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Abstract  
A main bottleneck in proteomics is the downstream biological analysis of highly 

multivariate quantitative protein abundance data. The Perseus software supports 

researchers in interpreting protein quantification, interaction and posttranslational 

modification data. It contains a comprehensive portfolio of statistical tools for high-

dimensional omics data analysis covering normalization, pattern recognition, time 

series analysis, cross-omics comparisons and multiple hypothesis testing. A machine 

learning module supports classification and validation of patient groups for 

diagnosis and prognosis, also detecting predictive protein signatures. Central to 

Perseus is a user-friendly, interactive workflow environment providing complete 

documentation of computational methods used in a publication. All activities in 

Perseus are realized as plugins and users can extend the software by programming 

their own, which can be shared through a plugin store. Perseus combines a powerful 

arsenal of algorithms with intuitive usability by biomedical domain experts, making 

it suitable for interdisciplinary analysis of complex large datasets.  
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A decade ago proteomics projects were still labor-intensive and cumbersome, and high 

quality results required semi-manual analysis of spectra for identification and 

quantification. Today, mass spectrometry (MS)-based shotgun proteomics is reaching a 

level of maturity that makes it a powerful and broadly applicable technology for 

researchers in biology and biomedical sciences1, 2. Consistent automatic processing of 

spectra and the identification of peptides, proteins and posttranslational modifications 

(PTMs) with the help of search engines3-7 and reliable workflows have become standard 

computational tasks for which satisfactory solutions exist for single studies as well as 

community-wide data re-analysis8-10. Sophisticated computational proteomics platforms 

offer complete solutions including the quantification of proteins and PTMs over many 

samples in a large variety of labeling or label-free formats11. Public repositories for the 

storage and dissemination of MS-based proteomics data exist in practical forms12, 13.  

Yeast systems biology can make use of complete proteome quantification14 in many 

different conditions or stimuli with modest measurement effort15. Starting with a cohort 

of human samples protein expression matrices with sample-wise ratios or relative 

abundances can readily be obtained for more than 10,000 proteins16-19. 

 

These advances have shifted the bottleneck to the biological interpretation of quantitative 

abundance and PTM data and to translating the high-dimensional molecular data into 

relevant findings within the domain of a particular biological or medical investigator. 

Many potentially important findings are not currently extracted from the data simply 

because the computational methods and algorithms that would highlight them are not in 

the hand of the researcher with the necessary domain knowledge to appreciate the 

meaning of the findings. There are often barriers between informatics and biological 

researchers, which need to be bridged in order to translate omics technologies to valuable 

biological or medical discoveries.  

 

Here, we address this problem by creating a computational platform that fulfils two 

potentially conflicting objectives: (1) All methods should be statistically sound, powerful 

and comprehensive. (2) It should still be intuitive and easy to use for the domain expert in 

a biomedical discipline who is not a computational expert. To reach these goals we 
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developed the Perseus platform in close collaboration with biologists, with whom we 

analyzed projects involving multiple, diverse and distinct data types and experimental 

approaches. Experienced Perseus users can perform essentially all the computational 

tasks alone, even with little or no formal bioinformatic training. They can still involve 

programmers and bioinformatics specialists to extend the functionality of Perseus with 

plug-ins that add to the Perseus workflow as custom activities. Here we describe the 

functionalities available in version 1.5.4.0 of Perseus. 

 

Comprehensive workflow-based data analysis platform 

Downstream analysis of proteomic data is a multi-faceted and demanding field that 

integrates many aspects of bioinformatics, statistics and machine learning. It is common 

practice to hire bioinformaticians with a view to help the biological researchers with 

various analytical problems. Often these efforts result in multiple small scripts that are 

tedious to maintain and scale and that require the help of the developer to be re-used or 

stitched together. This approach is bound to turn downstream data analysis into a major 

bottleneck for scientific projects and discoveries. Furthermore the results may be of 

questionable validity when there is no clear documentation and transparency about the 

methods and scripts employed. We thus set out to develop the Perseus platform as a 

holistic software that allows continuous expansion of scalable analytical tools, their 

smooth integration and re-usability while providing the user with explicit documentation 

of the analysis steps and parameters. Greater detail on the implementation and download 

of Perseus is provided in Box 1. 

 

Perseus offers a wide range of algorithmic activities that cover topics ranging from data 

normalization through exploratory multivariate data analysis to integration with other 

omics levels (Fig. 1). The following sub-sections describe the various computational and 

statistical tools in Perseus. Several complete analysis workflows are available on our 

DokuWiki pages (http://coxdocs.org/doku.php?id=perseus:user:use_cases) that contain 

step-by-step descriptions of three standard proteomics project types and together with the 

YouTube videos 
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(https://www.youtube.com/channel/UCKYzYTm1cnmc0CFAMhxDO8w) represent a 

valuable resource for first time users. Many activities produce interactive graphical 

output for the visualization of data analysis results, which scale easily to very large sets 

of input data and therefore allow for thorough inspection by the user even for large-scale 

experiments with complex experimental designs and many measured variables. Any plot 

can be exported in a number of graphical formats and edited in standard vector graphics 

editors upon release of all clipping masks. 

 

The central data type in Perseus is the ‘augmented data matrix’, which typically 

represents expression or abundance values of genes or proteins (rows) and biological 

samples or technical replicates (columns). It is supplemented by additional data 

containers for annotation of the rows, columns and cells of the matrix (see Box 2). These 

annotation containers are automatically filled in Perseus with gene or protein information 

derived from the publicly available ontologies, pathways and annotation databases. 

Sample annotation are used in many activities to define the study design, such as to 

designate which samples are replicates, or which belong to different treatments or time 

points in a time series analysis.  

 

The main navigation tool is the workflow panel, which is composed of matrices and 

activities, and controls the information-flow in a Perseus session (Supplementary Fig. 

1). The interactive workflow allows the user to keep track of all steps in the analysis and 

to navigate through data matrices and visualization components. It facilitates revisiting 

intermediate steps in a complex computational workflow, branching off with alternative 

parameter settings or a different combination of activities, and comparing results of 

alternative branches to each other. The matrix objects move through the workflow and 

are transformed and modified by activities. The workflow itself is a bipartite graph in 

which every matrix is connected via an activity to the next matrix. A matrix can have 

interactive local visualizations attached (e.g. plots, histograms and heat maps). Activities 

can be of a simple single-input structure or they can receive inputs from several matrices 

for the purpose of data integration when merging data from two or more different omics 

levels (see Box 3).  

https://www.youtube.com/channel/UCKYzYTm1cnmc0CFAMhxDO8w
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A session contains a workflow together with all intermediate results and parameter 

settings for all activities. Session files can be saved and reloaded and also be shared with 

other researchers who can load them into their Perseus instance for collaborative data 

analysis. Furthermore the workflow and the session serve as a complete account of the 

computational methods used in a project representing an accurate and reproducible 

description of the data analysis for documentation or publication. 

Plugins 

Perseus is not a static and monolithic software tool, but is instead based on a plug-in 

architecture that can be extended by the users (Supplementary Fig. 2). Perseus and its 

plug-ins are written in the C# programming language and adhere to a standardized 

application programming interface (API) that consists of a set of interfaces defining the 

minimum functionality that a plugin must implement. The five main interfaces in 

Perseus: data upload, export, processing, analysis and multi-matrix handling form the 

foundation of the extensible plug-in architecture (Supplementary Fig. 2). Plugins 

implementing these interfaces are visually distributed along the ribbon control menu of 

Perseus. Program classes that enable data matrix generation, access and export constitute 

the core code of the software, which is available for download from our GitHub 

repository (github.com/JurgenCox/perseus-plugins). Using this source code as examples 

and the plug-in architecture of Perseus, developers can easily expand the current 

functionalities by programming novel independent modules. The compiled DLL then has 

to be placed into the main folder of the Perseus installation which will completely 

integrate them, making them ready for use. A tutorial video on how to program plugins is 

available at (www.youtube.com/watch?v=MhS4UM1CMwU). 

The API allows any user to program activity plugins in their local development 

environment independent of the central Perseus code repository. We provide a core set of 

plugins containing more than 100 activities that are bundled with the standard Perseus 

download and that can also be re-used in newly developed activities (Supplementary 

Table 1). For the majority of them the source code is provided via GitHub. Once users 

have programmed a new plugin they can make it available through the Perseus plugin 

http://github.com/JurgenCox/perseus-plugins
https://www.youtube.com/watch?v=MhS4UM1CMwU
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store (www.perseus-framework.org/plugins). As an example, the ‘Proteomic ruler’ 

package combines convenient functionality for the absolute quantification of protein copy 

numbers  per cell from generic label-free shotgun proteomics data20.  

 

Expression proteomics 

Many proteomics projects consist of measuring cells or tissues in two or more conditions, 

each of them in a certain number of biological replicates, for instance using relative label-

free quantification21 or with a common labeled reference standard22 for enhancing 

quantification accuracy. These kinds of proteomics data have similarities to 

transcriptomics microarray data and their analysis can benefit from the wealth of 

experience obtained in more than two decades of transcriptome data analysis by a large 

community. Perseus includes adaptations of some of these algorithms to proteomics 

workflows.  

 

Before data can be used for the actual data analysis they need to be normalized, filtered 

and potentially subjected to missing value imputation for which we provide a multitude 

of options in the standard set of Perseus activities (Supplementary Fig. 3). One common 

task is to determine which proteins are significantly changing between conditions. 

Perseus adapts a particularly robust method from microarray data analysis that includes a 

permutation-based false discovery rate and q-value estimation23. This enables reliable 

estimation of the percentage of proteins that are mistakenly indicated as changing.  

 

Another frequent task is to find the main clusters of expression patterns in the data and 

the sets of proteins responsible for the formation of these patterns. We provide a hybrid 

k-means-hierarchical clustering algorithm that creates interactive heat-maps and scales to 

matrices with a very large number of rows and/or columns in a short computing time. As 

an alternative to clustering, Perseus contains principal component analysis (PCA) based 

on singular value decomposition24 – a form that computationally performs very well on 

high-dimensional data. PCA will detect the main effects in the data and the proteins 

driving the separation of the proteomic states. 

http://www.perseus-framework.org/plugins
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Once an interesting cluster of proteins has been identified, enrichment analysis25 of 

biological processes, complexes or pathways is done in a variety of ways, for instance 

with the Fisher’s exact test checking for contingency between cluster membership and the 

property of interest. The false discovery rate (FDR) is controlled with the Benjamini-

Hochberg method26. This elucidates what the cluster member proteins have in common 

and provides clues to the functional role of the cluster. Similar enrichment functionalities 

have been developed in the context of genomic technologies27 and Perseus adapts these 

enrichment analyses specifically tailored to the purpose of proteomics. In particular, the 

reference space for enrichments is always appropriately chosen to be the subset of 

measured proteins. Furthermore, proteins which are indistinguishable based on the 

measured peptides are not double-counted in enrichment tests, by handling the 

occurrence of multiple alternative identifiers appropriately in enrichment tests. 

Posttranslational modifications 

Proteomics software typically generates a table for each PTM type of interest, indicating 

all positions on the identified proteins that are likely to be modified in at least one of the 

conditions of a study. In addition to scores reflecting the reliability of identification and 

the confidence in the localization of each site in the protein sequence28, 29, quantitative 

information is crucial for understanding the functional role of the modification sites. 

Relative quantification in the form of site-specific ratios or intensity-based quantification 

is usually required for the comparison of phosphorylation in different conditions or upon 

different stimuli. Furthermore, analysis of the proportion of modified to total peptides, 

i.e. site occupancies, is important for the elucidation of major regulatory phosphorylation 

events during key cellular processes30, 31. 

 

Reformatting tools are provided in Perseus that transform the site quantification into a 

matrix that resembles proteome expression data, which retains information about multiple 

modification states of peptides. This matrix can then be analyzed with similar methods as 

introduced in the previous section for expression proteomics, but with some special 

adaptations. For example, to place phosphorylation events in the context of cellular 
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pathways and signaling events, enrichment analysis of KEGG and Gene Ontology32 terms 

can be employed. Importantly, as proteins are often characterized by multiple 

phosphorylation sites, care should be taken to avoid over-counting of protein-derived 

annotation in PTM site-based analysis (‘protein-relative enrichment’). 

 

Integration of external resources is currently a tedious task that requires building access 

to the databases, parsing the data in the correct format and finally matching identifiers to 

the in-house data. In Perseus, site-specific annotation, for instance from 

PhosphoSitePlus33 or sequence position specific annotation from UniProt are integrated 

by using an easily operated activity designed for that purpose (Fig. 2). This information 

can be used to generate statistics on which sites in the study are already known from 

other publications or which are novel, and to import experimentally known kinase-

substrate relationships into the matrix. Alternatively, kinase motifs are matched to the 

sequence window surrounding the phosphorylation site, which when combined with 

clustering and enrichment analysis often leads to noteworthy conclusions about kinase 

activity patterns34. Reversible phosphorylation is regulated by multiple factors including 

increased or decreased concentration of kinases and phosphatases and the level of 

phosphorylation may appear to vary due to changes in the abundance of the modified 

protein itself. Therefore, Perseus enables straightforward overlaying of modification site 

and protein abundance to determine the actual quantitative changes in phosphorylation on 

a certain site and their likely origin.  

Interaction proteomics 

Affinity enrichment experiments followed by MS for determining interaction partners can 

nowadays be performed on a large scale involving more than a thousand bait proteins35, 

36. This works well with intensity based relative label-free quantification21 but also 

SILAC or TMT-based quantification can be used. Typically, analysis of such data 

requires comparison of the quantities of individual proteins in specific samples with those 

in a control group (Fig. 3a). The control may derive from cells not expressing a tagged 

bait protein37, or cells in which the bait was knocked down38. Alternatively, all samples in 

which unrelated proteins served as bait can serve as negative control, which we have 
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shown to be the superior in medium39 and large-scale datasets35. Perseus allows the 

streamlined calculation of large numbers of tests necessary to derive a list of statistically 

significant outliers specific to each bait, with permutation-based FDR control for each 

pair of sample and controls. The resulting network of interactions can automatically be 

formatted to be uploaded to external tools like Cytoscape40 for visualization (Fig. 3b). 

 

For some experimental setups it is necessary to control the FDR globally instead of on 

the level of individual samples, for instance when interactions are measured under 

different conditions or over a time course41. To this end, Perseus offers a method to 

combine FDR-based cut-offs for multiple samples (Fig. 3c). This is an advantage over 

methods such as ANOVA because it retains information about the enrichment of each 

protein in each condition (which is lost in ANOVA), while additionally offering global-

level statistics.  

Time series analysis 

Many biological processes are controlled by characteristic temporal changes in the 

concentrations of specific biomolecules. For instance, the cell cycle is accompanied by 

periodic changes in mRNA and protein expression42-44. Likewise the circadian cycle45 

involves concerted changes in abundances of proteins, their modifications, mRNAs and 

metabolites46. Perseus contains an FDR-controlled method for detecting expression 

behavior that is statistically significantly following a given temporal model as for 

instance expression with a given periodicity (Fig. 4). To derive the length of the cycle 

from the data, a Fourier-based periodicity analysis can be performed that determines the 

base frequency of periodic expression changes and also allows screening for possible 

other cycle lengths (e.g. harmonics of the base frequency). The analysis will assign an 

amplitude of change and a peaking time to each protein. A specialized annotation 

enrichment analysis designed for periodic expression changes can then determine which 

biological processes or pathways are switched on at which point along the time axis, 

detecting clusters of activity in the time dimension. Side-by-side analysis of 

transcriptome and proteome reveals the time lag between transcription and translation46. 
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Cross-omics data analysis 

Perseus has activities for comparing proteomics data to other omics dimensions, such as 

mRNA levels measured by RNA-seq47. An importer activity loads next generation 

sequencing (NGS) short read information as for instance obtained by the Illumina 

platform into a Perseus session. Reads can be aligned by standard spliced alignment 

workflows as, for example, provided by the TopHat48 or STAR49 suites and read-count 

based quantification is generated upon upload to Perseus. Multiple reference-genome 

aligned read files corresponding to data from multiple samples can be used 

simultaneously and a Perseus matrix will be filled with read count information per gene. 

The reads can represent RNA-seq or ribosome profiling data50, which are then converted 

to quantitative expression profiles, for instance by calculating RPKM values51. To 

investigate the relationship between transcription and translation, this matrix can then be 

matched to another matrix containing protein expression values, for instance iBAQ 

values, which are estimates of absolute protein abundances52, 53. This enables correlation 

analysis between the two quantitative omics dimensions (Supplementary Fig. 4) and for 

this purpose we routinely use the vast amounts of freely available NGS data ready for 

download – e.g. from the ENSEMBL54 (www.ensembl.org/info/data/ftp), ENA 

(www.ebi.ac.uk/ena) or SRA (www.ncbi.nlm.nih.gov/sra) databases – most of which are 

already aligned to the reference genome. Hence, this plug-in enables comprehensive 

analysis of multiple genomics experiments and comparison with proteomics data in a 

very short time. 

 

To compare functional differences between any two ‘omics’ types, we implemented the 

so called ‘2D annotation enrichment’ activity55 (Fig. 5), which determines annotation 

terms, whose members show statistically significant outlier behavior in the two 

dimensions chosen. Genome-wide annotation for this purpose can be membership of 

proteins in biochemical pathways, gene ontology terms, sub-cellular localization, protein 

domain content or membership in protein complexes. Processes can be simultaneously 

up- or down-regulated in both dimensions, or they can lack correlation, such as regulation 

http://www.ensembl.org/info/data/ftp/index.html
http://www.ebi.ac.uk/ena
http://www.ncbi.nlm.nih.gov/sra
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in one dimension without any corresponding change in the other. We have found 2D 

enrichment analysis to be a powerful tool to probe regulation for the respective pathways 

or biological processes, including but not limited to information about the processes that 

are predominantly transcriptionally, post-transcriptionally or post-translationally 

regulated. 

Machine learning for detecting subtle biological associations and biomarker 

discovery 

Patients can greatly benefit from a more accurate diagnosis and a subsequently more 

efficient personalized treatment. Perseus combines powerful machine learning and 

statistical methods for the classification of proteomics samples. For example, we have 

applied Perseus to study clinical classification of disease subtypes from proteomic data in 

lymphoma56 , prostate cancer57 and breast cancer58 studies. In Perseus we provide an 

extensible classification and regression framework that does not rely on a single 

‘favorite’ machine learning technique (Fig. 6). Instead at every stage one algorithm can 

be exchanged for another and rated, making it possible for the non-specialist to determine 

the machine learning method that is best suited for the particular type of data. In addition 

to the many algorithms for classification, regression and feature selection that are 

provided together with the standard Perseus release, including a support vector machine59 

implementation, the machine learning framework is extensible allowing the users to 

program their own implementations of algorithms. We provide stable APIs for 

classification and regression models as well as for feature selection algorithms in the 

context of classification and regression. As an example we adapted the popular 

LIBSVM60 implementation of a support vector machine as an open source classification 

plugin. 

 

The machine learning section of Perseus has a cross validation structure for the purpose 

of measuring how the prediction performance of classification or regression will 

generalize to independent data that have not been used for model building, thereby 

avoiding notorious problems such as over-fitting61. The cross validation tools allow 

robust determination of optimal parameter values in linear or nonlinear models used for 
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prediction. Furthermore, they help in extracting optimal protein sets from the output of a 

feature selection algorithm that strike a balance between good prediction performance 

and simplicity. This machine learning based feature selection combined with accurate 

monitoring of the prediction errors by cross validation offers a complement to t-test-like 

approaches for determining discriminating protein subsets. It detects multivariate patterns 

in protein expression profiles, for which the discriminatory power might not be apparent 

in the expression profiles of single proteins. In this way we can retrieve the members of 

protein response networks that are invisible to univariate feature selection methods.  

 

 

Vision and future developments 

Perseus integrates a large amount of bioinformatic expertise based on experience in the 

analysis of diverse types of large-scale proteomics data. It was developed in close 

collaboration with biological domain experts on the basis of real world and cutting edge 

life science research. The software offers an intuitive interface that enables researchers 

without the formal computational skills to analyze their own data, by guiding them 

through statistical procedures in a rigorous manner thereby equipping them with various 

tools for extraction of maximum information and biological insights from the data. With 

a view to easy uptake among diverse users, Perseus also lowers the ‘activation barrier’ by 

the absence of installation procedures, being completely freely available, the ability to 

visualize every step with intuitive and interactive plots and an automatic generation of a 

complete record of each analysis step and the parameters used. We believe the latter 

feature is crucial for the scientific community as it fosters transparency and 

reproducibility of the reported results. Moreover, the use of a common platform for 

analysis allows for unbiased comparison of the results generated in different groups and 

enhances the collaborations between scientists by simplifying the process of 

documentation and sharing of protocols. Our guiding principle was to put the expertise of 

bioinformatics scientists in the hands of all life science researchers, allowing them to 

focus on their biological questions while benefitting from both powerful statistical tools 

and cutting edge scalable analytic possibilities without depending on often unavailable 

specialists. 
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Through continuous development and maintenance, our goal is to establish Perseus as a 

comprehensive analysis and visualization tool for systems biology research, similarly as 

we have done previously with the MaxQuant software for the analysis of mass 

spectrometric data11. As the experimental designs become more and more complex, the 

functionality of Perseus will be enriched accordingly, building upon its extensible 

architecture to offer more tools and to support future data types. In particular a 

comprehensive toolset for the analysis of biological networks62-64 resulting from co-

expression or interaction studies will soon be included. For most of the development of 

activities in Perseus we started with proteomics data in mind, as well as their comparison 

to other omics dimensions. However, we have found that many of the techniques 

implemented in Perseus are applicable to other data types without major modifications 

and it has already become popular in our group for the analysis of non-proteomics data as 

well. In the future, metabolomics data with relative quantification profiles for a global set 

of metabolites over several samples, which is similar to label free quantification 

proteomics data, will be accommodated by Perseus with only slight adaptations such as 

customization of the annotation of molecular species. 

 

One major challenge and opportunity that will drive the future development of Perseus is 

to bridge the currently existing gap between large-scale proteomics data generation and 

modeling of signaling pathways and biochemical reactions. Modeling studies are still 

generally performed only on low-throughput data, such as western blots or FACS data. 

Our goal will be to provide a more automated way to extract quantitative information 

from large-scale data that can directly be used as input for available modeling 

platforms65-67. Providing automatically meaningful and reliable connections to signaling 

pathways will also require more extensive knowledge of the behavior of PTM sites in 

biochemical and signaling pathways than what is currently available in public resources68, 

69.  

 

Perseus has already been ‘battle tested’ in cutting edge proteomics research. We 

anticipate that it will allow researchers from many areas of life science, including 
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fundamental biology, drug discovery and medical sciences, to increasingly participate 

directly in sophisticated data analysis. Our hope is that this novel platform will contribute 

to better communication between disciplines and more effective application of 

computational tools.  

Box 1. Software implementation, download and maintenance 

Perseus is implemented in the C# programming language from the .NET Framework 4.5 

and runs natively on Windows operating systems. Perseus can be downloaded for free 

from www.perseus-framework.org under acceptance of our freeware license agreement 

and user account registration. No installation is required and the software can 

immediately be used upon download and decompression of the zipped folder. Detailed 

descriptions of the functions and their parameters are available in the online 

documentation of Perseus, which is linked to the download page and can also be directly 

accessed from within the software. Other sources of user support include the active 

Perseus google group (groups.google.com/forum/#!forum/perseus-list) with more than 

1,400 users (May. 2016) and the YouTube videos demonstrating the use of the software 

(https://www.youtube.com/channel/UCKYzYTm1cnmc0CFAMhxDO8w). Several 

complete analysis workflows are available on our DokuWiki pages 

(http://coxdocs.org/doku.php?id=perseus:user:use_cases) that contain step-by-step 

descriptions of three standard proteomics project types and together with the YouTube 

videos represent a great resource for first time users. Substantial changes are usually 

reflected in major releases that happen once a year, however, we recommend updating 

the annotation files at shorter time intervals. Reproducible bugs in the latest available 

Perseus version can be reported via the YouTrack bug tracking system 

(http://maxquant.myjetbrains.com/youtrack/).  

 

 

Perseus has been co-developed with MaxQuant11 , which has become a comprehensive 

and widely accepted environment for the analysis of MS-based proteomics data and 

which contains further proteomics specific data visualization tools70. As a result, 

integration between Perseus and MaxQuant is excellent, but these environments are 

http://www.perseus-framework.org/
http://groups.google.com/forum/#!forum/perseus-list
https://www.youtube.com/channel/UCKYzYTm1cnmc0CFAMhxDO8w
http://coxdocs.org/doku.php?id=perseus:user:use_cases
http://maxquant.myjetbrains.com/youtrack/
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independent and can be used together with any upstream data analysis tool. Most of the 

data structures and algorithms are programmed from scratch and only few external 

libraries are used. An advantage of this design choice is that it gave us full control over 

all implementation details and helps improving performance, which can be many times 

better than the performance achieved in other statistical programming environments71. 

Just like MaxQuant, Perseus will be continuously maintained and developed based of 

secure long-term funding by the Max Planck Society for the Advancement of Science.  

 

Box 2 Augmented data matrix 

The central data format of Perseus is the data matrix, in which biological samples are 

represented as columns and proteins or other molecular species as rows. Perseus 

distinguishes several different types of columns. Upon reading new input data, the type of 

each column needs to be specified. In case the data comes from the MaxQuant 

environment11, the suitable type of most columns of the output tables is automatically 

detected via the column name. The main data are stored in the ‘Main columns’, which 

typically contain the protein expression values that are to be subjected to downstream 

normalization, transformation, etc. and Perseus automatically selects them for statistical 

tests and data visualization. Other numerical values that serve as annotations such as 

sequence length, number of identified peptides or posterior error probabilities are stored 

in ‘Numerical columns’. This type of data can also be explored by standard summary 

statistics and visualization tools, but no statistical tests, e.g. for differential expression, 

are applied to them. Non-numerical information can be stored as ‘Text’ or ‘Categorical’ 

columns. ‘Text’ is suitable for storing protein, RNA and gene names and identifiers and 

these columns are available as data labels in plots. In data integration, this kind of 

information is interpreted as identifiers to match rows of different matrices to each other 

or to an external data source. Categorical columns contain data of an enumerable type 

about each protein, which often signifies membership in biological processes or 

ontologies. This column type is used in enrichment analysis. The column type ‘Multi-

numerical’ can contain multiple numerical values per entry. Most activities make a pre-

selection of columns based on the designated type for a specific context, so it is most 
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convenient that the column types are assigned correctly from the beginning. However, the 

data type can be changed retrospectively if necessary. 

 

 

 

Several functions in Perseus rely on additional supplementing data matrices that contain 

meta-information about the main data matrix (Supplementary Fig. 5). Missing values 

are a common problem of large-scale data in general as some statistical methods cannot 

handle missing information and therefore require ‘imputation’ prior to the analysis72, 73. 

Perseus offers several imputation techniques including a method drawing random values 

from a distribution meant to simulate expression below the detection limit 

(Supplementary Fig. 3). Upon imputation a Boolean background matrix is created 

(Supplementary Fig. 5a), which keeps track of which value was measured and which 

was imputed. This allows visualization and filtering of imputed values during 

downstream analysis. Similarly, the user can generate a ‘Quality matrix’, which will be 

stored in the background as well. The ‘Quality matrix’ contains one corresponding value 

to each entry in the main data matrix and can be used to filter the main matrix 

(Supplementary Fig. 5b). For example a ‘Quality matrix’ can be generated from the 

number of peptides used in the quantification of each protein in each sample. This can be 

useful to mask all cases where a given protein was quantified with less than two peptides 

in a given sample. The phosphorylation site table is another example, in which such 

filtering is desirable, as sites with occupancy errors larger than a fixed threshold can be 

filtered out  using a ‘Quality matrix’ containing the site-specific errors.  

 

Data that characterizes the samples (i.e. information regarding the experimental design) is 

added to Perseus via row annotations. The groupings used in analysis methods such as t-

test statistics and machine learning approaches are set as categorical row annotations (or 

numerical ones in case of continuous data, such as the time point for time series data) and 

are automatically recognized by the software in all suitable procedures.  
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Box 3. Data integration  

One of the most laborious and error-prone steps in data analysis is matching and 

integration of different data types. Through its Multi-processing interface, Perseus 

offers an easy way to combine matrices and to import information from external 

databases. Two matrices can be matched based on any identifier that is provided as 

a column in each of them and the information to be transferred from one matrix to 

the other can be selected as well. Cases in which multiple entries from one matrix 

map to a single entry in the other are handled by the software in user-selectable 

ways, for instance for summarizing multiple numeric values from multiple rows in 

one matrix to a single entry in the other matrix. Furthermore, different omics data 

sets can easily be mapped through the pre-built genome lists that can be loaded with 

a single click. 

Interpretation of genome-scale data often incorporates functional information such as 

pathways, cellular function and localization as well as structural information. In Perseus 

the user can upload a preprocessed set of annotations from UniProt74 and use these in 

filtering and enrichment analysis of the data. Furthermore, PTM-specific annotations 

such as those obtainable from PhosphoSitePlus33 and common kinase motifs can be 

automatically assigned by the software. Integration of user-defined curated annotations is 

supported in Perseus if certain simple file format requirements are met. The software can 

read customized annotations from tab-delimited text files, in which the first column 

contains the identifiers, which will be used for matching the annotations to the main 

matrix, and the header row contains the names of all annotations to be added. All further 

columns contain the customized annotations. 
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Key references 
 
3 This publication describes the earliest approach to correlate tandem mass spectra of 

peptides to theoretical fragment ion series calculated from in silico digests of known 

protein sequences with the aim of identifying peptides and proteins. 

 
11 Perseus has been developed in conjunction with MaxQuant which comprises a 

complete quantitative workflow for the analysis of shotgun proteomics data including 

support for a large variety of experimental techniques.  

 
15 In this paper the authors demonstrate that the yeast proteome can be analyzed within 

one hour measurement time recovering nearly all expressed cellular proteins.  

 
21 Here the MaxLFQ algorithm for relative label-free protein quantification is described. 

It enabled many researchers to conduct large proteomics studies with complex 

experimental designs without the need for labeling of their samples. 

 
23 A pioneering method is described for the robust detection of significantly changing 

biomolecules in large omics datasets. It uses repeated permutations of the data to 

determine false discovery rates. 

 
25 GSEA is the forerunner of many methods for analyzing molecular profiling data to 

determine which sets of genes or proteins are correlated with a phenotypic class 

distinction. 

 
26 In this seminal paper a simple yet powerful procedure is shown to control the false 

discovery rate for multiple testing of many independent hypotheses. 

 
52 In this publication a large scale quantitative analysis of transcription and translation 

rates is performed introducing the iBAQ technique for estimating protein abundances 

from mass spectrometry data.  
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Figure legends 
Figure 1 | The Perseus data analysis platform. The core data structure of Perseus is the 

data matrix, containing samples in columns and expression values (e.g. protein, mRNA) 

in its cells. Additional information such as GO terms, KEGG pathways and other 

database sources can be added for each row entry in the form of annotation columns. 

Perseus incorporates data cleansing and normalization and multiple methods for 

exploratory analysis such as histogram charts, intensity curves, scatter plots. Classical 

expression omics data analysis is supported by robust statistical tools including t-tests, 

PCA, correlation analysis as well as enrichment analysis. Beyond the standard methods 

Perseus supports more complex tasks, among which are supervised learning, PTM data 

analysis and multiple omics data integration.   

 

 

Figure 2 | Posttranslational modifications. (a) Annotations from various resources 

including UniProt and PhosphoSitePlus (PSP) can be mapped onto each phosphorylation 

site via the protein identifier, the modified amino acid and its position. Multiple site-

specific annotations from UniProt including protein secondary structure, information if a 

site is known to be biologically important and domain information can be easily 

imported. (b) Estimation of the number of novel phosphorylation sites detected in an 

experiment as compared to already known sites stored in public repositories. (c) A set of 

short sequences surrounding a modification site can be used to generate a sequence logo 

and scale it by entropy in order to identify possible recognition motifs. (d) Comparison of 

the protein intensity distributions of matched total and phospho-tyrosine proteomes 

showing that phospho-tyrosines preferentially appear on more abundant proteins31).  

 

Figure 3 | Interaction proteomics. a. The interaction partners of the baits in a large set 

of pulldowns are determined in a multi-volcano analysis. Control groups can be defined 

in multiple ways: (a) common control group for all pulldowns (as shown), specific 

controls for each pulldown or the complement group of each pulldown set (i.e. the union 

of all other pulldowns).(b) Cytoscape visualization of the interaction network generated 

by Perseus with the affinity enrichment data from ref75. (c) Here the total set of 
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interactors and interactions between them is determined by a global permutation-based 

FDR approach. For each condition a two-sample test is performed with all other 

conditions serving as control. The global set of interactors at a given value for the FDR is 

obtained by a permutation involving all conditions. 

 

Figure 4 | Time series analysis. The time series set of plug-ins of Perseus contains a 

periodicity analysis component that allows detection of periodic oscillations in protein 

expression over time. (a) The amplitude (expression level) and phase (up- or down-

regulation) are determined by the software by optimizing a cosine function fit to the data. 

A permutation-based approach, in which the time points are randomly reshuffled multiple 

times, identifies the statistically significantly oscillating proteins, exemplified by global 

circadian oscillations of the proteome in mouse liver46.  (b) A total of 180 proteins were 

found to follow circadian rhythm over two cycles and characteristic phases of up- and 

down-regulation were clearly characterized as illustrated by the red and blue clusters. 

 

Figure 5 | Cross-omics data comparison by 2D annotation enrichment analysis. (a) 

Proteome and transcriptome expression data are joined into one Perseus matrix. Both 

‘omics’ columns are sorted and transformed into ranks. A bivariate test is performed on 

each annotation term checking if the protein-mRNA pairs belonging to a certain process 

show a common trend, for instance if they are up-regulated in both dimensions., (b) The 

processes and locations represented by green dots show common up-regulation at both 

mRNA and protein levels, whereas the yellow dots indicate simultaneous down-

regulation (data from ref76). The processes represented by purple dots exhibit up-

regulation at the protein level, while the corresponding mRNA levels are collectively 

down-regulated. 

 

 

Figure 6 | Machine learning for clinical proteomics and biomarker discovery. The 

Learning plug-in in Perseus provides implementation of classification and regression 

analyses and implements various feature selection methods. Estimation of the accuracy of 

a trained predictor, including the feature selection step is performed in a cross-validation 
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procedure, in which the dataset is first split into training and test subsets and the classifier 

is trained on the train set and its performance is then estimated on the test set. After 

training, the classification/regression model then assigns a predicted class to the samples 

of unknown class. The feature selection procedure outputs the ranks for all proteins with 

best ranks corresponding to the most discriminative proteins in the data. The learning 

module is complemented by an algorithm for screening for the optimal parameters of the 

different classification algorithms to maximize the classifier’s performance.  
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