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Abstract. The off-shell superspace formulation for six-dimensional conformal supergravity
given in arXiv:1606.02921 is presented here. We describe how the formulation may be used to
describe two invariants for N = (1, 0) conformal supergravity in six dimensions. One of the
invariants contains a C3 term at the component level, while the other contains a C�C term.
It is demonstrated that any invariant for minimal conformal supergravity must be a linear
combination of these two invariants.

1. Introduction
Conformal gravity invariants play an important role in conformal field theories, where on an
arbitrary background anomalies appear in the Ward identities which follow from the conformal
symmetry. These anomalies express the violation of the conservation and tracelessness of the
stress-energy tensor in certain correlation functions. It is well known [1] that there are two main
types of conformal anomalies in even dimensions: type A and type B. There is always exactly
one type A anomaly but an increasing number of type B anomalies by increasing spacetime
dimension D. The type B anomalies are associated with conformal gravity invariants, which are
locally diffeomorphism and Weyl invariant functions of the metric and its derivatives. In four
dimensions (4D) there is only one conformal gravity invariant (or type B anomaly), while in six
dimensions (6D) there are three.

In 6D and in the presence of supersymmetry conformal anomalies acquire further significance.
Supersymmetry places additional restrictions on the general structure of correlation functions.
Remarkably, 6D proves to be the highest spacetime dimension in which superconformal field
theories exist [2]. Furthermore, the only known non-trivial unitary conformal field theories in
6D are supersymmetric and arise in string theory, and realize either N = (2, 0) and N = (1, 0)
superconformal symmetry. This places 6D superconformal field theories at a special point of
study in the space of conformal field theories.

An important step in the study of the general anomaly structure of 6D superconformal field
theories is the construction of the conformal supergravity invariants, which are supersymmetric
extensions of the conformal gravity invariants. For the minimally supersymmetric version, N =
(1, 0), superconformal tensor calculus was developed over thirty years ago in [3] and later applied
to describe certain 6D N = (1, 0) supergravity invariants, such as a supersymmetric Riemann
curvature squared term [4]. However, it has not provided insight into the construction of further
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higher derivative invariants, in particular the minimal conformal supergravity invariants, which
are important ingredients in the description of general supergravity-matter systems.

Apart from superconformal tensor calculus, there is another approach to N -extended
conformal supergravity for D ≤ 6 based on using a curved N -extended superspaceMD|δ, where
δ is the number of fermionic dimensions. Within the superspace setting, one can choose to gauge
only part of the superconformal algebra and use the structure group SO(D− 1, 1)×GR, whereGR
is some R-symmetry group. The superspace geometry is then constrained to describe conformal
supergravity and thus permits additional transformations known as super-Weyl transformations,
which are generated by a real unconstrained superfield parameter.1 However, for applications
involving the construction of super-Weyl invariant objects, it is often more useful to make use of
another superspace formulation, known as conformal superspace [9, 10, 11, 12], which is based on
gauging the entire superconformal group and is more general since the conventional formulation
may be obtained by partially fixing the gauge freedom. Conformal superspace is technically
easier to reduce to components and has already proved useful in the construction of higher
derivative invariants, e.g. the 5D supersymmetric R2 invariant in the standard Weyl multiplet
[12]. For these reasons it is useful to have a 6D N = (1, 0) conformal superspace formulation
for the construction of 6D minimal conformal supergravity invariants.

Before moving on to presenting the 6D conformal superspace formulation, we will first
illustrate a conceptual difference in the 6D N = (1, 0) case from its 4D N = 2 counterpart
in the construction of the conformal supergravity invariants. The invariant for 4D N = 2
conformal supergravity is a supersymmetric C2 term and is remarkably simple.2 It is given by
a chiral integral of the form

IC2 =

∫
d4x d2N θ E Lc + c.c. =

∫
d4x d2N θ EWαβWαβ + c.c. , (1.1)

where E is the chiral measure and Wαβ is the super-Weyl tensor. However, the 6D N = (1, 0)
case is conceptually different as there is no covariant analogue to the chiral action. Furthermore,
although it is natural to consider a full superspace integral of the form

∫
d6xd8θEL, where L

is a real primary superfield of dimension 2, an appropriate superspace Lagrangian L cannot be
constructed from the 6D N = (1, 0) super-Weyl tensor Wαβ. This makes addressing the 6D case
non-trivial as one needs to find an appropriate action principle analogous to the chiral action.

In this paper we present the results of [13] in which the 6D minimal conformal supergravity
invariants were constructed. The invariants were constructed by achieving the following: (i)
developing the 6D N = (1, 0) conformal superspace; (ii) deriving action principles capable of
supporting the Weyl invariants; and (iii) applying the action principles to describe the Weyl
invariants. We will describe each of these points in the main body of this paper.

This paper is organized as follows. In section 2 we give a brief review of 6D conformal gravity
highlighting important points of relevance for section 3. In section 3 we present the conformal
superspace formulation of conformal supergravity and demonstrate that there should only be
two invariants for minimal conformal supergravity. Section 4 is devoted to a review on the
superform approach to the construction of locally supersymmetric invariants and how it can be
used to construct the invariants for minimal conformal supergravity. Finally, conclusions are
presented in section 5.

2. Conformal gravity in six dimensions
Before diving into superspace it is useful to briefly review 6D conformal gravity and the conformal
gravity invariants emphasising some important points for the subsequent presentation.

1 This is known as the conventional superspace approach. It was developed for the 4D N = 1 and N = 2 cases
in [5, 6] and presented for the 5D N = 1 case in [7] which was extended to the 6D N = (1, 0) case in [8].
2 Here C schematically represents the Weyl tensor Cabcd.
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Conformal gravity in 6D may be viewed as being based on gauging the entire conformal group
SO(6,2), which contains the generators XA = {Pa,Mab,D,Ka} corresponding to translation,
Lorentz, dilatation and special conformal transformations, respectively.3 To gauge the conformal
group one begins with a 6D manifold parametrised by local coordinates xm, m = 0, 1, · · · 5. Then
one introduces the inverse vielbein ea = ea

m∂m associated with Pa, and the Lorentz connection
ωa

bc, the dilatation connection ba and the special conformal connection fab associated with each
of their respective generators. The transformations laws for the vielbein and the connections
are chosen such that

∇a = ea −
1

2
ωa

bcMbc − baD− fabKb (2.1)

transform covariantly. Their transformation laws under the gravity gauge group may be
summarized by4

δK∇a = [K,∇a] , K := ξa∇a + ΛaXa := ξa∇a +
1

2
Λ(M)abMab + σD + Λ(K)aK

a . (2.2)

It is worth mentioning that the transformation laws of the connections are such that the
generators Xa act on the covariant derivatives in the same way as they do on Pa, except with
Pa replaced by ∇a.

In order to describe conformal gravity it is necessary to impose some constraints on the
geometry. These constraints fix the entire covariant derivative algebra in terms of the Weyl
tensor as follows

[∇a,∇b] ≡ −Fab = −1

2
Cab

cdMcd −
1

6
∇dCabcdKc , (2.3)

where Cabcd is the Weyl tensor which is primary,5 KfCabcd = 0, and satisfies the symmetry
properties, Cabcd = C[ab][cd] and C[abc]d = 0. The Bianchi identity [∇[a,Fbc]] = 0 requires the
following differential constraint on the Weyl tensor

∇[aCbc]
de = −2

3
∇fC[ab

f [dδ
e]
c] . (2.4)

It is important to note that the covariant derivative algebra is expressed entirely in terms of the
Weyl tensor, which provides a very simple way of seeing that a vanishing Weyl tensor implies a
conformally flat geometry.

All conformal gravity invariants may be written down as integrals of the form

I =

∫
d6x eL , KaL = 0 , DL = 6L , (2.5)

where the Lagrangian L is a dimension 6 primary field constructed out of the Weyl tensor. There
are exactly three possible Lagrangians that one may construct:

L
(1)
C3 = CabcdC

aefdCe
bc
f , (2.6a)

L
(2)
C3 = CabcdC

cdefCef
ab , (2.6b)

LC�C = Cabcd�Cabcd +
1

2
(∇eCabcd)∇eCabcd +

8

9
(∇dCabcd)∇eCabce , (2.6c)

where � := ∇a∇a.
3 We refer the reader to [13] for the conformal algebra and conventions.
4 A tensor field U transforms as δKU = KU .
5 A superfield U is primary if KaU = 0.
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We highlight that once we have gauged the entire conformal algebra the curvature and torsion
tensors are constrained such that they are expressed entirely terms of the Weyl tensor and
its covariant derivatives. Furthermore, the conformal gravity invariants are all described by
primary Lagrangians. In the remaining sections we seek to find an analogous description for the
supersymmetric case.

3. N = (1, 0) conformal superspace
In lower dimensions [9, 10, 11, 12] conformal superspace possesses the following key properties: (i)
the entire superconformal algebra is gauged in superspace; (ii) the torsion and curvature tensors
are built out of covariant derivatives of a single primary superfield; and (iii) the covariant
derivative algebra resembles that of supersymmetric Yang-Mills theory. In this section we
present the 6D N = (1, 0) conformal superspace developed in [13], which satisfies the three
aforementioned properties. For the sake of brevity we refer the reader to [13] for our conventions
and the superconformal algebra, which now contains, in addition to the generators in the bosonic
case, the fermionic generators Qiα and Sαi , denoting the Q-supersymmetry and S-supersymmetry
generators, as well as J ij the SU(2) R-symmetry generator.

3.1. Gauging the superconformal algebra
To gauge the superconformal algebra one takes a N = (1, 0) curved superspace M6|8

parametrised by coordinates zM = (xm, θµi ), where m = 0, 1, 2, 3, 4, 5, µ = 1, 2, 3, 4 and i = 1, 2.
One now associates with each generator Xa = (Mab, Jij ,D, Sγk ,K

c) a connection one-form

ωa = (Ωab,Φij , B,Fkγ ,Fc) = dzMωM
a and with PA the vielbein EA = (Eαi , E

a). They may
be used to construct the covariant derivatives

∇A = EA
M∂M −

1

2
ΩA

abMab − ΦA
ijJij −BAD− FA

j
βS

β
j − FAbK

b . (3.1)

It is important to note that the generators appearing in the structure group act on the covariant
derivatives in the same way as they do on PA except with PA replaced by ∇A.

The supergravity gauge transformations of the covariant derivatives may be summarised as

δK∇A = [K,∇A] , K := ξA∇A +
1

2
ΛbcMbc + ΛijNij + σD + ΛiαS

α
i + ΛaK

a , (3.2)

where the gauge parameters associated with K satisfy natural reality properties. It should be
mentioned that the supergravity transformations act on a tensor superfield U as δKU = KU .
The superfield U is said to be primary and of dimension ∆ if KAU = 0 and DU = ∆U .

The torsion and curvatures appear in the the (anti-)commutation relations

[∇A,∇B} ≡ −FAB = −TABC∇C −
1

2
R(M)AB

cdMcd −R(N)AB
klJkl

−R(D)ABD−R(S)AB
k
γS

γ
k −R(K)ABcK

c , (3.3)

where the torsion and curvatures are constrained to satisfy the Bianchi identities

[∇[A,FBC}} = 0 . (3.4)

3.2. Conformal supergravity
It is clear that the geometric setup of the previous subsection contains too many fields to
describe conformal supergravity. In order to describe conformal supergravity it is necessary to
impose further constraints on the covariant derivative algebra. As in lower dimensions, suitable
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constraints prove to resemble those of the Yang-Mills multiplet. Here we explicitly present the
consequences in the 6D N = (1, 0) case.

The covariant derivative algebra is constrained to resemble that of Yang-Mills theory:

{∇iα,∇
j
β} = −2iεij(γc)αβ∇c ,

[∇a,∇jβ] = −Fajβ = (γa)αβWβi ,

[∇a,∇b] = −Fab = − i

8
(γab)α

β{∇kβ,Wα
k } , (3.5)

where the operator Wαi is constrained by the Bianchi identity

[∇[A,FBC}} = 0 =⇒ {∇(i
α ,Wβj)} =

1

4
δβα{∇(i

γ ,Wγj)} . (3.6)

The operator Wαi is further constrained to be built out of the super-Weyl tensor Wαβ [8] as
follows

Wαi = Wαβ∇iβ +
1

2
W(W )αiabMab +W(W )αiD +W(W )αiBK

B , (3.7)

where super-Weyl tensor Wαβ is a symmetric primary superfield of dimension 1,

Wαβ = W βα , KAW βγ = 0 , DWαβ = Wαβ . (3.8)

The Bianchi identity (3.6) is now equivalent to the following differential constraints on the
super-Weyl tensor:

∇(i
α∇

j)
βW

γδ = −δ(γ[α∇
(i
β]∇

j)
ρ W

δ)ρ , (3.9a)

∇kα∇γkW βγ − 1

4
δβα∇kγ∇δkW γδ = 8i∇αγW γβ . (3.9b)

In order to give the operator Wαi more explicitly it is useful to introduce the dimension 3/2
superfields

Xk
γ
αβ = − i

4
∇kγWαβ − δ(αγ Xβ)k , Xαi := − i

10
∇iβWαβ (3.10)

together with the dimension 2 descendant superfields:

Yα
βij := −5

2

(
∇(i
αX

βj) − 1

4
δβα∇(i

γX
γj)
)

= −5

2
∇(i
αX

βj) , (3.11a)

Y :=
1

4
∇kγX

γ
k , (3.11b)

Yαβ
γδ := ∇k(αXβ)k

γδ − 1

6
δ
(γ
β ∇

k
ρXαk

δ)ρ − 1

6
δ(γα ∇kρXβk

δ)ρ . (3.11c)

The action of the spinor covariant derivatives, as well as with the S-supersymmetry generators,
on the defined superfields may be found in [13]. In terms of these fields one finds

Wαi = Wαβ∇iβ +Xi
γ
αβMβ

γ − 1

8
XβiMβ

α − 5

4
Xα
j J

ij +
5

16
XαiD

+
1

16
Yβ

αijSβj +
i

4
∇βγW γαSβi − 5

64
Y Sαi

− 1

12
(γab)β

γ
(
∇bXi

γ
βα − 3

4
δαγ∇bXβi

)
Ka . (3.12)
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The remaining covariant derivative algebra is constrained in terms of the super-Weyl tensor, its
descendents and their vector covariant derivatives [13].

It is important to stress that the entire covariant derivative algebra is expressed directly
in terms of the super-Weyl tensor and its descendents. In particular, it is trivial to see that
when Wαβ vanishes the supergeometry is superconformally flat. Furthermore, the standard
Weyl multiplet of 6D N = (1, 0) conformal supergravity is encoded in the superspace geometry.
The component fields can be readily identified as certain θ = 0 parts of the superspace gauge
one-forms and descendants of Wαβ.

3.3. An immediate application: The number of independent invariants
Now that we have presented the conformal superspace formulation, it is possible to determine
what the maximum number of invariants for conformal supergravity is. The maximum number
of invariants was determined in [13] by making use of an argument based on analysing possible
supercurrents. It is illustrative to reproduce the argument below. Before moving on to the
constructive proof it is worth first recalling the definition of the supercurrent in 6D N = (1, 0)
supersymmetry.

The supercurrent is a supermultiplet described by a scalar superfield J containing, amongst
its component content, the energy momentum tensor and the supersymmetry current(s),
together with additional components, e.g. R-symmetry current. In the curved case it is described
by a scalar primary superfield J satisfying the differential constraint

∇(i
[α∇

j
β∇

k)
γ]J = 0 . (3.13)

Since this constraint must be annihilated by the S-supersymmetry generator to be consistent
with the superconformal symmetry, J must be of dimension 4.

Each of the invariants for conformal supergravity have an associated non-trivial supercurrent.
Thus a bound on the number of possible invariants for conformal supergravity is given by the
maximum number of possible supercurrents (up to irrelevant normalizations) one can construct
out of the Weyl tensor and its covariant derivatives. To determine the number of supercurrents
possible, one simply writes down the most general possible Ansatz which is

J = c1∇a∇aY + c2Y
2 + i c3X

αi∇αβXβ
i + i c4X

i
α
βγ∇γδXβi

αδ + c5 Yα
βijYβ

α
ij

+c6 Yαβ
γδYγδ

αβ + c7W
αγ∇αβ∇γδW δβ + c8∇βαWαγ∇γδW δβ

+c9εα1···α4εβ1···β4W
α1β1 · · ·Wα4β4 , (3.14)

where cn are arbitrary real coeffcients. Requiring that J be primary and satisfy the differential
constraint yields

c3 = −8

3
c2 − 5c1 , c4 = −32

15
c2 − 16c1 , c5 =

2

15
c2 +

6

5
c1 ,

c6 =
2

45
c2 +

1

3
c1 , c7 = − 2

15
c2 −

1

5
c1 , c8 =

1

2
c7 = − 1

15
c2 −

1

10
c1 ,

c9 = 0 , (3.15)

which tells us that we have a two parameter family of solutions and at most two invariants for
conformal supergravity.

4. Superform action principles and the invariants
Now that we have demonstrated that there can only be at most two invariants for conformal
supergravity, we would like to describe how they were constructed in [13] in this section. It
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turns out that there are exactly two invariants, one of which contains a certain combination
of C3 terms at the component level, while the other contains a C�C term at the component
level. Their construction relies heavily on the use of the superform approach to constructing
supersymmetric invariants [14, 15, 16], which we now turn to briefly reviewing in the context of
6D N = (1, 0) conformal supergravity.

4.1. The superform approach to constructing supersymmetric invariants
The superform approach to constructing supersymmetric invariants is a general approach based
on the idea that a closed super D-form automatically leads to a supersymmetric invariant. In
six dimensions, one introduces a six-form J = 1

6!dz
M6 ∧ · · · ∧ dzM1JM1···M6 in 6D N = (1, 0)

superspace satisfying the closure condition,

dJ =
1

6!
dzM6 ∧ · · · ∧ dzM0∂M0JM1···M6 = 0 . (4.1)

Such a superform immediately leads to the action principle

S =

∫
M6

i∗J =

∫
d6x e ∗J |θ=0 ,

∗J :=
1

6!
εmnpqrsJmnpqrs , (4.2)

where i :M6 →M6|8 is the inclusion map and i∗ is its pullback, the effect of which is to project
θµi = dθµi = 0. Invariance under supersymmetry follows since under a superdiffeomorphism with
ξ = ξAEA = ξM∂M , the superform J transforms as

δξJ = LξJ ≡ iξdJ + diξJ = diξJ , (4.3)

which corresponds to a total derivative. It is important to note that the component action may
be obtained by expressing the action in terms of the tangent frame

S =

∫
d6x

1

6!
εm1···m6Em6

A6 · · ·Em1
A1JA1···A6 |θ=0 ,

=
1

6!

∫
d6x e εa1···a6

[
Ja1···a6 + 3ψa1

α
i J

i
αa2···a6 +

15

4
ψa2

β
j ψa1

α
i J

i
α
j
βa3···a6

+
5

2
ψa3

γ
kψa2

β
j ψa1

α
i J

i
α
j
β
k
γa4a5a6 +O(ψ4)

]
|θ=0 . (4.4)

In order to have a sensible action it must be invariant under all other gauge transformations,
which form the subgroup H. Therefore, we require J to also transform by (at most) an exact
form under these transformations, δHJ = dΘ(Λa), where Θ is some five-form. For conformal
supergravity this requires invariance under the standard superconformal transformations. Under
the superconformal transformations, it is worth distinguishing two cases: (i) Θ = 0; and (ii)
Θ 6= 0. The first case corresponds to when the closed six-form is itself invariant, which is of
relevance to the construction of the C3 invariant, while the second case is of relevance to the
C�C invariant. We now move on to describing the first case and the construction of the C3

invariant.

4.2. A primary superform and the C3 invariant
A special case is given by when the superform J is itself closed. This implies that the components
JA1···A6 of J = 1

6!E
A6 · · ·EA1JA1···A6 transform covariantly. In particular, with respect to the

special conformal transformations we have the conditions

Sβj Ja1···an
i1
α1
· · ·i6−n

α6−n
= −in (γ̃[a1)βγJγja2···an]

i1
α1
· · ·i6−n

α6−n
, KbJA1···A6 = 0 , (4.5)
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which allows us to express the closure condition (4.1) in terms of the tangent frame as follows

∇[A1
JA2···A7} + 3T[A1A2

BJ|B|A3···A7} = 0 . (4.6)

We define primary superforms as those superforms satisfying the condition (4.5).
Under certain weak assumptions one can show that a closed primary six-form in 6DN = (1, 0)

superspace is unique [13], and is given in [17] in the context of SU(2) superspace. In conformal
superspace, the six-form corresponds to choosing the lower dimension components of J to vanish
and the dimension 9/2 component as follows:

Jabc
i
α
j
β
k
γ = 3(γabc)(αβAγ)

ijk , (4.7)

where, due to eq. (4.5), Aα
ijk is primary KBAα

ijk = 0. The closure condition (4.6) can be
shown to hold identically once one imposes the following differential condition on Aα

ijk:

∇(i
(αAβ)

jkl) = 0 . (4.8)

Closure (4.6) also fixes the remaining components of the superform, e.g. the top component of
the superform is

Jabcdef = − i

244!
εαβγδεabcdef∇αi∇βj∇γkAδijk . (4.9)

The remaining components of the superform are given in [13].
The superform constructed in terms of Aα

ijk can be used to describe supersymmetric
invariants in an analogous way as the chiral action principle in the 4D N = 1 and N = 2
cases. In particular, all that one must do is search for a composite expression for Aα

ijk such
that it is built out of the superfields of the theory in consideration. This very approach can
be used to describe the supersymmetric C3 invariant. By allowing Aα

ijk to be built out of the
super-Weyl tensor and its descendents yields the following unique solution [13]

Aα
ijk = 5iεαβγδX

β(iXγjXδk) − 8iεαβγδX
β(iXj

α′
γβ′X

k)
β′
δα′

+
64i

3
εαβγδX

(i
α′
ββ′Xj

β′
γγ′X

k)
γ′
δα′

+4εαβγδYρ
β(ijXk)

η
ργW ηδ − 3εαβγδYρ

β(ijXγk)W ρδ . (4.10)

The solution (4.10) automatically describes a supersymmetric invariant. By plugging the
result (4.10) into eq. (4.9) and keeping in mind the component reduction formula (4.4), one can
show that the component action contains a C3 term proportional to

−1

8
εabcdefεa′b′c′d′e′f ′Cab

a′b′Ccd
c′d′Cef

e′f ′ = 4L
(2)
C3 − 8L

(1)
C3 . (4.11)

4.3. A non-primary superform and the C�C invariant
We have presented a primary superform that may be used as an action principle in constructing
invariants. However, it becomes apparent that the primary superfield Aα

ijk cannot be used to
describe a supersymmetric C�C invariant due to its uniqueness. In particular, one can construct
another object of the right index structure as Aα

ijk that satisfies the right differential constraint,
but it can be shown to not be primary. This suggests that we should generalise our approach
to look for non-primary closed superforms.

The obstruction we encounter in using the previous action principle for the construction of
another conformal supergravity invariant is the special conformal transformations. To remedy
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this we introduce the special conformal connections FA into our ansatz for the closed superform
as follows:

J = J0 + Fiα ∧ JSαi + Fa ∧ JKa , (4.12)

where J0 is a six-form, and JS
α
i and JK

a are some 5-forms. The purpose of the five-forms
JS

α
i and JK

a is to capture the “anomalous terms” arising from the transformations of J under
S-supersymmetry and special conformal transformations such that

δSJ = −d(ΛS
i
αJS

α
i ) , δKJ = −d(ΛKaJK

a) . (4.13)

Given our ansatz (4.12), it is still necessary to know how to constrain the components of the
superform. A clue comes from considering the full superspace integral

S =

∫
d6x d8θ E L , (4.14)

where L is a primary superfield of dimension 2. If we replace L by a tensor superfield Φ, which
satisfies

Bαβij =
i

2
εαβγδ∇(i

γ∇
j)
δ Φ = 0 , (4.15)

the full superspace integral (4.14) vanishes since Φ has a prepotential formulation [18]. This
suggests that there should be an action principle based on a primary superfield of the form Bαβij

↔ Ba
ij , which provides a way of describing the full superspace integral as a closed superform.

A solution based on the ansatz (4.12) was found in [13] such that all components of J0, JS
α
i

and JK
a are constructed in terms of a primary superfield of dimension 3 satisfying the constraint

∇(i
αB

βγjk) = −2

3
δ[βα ∇

(i
δ B

γ]δjk) . (4.16)

The superfield Bαβij appears in the component of the JK with lowest mass dimension.

JKbcd
i
α
j
β
a = −64i(γbcd)αβ B

a ij , (4.17)

while all other higher dimension components are expressed in terms of spinor derivatives of
Bαβij , e.g.

J0 a1a2a3a4a5a6 = −εa1a2a3a4a5a6
(
− 1

5
∇4
ijklC

ijkl + · · ·
)
, (4.18)

where Cijkl := − i
12∇

(i
α∇jβB

αβkl) and the ellipses represents terms that directly involve the Weyl

tensor. We refer the reader to [13] for the remaining components and details.
The supeform based on Bαβ

ij provides an action principle analogous to the one in the previous
subsection, in the sense that an invariant action may be constructed by allowing Bαβij to be
composed of the superfields involved in the theory of interest. For example, if one requires Bαβij

to be expressed in terms of the super-Weyl tensor and its covariant derivatives, one finds the
following unique solution:

Bαβ ij = W γ[αYγ
β]ij + 8iXγ

δ[α(iXδ
β]γj) − 5i

2
X [α(iXβ]j) . (4.19)

One can check that by plugging this result into the superform (4.18), one finds (upon integration
by parts) a Cabcd�Cabcd term at the component level.
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5. Conclusion
In conclusion, we presented the 6D N = (1, 0) conformal superspace constructed in [13] and
demonstrated it is well adapted to describing the invariants for conformal supergravity. The
formulation was used to give a simple proof that there can only be a maximum of two invariants
for conformal supergravity. We described a primary superform that can be used as an action
principle and showed how it can be used to describe the supersymmetric C3 invariant. We
also showed that a non-primary superform action principle was required to construct the
supersymmetric C�C invariant. Due to the supercurrent analysis presented here, all invariants
for minimal conformal supergravity must be a linear combination of the two invariants. The
complete component actions for the invariants are given by their component projections and the
bosonic sectors will be explicitly given in a forthcoming publication.
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