage in the POD-
greedy algorithm, a ROM satisfying the accuracy re-
quirement is obtained and the algorithm can be stopped.
In the next section, we introduce an error estimation for
the ROM, which is used as the error indicator ¢ in the
POD-greedy algorithm during the construction of the
ROM. Once the ROM is constructed, it needs not be up-
dated during the optimization process, unlike the POD
based MOR method in [29].

4. Computing the error indicator y(u)

For nonlinear parameterized time-dependent prob-
lems with switching procedure, many existing error esti-
mation mentioned earlier [11, 18, 20, 34, 36, 42, 46, 54]
are not applicable, since some are only suitable for lin-
ear steady problems [34, 42, 46], others are valid only
for linear time-dependent systems [18, 20]. While the
error estimators from [11, 36, 54] are developed for non-
linear time-dependent problems, they may become in-
accurate for systems with switching procedure. In our
recent work [55], an efficient output error estimation is
derived, and it has been successfully applied to a non-
linear batch chromatographic model and a linear SMB
model. In this work, we will use the error estimation
proposed in [55] to construct the ROM for the nonlinear
SMB chromatography.



Recall that the underlying nonlinear SMB process has
four outputs, as defined in (18). Since the error estima-
tion proposed in [55] is derived for a single output, we
now compute an error estimator for each output and take
their maximum as the error indicator for the whole sys-
tem. For this, we briefly summarize the main theory in
[55] and then focus on the detailed implementation.

Given the time-dependent system in (19), assume that
the output of interest is expressed as follows:

Y' () = Pu" ()

where PT € R is a constant vector and u"(u) is the
solution to (19). Let &#"(u) := Vu'(u) be the approxima-
tion to u"(u) and y"(u) = Pi"(u) be the corresponding
approximate output. The output error estimation is sum-
marized in the following.

Theorem 4.1. For the systems (19) and (20), assume
that A(u) is invertible for all u € P. Then the output
error e”“(y) = y"*l(u) — " (w) at the time instance
1 satisfies

leg™ @ll < A" ) = p @Gl oll. 27)

where p is a computable constant, and

D) = 1AW rau @l + lletau, @I,
e (1) = B (u) + g(@" (), i) — A" ().

Here,
raa() = —=P" = (A)” Vaultau (1) (28)

is the residual of the dual system

(A@) ugu(p) = —P7, (29)

and

Vi (A Vautgu () = =V, P" (30)

is the corresponding reduced dual system, where Vg, is
the RB for the dual system.

The detailed proof can be found in [55], where A(u)
and B(u) can be time-dependent so that the error esti-
mation is applicable to more general cases. We now
focus on the computation of the error estimator A™!(u)
in (27). It consists of three parts: ||rgr+1(p)||, O(u), and
p. For ||rlg‘;r Y(w)ll, one can compute it directly using its
definition. For ®(u), the key is to compute ||ugy ()|
and ||rgy(w)|]. This needs to compute a RB Vg, for the
dual system in (29). We solve the system in (29) at all
the parameters in the training set Ptmm =y |y
Pj=1,..., mm} and collect the solutions as the snap-
shot matrix Uy, := udu(yl),...,udu(yn&gn) . The RB

Vau for the dual system can be obtained by, e.g., per-
forming an SVD of Uyg,.

To compute the constant p, we introduce an auxiliary
vector

Pl () = AQu™ ' () — A (). (31)

Then p can be estimated, e.g., using the average ratio
between the norm of 7'”“(/1) and that of r”“(u) at a spe-
7 ()l
n=1 | (ol
is the chosen parameter used to enrich the RB in Algo-

rithm 1, and K is the total number of time steps. Al-
though the detailed solution u"(u,) is involved in the
computation of ||r”+'(,u*)||, this does not contribute any
extra cost, since it has been already computed in Step 3
of Algorithm 1.

As mentioned previously, four outputs are considered
in the nonlinear SMB process, i.e.,

cific parameter y, i.e., p = % L 9K where pi,

Y () = (¢f ess ("3 10, iy ess (3 10,
Chess@'s 1), O css (3 1))
=1 (V1 (1), Y3 (1), Y3 (1), Y4 (1))

= (P1c(w), Pacy(u), P3cy(u), Pacy(p),

where P; = [0,...,0,1,0,...,0] € RV, j = 1,....,4,
with nonzero entries corresponding to the extract or the
raffinate node. Let j}’}(,u) be the approximation to the
output y"(y) The task is to compute an estimator A" (,u)

(= o3 ®, @l Gl for the true error el(a) = ¥() —
y;f(p) at the time step n. The computations of ||r;:jl wll,
®;(u), and p; are straightforward, i.e., replacing P with
P; in (27)—(30), and the error estimator A;?(,u) for each
output y "(w) can thus be obtained.

In thls work, we use the average output error estima-
tor over all time steps, A;(u) := %Zle A’(u), as the
error indicator for the jth output, j = 1,...,4. For a
given parameter y, the error indicator for the whole sys-
tem is defined as

(32)

Wi = max A, (33)

.....

which is used in Algorithm 1 for the construction of the
RB.

5. Implementation and Results

In this paper, we consider as a case study the binary
separation of 1, 1’-bi-2-naphthol enantiomers on cellu-
lose triacetate, where a mixture of 72/28 (v/v) hep-
tane/isopropanol is used as eluent [3, 27, 32]. In this



process, the two feed concentrations are identical and
fixed at 2.9 g/l. The maximal allowable internal flow
rate Qmax 1S assumed to be restricted due to pressure
drop limitations at 1.0 ml/s. The model parameters are
given in Table 1, and the constants for the isotherm
function in (4) are given in Table 2.

Table 1: Model parameters, configuration considered and column
properties.

Number of columns N, 8

Column configuration 2-2-2-2
Column dimensions [cm] 2.6 x 10.5
Column porosity € [-] 0.4

Péclet number Pe [-] 1000

Mass-transfer coefficients ., z = a,b [ s7!] 0.1, 0.1
Feed concentrations cf, z = a, b [g/l] 29,29

Table 2: Coefficients of the adsorption isotherm equations.

H, [-] 2.69 Hp [-] 3.73
Hpl-] 01 Hpl-] 03
K. [I/g]  0.0336 Ky [I/g]  0.0446
Ko [l/gl 1.0 Ky [1/g] 3.0

It should be pointed out that a) the orders of magni-
tude of the used thermodynamic parameters are typical
for many chromatographic separation problems and b)
the general applicability of the SMB model used was
already demonstrated in various case studies, e.g., [45].
We now determine a suitable order N for the FOM in
(14)—(15), based on which the ROM is constructed. As
the true solution of the PDEs is not available, we take
the solution from a very fine spatial grid (N = 3200) as
the reference solution. The runtime and the relative er-
rors of the outputs (i.e., Pu,, Pu;) at arandom parameter
value using different numbers of cells for the discretiza-
tion are plotted in Figure 2. It is shown that the runtime
increases exponentially and the relative error of the out-
puts decrease as the order of the FOM increases. When
N = 800, i.e., one hundred cells are used for each col-
umn, the relative error of both products is less than 1%
and the computational time is 290 seconds, which is a
good trade-off between the accuracy and the computa-
tional cost. Thus, we use the system in (14)—(15) with
N = 800 as a faithful FOM to construct the ROM in the
following.

In this section, we will show the details of the ROM
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Figure 2: The behavior of the relative errors of the outputs and the
runtime corresponding to different orders of the FOM

construction, the error behavior during the basis exten-
sion process, and the performance of the ROM in solv-
ing the optimization problem. Finally, we analyze the
robustness of the optimal solution under flow rate un-
certainty based on the resulting ROM. According to
the experimental experiences and the triangle theory
in [31], we chose the interesting parameter domain as
P=Au | p=I[m,...myQrl € P, c R} :=
[4.30,4.60] x [2.40,2.55] x [3.05,3.25] x [2.10, 2.25] X
[0.1,0.14], which is used as the admissible parameter
domain for the ROM construction and the optimization.
The tolerances for constructing the ROM are taken as
ecrs = 1.0x 1073, gpom = 5.0x 1073, and the tolerance
for the CSS condition is ecss = 5.0x 1074, All the com-
putations were carried out using C++ code on a Linux
machine with an Intel Core 2 Quad CPU 2.83 GHz and
4.00 GB RAM.

5.1. ROM construction

We now implement the RB method presented in Sec-
tion 3 for the nonlinear SMB chromatography. For
an efficient offline-online computation, we first take a
training set PSR with 150 sample points randomly dis-
tributed in the parameter domain ¥ and use Algorithm 2
to construct the CRB for A, and A, respectively. Then,
we take a training set Pro  with 100 random samples
and apply Algorithm 1 to compute the RB for each vari-
able. Note that the number of samples in the training
set PRE “is smaller than that in the training set PSR,
although the two sets can be taken as the same in prin-
ciple. For the underlying problem, we found that a (rel-

. . RB . .
atively) less number of samples in P> is sufficient to



construct a globally accurate ROM. Therefore, we take
less samples in PRE than in PSRB. The error estimator,
Y(w) in (33), is employed to guide the parameter sam-
pling during the RB extension process. The correspond-
ing true output error is defined as e(u) := % Z,’le e"(u),
where €"(u) := [ly"(1) — 3" (Wl is the true output error
at time step n.

Figure 3 shows the behavior of the average output er-
ror estimation over all time steps and the corresponding
true output error during the RB construction process. It
is seen that the output error estimation bounds the true
output error. Moreover, the estimation decays as the RB
is enriched, and it goes below the tolerance erom When
the number of basis vectors is up to 47. To further as-
sess the reliability of the resulting ROM, we perform
full and reduced simulations over a validation set Py,
which consists of 200 random sample points in the pa-
rameter domain. The results are summarized in Table 3.
It is seen that the maximal true error, max,ep, , e(u), is
5.6 x 1074, which is below the pre-specified tolerance.
This demonstrates that the resulting ROM is reliable in
the whole parameter domain. Moreover, the average
runtime for one FOM simulation is 287.4 s, while it
is only 28.7 s for one ROM simulation. The average
speedup factor (SpF) is 10.
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Figure 3: Error estimator decay during the RB extension process.

Table 3: Comparison of runtime for the full and reduced simulations
over a validation set with 200 random sample points. erom = 5.0 X
1073,

Model Maximal error  Average runtime [s]/SpF
FOM - 2874/ -
ROM 5.6x 107 28.7/10
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5.2. ROM-based optimization

As the ROM is precomputed in the offline stage, it
is ready for online computations. When the ROM is
employed for the optimization problem in (16), all the
quantities computed through model simulations, e.g.,
the purity Pu, and Pu,, will be computed by solving
the ROM in (25)—(26). Moreover, we do not modify the
ROM during the online stage, since the ROM is reliable
and accurate enough in the whole parameter domain.

To show the performance of the ROM, we imple-
ment both the FOM-based and the ROM-based opti-
mization. The constraints are specified as Qmax = 1.0
ml/s, Pugmin = 95.0%, Pupmin = 95.0%. The opti-
mization problems are solved by using the optimizer
NLOPT_LN_COBYLA from the NLopt library [24].
This is a local derivative-free optimizer. Different ini-
tial guesses may result in slightly different (locally) op-
timal solutions. Indeed, different initial guesses have
been tested, and the differences between the optimal so-
lution of ROM-based optimization and that of the FOM-
based one are all sufficiently small. The initial guess
used in Table 4 is yy = [4.35,2.42,3.21,2.21,0.11]. Let
My be the parameter chosen by the optimizer at the kth
iteration. The iteration continues until the relative vari-
ance of the decision variables u goes below a prespec-
ified tolerance gop, i.€., when || — pell/lluell < Eopt
(opt = 1 X 1073 in Table 4). The results are summarized
in Table 4.

It is seen that the FOM-based optimization takes 102
iterations to converge and the ROM-based one takes 93
iterations. The difference between the optimal solution
to the ROM-based optimization and that of the FOM-
based one is acceptable. On the other hand, the runtime
for solving the optimization is significantly reduced by
using the ROM. Solving the FOM-based optimization
takes 8.124 hours, while solving the ROM-based one
takes only 0.786 hours. The speedup factor is 10, which
is a big progress compared to the recent work in [27].
There, the optimization of a nonlinear SMB model is ac-
celerated using the POD-based ROMs, and the speedup
factor is around 2. There are two reasons for the im-
provement: one is that the ROM in [27] is only locally
reliable, while the proposed ROM is globally reliable in
the parameter domain. As a result, the ROM in [27] has
to be updated during the optimization process, which
occupies much computational time. The other is that
only the order of the FOM is reduced using the POD
Galerkin projection method in [27], no reduction was
done for the complexity of the nonlinear parts, which
restricts the reduction rate by MOR. In contrast, we em-
ployed the RB method and the EIM to reduce both the
order and the complexity of the FOM.



Table 4: Comparison of the optimization results based on the FOM and the ROM.

Initial guess FOM ROM
Objective OF [ml/s] 0.11 0.1218 0.1218
my 4.35 4.4467 4.4733
m 2.42 2.4936 2.4915
Optimal solution min 3.21 3.1163 3.1175
mry 2.21 2.1987 2.2000
Or [ml/s] 0.11 0.122 0.122
Pu, 96.1% 95.0% 95.0%
Constraints Puy, 88.3% 95.0% 95.0%
Oy [ml/s] 0.6985 1.0 1.0
# Iterations 102 93
Runtime [h] / SpF 8.124/- 0.786/10.3

5.3. Uncertainty quantification (UQ)

Uncertainties in the parameters of adsorption
isotherm equations, pump stability, extra-column vol-
umes, and packing reproducibility, are inevitable in ev-
ery SMB process [33]. There, the authors proposed an
optimal design method for a linear SMB process under
flow rate uncertainty. In this work, we use the standard
UQ method: the Monte-Carlo method [21], to analyze
the robustness of the product purity under flow rate un-
certainty for a nonlinear SMB process.

To analyze the influence of the flow rate uncertainty
in each zone upon the product purity, the flow rate in
a certain zone is allowed to undertake a +2% deviation
while those in the other zones are fixed. Note that the
mean value of the varying flow rate and the fixed value
of the flow rate are the optimal solution obtained by
the ROM-based optimization, which is (Qy, ..., Q) =
(0.99,0.6144,0.7362, 0.5578) [ml/s]. The switching pe-
riod is fixed at #; = 172 s. For each case, 25 groups of
random samples of the parameters are taken for the UQ
based on the FOM and the ROM, respectively. More
specifically, for the FOM-based UQ, we solve the FOM
in (14)—(15) at each group of the sample to compute the
output y(", 1) and in turn the products purity in (17).
For the ROM-based UQ, we solve the ROM at the same
group of parameter samples to approximately compute
the corresponding quantities.

The statistic quantities, e.g., the mean value E[-] and
the standard deviation o[-], are presented in Tables 5—
8 for the varying flow rate in the four zones, respec-
tively. It is observed that the purity of the component a
is more sensitive to Oy, reflected by the larger variance
of o[Pu,] in Table 6. The purity of the component b is
more sensitive to Qry, reflected by the larger variance
of o[Puy] in Table 7. In contrast, Tables 5 and 8 show
that the flow rates Qr and Qrv have less effect on the pu-

rity of both products, since the variances are all much
smaller. There is also a clear physical interpretation for
this fact. In the separation zones II and III the feed is
split into two fractions. A proper selection of Qp and
QO is most crucial for the success of the overall pro-
cess. Errors would cause that both components move
to the same outlet port, which then never can be clean.
The two outer zones are responsible for regenerating ei-
ther the solid or the fluid phase. They also need to be
correctly designed, however, this is relatively a simpler
task. In addition, the statistic quantities (the mean and
the standard derivation of the product purity) obtained
from the ROM are almost the same as those obtained
from the FOM. The runtime is significantly reduced us-
ing the ROM, and the SpF for all cases is around 10.
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Figure 4: Effect of Qr on the purity of both products Pu, and Puy,
using the FOM and the ROM, respectively.

Figures 4—7 show the profiles of the product purity
corresponding to the varying flow rates in zones I, II,

12



Table 5: UQ for uncertainty of the flow rate Q.

Model Order CPU time [h] E[Pu,][%] E[Puy][%] o[Pu,][%] o[Puy]][%]
FOM 800 2.04 95.00 94.96 0.07 0.15
ROM 47 0.20 94.99 94.96 0.07 0.15
Table 6: UQ for uncertainty of the flow rate Q.
Model Order CPU time [h] E[Pu,][%] E[Puy][%] o[Pu,][%] o[Puy][%]
FOM 800 2.00 94.80 94.96 0.65 0.54
ROM 47 0.20 94.80 94.96 0.65 0.54
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Figure 5: Effect of Qp on the purity of both products Pu, and Puy
using the FOM and the ROM, respectively.

III, and IV, respectively. It is shown that the results
computed by using the ROM have the same behavior as
those of the FOM. Figure 4 shows that the purity of both
products does not change monotonically as the flow rate
in zone I increases (or decreases), unlike the behavior
of a linear SMB model presented in [33], where the
changes of the purity with respect to the flow rate are
all monotonic. This reflects the complex nonlinear rela-
tion between the purity and the flow rate in the nonlinear
SMB model. It is also noteworthy from Figure 6 that as
the flow rate Qyyy increases, the purity of the component
b becomes higher while the purity of the component a
becomes lower. Moreover, only one value of Qry (pro-
vided that the other conditions are fixed) satisfies the pu-
rity requirement of both components, which is exactly
the optimal solution.

In summary, the optimal solution is still reliable if
the deviations of the flow rates in zones II and III are
relatively small. From Figures 5 and 6, if the purity is
allowed to deviate £0.5% from the mean value 95.0%,
the purified products are still acceptable as long as the
deviations of the flow rates in zones II and III are less
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Figure 6: Effect of Qn on the purity of both products Pu, and Puy,
using the FOM and the ROM, respectively.

than 1.0%. Nevertheless, the flow rates in zones I and
IV have less influence upon the product purity, as can be
seen from Figures 4 and 7. Through the UQ, it is further
demonstrated that the parametric ROM is qualified for
the many-query task.

6. Conclusions

We have explored using parametric ROMs to accel-
erate optimization and UQ of the nonlinear SMB chro-
matography. The parametric ROM is constructed us-
ing the RB method, and the nonlinear coupled terms are
tackled by the EIM. The order and the complexity of the
full-order model are both largely reduced, so the result-
ing ROM is fairly efficient and globally reliable in the
entire parameter domain.

Using the ROM, the optimization problem considered
is efficiently solved. The effect on the purity of the prod-
ucts is analyzed under flow rate uncertainty. It is shown
that the optimal solution is robust in a wide range of
flow rate ratios. The runtime of the UQ is significantly
reduced by using the ROM.



Table 7: UQ for uncertainty of the flow rate Qyyy.

Model Order CPU time [h] E[Pu,] [%] E[Pup] [%] o[Pu,][%] o[Puy] [%]
FOM 800 1.94 94.78 94.92 0.49 2.20
ROM 47 0.19 94.78 94.92 0.49 2.20
Table 8: UQ for uncertainty of the flow rate Qry.
Model Order CPU time [h] E[Pu,] [%] E[Pup] [%] o[Pu,][%] o[Puy][%]
FOM 800 2.03 94.93 95.04 0.02 0.03
ROM 47 0.20 94.92 95.04 0.03 0.04
96 o) Pu_ (FOM) [6] Benner, P, Feng, L., Li, S., Zhang, Y., 2015. Reduced-order
a modeling and ROM-based optimization of batch chromatog-
+ Pua (ROM) raphy. In: Abdulle, A., Deparis, S., Kressner, D., Nobile,
955} Pu, (FOM) , F., Picasso, M. (Eds.), Numerical Mathematics and Advanced
o b Applications-ENUMATH 2013. Vol. 103 of Lect. Notes Com-
O\'—o' x Pub (ROM) put. Sci. Eng. Springer, Cham, Switzerland, pp. 427-435.
— [7]1 Benner, P, Gugercin, S., Willcox, K., 2015. A survey of
%‘ 7 projection-based model reduction methods for parametric dy-
0:_’ namical systems. SIAM Rev. 57 (4), 483-531.
[8] Benner, P., Mehrmann, V., Sorensen, D., 2005. Dimension Re-
945! i duction of Large-Scale Systems. Vol. 45 of Lect. Notes Comput.
’ Sci. Eng. Springer-Verlag, Berlin/Heidelberg, Germany.
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Figure 7: Effect of Qry on the purity of both products Pu, and Puy
using the FOM and the ROM, respectively.
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