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Abstract
The inner ear uses specialized synapses to indefatigably transmit sound
information from hair cells to spiral ganglion neurons at high rates with
submillisecond precision. The emerging view is that hair cell synapses achieve
their demanding function by employing an unconventional presynaptic
molecular composition. Hair cell active zones hold the synaptic ribbon, an
electron-dense projection made primarily of RIBEYE, which tethers a halo of
synaptic vesicles and is thought to enable a large readily releasable pool of
vesicles and to contribute to its rapid replenishment. Another important
presynaptic player is otoferlin, coded by a deafness gene, which assumes a
multi-faceted role in vesicular exocytosis and, when disrupted, causes auditory
synaptopathy. A functional peculiarity of hair cell synapses is the massive
heterogeneity in the sizes and shapes of excitatory postsynaptic currents.
Currently, there is controversy as to whether this reflects multiquantal release
with a variable extent of synchronization or uniquantal release through a
dynamic fusion pore. Another important question in the field has been the
precise mechanisms of coupling presynaptic Ca  channels and vesicular Ca
sensors. This commentary provides an update on the current understanding of
sound encoding in the cochlea with a focus on presynaptic mechanisms.
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Introduction
In the mammalian cochlea, inner hair cells (IHCs)—the genuine 
sensory cells of the cochlea transform sound-induced mechanical 
signals into a neural code at their ribbon synapses. Upon hair bun-
dle deflection, mechanotransducer channels, located in the stere-
ociliar tips, provide hair cell depolarization. This process leads to 
presynaptic glutamate release from IHCs onto spiral ganglion neu-
rons (SGNs), and ultimately activates the auditory pathway. Coding 
of sound at IHC ribbon synapses achieves impressive performance: 
each glutamatergic presynaptic active zone (AZ) of an IHC pro-
vides the sole excitatory input to a postsynaptic SGN. Yet, each sin-
gle AZ drives SGN spike rates at sound onset in the kilohertz range 
and supports firing at hundreds of hertz during ongoing stimulation.  
Moreover, these synapses are capable of transmitting information 
on the timing of the stimulus with submillisecond precision.

The underlying mechanisms that mediate this performance have 
remained enigmatic but likely relate to the molecular and struc-
tural specializations of the IHC ribbon-type AZ. Here, we briefly 
review the latest progress on the molecular anatomy and physiol-
ogy of the IHC ribbon synapse, with a focus on the presynaptic 
AZ (for recent reviews of the postsynaptic SGN, see 1,2.) Dysfunc-
tion or loss of IHC synapses causes a specific form of sensorineural 
hearing impairment: auditory synaptopathy (recently reviewed 
in 3). We will then summarize recent experimental and theoreti-
cal work that has corroborated the Ca2+ nanodomain hypothesis of 
Ca2+ influx-exocytosis coupling at IHC ribbon synapses. Finally,  
we will provide a brief overview of the current state of the debate 
on the mode of exocytosis at the hair cell AZ, which remains a  
hot topic of current research.

Unconventional presynaptic molecular composition
The synaptic ribbon represents the most prominent structural devia-
tion from “conventional” glutamatergic synapses of the vertebrate 
central nervous system (Figure 1). Depending on the cell type, 
developmental stage, and animal species under investigation, the 
ribbon can assume various shapes and sizes4–6. The main structural 
component of synaptic ribbons is RIBEYE7, a protein assembled 
from an aggregation-prone A domain and an enzymatically active B 
domain, both of which are transcribed from the CtBP2 gene8. The 
synaptic ribbons help cluster large complements of Ca2+ channels 
and readily releasable vesicles at the IHC AZ, thereby enabling syn-
chronous auditory signaling and also promoting continuous vesicle 
replenishment9–11. Ribbons are also critical for sensory processing  
in the retina, where they serve similar functions12–14, and, in addition, 
seem to play a role in coupling Ca2+ channels to release sites15.

In addition to unexpectedly finding that IHC ribbon synapses appear 
to operate without neuronal SNAREs16 and the classic neuronal 
Ca2+ sensors synaptotagmin 1 and 217,18, we have recently come 
to realize that SNARE regulators such as complexins19,20, as well 
as priming factors of the Munc13 and CAPS families21 which are 
critical for transmission at many synapses, also seem to be missing 
from IHCs. Instead, hair cells employ the multi-C

2
-domain protein 

otoferlin22, a member of the ferlin family of membrane fusion- 
related proteins (reviewed in 23,24), which is a tail-anchored 
protein and requires the TRC40 pathway for efficient targeting to 
the endoplasmic reticulum25. Otoferlin clusters below the synaptic 

ribbon21 and seems to assume multiple roles in hair cell exocy-
tosis. For example, otoferlin has been suggested (i) to act as the 
putative Ca2+ sensor in IHCs22,26, (ii) to facilitate vesicular prim-
ing and replenishment21,27, and (iii) to participate in exocytosis- 
endocytosis coupling through direct interaction with the adaptor 
protein 2 (AP-2) complex28,29. It is tempting to speculate that 
IHCs evolved this unconventional molecular machinery in order 
to achieve the utmost performance. One possible requirement 
could be a rapid and low-affinity engagement of synaptic vesicles 
with release sites with molecular links to a nearby Ca2+ channel,  
followed by rapid clearance of vesicular lipid and proteins from  
that site for it to be quickly reloaded. Clearly, more work is 
required to elucidate the molecular fusion machinery of IHCs.

Besides the presence of otoferlin, IHC AZs are characterized by 
large Ca2+ channel clusters, which localize underneath the presyn-
aptic density30 and consist predominantly of pore-forming L-type 
Ca

V
1.3 subunits31,32, auxiliary Ca

V
β233, and likely yet-to-be- 

identified Ca
V
α2δ subunits34. Ca2+ channel clustering depends on 

multiple molecular scaffolds, such as Bassoon or the ribbon (or 
both)10,35 as well as RIM2α and β36. The seamless interplay and 
correct localization of these proteins is not only required for 
establishing a normal Ca2+ channel complement10,36 but also criti-
cal to stabilize a large readily releasable pool of vesicles at the 

Figure 1. Inner hair cells drive sound encoding in several spiral 
ganglion neurons. Schematic drawing of an inner hair cell (gray) 
and its synapses with spiral ganglion neurons (black). Inset shows 
super-resolution (4Pi) images of an immunolabeled inner hair cell 
synapse with the synaptic ribbon (red) placed opposite to the 
center of the postsynaptic AMPA receptor cluster (green). Each 
spiral ganglion neuron is thought to receive input from one ribbon-
type inner hair cell active zone at the postsynaptic swelling of its 
peripheral neurite.
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AZ10,11,36. Moreover, IHC AZs contain additional scaffolds such 
as Piccolino, a short splice variant of Piccolo37, and the Usher  
protein harmonin that directly interacts with presynaptic Ca2+  
channels, regulates their gating, and likely promotes their pro-
teasomal degradation38,39. Although the endocytic machinery is 
still largely uncharted, it was recently shown to include AP-228,29, 
dynamins40,41, amphiphysin, and clathrin heavy chain41.

Tight spatial coupling of Ca2+ channels and vesicular 
Ca2+ sensors
The manner in which Ca2+ influx couples to vesicle fusion critically 
determines the properties of synaptic transmission. Two limiting 
cases can be distinguished (reviewed recently in 42–44): (i) “pure” 
Ca2+ nanodomain control, in which the Ca2+ driving the fusion of 
a given vesicle is contributed by an individual voltage-gated Ca2+ 
channel, and (ii) “pure” Ca2+ microdomain control, where the 
amount of Ca2+ at the Ca2+ sensor is governed by a population of 
Ca2+ channels, with negligible impact of individual channels. 
Aside from the precise topography of the channels with respect to 
the vesicular Ca2+ sensors and their numbers and open probabili-
ties, the Ca2+-binding properties of the vesicular Ca2+ sensor and 
the cytosolic Ca2+ buffering at the AZ govern the coupling45. 
Previous work has examined the Ca2+-binding properties of the 
Ca2+ sensor of fusion by combining whole-cell Ca2+ uncaging and 
membrane capacitance measurements in IHCs of mice right after 
hearing onset46. In these experiments, a requirement for four to five 
Ca2+ ions to bind cooperatively prior to fusion was indicated, and 
an overall low Ca2+ affinity of the sensor can be assumed. Note 
however, that this approach yielded massive exocytosis (added 
membrane equivalent to 15% of the cell’s surface). Hence, it is 
unlikely to be entirely mediated by exocytosis at IHC AZs, but 
probably also involved extrasynaptic exocytosis. This calls for 
revisiting the intrinsic Ca2+ dependence of synaptic vesicle fusion 
by using refined approaches to exocytosis at AZs, ideally of more 
mature IHCs.

Classic47 and more recent30,31,48 work indicates that hair cell AZs 
harbor tens of Ca2+ channels on average. However, within a given 
IHC, regardless of its tonotopic position, the number of Ca2+ chan-
nels per AZ varies dramatically. This presynaptic heterogeneity is 
thought to be related to the requirements of wide dynamic range 
sound encoding30,49–51. Interestingly, IHCs display opposing gra-
dients of their AZs for Ca2+-channel complement (higher at the 
modiolar side, facing the ganglion) and voltage-dependence of 
activation (voltage for half-maximal activation more  
hyperpolarized at the pillar side, facing away from the ganglion)52.

Moreover, depending on the experimental strategy, estimates 
for the maximal Ca2+ channel open probability at IHC AZs vary 
between 0.248 and 0.430. To date, the exact topography of individual 
Ca2+ channels within the observed stripe-like clusters beneath the 
ribbon and their putative molecular linkers to vesicular release 
sites remains to be experimentally determined. Here, biophysically  
constrained modeling has proven to be a useful tool in explor-
ing the consequences and feasibility of various scenarios (see 
below, 30,53). Moreover, another interesting aspect in this con-
text will be the detailed identification of the molecular processes 

governing AZ maturation, in particular, in regard to the progressive 
tightening of Ca2+ channel-synaptic vesicle coupling during early 
postnatal development30,48,54.

Endogenous Ca2+ buffering has been studied in hair cells of vari-
ous species53,55–58 typically revealing substantial concentrations of 
Ca2+-binding sites (up to a few millimolar). Recently, measure-
ments of exocytic membrane capacitance changes in mutant IHCs 
lacking the three major cytosolic EF-hand Ca2+-binding proteins 
(that is, calbindin-28k, calretinin, and parvalbumin) were combined 
with Ca2+ buffer substitution—using different concentrations of 
synthetic Ca2+ chelators with either slow (EGTA) or fast (BAPTA) 
kinetics—and computational modeling of stimulus-secretion 
coupling53. With this combinatorial approach, the effective average 
coupling distance between the Ca2+ sensor of the release site and 
the nearest Ca2+ channels was estimated to equate to approxi-
mately 17 nm in mature IHCs and this is well in line with a Ca2+  
nanodomain-like control of exocytosis and similar to previous  
estimates (approximately 23 nm;59).

The notion of a Ca2+ nanodomain-like control of exocytosis is 
supported by observations of a lower apparent Ca2+ cooperativity 
(approximately 1.4) of IHC exocytosis upon changes in the chan-
nel open probability, when compared with that found with changes 
in single-channel Ca2+ current (3–4;30,31,59). The interpretation of 
these discrepant apparent cooperativity estimates as evidence for 
Ca2+ nanodomain-like control of exocytosis was further substanti-
ated by modeling30. There, 50 Ca2+ channels were distributed over 
an area of 80 × 400 nm, aiming to match the Ca2+-channel clusters, 
assuming different topographies of the Ca2+ channels to a dozen 
release sites that were placed at the rim of the Ca2+ channel cluster. 
Modeling of Ca2+-triggered exocytosis was constrained by experi-
mental observations as much as possible. When channels were 
randomly positioned, the apparent Ca2+ cooperativity of exocytosis 
during changes in the number of Ca2+ channels was close to two, and 
hence higher than the experimentally observed value of 1.4. The 
physiological Ca2+ cooperativity was best matched when allocat-
ing one molecularly coupled channel to each release site, while the 
other channels were distributed randomly but respected an exclu-
sion zone of 10 nm around the coupled channels. This was taken 
to support the notion of Ca2+ nanodomain-like control of exocyto-
sis at the IHC AZs of mice after hearing onset, likely realized by 
molecular coupling of a “private” channel to the release site.

During development, Ca2+ influx-exocytosis coupling tightens 
from Ca2+ microdomain-like control to Ca2+ nanodomain-like 
control30, as also found for other synapses60. At this point, Ca2+ 
microdomain control of exocytosis seems less likely for mature 
IHC synapses. Initially, this mechanism had been considered as 
an explanation for the low apparent Ca2+ cooperativity of exocy-
tosis in mature IHCs, which was thought to employ a linear Ca2+ 
sensor (one Ca2+-binding step by synaptotagmin 4) after the onset 
of hearing61. Alternatively, a lower cooperativity, even in the pres-
ence of a sensor with several Ca2+-binding steps, was suggested 
to result in a linear apparent Ca2+ dependence in whole-cell mem-
brane capacitance measurements, due to summing exocytosis 
from heterogeneous, but Ca2+ microdomain-governed AZs in IHC 
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capacitance measurements of exocytosis62. However, whereas 
the former hypothesis seems hard to reconcile with the compa-
rable and supralinear intrinsic Ca2+ dependence of fusion prior 
and after hearing onset30, the latter appears incompatible with the  
indications for Ca2+ nanodomain control of exocytosis at the single-
synapse level59. 

Future experiments should elucidate the topography and mobility 
of individual Ca2+ channels within the cluster and dissect puta-
tive linker proteins connecting release sites to the nearest Ca2+ 
channel(s). Moreover, further characterization of the molecular 
composition of the Ca

V
1.3 Ca2+ channel complexes, also testing the 

presence and role of splice variants of the pore-forming Ca
V
1.3α 

subunit, will assist in understanding (i) the molecular mechanisms 
that govern the heterogeneity of Ca2+ channel expression, (ii) the 
developmental tightening of excitation-secretion coupling, and 
(iii) the respective contributions of individual Ca2+ channel variants 
to shaping the efficiency of presynaptic Ca2+ influx at individual 
IHC AZs.

Large and variable excitatory postsynaptic currents: 
the uniquantal versus multiquantal release debate
We will now focus on the mode of vesicular release at audi-
tory ribbon synapses, a mechanism that remains only partially  
understood. The phenomena that raised uncertainty about this fun-
damental process of synaptic transmission are (i) a remarkable  
heterogeneity of AMPA receptor-mediated excitatory postsynaptic 
current (EPSC) amplitudes, that can range from about 20 to more 
than 800 pA at postsynaptic SGN terminals of rodents and (ii) the 
differences in release kinetics, as reflected in variable rise times and 
waveforms of the EPSCs63.

Conventionally, quanta of neurotransmitter are released spon-
taneously (“uniquantal release”), thereby producing so-called  
miniature EPSCs (mEPSCs). These mEPSCs are uniform in size 
and have characteristic monoexponentially decaying waveforms. 
Such mEPSCs are thought to correspond to spontaneous and 
statistically independent fusion of individual vesicles, constituting 
the basis of the quantal hypothesis of transmitter release64. At IHC 
synapses, large variance of EPSC amplitudes and waveforms is 
found in individual postsynaptic boutons even in complete absence 
of stimulation. Synchronized (statistically dependent) release 
of multiple vesicles (“synchronized multiquantal release”) was 
offered as a plausible mechanism explaining such EPSC 
heterogeneity59,63,65. Synchronized multiquantal release has 
also been indicated for hair cell synapses of turtle and bullfrog 
papillae66–69, and for other sensory synapses, such as those in 
retinal bipolar cells70–72.

Heterogeneity of the EPSC shape might result from varying degrees 
of synchronicity of multiquantal release63,73. Potential mechanisms 
mediating synchronized multiquantal release include release site 
synchronization and compound or cumulative fusion of vesicles 
(reviewed in 2,4,74). The synaptic ribbon might contribute to 

synchronizing multiquantal release by clustering presynaptic Ca2+ 
channels and tethering a large complement of release-ready syn-
aptic vesicles10,21,36,71,75. One thought is that Ca2+ influx through an 
individual Ca2+ channel could synchronously trigger the fusion 
of several nearby vesicles underneath the synaptic ribbon66.  
Alternatively, vesicles might pre-fuse to each other to form 
larger quanta prior to fusion to the plasma membrane (compound  
exocytosis), or fuse to a vesicle that is in the process of release 
(cumulative exocytosis).

Recently, uniquantal release through a dynamic fusion pore has 
been suggested as an alternative hypothesis for IHC synapses of 
rodents76. The motivation came from considering the spike rates of 
hundreds of hertz over prolonged periods of time, which, accord-
ing to the multiquantal hypothesis (on average, six vesicles per 
EPSC59), would require at least sixfold-higher vesicle release rates, 
which seem very high considering measured rates of sustained 
exocytosis of about 700 vesicles per second27. Moreover, in condi-
tions omitting the synchronizing effect of presynaptic Ca2+ entry, 
large monophasic, as well as multiphasic, EPSCs persisted76, seem-
ingly arguing against a Ca2+-synchronized multiquantal release 
scenario at the IHC ribbon synapse. In addition, biophysically 
constrained mathematical modeling of compound exocytosis 
suggested the presence of large vesicles near the AZ membrane, 
which was not found in electron microscopy of stimulated 
samples. These latter findings are difficult to reconcile with a 
synchronized multiquantal release mode to take place at mam-
malian IHC ribbon synapses. So, could a uniquantal release 
model offer an explanation for the large heterogeneity of EPSC 
amplitudes?

Uniquantal release through a dynamic fusion pore has also been 
proposed for other synapses77,78; however, for this scenario to be 
plausible at IHC synapses, two major questions arise: (i) could the 
glutamate content of a single synaptic vesicle elicit the observed 
large EPSCs (on average, about 300 pA) and (ii) could transmitter 
release be governed by a fusion pore that might regulate the extent 
and timing of release events? Using mathematical modeling— 
constrained by morphological estimates of the postsynaptic AMPA 
receptor clusters (Figure 1) and assumptions on glutamate content 
and AMPA receptor density and function—the study concluded 
that single-vesicle release might suffice to trigger large-amplitude 
EPSCs76. Moreover, model prediction and deconvolution of EPSCs 
suggested that fusion pore regulation could account for the observed 
variable EPSC shapes. In detail, the authors suggested a model 
in which there is either immediate and full collapse upon vesicle 
fusion (potentially explaining monophasic EPSCs) or alternatively 
the formation of a transitory instable fusion pore prior to collapse, 
potentially flickering open and closed—a mechanism permitting 
progressive glutamate unloading that may explain the observation 
of multiphasic EPSCs. In addition, variable vesicle size that occurs 
also in the absence of homotypic vesicle-to-vesicle fusion and 
different filling states of vesicles79 might contribute to the EPSC 
heterogeneity at IHC synapses. Finally, other mechanisms such 
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as spill-over of glutamate from neighboring synapses and postsy-
naptic receptor properties need to be considered when relying on 
postsynaptic recordings.

These different hypotheses might not be mutually exclusive, and 
appear to strongly depend on the chosen experimental model 
system. Further experiments, such as (i) membrane capacitance 
recordings of individual fusion events, (ii) electron tomography 
of synapses immobilized within milliseconds after stimulation, or  
(iii) super-resolution fluorescence live-cell imaging of vesicular  
exocytosis, will help in the future to pinpoint the mode of  
exocytosis at hair cell ribbon synapses.
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