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Fig. 1: Real-time non-rigid reconstruction result overlayed on top of RGB input

Abstract. We present a novel approach for the reconstruction of dynamic geomet-
ric shapes using a single hand-held consumer-grade RGB-D sensor at real-time
rates. Our method builds up the scene model from scratch during the scanning pro-
cess, thus it does not require a pre-defined shape template to start with. Geometry
and motion are parameterized in a unified manner by a volumetric representation
that encodes a distance field of the surface geometry as well as the non-rigid space
deformation. Motion tracking is based on a set of extracted sparse color features
in combination with a dense depth constraint. This enables accurate tracking and
drastically reduces drift inherent to standard model-to-depth alignment. We cast
finding the optimal deformation of space as a non-linear regularized variational
optimization problem by enforcing local smoothness and proximity to the input
constraints. The problem is tackled in real-time at the camera’s capture rate us-
ing a data-parallel flip-flop optimization strategy. Our results demonstrate robust
tracking even for fast motion and scenes that lack geometric features.

1 Introduction

Nowadays, RGB-D cameras, such as the Microsoft Kinect, Asus Xtion Pro, or Intel
RealSense, have become an affordable commodity accessible to everyday users. With
the introduction of these sensors, research has started to develop efficient algorithms
for dense static 3D reconstruction. KinectFusion [1, 2] has shown that despite their low
camera resolution and adverse noise characteristics, high-quality reconstructions can
be achieved, even in real time. Follow-up work extended the underlying data structures
and depth fusion algorithms in order to provide better scalability for handling larger
scenes [3–6] and a higher reconstruction quality [7, 8].

While these approaches achieve impressive results on static environments, they do
not reconstruct dynamic scene elements such as non-rigidly moving objects. However,
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the reconstruction of deformable objects is central to a wide range of applications, and
also the focus of this work. In the past, a variety of methods for dense deformable
geometry tracking from multi-view camera systems [9] or a single RGB-D camera, even
in real-time [10], were proposed. Unfortunately, all these methods require a complete
static shape template of the tracked scene to start with; they then deform the template
over time.

Object type specific templates limit applicability in general scenes, and are often
hard to construct in practice. Therefore, template-free methods that jointly build up the
shape model along with tracking its non-rigid deformations — from partial scans only —
have been investigated [11–16], but none of them achieves real-time performance.

Recently, a first method has been proposed that tackles the hard joint model recon-
struction and tracking problem at real-time rates: DynamicFusion [17] reconstructs an
implicit surface representation — similar to KinectFusion — of the tracked object, while
jointly optimizing for the scene’s rigid and non-rigid motion based on a coarse warping
field. Although the obtained results are impressive given the tight real-time constraint,
we believe that this is not the end of the line. For instance, their depth-only model-to-
frame tracking strategy cannot track tangential motion, since all color information is
omitted. Without utilizing global features as anchor points, model-to-frame tracking
is also prone to drift and error accumulation. In our work, we thus propose the use of
sparse RGB feature matching to improve tracking robustness and to handle scenes with
little geometric variation. In addition, we propose an alternative representation for the
deformation warp field.

In our new algorithm, we perform non-rigid surface tracking to capture shape and
deformations on a fine level of discretization instead of a coarse deformation graph.
This is realized by combining as-rigid-as-possible (ARAP) volume regularization of
the space embedding the surface [18] with automatically generated volumetric control
lattices to abstract geometric complexity. The regular structure of the lattice allows us
to define an efficient multi-resolution approach for solving the underlying non-linear
optimization problem. Finally, we incorporate globally-consistent sparse SIFT feature
correspondences over the complete history of observed input frames to aid the alignment
process. This minimizes the risk of drift, and enables stable tracking for fast motions.

Our real-time, non-rigid volumetric reconstruction approach is grounded on the
following three main contributions:

– a dense unified volumetric representation that encodes both the scene’s geometry
and its motion at the same resolution,

– the incorporation of global sparse SIFT correspondences into the alignment process
(e.g., allowing for robust loop closures),

– and a data-parallel optimization strategy that tackles the non-rigid alignment problem
at real-time rates.

2 Related Work

Online Static Reconstruction: Methods for offline static 3D shape reconstruction from
partial RGB-D scans differ in the employed scene representation, such as point-based
representations [19–21] or meshes [22]. In the context of commodity range sensors,
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implicit surface representations became popular [23–26] since they are able to efficiently
regularize out noise from low-quality input data. Along with an appropriate surface
representation, methods were developed that are able to reconstruct small scenes in real
time [27, 28]. One prominent example for online static 3D scene reconstruction with a
hand-held commodity sensors is KinectFusion [1, 2]. A dense reconstruction is obtained
based on a truncated signed distance field (TSDF) [23] that is updated at framerate, and
model-to-frame tracking is performed using fast variants of the Iterative Closest Point
(ICP) algorithm [29]. Recently, the scene representation has been extended to scale to
larger reconstruction volumes [3, 4, 30, 8, 5, 6].

Non-rigid Deformation Tracking: One way to handle dynamics is by tracking non-
rigid surface deformations over time. For instance, objects of certain types can be
non-rigidly tracked using controlled multi-RGB [31] or multi-depth [32, 33] camera
input. Template-based methods for offline deformable shape tracking or performance
capture of detailed deforming meshes [34–41] were also proposed. Non-rigid structure-
from-motion methods can capture dense deforming geometry from monocular RGB
video [42]; however, results are very coarse and reconstruction is far from real-time. The
necessity to compensate for non-rigid distortions in shape reconstruction from partial
RGB-D scans may also arise when static reconstruction is the goal. For instance, it is
hard for humans to attain the exact same pose in multiple partial body scans. Human
scanning methods address this by a non-rigid compensation of posture differences [43,
44, 11], or use template-based pose alignment to fuse information from scans in various
poses [15, 45]. Real-time deformable tracking of simple motions of a wide range of
objects has been demonstrated [10], but it requires a KinectFusion reconstruction of a
static template before acquisition. Hence, template-free methods that simultaneously
track the non-rigidly deforming geometry of a moving scene and build up a shape
template over time were investigated. This hard joint reconstruction and tracking problem
has mostly been looked at in an offline context [11–16, 46, 47]. In addition to runtime,
drift and oversmoothing of the shape model are a significant problem that arises with
longer input sequences. The recently proposed DynamicFusion approach [17] is the first
to jointly reconstruct and track a non-rigidly deforming shape from RGB-D input in
real-time (although the color channel is not used). It reconstructs an implicit surface
representation - similar to the KinectFusion approach - while jointly optimizing for the
scene’s rigid and non-rigid motion based on a coarse warping field parameterized by a
sparse deformation graph [48]. Our approach tackles the same setting, but uses a dense
volumetric representation to embed both the reconstructed model and the deformation
warp field.While DynamicFusion only uses geometric correspondences, we additionally
employ sparse photometric feature correspondences over the complete history of frames.
These features serve as global anchor points and mitigate drift, which typically appears
in model-to-frame tracking methods.

3 Method Overview

Input to our method is a 30Hz stream captured by a commodity RGB-D sensor. At each
time step t, a color map Ct and a depth map Dt are recorded, both at a resolution of
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Fig. 2: Method overview: first, a deformed 3D mesh is extracted from the signed distance
field using Marching Cubes. The mesh is rendered to obtain a depth map, which is used
to generate dense depth correspondences. Next, we match SIFT features of the current
frame with those of all previous frames. Based on all correspondences, we optimize
the deformation field such that the resulting model explains the current depth and color
observation. Finally, we integrate the RGB-D data of the current frame

640×480 pixels. Color and depth are assumed to be spatially and temporally aligned. For
reconstruction and non-rigid tracking of the observed scene, we use a unified volumetric
representation (Sec. 4) that models both, the scene’s geometry as well as its deformation.
The scene is fused into a truncated signed distance field (TSDF) [23], which stores
the scene’s geometry and color in its initial, undeformed shape. A deformation field
is stored at the same resolution as the TSDF in order to define a rigid transformation
per voxel. In each frame, we continuously update the deformation field and fuse new
RGB-D images into the undeformed shape. An overview of the steps performed each
frame is shown in Fig. 2. We first generate a polygonal mesh of the shape P, which is
the current isosurface of D with the current deformation field applied. Next, we search
for suitable correspondences between P and the input depth and color map (Sec. 5),
based on sparse color feature matching as well as a dense depth-based correspondence
search. Based on the correspondences, we adapt the space deformation (Sec. 6) such
that the scene’s geometry and color best match the observed input depth and detected
features. The update of the deformation field is repeated in an Iterative Closest Point
(ICP) fashion. Finally, we fuse the per-frame captured depth and color data into the TSDF
(Sec. 8). The underlying high-dimensional non-linear optimization problem is solved
in every step using a data-parallel flip-flop iteration strategy (Sec. 7). We demonstrate
online non-rigid reconstruction results at framerate and compare to template-free and
template-based state-of-the-art reconstruction and tracking approaches (Sec. 9). Finally,
we discuss limitations (Sec. 10) and future directions (Sec. 11).

4 Scene Representation

We reconstruct non-rigid scenes incrementally by joint motion tracking and surface
reconstruction. The two fundamental building blocks are a truncated signed distance
(TSDF) function [23] for reconstruction of the shape in its initial, undeformed pose
and a space deformation field to track the deformations. We discretize both in a unified
manner on a shared regular volumetric grid G. The grid is composed of a set of grid
points enumerated by a three-dimensional index i. Each grid point stores six attributes.
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The first three attributes represent the scene in its undeformed pose by a truncated
signed distance Di ∈ R, a color Ci ∈ [0, 255]3, and a confidence weight Wi ∈ R. The
zero level set of D is the undeformed shape P̂ = D−1(0), which we call canonical
pose in the following. New depth data is continuously integrated into this canonical
frame, where the confidence weights are used to update D based on a weighted floating
average (see Sec. 8). The grid points also maintain information about the current space
deformation. For the ith gridpoint, we store its position after deformation ti, as well
as its current local rotation Ri, stored as three Euler angles. On top of the deformation
field, we model the global motion of the scene by a global rotation R and translation
t. Initially, all per grid point data is set to zero, except for the positions ti, which are
initialized to represent a regular grid. In contrast to the DynamicFusion approach [17],
this grid-based deformation representation operates on a finer scale. Attribute values
inbetween grid points are obtained via trilinear interpolation. A point x is deformed via
the space deformation S(x) = R ·

[∑|G|
i=1 αi(x) · ti] + t . Here, |G| is the total number

of grid points and the αi(x) are the trilinear interpolation weights of x. We denote as P
the current deformed surface; i.e., P = S(P̂).
Since the deformation field stores deformation only in forward direction, an isosurface
extraction via raycasting [1, 2] is not easily applicable. Thus, we use a data-parallel
implementation of marching cubes [49] to obtain a polygonal representation of P̂, and
then apply the deformation to the vertices. We first find all grid cells that contain a
zero crossing based on a data-parallel prefix sum. One thread per valid grid cell is used
to extract the final list of triangles. The resulting vertices are immediately deformed
according to the current deformation field, resulting in a polygonal approximation of
P. This deformed mesh is the basis for the following correspondence association and
visualization steps.

5 Correspondence Association

To update the deformation field, two distinct and complementary types of correspon-
dences between the current deformed shape P and the new color and depth input are
searched: for depth-image alignment, we perform a fast data-parallel projective lookup
to obtain dense depth correspondences (see Sec. 5.1). Since in many situations depth
features are not sufficient for robust tracking, we also use color information, and extract
a sparse set of robust color feature correspondences (see Sec. 5.2). These also serve as
global anchor points, since their descriptors are not modified over time.

5.1 Projective Depth Correspondences

Like most state-of-the-art online reconstruction approaches [1, 2, 17], we establish depth
correspondences via a fast projective association step. Unlike them, we first extract a
mesh-based representation of the isosurface P as described above, and then rasterize this
mesh. The resulting depth buffer contains sample points pc of the current isosurface. To
determine a candidate for a correspondence, we project each pc into the current depth
map Dt and read the sample pac at the target position. We generate a correspondence
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between pc and pac , if the two points are considered sufficiently similar and appro-
priate for optimization. To measure similarity, we compute their world space distance
‖pc − pac‖2, and measure their normals’ similarity using their dot product nc ◦ nac . To
make optimization more stable, we prune points close to silhouettes by looking at nc ◦v,
where v is the camera’s view direction.
More precisely, we use three thresholds εd (distance), εn (normal deviation), and εv
(view direction), and define a family of kernels Φr(x) = 1− x

εr
. If Φd(‖pc−pac‖2) < 0,

Φn(1− nc ◦ nac ) < 0 or Φv(1− nc ◦ v) < 0, the correspondence is pruned by setting
the confidence weight associated with the correspondence to zero wc = 0. For valid
correspondences the confidence is wc =

(Φd(‖pc−pa
c‖2)+Φn(1−nc◦na

c )+Φv(1−nc◦v)
3

)2
.

5.2 Robust Sparse Color Correspondences

We use a combination of dense and sparse correspondences to improve stability and
reduce drift. To this end, we compute SIFT [50, 51] matches to all previous input frames
on the GPU. Feature points are lifted to 3D and stored in the canonical pose by applying
S−1 after detection. When a new frame is captured, we use the deformation field to map
all feature points to the previous frame. We assume a rigid transform for the matching
between the previous and the current frame. The rest of the pipeline is split into four
main components: keypoint detection, feature extraction, correspondence association,
and correspondence pruning.

Keypoint Detection: We detect keypoint locations as scale space maxima in a DoG
pyramid of the grayscale image using a data-parallel feature detection approach. We
use 4 octaves, each with 3 levels. Only extrema with a valid associated depth are used,
since we later lift the keypoints to 3D. All keypoints on the same scale are stored in an
array. Memory is managed via atomic counters. We use at most 150 keypoints per image.
For rotational invariance, we associate each keypoint with up to 2 dominant gradient
orientations.

Feature Extraction: We compute a 128-dimensional SIFT descriptor for each valid
keypoint. Each keypoint is thus composed of its 3D position, scale, orientation, and SIFT
descriptor. Our GPU implementation extracts keypoints and descriptors in about 6ms at
an image resolution of 640× 480.

Correspondence Association: Extracted features are matched with features from all
previous frames using a data-parallel approach (all extracted features are stored for
matching in subsequent frames). We exhaustively compute all pairwise feature distances
from the current to all previous frames and vice versa. The best matching features in
both directions are determined by minimum reductions in shared memory. We use at
most 128 correspondences between two frames.

Correspondence Pruning: Correspondences are sorted based on feature distance using
shared memory bubble sort. We keep the 64 best correspondences per image pair.
Correspondences with keypoints not close enough in feature space, screen space, or 3D
space are pruned.
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6 Deformation Energy

To reconstruct non-rigid surfaces in real time, we have to update the space deformation
S at sensor rate. We estimate the corresponding global pose parameters using dense
projective ICP [29].
For simplicity of notation, we stack all unknowns of local deformations in a single
vector:

X = ( · · · , tTi , · · ·︸ ︷︷ ︸
3|G| coordinates

| · · · ,RT
i , · · ·︸ ︷︷ ︸

3|G| angles

)T .

To achieve real-time performance, even for high-resolution grids, we cast finding the best
parameters as a non-linear variational optimization problem. Based on these definitions,
we define the following highly non-linear registration objective:

Etotal(X) = wsEsparse(X) + wdEdense(X)︸ ︷︷ ︸
data term

+wrEreg(X)︸ ︷︷ ︸
prior term

. (1)

The objective is composed of two data terms that enforce proximity to the current input,
and a prior for regularization. The priorEreg regularizes the problem by favoring smooth
and locally rigid deformations. The data terms are a sparse feature-based alignment ob-
jective Esparse and a dense depth-based correspondence measure Edense. The weights
ws, wd, and wr control the relative influence of the different objectives and remain
constant for all shown experiments. In the following, we explain the different terms of
our energy in more detail.

Point-to-Plane Alignment: We enforce dense alignment of the current surface P with
the captured depth data based on a point-to-plane distance metric. The point-to-plane
metric can be considered a first order approximation of the real surface geometry. This
allows for sliding, which is especially useful given translational object or camera motion.
To this end, we first extract a triangulation using marching cubes and rasterize the
resulting mesh to obtain sample point S(p̂c) on the isosurface. Target positions pac are
computed based on our projective correspondence association strategy presented in the
previous section. The objective is based on the extracted C correspondences:

Edense(X) =
C∑

c=1

wc ·
[(
S(p̂c)− pac

)T · nac
]2
. (2)

Here, nac is the normal vector at pac and wc denotes the confidence of the correspondence,
see previous section.

Sparse Feature Alignment: In addition to the dense depth correspondence association,
we use the set of S sparse color-based SIFT matches (see Sec. 5) as constraints in the
optimization. Let f̂s be the position of the sth SIFT feature match in the canonical frame
and fs its current world space position. Sparse feature alignment is enforced by:

Esparse(X) =
S∑

s=1

‖S(f̂s)− fs‖22 . (3)
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This term adds robustness against temporal drift and allows to track fast motions.

Prior Term: Since we operate on a fine volumetric grid, rather than a coarse deformation
graph, we need an efficient regularization strategy to make the highly underconstrained
non-rigid tracking problems well posed. To this end, we impose the as-rigid-as-possible
(ARAP) [18] prior on the grid:

Ereg(X) =
∑

i∈M

∑

j∈Ni

∥∥(ti − tj)−Ri(t̂i − t̂j)
∥∥2
2
. (4)

Here, Ni is the one-ring neighborhood of the ith grid point andM is the set of all grid
points used during optimization. In our approach,M is the isosurface plus its one-ring.
This prior is highly non-linear due to the rotations Ri. It measures the residual non-rigid
component of the deformation, which we seek to minimize.

7 Parallel Energy Optimization

Finding the optimum X∗ of the tracking energy Etotal is a high-dimensional non-linear
least squares problem in the unknown parameters. In fact, we only optimize the values
in a one-ring neighborhoodM around the isosurface. The objective thus has a total of
6N unknowns (3 for position and 3 for rotation), with N = |M|. For the minimization
of this high-dimensional non-linear objective at real-time rates, we propose a novel
hierarchical data-parallel optimization strategy. First, we describe our approach for a
single hierarchy level.

7.1 Per-Level Optimization Strategy

Fortunately, the non-linear optimization objective Etotal can be split into two indepen-
dent subproblems [18] by employing an iterative flip-flop optimization strategy: first, the
rotations Ri are fixed and we optimize for the best positions ti. Second, the positions ti
are considered constant and the rotations Ri are updated. These two step are iterated
until convergence. The two resulting subproblems can both be solved in a highly efficient
data-parallel manner, as discussed in the following.

Data-Parallel Rotation Update: Solving for the best rotations is still a non-linear
optimization problem. Fortunately, this subproblem is equivalent to the shape matching
problem [52] and has a closed-form solution. We obtain the best fitting rotation based on
Procrustes analysis [53, 54] with respect to the canonical pose. Since the per grid point
rotations are independent, we solve for all optimal rotations in parallel. To this end, we
run one thread per gridpoint, compute the corresponding cross-covariance matrix and
compute the best rotation based on SVD. With our data-parallel implementation, we can
compute the best rotations for 400K voxels in 1.9ms.

Data-Parallel Position Update: The tracking objective Etotal is a quadratic optimiza-
tion problem in the optimal positions ti. We find the optimal positions by setting the cor-
responding partial derivatives ∂Etotal(X)

∂ti
= 0 to zero, which yields (L+BTB) · t = b .
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Here, L is the Laplacian matrix, B encodes the point-point and point-plane constraints
(including the tri-linear interpolation of positions). The right-hand side b encodes the
fixed rotations and the target points of the constraints. We solve the linear system of
equations using a data-parallel preconditioned conjugate gradient (PCG) solver, similar
to [55, 10, 56–58], which we run on the GPU. Since the matrix L is sparse, we compute
it on-the-fly in each iteration step. In contrast, BTB has many non-zero entries, due to
the involved tri-linear interpolation. In addition, each entry is computationally expensive
to compute, since we have to sum per-voxel over all contained constraints. This is a
problem, especially on the coarser levels of the hierarchy, since each voxel may contain
several thousand correspondences. To alleviate this problem, we pre-compute and cache
BTB, before the PCG iteration commences. In every PCG step, we read the cached
values which remain constant across iterations.

7.2 Hierarchical Optimization Strategy

This efficient flip-flop solver has nice convergence properties on coarse resolution grids,
since updates are propagated globally within only a few steps. On finer resolutions,
which are important for accurate tracking, spatial propagation of updates would require
too many iterations. This is a well known drawback of iterative approaches, which
are known to deal well with high-frequency errors, while low-frequency components
are only slowly resolved. To alleviate this problem, we opt for a nested coarse-to-fine
optimization strategy. This provides a good trade-off between global convergence and
runtime efficiency. We solve in a coarse-to-fine fashion and prolongate the solutions to
the next finer level to jump-start the optimization. When downsampling constraints, we
gather all constraints of a parent voxel from its 8 children on the next finer level. We
keep all constraints on coarser levels and express them as a tri-linear combination of the
coarse grid points.

8 Fusion

The depth data Dt of each recorded RGB-D frame is incrementally fused into the canon-
ical TSDF following the non-rigid fusion technique introduced in DynamicFusion [17].
Non-rigid fusion is a generalization of the projective truncated signed distance func-
tion integration approach introduced by [23]. [17] define the warp field through the
entire canonical frame. In contrast, we only integrate into voxels ofM (one-ring of the
current isosurface) that have been included in the optimization for at least Kmin = 3
optimization steps. This ensures that data is only fused into regions with well-defined
space deformations; otherwise, surface geometry may be duplicated. During runtime,
the isosurface is expanding to account for previously unseen geometry. This expansion
also adds new points to the grid to account for voxels that become for the first time part
ofM. The position and rotation attributes of these grid points do not match the current
space deformation, since they have not yet been included in the optimization. Therefore,
we initialize the position ti and rotation Ri of each new grid point by extrapolating the
current deformation field. This jump-starts the optimization for the added variables.
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Fig. 3: A variety of non-rigid scenes reconstructed with our approach at real-time rates:
UPPER BODY, SUNFLOWER, and HOODIE (top to bottom)

9 Results

We demonstrate a variety of non-rigid reconstruction results in Fig. 1 and Fig. 3. For a
list of parameter values and additional results, we refer to the supplemental material and
the accompanying video. Runtime performance and convergence analysis of our solver
is also provided in the supplemental document.
In all examples, we capture an RGB-D stream using an Asus Xtion PRO, a KinectV1-
style range sensor. We would like to point out that all reconstructions are obtained in
real-time using a commodity desktop PC (timings are provided in the supplemental
material). In addition, our method does not require any pre-computation, and we do not
rely on a pre-scanned template model – all reconstructions are built from scratch.

Importance of Sparse Color Correspondences: A core aspect of our method is the
use of sparse RGB features as global anchor points for robust tracking. Fig. 4 illustrates
the improvement achieved by including the SIFT feature alignment objective. If the input
lacks geometric features, dense depth-based alignment is ill-posed and results in drift,
especially for tangential motion. By including color features, we are able to successfully
track and reconstruct these cases.

Comparison to Template-based Approaches: In Fig. 5, we compare against the
template-tracking method of Li et al. [39], which runs offline. Since their method
uses a high-quality pre-scanned template model obtained from a static reconstruction,
we can quantitatively evaluate the reconstruction generated from the dynamic sequence.
To this end, we compute the geometric distance of our final reconstruction (canonical
pose) to the template mesh of the first frame; see Fig. 5, right. The average error in
non-occluded regions is 1mm; occluded regions cannot be reconstructed.
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Fig. 4: Comparison of reconstructions with and without our sparse color alignment
objective. Whereas depth-only reconstruction fails for tangential motion and objects
with few geometric features, we achieve robust reconstructions using color features

We further compare our approach to the real-time template-tracking method by Zollhöfer
et al. [10]; see Fig. 6. Even though our 3D model is obtained on-the-fly, the reconstruc-
tion quality is similar, or even higher.

Comparison to Template-free Approaches: Currently, DynamicFusion [17] is the
only non-rigid reconstruction method that runs online and does not require a pre-scanned
template. In Fig. 7, we compare our approach against DynamicFusion on two scenes
used in their publication. Overall, we obtain at least comparable or even higher quality
reconstructions. In particular, our canonical pose is of higher quality – we attribute this
to the key differences in our method: first, our sparse RGB feature term mitigates drift
and makes tracking much more robust (for the comparison /w and w/o SIFT feature
matching, see Fig. 4). Second, our deformation field is at a higher resolution level than
the coarse deformation proxy employed in DynamicFusion. This enables the alignment
of fine-scale deformations and preserves detail in the reconstruction (otherwise newly-
integrated frames would smooth out detail). Unfortunately, a quantitative evaluation
against DynamicFusion is challenging, since their method is hard to reproduce (their
code is not publicly available and not all implementation details are given in the paper).

Stability of our Tracking: In Fig. 8, we demonstrate the tracking stability of our
method with a simple visualization: we color every surface point according to its position
in the canonical grid. In the case of successful non-rigid tracking, surface color remains
constant; in case of tracking failure or drift, the surface would change its color over time.
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Fig. 5: Comparison to the template-based approach of Li et al. [39]: we obtain similar
quality reconstructions without requiring an initial template model. On the right, we
quantitatively evaluate the reconstruction quality: we compute the geometric distance of
our final reconstruction (canonical pose) to the template mesh of the first frame, which
is obtained from a high-quality, static pre-scanned reconstruction

Fig. 6: Comparison to the template-based approach of Zollhöfer et al. [10]: although our
reconstruction is from scratch and does not require an initial template model, we obtain
reconstructions of similar quality

As we can see, our method is able to track surface points faithfully throughout the entire
sequence, and all points remain stable at their undeformed positions; i.e., no drift occurs.

In Fig. 9, we evaluate the tracking stability regarding fast motions and homogeneous
textures. We reconstruct the SUNFLOWER scene by only using every nth input frame
(n = 2, . . . , 6). This simulates motion of 2× – 6× speed. As can be seen, tracking
remains stable up to ≈ 3× speed. For higher speedups, tracking failures occur, thus
leading to reconstruction errors.

Importance of Grid Resolution and Combined Dense and Sparse Tracking: We
evaluate the importance of the fine warp-field resolution as well as the relevance of our
sparse color feature term in terms of obtained deformation quality; see Fig. 10. For a
low-resolution deformation grid, the warp field is not flexible enough and fine-scale
deformations cannot be handled. If we use only depth data, tracking is considerably less
accurate leading to local drift and may even fail completely if no geometric features
are present. Only for high-resolution deformation grids and our combined tracker, drift
is reduced and the texture can be reconstructed at a good quality. Note that our grids
have a significantly higher number of degrees of freedom than the coarse deformation
graph employed by DynamicFusion [17]; in their examples, they use only about 400
deformation nodes. We can only speculate, but based on their low-resolution warp field,
DynamicFusion cannot reconstruct RGB textures.
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Fig. 7: Comparison to DynamicFusion [17]: we obtain at least comparable or even higher
quality reconstructions. In particular, our canonical pose is of higher quality, since our
warp field has a higher resolution than a coarse deformation proxy. In addition, our
sparse feature alignment objective mitigates drift and enables more robust tracking

Fig. 8: Evaluation of tracking stability: surface points are colored according to the
position in the canonical pose. Our non-rigid tracking maps each surface point close to
its undeformed position. In case of tracking failures or drift, the surface would change
its color over time

10 Limitations

While we are able to demonstrate compelling results and our method works well on a va-
riety of examples, there are still limitations. First of all, robust tracking is fundamentally
hard in the case of non-rigid deforming surfaces. Although global SIFT matching helps
to improve robustness and minimizes alignment errors, drift is not completely eliminated.
Ideally, we would like to solve a non-rigid, global bundle adjustment problem, which
unfortunately exceeds the real-time computational budget.
High levels of deformation, such as fully bending a human arm, may cause problems, as
our regularizer distributes deformations smoothly over the grid. We believe that adaptive
strategies will be a key in addressing this issue; e.g., locally adjusting the rigidity.
Another limitation is the relatively small spatial extent that can be modeled with a
uniform grid. We believe a next step on this end would be the combination of our method
with a sparse surface reconstruction approach; e.g., [5, 6]. Nonetheless, we believe that
our method helps to further improve the field of non-rigid 3D surface reconstruction,
which is both a fundamentally hard and important problem.
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Fig. 9: Temporal Coherence: we skip every nth frame of the SUNFLOWER sequence.
Tracking remains stable up to a 3× speedup. Beyond this, tracking quality degrades

.

Fig. 10: Impact of grid resolution and color features: low-resolution warp fields (left)
cannot capture fine-scale deformations leading to drift and blur. Depth-only tracking
(bottom) also results in drift and blur. In contrast, our combined approach together with
a high-resolution grid (top right) mitigates drift and leads to sharp textures

11 Conclusion

We present a novel approach to jointly reconstruct the geometric shape as well as
motion of an arbitrary non-rigidly deforming scene at real-time rates. The foundation
is a novel unified volumetric representation that encodes both, geometry and motion.
Motion tracking uses sparse color as well as dense depth constraints and is based on
a fast GPU-based variational optimization strategy. Our results demonstrate non-rigid
reconstruction results, even for scenes that lack geometric features. We hope that our
method is another stepping stone for future work, and we believe that it paves the way
for new applications in VR and AR, where the interaction with arbitrary non-rigidly
deforming objects is of paramount importance.
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