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Abstract

Markerless tracking of hands and fingers is a promising
enabler for human-computer interaction. However, adop-
tion has been limited because of tracking inaccuracies, in-
complete coverage of motions, low framerate, complex cam-
era setups, and high computational requirements. In this
paper, we present a fast method for accurately tracking
rapid and complex articulations of the hand using a sin-
gle depth camera. Our algorithm uses a novel detection-
guided optimization strategy that increases the robustness
and speed of pose estimation. In the detection step, a ran-
domized decision forest classifies pixels into parts of the
hand. In the optimization step, a novel objective function
combines the detected part labels and a Gaussian mixture
representation of the depth to estimate a pose that best fits
the depth. Our approach needs comparably less computa-
tional resources which makes it extremely fast (50 fps with-
out GPU support). The approach also supports varying
static, or moving, camera-to-scene arrangements. We show
the benefits of our method by evaluating on public datasets
and comparing against previous work.

1. Introduction
There is increasing interest in using markerless hand

tracking in human-computer interaction, for instance when
interacting with 3D applications, augmented reality, smart
watches, and for gestural input [11, 13, 30]. However, flex-
ible, realtime markerless tracking of hands presents several
unique challenges. First, natural hand movement involves
simultaneous control of several (≥ 25) degrees-of-freedom
(DOFs), fast motions with rapid changes in direction, and
self-occlusions. Tracking fast and complex finger articu-
lations combined with global motion of the hand at high
framerates is critical but remains a challenging problem.
Second, many methods use dense camera setups [16, 22]
or GPU acceleration [15], i.e. have high setup costs which
limits deployment. Finally, applications of hand tracking
demand tracking across many camera-to-scene configura-
tions including desktop, egocentric and wearable settings.

This paper presents a novel method for hand tracking
with a single depth camera that aims to address these chal-
lenges. Our method is extremely fast (nearly equalling the
capture rate of the camera), reliable, and supports varying
close-range camera-to-hand arrangements including desk-
top, and moving egocentric (camera mounted to the head).

The main novelty in our work is a new detection-
guided optimization strategy that combines the benefits
of two common strands in hand tracking research—model-
based generative tracking and discriminative hand pose
detection—into a unified framework that yields high effi-
ciency and robust performance and minimizes their mutual
failures (see Figure 1). The first contribution in this strategy
is a novel, efficient representation of both the input depth
and the hand model shape as a mixture of Gaussian func-
tions. While previous work used primitive shapes like cylin-
ders [15, 16] or spheres [19] to represent the hand model,
we use Gaussian mixtures for both the depth data and the
model. This compact, mathematically smooth representa-
tion allows us to formulate pose estimation as a 2.5D gen-
erative optimization problem in depth. We define a new
depth-only energy, that optimizes for the similarity of the
input depth with the hand model. It uses additional prior
and data terms to avoid finger collisions and preserve the
smoothness of reconstructed motions. Importantly, since
the energy is smooth, we can obtain analytic gradients and
perform rapid optimization. While pose tracking on this
energy alone could run in excess of 120 fps using gradient-
based local optimization, this often results in a wrong local
pose optimum.

The second contribution in our strategy is thus to incor-
porate evidence from trained randomized decision forests
that label depth pixels into predefined parts of the hand.
Unlike previous purely detection-based approaches [6, 20],
we use the part labels as additional constraints in an aug-
mented version of the aforementioned depth-only energy,
henceforth termed detection-guided energy. The part la-
bels include discriminative detection evidence into genera-
tive pose estimation. This enables the tracker to better re-
cover from erroneous local pose optima and prevents tem-
poral jitter common to detection-only approaches. The pre-
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condition for recovery is reliability of the part labels. How-
ever, even with large training sets it is hard to obtain per-
fect part classification (per-pixel accuracy is usually around
60%). Thus, pose estimation based on this additional dis-
criminative evidence is also not sufficient.

Our third contribution therefore, is a new late fusion
approach that combines particle-based multi-hypothesis
optimization with an efficient local gradient-based opti-
mizer. Previous work has used particle-based optimizers,
but they tend to be computationally expensive [15, 16]. Our
approach is fast because we combine the speed of local
gradient-based optimization with the robustness of particle-
based approaches. At each time step of depth video, a set of
initial pose hypotheses (particles) is generated, from which
a subsequent local optimization is started. Some of these lo-
cal optimizers use the depth-only pose energy, some others
use the detection-guided energy. In a final late fusion step
the best pose is chosen based on the pose fitting energy.

Our approach results in a temporally stable and efficient
tracker that estimates full articulated joint angles of even
rapid and complex hand motions at previously unseen frame
rates in excess of 50 fps, even with a CPU implementation.
Our tracker is resilient to erroneous local convergence by
resorting to the detection-guided solution when labels can
be trusted, and it is not misled by erroneous detections as it
can then switch to the depth-only tracking result.

We show these improvements with (1) qualitative exper-
iments, (2) extensive evaluation on public datasets, and (3)
comparisons with other state-of-the-art methods.

2. Related Work

In this brief review we focus on previous approaches
to markerless hand tracking from depth images. First, we
briefly discuss marker-based and multi-camera techniques.
Gloves fitted with retro-reflective markers or color patches
were used to estimate the kinematic skeleton using inverse
kinematics [25, 31, 35]. Research on markerless track-
ing was made popular in the early 2000s (e.g. [1, 33]).
Some recent solutions assume a multi-camera setup with
offline processing [3, 16, 32], while others track at interac-
tive rates [22, 30] of up to 30 fps [23]. However, calibrated
multi-camera setups make these methods difficult to adopt
for practical applications. The recent introduction of con-
sumer depth sensors has resulted in a number of methods
that require only a single depth camera. Some commer-
cial solutions exist, such as the Leap Motion. Although
Leap Motion is fast, the approach uses strong priors and
fails with complex self-occlusions and non-standard mo-
tions (we show an example in Section 7).

The main approaches to real-time hand tracking can be
divided into two classes: (1) generative and (2) discrimi-

native methods.1 First, [9] proposed a method to track a
hand manipulating an object that takes 6.2 s/frame. [15]
proposed a model-based method that made use of particle-
swarm optimization. This method requires GPU acceler-
ation to achieve 15 fps and uses skin color segmentation
which is sensitive to lighting. They showed an extension
to interacting hands, although only offline [17, 18]. [14]
proposed a tracking method directly in depth by efficient
parallel physics simulations. While this method is fast, fin-
ger articulations are often incorrectly tracked, as we demon-
strate later. Recent real-time surface tracking methods from
depth [36] were applied to hands, but are limited to simple
motions with no occlusions.

Second, decision forests were used with great success for
full body tracking [8, 20] and later adopted to hand tracking
with varying success. [10] proposed a method for recogniz-
ing finger spelling in depth data using classification forests.
[6, 26, 27, 34] also proposed methods based on variants of
random forests. Tompson et al. [28] track hand motion from
depth at ≤ 25 fps using feature detections from a convolu-
tional network and further pose refinement through inverse
kinematics. However, a common problem with these ap-
proaches is jitter due to missing temporal information at
each time step. We provide a direct comparison with one
recent method [26] to demonstrate this. Moreover, most
methods estimate joint positions with temporally varying
bone lengths, limiting applicability.

[22] proposed combining discriminative and generative
hand pose estimation. Their approach detected only finger-
tips, which could easily be occluded or misdetected. Offline
tracking in RGBD using a combination of discriminative
and generative pose estimation was shown in [29]. [19] pro-
posed a method based on optimization in combination with
discriminative fingertip detection, achieving 25 fps. How-
ever, tracking would be hard with this method when one or
more of the fingertips are occluded.

In this paper we present a method that combines decision
forests and pose estimation in a unified optimization frame-
work. To our knowledge, ours is the first method to track
rapid articulations at 50 fps using a single depth camera and
yet achieve state-of-the-art accuracy.

3. Input and Model Representation

In the past, representations such as spheres or cylinders
have been used to represent the hand model [15, 19]. Simi-
larly, downsampled images [30, 31] or silhouettes [3] have
been used as representations of input data. However, such
representations make pose optimization energies discontin-
uous and difficult to optimize. Our novel representation of
depth and 3D model data uses a mixture of weighted Gaus-
sian functions to represent both depth data and the hand

1There are algorithmic parallels to full-body tracking [2, 7, 12, 20].
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Figure 1. Overview of our detection-guided tracking method. We develop a novel representation for depth data and hand model as a
mixture of 2.5D Gaussians. This representation allows us to combine the benefits of model-based generative tracking and discriminative
part detection. Pixels classified using a trained decision forest are directly incorporated as evidence in detection-guided pose optimization.
Dashed lines indicate offline computation. Best viewed in color.

shape. We were inspired by [24] who use multiple 2D RGB
images and [12] who use depth data. Both methods rely
on a uniformly weighted Gaussian mixture, and a 2D or 3D
error metric for pose estimation. However, we make impor-
tant modifications that allows representing 3D depth data
using a 2.5D formulation since data from depth sensors con-
tains information only about the camera-facing parts of the
scene. Thus, we enable pose estimation based on alignment
to a single depth image using a 2.5D error metric.

An instance of the input depth or the hand model can be
represented as a mixture of Gaussian functions

C(x) =

n∑
i=1

wi Gi(x;σ,µ), (1)

where Gi(.) denotes a unnormalized Gaussian function with
isotropic variance, σ2, in all dimensions of x ∈ Rn, and
mean µ. The Gaussian mixture representation has many
advantages. First, it enables a mathematically smooth pose
estimation energy which is analytically differentiable. Sec-
ond, only a few Gaussians are needed for representing the
input depth and the hand model, an implicit data reduction
which makes optimization extremely fast. Finally, it pro-
vides a natural way to compute collisions using an analyti-
cally differentiable energy. We show later that collisions are
important for pose estimation (Section 4). To aid visualiza-
tion we henceforth represent each Gaussian in the mixture
as a sphere (x ∈ R3) or circle (x ∈ R2) with a radius of 1σ.
However, Gaussians have infinite support (C(x) > 0 every-
where) and can produce long range attractive or repulsive
force during pose optimization.

3.1. Depth Data Representation

The depth camera outputs depth maps, i.e. each pixel has
an associated depth value. Depth maps contain only the

camera-facing parts of the scene and information about oc-
cluded parts is unavailable. We therefore only represent the
camera-facing pixels using Gaussian mixtures, which are
computed in real-time.

First, we decompose the depth image into regions of ho-
mogeneous depth using a quadtree. The quadtree recur-
sively decomposes depth image regions further, until the
depth difference between the furthest and nearest point in
a region is below a threshold εc (εc = 20 mm in all exper-
iments). To each quad in the tree, we fit a Gaussian func-
tion with µ set to the center of the quad, and σ = a/

√
2,

where a is the side length of the quad. We also set each
Gaussian function to have unit weight wi since we consider
all input data to be equally important. This leads us to an
analytic representation of the camera-facing surface of the
input depth, CI(x) =

∑n
q=1 Gq(x), where x ∈ R2 and n

is the number of leaves in the quadtree. Additionally, each
quad has an associated depth value, dq , which is the mean
of all depth pixels within the quad. Figure 1 illustrates the
process of converting input depth to a Gaussian mixture.

3.2. Hand Model

We model the volumetric extent of the hand an-
alytically using a mixture of 3D Gaussian functions,
Ch(x) =

∑m
h=1 wh Gh(x) where x ∈ R3 andm is the num-

ber of Gaussians. We assume that the best fitting model has
Gaussians whose isosurface at 1σ coincides with the sur-
face of the hand. In Section 6 we present a fully automatic
procedure to fit such a hand model to a user. Additionally,
Ch, is attached to a parametric, kinematic skeleton similar
to that of [21], i.e. each 3D Gaussian is attached to a bone
which determines its mean position in 3D. We use |Θ| = 26
skeletal pose parameters in twist representation, including 3
translational DOFs, 3 global rotations, and 20 joint angles.

Model Surface Representation: CI is a representation
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of the camera-facing surface while Ch represents the full
volumetric extent of the hand. In order to create an equiva-
lent representation of the hand model that approximates the
camera-facing parts, which we later use in pose optimiza-
tion (Section 4). For each model Gaussian in Ch, we create a
new projected Gaussian such that the projected hand model
has the form Cp =

∑m
p=1 wp Gp(x) where x ∈ R2 and

wp = wh ∀h. Cp is a representation of the hand model as
seen from the perspective of the depth camera and is defined
over the depth image domain. The parameters of each Gaus-
sian Gp are set to be (µp, σp), where µp = K [ I |0 ]µh.
Like [24] we approximate the perspective projection with a
scaled orthographic projection, yielding 2D Gaussians with
σp = σh f/

[
µp
]
z
. Here f is the focal length of the camera,

and
[
µp
]
z

denotes the z-coordinate of the Gaussian mean.

4. Hand Pose Optimization
In this section we describe our new formulation of pose

estimation as an optimization problem using the Gaussian
mixture representation of 2.5D depth data (See Figure 1).
Our algorithm uses two variants of a model-to-image sim-
ilarity energy, one that is only based on depth data (Sec-
tion 4.1), and another that is guided by decision forests-
based part detection (Section 4.3). Pose estimates obtained
with each energy are used by a late fusion approach to find
the final pose estimate (Section 5). Input to pose optimiza-
tion at each time step of depth video is the 2.5D mixture of
Gaussians representation of a depth image CI . The latter is
computed after median filtering the depth (to remove flying
pixels in time-of-flight data), and for a constrained work-
ing volume in depth between 150 mm and 600 mm from
the camera. The 3D Gaussian mixture of the hand model is
denoted by Ch and its projected version is denoted by Cp.

4.1. Depth-Only Pose Optimization

Our goal is to optimize for the skeleton pose parameters
Θ that best explain the input data and are anatomically plau-
sible. We frame an energy that satisfies our goal while being
mathematically smooth and differentiable. These properties
make the energy ideal for fast optimization.

4.2. Objective Function

Our new energy has the following general form:

E(Θ) = Esim − wcEcol
− wlElim − wsEsmo, (2)

where Esim is a measure of 2.5D similarity between CI and
Cp, Ecol is a penalty for collisions between Gaussians in Ch,
Elim enforces a soft constraint on the skeleton joint limits,
Esmo enforces smoothness in the tracked motion. In all
our experiments, we used fixed weighting factors chosen by
searching for the best accuracy over the dataset: wc = 1.0,

wl = 0.2, and ws = 1.0. Before describing each of the
terms in detail we first introduce a measure of similarity
between two Gaussian mixtures which is the basis for many
of the terms in the objective.

Gaussian Similarity Measure: We define a similarity
measure between any two pairs of Gaussian mixtures Ca and
Cb as,

E(Ca, Cb) =
∑
p∈Ca

∑
q∈Cb

Dpq, (3)

where, Dpq = wp wq

∫
Ω

Gp(x)Gq(x) dx, (4)

Ω denotes the domain of integration of x. This Gaussian
similarity measure has a high value if the spatial support
of the two Gaussian mixtures aligns well. It bears resem-
blance to the Bhattacharyya Coefficient [4] used to measure
the similarity of probability distributions while being com-
putationally less expensive.

Depth Similarity Term (Esim): The 2.5D depth simi-
larity term measures the quality of overlap between the pro-
jected model Gaussian mixture Cp and the image Gaussian
mixture CI . Additionally, this measure also incorporates the
depth information available for each Gaussian in the mix-
ture. Figure 2 explains this term intuitively. Two Gaussians
that are close (in 2D pixel distance) in the depth image ob-
tain a high value if their depth values are also close. On the
other hand, the same Gaussians obtain a low value if their
depths are too far apart. Formally, this term is defined as,

Esim(Cp, CI) =
1

E(CI , CI)
∑
p∈Cp

∑
q∈CI

∆(p, q)Dpq (5)

where Dpq is as defined in Equation 4 and the depth simi-
larity factor is

∆(p, q) =

{
0, if |dp − dq| ≥ 2σh

1− |dp−dq|2σh
, if |dp − dq| < 2σh

. (6)

Here, dp and dq are the depth values associated with each
Gaussian in Cp and Cq respectively, and σh is the standard
deviation of the unprojected model Gaussian Gh. The sur-
face depth value of each Gaussian in Cp is computed as
dp = [µh]z − σh. The factor E(CI , CI) is the similarity
measure from equation 3 of the depth image with itself and
serves to normalize the similarity term. The ∆ factor has
a support [0, 1] thus ensuring the similarity between a pro-
jected model Gaussian and an image Gaussian is 0 if they
lie too far apart in depth.

Collision Penalty Term (Ecol): The fingers of a hand
are capable of fast motions and often come in close prox-
imity with one another causing aliasing of corresponding
depth pixels in the input. Including a penalty for collisions
avoids fingers sticking with one another and Gaussian in-
terpenetration. The 3D Gaussian mixture representation of
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Figure 2. Depth Similarity Term: Consider the similarity value
(Esim) for a cylindrical shape represented by 3 Gaussians (x ∈
R3). The top figure shows a case where the value of Esim is high
since the image overlap is high and the depth difference ∆pq is
low. The bottom figure shows a case where the image overlap is
moderate but ∆ > 2σh thus making Esim = 0.

the hand model (Ch) offers an efficient way to penalize col-
lisions because they implicitly act as collision proxies. We
define the penalty for collisions as,

Ecol(Θ) =
1

E(Ch, Ch)

∑
p∈Ch

∑
q∈Ch
q>p

Dpq, (7)

where E(Ch, Ch) is the similarity measure from equation 3
for the hand model and serves to normalize the collision
term. The collision term penalizes model Gaussians that
collide with others but not if they collide with themselves.
As we show in the results, the collision term has a large
impact on tracking performance.

Joint Limit Penalty Term (Elim): We add a penalty for
poses that exceed predefined joint angle limits. This forces
biomechanically plausible poses to be preferred over other
poses. The joint limit penalty is given as,

Elim(Θ) =
∑
θj∈Θ


0, if θlj ≤ θj ≤ θhj
||θlj − θj ||2, if θj < θlj
||θj − θhj ||2, if θj > θhj

(8)

where θlj and θhj are the lower and higher limits of the pa-
rameter θj which is defined based on anatomical studies of
the hand [21]. The result is a tracked skeleton that looks
biomechanically plausible.

Smoothness Penalty Term (Esmo): During frame-by-
frame pose optimization, noise is introduced which mani-
fests as jitter in tracking. To prevent this we penalize fast
motions by adding a penalty as done by [24]. This term is
given as,

Esmo(Θ) =

|Θ|−1∑
j=0

(
0.5

(
Θt−2
j + Θt

j

)
−Θt−1

j

)2
(9)

where, Θt denotes the pose at time t. This term acts as a
regularizer and prevents jitter in the tracked pose.

4.3. Detection-Guided Pose Optimization

To increase chances of recovery when the estimated
pose is at a wrong local pose optima, we use a second
pose optimization energy that includes evidence from hand
part detection. In particular we use pixel labels computed
with a trained random forest [5]. Decision forests have
been used before for 3D pose and joint position detec-
tion [10, 26, 27, 34]. We are interested in part labels and
therefore follow an approach similar to [20] and [10]. The
evidence from the part labels is incorporated in our tracking.

We use 12 part labels for the hand (see Figure 1) and
found this to be an ideal trade-off between classification
accuracy and sufficient evidence for detection-guided op-
timization. We adopt the same depth features as [20]. We
use 50,000 labeled training images spanning the hand pose
space. As opposed to previous work [10] that use synthetic
data, we use real hand motions with part labels which were
obtained using the depth-only version of our method and
tracking motions slowly without causing tracking failure.
During training we trained 3 trees, each with a maximum
depth of 22. For each training image, we sampled 2000
random, foreground pixels, and evaluated 4000 candidate
threshold-feature response pairs.

During quadtree clustering of the depth (Section 3.1)
each quad is endowed with a part label, lq which is the la-
bel with the highest number of votes among all pixels in the
quad. We can now tightly integrate the part labels in the
optimization by defining a pose fitting energy identical to
Equation 2 with one exception: the depth similarity factor
from Equation 6 is replaced by the following label similar-
ity factor.

∆l(p, q) =

{
0, if lp 6= lq or |dp − dq| ≥ 2Ri

1− |dp−dq|2Ri
, if lp = lq

,

where lp and lq are the part labels , dp and dq are the depth
values , Ri refers to the radius of influence which is set to
200 mm in all our experiments. Intuitively, ∆l has a value
of zero if the labels are different and a value of one if the two
Gaussians have identical labels and are perfectly aligned in
2.5D. The labels lp are obtained from preassigned labels of
each Gaussian in the hand model.

5
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5. Late Fusion
The goal of optimization is to find the pose Θ such that

−E(Θ) is minimized. Our energies—both with and without
detection—are well suited for gradient based optimization
because we can derive the analytic gradient with respect to
the DOFs Θ. For efficiency, we adopt the fast gradient-
based optimizer with adaptive step length proposed by [24].

To improve robustness, especially with changes in di-
rection and global rotation, we use multiple pose parti-
cles for optimizing each frame. Multiple particles improve
the chances of a good initialization for optimization. Each
particle Pi is initialized using the pose parameters from
two previous time steps Θt−1 and Θt−2 with different ex-
trapolation factors αij for each DOF j. This is given as
Pi = θt−1

j + αij θ
t−2
j , ∀j. We sample αij from a normal

distribution with mean fixed at the initial value of θj . All
but one of these particles is optimized using the depth-only
energy. Finally, the pose particle which converges with the
best energy value is chosen as the winning pose. In all our
experiments, we found that 2–3 particles were sufficient to
obtain more robust results. Increasing the particles had a
negative effect and caused jitter in the final pose. Each par-
ticle used 10–30 iterations per frame. We justify the choice
of these parameters in Section 7.

6. User Specific Hand Modeling
Accounting for the fact that there are large variations in

anthropometric dimensions, our pose optimization method
works best with a customized hand model for each user.
Our method does not necessitate laser scans, manual tuning
of the model, nor semi-automatic bone model optimization
as used by existing methods [24, 22].

We observed in our experiments that the primary varia-
tions in hand dimensions are finger thickness, hand length
and width. We developed a simple strategy where a default
hand model is scaled using three parameters: hand length,
width, and variance of Gaussians. To find the scaling pa-
rameters for a user, we perform a greedy search over a fixed
range for each scaling parameter. At each point on this pa-
rameter grid we evaluate the energy function value from
Equation 2. The parameters that obtain the best energy are
selected as the model scaling parameters. This method is
fast and takes less than a second to find a user-specific hand
model. Figure 3 shows some qualitative results from our
model fitting strategy for different users.

7. Results and Evaluation
We provide quantitative and qualitative evidence for per-

formance with fast motions and finger articulations. Eval-
uation of hand tracking algorithms is challenging because
ground truth data is difficult to obtain. Marker-based motion
capture is often problematic due to self-occlusions. Many

Figure 3. Automatic fitting of user specific hand model for 4 sub-
jects, one of whom is wearing a thick glove to simulate variability
in hand dimension. The red spheres denote 3D Gaussians.

methods have therefore resorted to evaluation on synthetic
data [15, 16] which, however, is not representative of real
hand motions. There are also no established benchmark
datasets with accepted error metrics, and only a few imple-
mentations have been made public.

We use the dataset from [22] which consists of seven
challenging sequences (abduction–adduction, finger count-
ing, finger waving, flexion–extension, pinching, random
motions, grasping) that are further split into slow and fast
parts. The fingertips are annotated manually in the depth
data thus making it possible to compare with the multi-view
approaches of [22] and [23]. Additionally, we also compare
with the discriminative method of [26] on 3 sequences. We
also motivate the need for our fusion strategy, parameter
selection in optimization, and analyze the effects of differ-
ent components of our objective function. We also provide
details about our framerate and qualitative evidence of im-
provements over [14] and the Leap Motion. Please see the
supplementary material for more results.

Error Metrics: Our evaluations concern the average
fingertip localization error which correlates well with over-
all pose accuracy. For each sequence, we compute Eu-
clidean error of the 5 fingertip positions averaged over all
frames. Additionally, we use a second error metric [19]
which is the percentage of frames that have an error of less
than x mm where x ∈ {15, 20, 25, 30}. This is a stricter
measure that highlights reliability.

7.1. Quantitative Evaluation

Accuracy: Figure 4 shows our average error compared
with that of [22], [23], and [26]. Our method produces the
lowest average error of 19.6 mm while using only a sin-
gle depth camera. The multi-view approaches of [23] and
[22] have errors of 24.1 mm and 31.8 mm respectively. The
detection-based discriminative method of [26] has an error
of 42.4 mm (3 sequences only) highlighting the need for us-
ing temporal information. We observe that our method does
particularly well for motions that involve articulation of fin-
gers such as flexex1. Our worst performance was on the
random sequence involving fast global hand rotation.

Error Frequency: Table 1 confirms the trend that our
method performs well for finger articulations. In 6 out of 7
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Figure 4. Average error over the 7 sequences in Dexter 1 and com-
parison with the multi-view methods of [22] and [23], and the
detection-based method of [26]. Our method achieves the lowest
error on 5 of the 7 sequences and the best average error (19.6 mm).

Error < (mm) adbadd fingercount fingerwave
15 56.6 50.0 56.2
20 70.6 66.5 71.2
25 76.2 77.7 78.3
30 84.9 85.8 85.0

Error <
(mm) flexex1 pinch random tigergrasp

15 53.7 56.7 19.1 62.9
20 68.1 83.9 40.7 80.6
25 76.7 93.1 59.0 87.3
30 85.5 97.4 70.6 91.8

Table 1. Percentage of total frames in a sequence that have an error
of less x mm.

sequences, our method results in tracking errors of less than
30 mm in 85% of the frames. A closer examination shows
that these sequences contain complex finger articulations.

Robustness: We measure robustness as the ability of a
tracker to recover from tracking failures. To demonstrate
how our late fusion strategy and the different terms in the
energy help achieve this, we show the frame-wise error over
the flexex1 sequence (Figure 6). Using the depth-only
energy with all terms except Esim disabled (2 particles) re-
sults in catastrophic tracking failure as shown by the ac-
cumulating error. Adding the other terms, especially the
collision penalty (Ecol) term, improves accuracy but results
are still unsatisfactory. The results from the late fusion ap-
proach show large gains in accuracy. The errors also remain
more uniform which results in temporally stable tracking
with less jitter.

Number of Particles and Iterations: Figure 5 shows
the effect of varying the number of particles and iterations
during optimization. As the number of particles increased
we noticed very little increase in accuracy. In fact, the best
accuracy was with 2 particles which we use throughout. We
noticed a reduction in error when using more number of

Figure 5. Effect of varying the number of particles and iterations
during optimization. We found that increasing the number of par-
ticles resulted in diminishing returns.

iterations per particle but at the expense of runtime. We
therefore fixed the number of iterations to be 10.

Tracking Speed: We tested the tracking speed of dif-
ferent variants of our method on a 3.6 GHz Intel Processor
with 16 GB of RAM. Our method was parallelized using
OpenMP but no GPU was used. All tests were done with
the Intel Senz3D depth camera with a depth resolution of
320 × 240 and capture rate of 60 fps. The decision for-
est when loaded in memory used 1 GB because the trees
were stored as full trees. This can be avoided by loading
only nodes that are valid. The depth-only energy when used
with 1 particle, and 10 iterations per particle ran at 120 fps.
When 2 particles were used, the speed came down to 60 fps.
The late fusion approach, when used with 2 particles (10 it-
erations per particle), achieved a framerate of 50 fps. Image
acquisition, part labeling, preprocessing, and creating the
Gaussian mixture representation took 2 ms. The optimiza-
tion took between 18 and 20 ms.

7.2. Qualitative Results

We present several qualitative results from realtime se-
quences in Figure 7. The examples show motions with a
wide range of finger articulations involving abduction, ad-
duction, flexion, extension, and considerable occlusions.
They also include common gestures such as the v-sign and
pointing. In the boxes, we also show comparison with [14]
and the Leap Motion on similar poses. We observe a fin-
ger sliding effect in both these methods. Pinching is an
important gesture, but the Leap Motion produces sliding
fingertips which makes it hard to detect pinching gestures
from the tracked skeleton. Our method reproduces pinch-
ing faithfully as is evident from the skeleton overlaid on the
depth image. Occasional tracking failures occur with large
global rotations but the detection-guided energy eventually
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Figure 6. Plot of the error for the depth-only tracking and late fusion approach. Each approach was run with only the similarity term Esim

and with all terms. Notice the catastrophic tracking failure with the depth-only energy. The late fusion strategy is robust and prevents error
accumulation. The collision penalty term also results in large accuracy gains. Best viewed in color.

Figure 7. Qualitative results from our tracking approach (top row and four leftmost in the second row). The highlighted boxes show
comparison with [14] and the Leap Motion both of which produce a finger sliding effect. Our method tracks the pinch faithfully.

reinitializes to the correct pose. Please see the supplemen-
tary materials for more results on different camera arrange-
ments, failure cases, and tracking with different subjects.

8. Conclusion
In this paper, we presented a method for realtime hand

tracking using detection-guided optimization. Our method
is robust and tracks the hand at 50 fps without using a GPU.
We contribute to the tracking literature by proposing a novel
representation of the input data and hand model using a
mixture of Gaussians. This representation allows us to for-
mulate pose estimation as an optimization problem and effi-
ciently optimize it using analytic gradient. We also showed
how additional evidence from part detection can be incor-
porated into our tracking framework to increase robustness.
We evaluated our method on a publicly available dataset and
compared with other state-of-the-art methods. An important
direction for future work is the tracking of multiple hands

interacting with each other or with objects. We believe that
the strong analytic formulation offered by our method can
help solve this.

Acknowledgments: This research was funded by the
ERC Starting Grant projects CapReal (335545) and COM-
PUTED (637991), and the Academy of Finland. We would
like to thank Christian Richardt.

References
[1] V. Athitsos and S. Sclaroff. Estimating 3D hand pose from

a cluttered image. In Proc. of CVPR 2003, pages II–432–9
vol.2. 2

[2] A. Baak, M. Muller, G. Bharaj, H.-P. Seidel, and C. Theobalt.
A data-driven approach for real-time full body pose recon-
struction from a depth camera. In Proc. of ICCV 2011, pages
1092–1099. 2

[3] L. Ballan, A. Taneja, J. Gall, L. Van Gool, and M. Polle-
feys. Motion capture of hands in action using discrimina-

8

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7298941


Accepted version of paper published at CVPR 2015
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7298941.

tive salient points. In Proc. of ECCV 2012, volume 7577 of
LNCS, pages 640–653. 2

[4] A. Bhattacharyya. On a measure of divergence between two
multinomial populations. Sankhya: The Indian Journal of
Statistics (1933-1960), 7(4):401–406, July 1946. 4

[5] A. Criminisi and J. Shotton. Decision forests for computer
vision and medical image analysis. Springer, 2013. 5

[6] S. R. Fanello, C. Keskin, S. Izadi, P. Kohli, D. Kim,
D. Sweeney, A. Criminisi, J. Shotton, S. B. Kang, and
T. Paek. Learning to be a depth camera for close-range hu-
man capture and interaction. ACM TOG, 33(4):86:1–86:11.
1, 2

[7] V. Ganapathi, C. Plagemann, D. Koller, and S. Thrun. Real-
time human pose tracking from range data. In Proc. of ECCV
2012, volume 7577 of LNCS, pages 738–751. 2

[8] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and
A. Fitzgibbon. Efficient regression of general-activity hu-
man poses from depth images. In Proc. of ICCV 2011, pages
415–422. 2

[9] H. Hamer, K. Schindler, E. Koller-Meier, and L. Van Gool.
Tracking a hand manipulating an object. In Proc. of ICCV
2009, pages 1475–1482. 2

[10] C. Keskin, F. Kirac, Y. Kara, and L. Akarun. Real time hand
pose estimation using depth sensors. In Proc. of ICCV Work-
shops 2011, pages 1228–1234. 2, 5

[11] D. Kim, O. Hilliges, S. Izadi, A. D. Butler, J. Chen,
I. Oikonomidis, and P. Olivier. Digits: freehand 3D interac-
tions anywhere using a wrist-worn gloveless sensor. In Proc.
of UIST 2012, pages 167–176. 1

[12] D. Kurmankhojayev, N. Hasler, and C. Theobalt. Monocular
pose capture with a depth camera using a sums-of-gaussians
body model. In Pattern Recognition, number 8142 in LNCS,
pages 415–424. Jan. 2013. 2, 3

[13] J. Lee, A. Olwal, H. Ishii, and C. Boulanger. SpaceTop: inte-
grating 2D and spatial 3D interactions in a see-through desk-
top environment. In Proc. of CHI 2013, pages 189–192. 1

[14] S. Melax, L. Keselman, and S. Orsten. Dynamics based 3D
skeletal hand tracking. In Proc. of I3D 2013, pages 184–184.
2, 6, 7, 8

[15] I. Oikonomidis, N. Kyriazis, and A. Argyros. Efficient
model-based 3D tracking of hand articulations using kinect.
In Proc. of BMVC 2011, pages 101.1–101.11. 1, 2, 6

[16] I. Oikonomidis, N. Kyriazis, and A. Argyros. Full DOF
tracking of a hand interacting with an object by modeling
occlusions and physical constraints. In Proc. of ICCV 2011,
pages 2088–2095. 1, 2, 6

[17] I. Oikonomidis, N. Kyriazis, and A. Argyros. Tracking the
articulated motion of two strongly interacting hands. In Proc.
of CVPR 2012, pages 1862–1869, June 2012. 2

[18] I. Oikonomidis, M. Lourakis, and A. Argyros. Evolutionary
quasi-random search for hand articulations tracking. In Proc.
of CVPR 2014, pages 3422–3429. 2

[19] C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun. Realtime and
robust hand tracking from depth. In Proc. of CVPR 2014,
pages 1106–1113. 1, 2, 6

[20] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake. Real-time human pose

recognition in parts from single depth images. In Proc. of
CVPR 2011, pages 1297–1304. 1, 2, 5

[21] E. Simo Serra. Kinematic Model of the Hand using Com-
puter Vision. PhD thesis, Institut de Robòtica i Informàtica
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