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Abstract. Comb geometry, constituted of a backbone and fingers, is one of the most

simple paradigm of a two dimensional structure, where anomalous diffusion can be

realized in the framework of Markov processes. However, the intrinsic properties of

the structure can destroy this Markovian transport. These effects can be described by

the memory and spatial kernels. In particular, the fractal structure of the fingers, which

is controlled by the spatial kernel in both the real and the Fourier spaces, leads to the

Lévy processes (Lévy flights) and superdiffusion. This generalization of the fractional

diffusion is described by the Riesz space fractional derivative. In the framework of this

generalized fractal comb model, Lévy processes are considered, and exact solutions for

the probability distribution functions are obtained in terms of the Fox H-function for a

variety of the memory kernels, and the rate of the superdiffusive spreading is studied by

calculating the fractional moments. For a special form of the memory kernels, we also

observed a competition between long rests and long jumps. Finally, we considered the

fractional structure of the fingers controlled by a Weierstrass function, which leads to

the power-law kernel in the Fourier space. It is a special case, when the second moment

exists for superdiffusion in this competition between long rests and long jumps.
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1. Introduction

A comb model is a particular example of a non-Markovian motion, which takes place due

to its specific geometry realization inside a two dimensional structure. It consists of a

backbone along the structure x axis and fingers along the y direction, continuously

spaced along the x coordinate, shown in Fig. 1. This special geometry has been

introduced to investigate anomalous diffusion in low-dimensional percolation clusters

[2, 29, 47, 49]. In the last decade the comb model has been extensively studied

http://arxiv.org/abs/1607.01620v1
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backbone

fingers

Figure 1. Comb-like structure.

to understand different realizations of non-Markovian random walks, both continuous

[1, 4, 13] and discrete [10]. In particular, comb-like models have been used to describe

turbulent hyper-diffusion due subdiffusive traps [4, 21], anomalous diffusion in spiny

dendrites [22, 32], subdiffusion on a fractal comb [19], and diffusion of light in Lévy

glasses [3] as Lévy walks in quenched disordered media [8, 9], and to model anomalous

transport in low-dimensional composites [43].

The macroscopic model for the transport along a comb structure is presented by

the following two-dimensional heterogeneous diffusion equation [2, 29, 47, 49]

∂

∂t
P (x, y, t) = Dxδ(y)

∂2

∂x2
P (x, y, t) +Dy

∂2

∂y2
P (x, y, t), (1)

where P (x, y, t) is the probability distribution function (PDF), Dxδ(y) and Dy are

diffusion coefficients in the x and y directions, respectively, with physical dimension

[Dx] = m3/s, and [Dy] = m2/s. The δ(y) function (the Dirac δ(y) function) means

that diffusion in the x direction occurs only at y = 0. This form of equations describes

diffusion in the backbone (at y = 0), while the fingers play the role of traps. Diffusion in

a continuous comb can be described within the continuous time random walk (CTRW)

theory [7]. For the continuous comb with infinite fingers, the returning probability scales

like t−1/2, and the waiting time PDF behaves as t−3/2 [34], resulting in appearance of

anomalous subdiffusion along the backbone with the transport exponent 1/2. In another

example of a fractal volume of an infinite number of backbones, it has been shown that

the transport exponent depends on the fractal dimension of the backbone structure [40].

Natural phenomenological generalization of the comb model (1) is the generalization of

both the time processes, by introducing memory kernels γ(t) and η(t), and introducing

space inhomogeneous (fractal) geometry, i.e., a power-law density of fingers described

by kernel ρ(x) [19, 20, 22]. This modification of the comb model (1) can be expressed

in the form of a so-called fractal comb model
∫ t

0
dt′ γ(t− t′)

∂

∂t′
P (x, y, t′) = Dxδ(y)

∫ t

0
dt′ η(t− t′)

∂2

∂x2
P (x, y, t′)

+Dy
∂2

∂y2

∫ ∞

−∞
dx′ ρ(x− x′)P (x′, y, t). (2)
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Here, the memory kernels γ(t) and η(t) are, in general case, decaying functions,

approaching to zero in the long time limit (see [41] for details of the form of the memory

kernels). The physical dimensions of the diffusion coefficients Dxδ(y) and Dy depend

now on the form of the memory kernels γ(t) and η(t). The memory kernels γ(t) and

η(t), and the kernel ρ(x)‡ should be introduced in such a way that these functions do not

change the physical meaning of the diffusion coefficients Dxδ(y) and Dy. Therefore, it

is reasonable to introduce these functions in the dimensionless form, by introducing the

time scale τ and the coordinate scale l. For example, it can be done in the following way

[21]: τ = D2
x/D3

y and l = Dx/Dy, where we use that the dimension of Dx is [Dx] = l3/τ ,

while the dimension of Dy is [Dy] = l2/τ . This yields the corresponding change of

the kernels γ(t/τ), η(t/τ), and ρ(x/l), and this leads to the rescaling of Eq. (2). To

avoid this procedure and keep the diffusion parameters Dx and Dy explicitly, we just

state that the diffusion coefficients automatically absorb these scale parameters, and

this rescaling depends on the functional form of γ(t), η(t) and ρ(x). The function γ(t)

contributes to the memory effects in such a way that the particles moving along the

y-direction, i.e., along the fingers, can be trapped. It means that diffusion along the y

direction can be anomalous as well [32, 39]. The function η(t) is a so-called generalized

compensation kernel [32]. The case γ(t) = η(t) = δ(t) yields the diffusion equation of

the comb model (1). Corresponding CTRW models have been suggested, where the

memory kernels appear in the waiting time [32, 41, 39]. A mesoscopic mechanism of

this CTRW phenomenon has been suggested in [33], as well.

The spatial fractal geometry is taken into consideration by the fractal dimension of

the finger volume (mass) |x|ν , where 0 < ν < 1 is the fractional dimension, and fingers

are continuously distributed by the power-law. This can be presented as a convolution

integral between the non-local density of fingers and the PDF P (x, y, t) in the form

[19]
∫∞
−∞ dx′ ρ(x − x′)P (x′, y, t), which also can be presented by the inverse Fourier

transform F−1
κx

[

|κx|1−νP̂ (κx, y, t)
]

, where Fx [ρ(x)] = ρ̃ (κx) = |κx|1−ν§. This integration
also establishes a link between fractal geometry and fractional integro-differentiation

[26, 36, 37] (see also the discussion in Summary).

As an illustration, a fractal comb is given in Fig. 2. The fractal comb in Fig. 2 is

a random form of a middle third Cantor set construction, where a given segment with

fingers is randomly divided in three parts and we delete the middle part. Therefore,

we obtain the first generation which consists of two subsets of fingers. We repeat this

middle third procedure for each subset to obtain the second generation with four random

subsets of continuously distributed fingers. Then, one obtains the third generation, an

so on. One should recognize that a random walk on this fractal comb (either random

or regular) leads to correlations, related to quenched structures [7]. Therefore, the

random structure of the comb induces correlation between successive trapping times in

‡ Note that the density of fingers is
∫

dx ρ(x).

§ The Fourier transform of f(x) is given by F̃ (κ) = F [f(x)] =
∫∞

−∞ dx f(x)eıκx. Consequently, the

inverse Fourier transform is defined by f(x) = F−1

[

F̃ (κ)
]

= 1

2π

∫∞

−∞
dκ F̃ (κ)e−ıκx.
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Figure 2. Fourth generation of a random one-third Cantor set. This fractal comb is

a form of a middle third Cantor set construction [15], where each segment is randomly

divided in three parts. The second slice is the first generation of the smallest part of

the third generation of the Cantor set, shown in the upper slice.

the fingers. In some cases of large scales, such random walks, can be renormalized to a

CTRW model, and the quenched aspect can be neglected by using an effective trapping

time PDF, as discussed in Ref. [7].

Comb model (2) for ν = 1 reduces to a generalization of continuous comb model

for anomalous and ultraslow diffusion. Furthermore, for γ(t) = η(t) = δ(t) the

“classical” comb model (1) is recovered, as well. The anomalous diffusion processes

are characterized by power-law dependence of the mean square displacement (MSD)

on time 〈x2(t)〉 ≃ tα, where the anomalous diffusion exponent α is less than one for

subdiffusive processes and greater than one for superdiffusive processes, see e.g. [35].

The comb model (2) for γ(t) = η(t) = t−µ

Γ(1−µ)
(0 < µ < 1) yields the fractional comb

model considered in [22, 32], where the fractional derivatives appear in the form of the

Caputo time fractional derivative

CD
q
t f(t) =

1

Γ(1− q)

∫ t

0
dt′ (t− t′)−q

d

dt′
W (t′) (3)

and the Riemman-Liouville fractional integral

RLI
q
t f(t) =

1

Γ(q)

∫ t

0
dt′ (t− t′)q−1f(t′). (4)

This paper is organized as follows. In Section 2 we give analytical results for

generalized fractal comb model. Different memory kernels are used and anomalous

superdiffusion is observed. The connection between fractal structure of fingers and

the Riesz fractional derivative is presented in Section 3. Summary is given in Section

4. At the end of the paper an additional material necessary for understanding of the

main text is presented in Appendices. These relate to definitions and properties of

the Mittag-Leffler, Fox H and Weierstrass functions. Calculations of the PDFs and

fractional moments are also presented in Appendix A. Here we stress that we perform

exact analytical analysis throughout the whole manuscript.
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2. Model formulation and solution

At the first step of the present analysis let us understand the role of the δ(y) function in

the highly inhomogeneous diffusion coefficients in Eqs. (1) and (2). One should recognize

that the singularity of the x component of the diffusion coefficient results from the

Liouville equation; it is the intrinsic transport property of the comb models (1) and (2).

Note that this singularity of the diffusion coefficient relates to a non-zero flux along the

x coordinates. Let us consider the Liouville equation

∂

∂t
P + div j = 0, (5)

where the two dimensional current j = (jx, jy) =
(

−δ(y) ∂
∂x
P, − ∂

∂y
P
)

describes Markov

processes in Eq. (1). However, diffusion in both the backbone and fingers can be in

general non-Markovian processes, which is reflected in Eq. (2). Moreover the fingers

can be inhomogeneously distributed as occurs in dendritic spines, where the spines are

randomly (rather than uniformly) distributed [16]. In this case the two-dimensional

current reads

jx = −Dxδ(y)
∫

dt′η′(t− t′)
∂

∂x
P (x, y, t′), (6)

jy = −Dy

∫

dx′dt′γ′(t− t′)ρ(x− x′)
∂

∂y
P (x′, y, t′). (7)

Eq. (5) together with Eqs. (6) and (7), can be regarded as the two-dimensional non-

Markovian master equation. Integrating Eq. (5) over y from −ǫ/2 to ǫ/2:
∫ ǫ/2
−ǫ/2 dy . . .,

one obtains for the l.h.s. of the equation, after application of the middle point theorem,

ǫ ∂
∂t
P (x, y = 0, t), which is exact in the limit ǫ → 0. This term can be neglected in the

limit ǫ → 0. Considering integration of the r.h.s. of the equation, we obtain that the

term responsible for the transport in the y direction reads from Eq. (7)

∫

dt′dx′γ′(t− t′)ρ(x− x′)
∂

∂y

[

P (x′, y, t′)|y=ǫ/2 − P (x, y, t′)|y=−ǫ/2

]

.

This corresponds to the two outgoing fluxes from the backbone in the ±y directions:

Fy(y = +0) + Fy(y = −0). The transport along the x direction, after integration of

Eq. (6), is

ǫD(y → 0)
∂2

∂x2

∫

dt′η′(t− t′)P (x, y = 0, t′) = Fx(x+ ǫ) + Fx(x− ǫ) .

Here, we take a general diffusivity function in the x direction D(y) (instead of

Dxδ(y) in Eq. (5) and (6)). It should be stressed that the second derivative over

x, presented in the form ǫ ∂
2

∂x2
P =

[

∂
∂x
P (x+ ǫ/2)− ∂

∂x
P (x− ǫ/2)

]

as ǫ → 0, ensures

both incoming and outgoing fluxes for Fx along the x direction at a point x. After

integration over y ∈ [−ǫ,+ǫ], the Liouville equation is a kind of the Kirchhoff’s law:

Fx(+) + Fx(−) + Fy(+) + Fy(−) = 0 for each point x and at y = 0. Since jx 6= 0,

outgoing fluxes are not zero, the flux Fx ≡ Fx(+) + Fx(−) has to be nonzero as well:
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Fx(±) 6= 0. Therefore, ǫD(y → 0) 6= 0. Taking the diffusion coefficient in the form

D(y) = 1
π

ǫDx

y2+ǫ2
, one obtains in the limit ǫ → 0 a nonzero flux Fx with D(y) = Dxδ(y),

which is the diffusion coefficient in the x direction in Eqs. (2), (5) and (6). The relations

between kernels γ(t), η(t) and γ′(t), and η′(t) in Eqs. (2) and (5), (6) and (7) can be

established in the Laplace space. Namely, performing the variable change in the Laplace

space L[γ(t)] = L[γ′(t)] and L[η(t)] = L[η′(t)]/L[γ′(t)] one arrives at Eq. (2).

Presenting the last term in Eq. (2) in the Fourier inversion form, Eq. (2) reads
∫ t

0
dt′ γ(t− t′)

∂

∂t′
P (x, y, t′) = Dxδ(y)

∫ t

0
dt′ η(t− t′)

∂2

∂x2
P (x, y, t′)

+DyF−1
κx

[

|κx|1−ν
∂2

∂y2
P̃ (κx, y, t)

]

, (8)

where ρ(x) ∼ |x|ν−2 is used. Therefore, Eq. (8) can be presented by means of the

Riesz space fractional derivative‖ ∂1−ν

∂|x|1−ν of order 0 < 1 − ν < 1 [38]. This fractional

derivative appears as a result of presenting the fingers density |x|ν−1 in the form of the

Fourier transform¶. This natural generalization of Eq. (8) establishes a relation between

the fractal geometry of the medium and fractional integro-differentiation, where the

reciprocal fractional density |κx|1−ν leads to the fractional Riesz derivative of the order

0 < 1 − ν < 1. We also admit here that for ν = 1 (ρ(x) = δ(x)) we call Eq. (2) and

Eq. (8) “continuous” comb, while for ν < 1 it is “fractal” comb model.

2.1. PDF and q-th moment along the backbone

To understand the properties of anomalous diffusion, one calculates the MSD. However,

the MSD can diverge for Lévy processes. In this case one calculates a fractional q-th

moment, which is obtained here.

The Fourier-Laplace transforms of Eq. (8) yield

γ̂(s)
[

s
˜̂
P (κx, κy, s)− P̃ (κx, κy, t = 0)

]

= −Dxκ
2
xη̂(s)

˜̂
P (κx, y = 0, s)

−Dy|κx|1−νκ2y
˜̂
P (κx, κy, s), (9)

where
˜̂
P (κx, y, s) = Fx [L [P (x, y, t)]] and

˜̂
P (κx, κy, s) = Fy

[

˜̂
P (κx, y, s)

]

. Performing

the inverse Fourier transform of
˜̂
P (κx, κy, s) with respect to κy, one finds

˜̂
P (κx, y, s),

from where
˜̂
P (κx, y = 0, s) reads

˜̂
P (κx, y = 0, s) =

1

s

√

√

√

√

sγ̂(s)

4Dy
|κx|

ν−1
2

/



1 +
1

s

√

√

√

√

sγ̂(s)

4Dy

Dxη̂(s)

γ̂(s)
|κx|

3+ν
2



 . (10)

Here we use the initial condition P̃ (κx, κy, t = 0) = 1. Substituting Eq. (10) in Eq. (9),

‖ The Riesz fractional derivative of order α (0 < α ≤ 2) is given as a pseudo-differential operator with

the Fourier symbol −|κ|α, κ ∈ R [17, 38], i.e., ∂α

∂|x|α f(x) = F−1

[

−|κ|αF̃ (κ)
]

(x).

¶ Originally the finger term reads Dy|x|ν−1 ∂2

∂y2P (x, y, t), see Ref. [19].
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one obtains

˜̂
P (κx, κy, s) =

sγ̂(s)ξ̂(s)
(

sγ̂(s) +Dy|κx|1−νκ2y
)

(

sξ̂(s) + Dx

2
√

Dy
|κx|

3+ν
2

) . (11)

Taking κy = 0 in Eq. (11), which eventually leads to the reduced PDF p1(x, t) =
∫∞
−∞ dy P (x, y, t), one obtains the latter in the form

˜̂p1(κx, s) =
ξ̂(s)

sξ̂(s) + Dx

2
√

Dy
|κx|

3+ν
2

, (12)

where ˜̂p1(κx, s) = Fx [L [p1(x, t)]], and

ξ̂(s) =
1

η̂(s)

√

γ̂(s)

s
. (13)

Equation (12) corresponds to the fractional diffusion equation for the reduced

distribution p1(x, t), which describes both Lévy flights with traps and subdiffusion,
∫ t

0
dt′ ξ(t− t′)

∂

∂t′
p1(x, t

′) =
Dx

2
√

Dy

∂α

∂|x|α p1(x, t). (14)

Here the Riesz space fractional derivative is of order α = 3+ν
2

≤ 2, while integro-

differentiation with respect to time is presented in the Caputo form.

Introducing a waiting times PDF ψ(t), which in the Laplace space is given by

ψ̂(s) =
(

1 + sξ̂(s)
)−1

[39], one obtains the relation ξ̂(s) = 1−ψ̂(s)

sψ̂(s)
. For example, in the

Markov case, when ψ(t) = 1
τ
e−t/τ , the trap kernel is a δ function and the l.h.s. of

Eq. (14) reduces to the standard time derivative ∂
∂t
p1(x, t). A subdiffusive case, when

ψ(t) = 1
1+(t/τ)β

, yields [23] ξ̂−1(s) = s1−β. Then the l.h.s. of Eq. (14) corresponds to

the Caputo fractional derivative of the order of β, defined in Eq. (3). Therefore, the

power-law tail of the kernel ξ(t) determines the Caputo fractional derivative (3).

It is worth mentioning that the solution of Eq. (8) in the Fourier-Laplace space

(κx, s) can be written as

˜̂
P (κx, y, s) = exp





−
√

√

√

√

s˜̂g(κx, s)

Dy
|y|







˜̂
f(κx, s), (15)

where f(x, t) and g(x, t) are functions standing for the derivation. We find that

˜̂g(κx, s) = γ̂(s)|κx|ν−1 and
˜̂
f(κx, s) is given by Eq. (10), from where the Fourier transform

in respect to y, gives the same expression for
˜̂
P (κx, κy, s) as in Eq. (11).

The q-th fractional moments can be analyzed for various forms of the kernels γ(t)

and η(t)

〈|x(t)|q〉 = 2
∫ ∞

0
dx xqp1(x, t), (16)

where 0 < q < α < 2. One considers the q-th fractional moments with q < α, since the

MSD for Lévy processes governed by equation (14) does not exist. Therefore, instead
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of the MSD one can analyze its analogue related to the q-th moment, 〈|x(t)|q〉2/q [35].

From relation (12) one obtains

〈|x(t)|q〉 = Cα(q)L−1







1

s
(

sξ̂(s)
)q/α





 , (17)

where

Cα(q) =
4

α





Dx

2
√

Dy





q/α
Γ(q)Γ (1 + q/α) Γ (−q/α)

Γ(q/2)Γ(−q/2) . (18)

The case with ν = 1, i.e., α = 2 (continuous comb), yields

〈|x(t)|q〉 = Γ(q + 1)





Dx

2
√

Dy





q/2

L−1







1

s
(

sξ̂(s)
)q/2





 , (19)

from where for q = 2 we recover the result for the MSD [41]

〈

x2(t)
〉

=
Dx
√

Dy

L−1

[

1

s2ξ̂(s)

]

. (20)

Now setting different functional behaviors of the kernels γ(t) and η(t), one can observe

various diffusion regimes, along both the x and y directions.

2.2. Special case I: Lévy distribution

When γ(t) = δ(t), i.e., γ̂(s) = 1, and η(t) = t−1/2

Γ(1/2)
, i.e., η̂(s) = s−1/2, which means

ξ̂(s) = 1, we obtain the Markovian transport equation for superdiffusion along the

backbone
∂

∂t
p1(x, t) =

Dx

2
√

Dy

∂α

∂|x|α p1(x, t). (21)

Taking the initial condition p1(x, 0+) = δ(x) and the boundary conditions p1(±∞, t) =
∂
∂x
p1(±∞, t) = 0 (see Appendix A), one obtains the solution of Eq. (21)

p1(x, t) =
1

α|x|H
2,1
3,3











|x|
(

Dx

2
√

Dy
t
)1/α

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1, 1
α
), (1, 1

α
), (1, 1

2
)

(1, 1), (1, 1
α
), (1, 1

2
)











, (22)

where Hm,n
p,q

[

z

∣

∣

∣

∣

∣

(ap, Ap)

(bq, Bq)

]

is the Fox H-function [31] (see also a brief introduction in

Appendix C).

Therefore, the q-th moment reads (see calculations in Appendix A)

〈|x(t)|q〉 = Cα(q)
tq/α

Γ (1 + q/α)
, (23)

where Cα(q) is defined in Eq. (18). From Eq. (23) one obtains 〈|x(t)|q〉2/q ≃ t4/(3+ν)

that corresponds to superdiffusion (Lévy flights [48]) since 0 < ν < 1. The same
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superdiffusive behavior is observed when s−1/2
√

γ̂(s) = η̂(s), which means ξ̂(s) = 1.

Note that Eq. (9) describes a typical competition between long rests and long jumps [35].

Contrary to the case described in Refs. [19, 32], in the present analysis, superdiffusion

can be dominant not only due to the fractional (power-law) distribution of the fingers

with 0 < ν < 1, but also due to the specific choice of the time kernels η(t) and γ(t).

2.3. Special case II: Competition between long rests and Lévy flights

Now we consider the power-law memory kernels in the form γ(t) = η(t) = t−µ

Γ(1−µ)
,

0 < µ < 1. From Eq. (13) we find ξ̂(s) = s−µ/2, which yields in the time domain that

ξ(t) = t−(1−µ/2)

Γ(µ/2)
. Therefore, the space-time fractional diffusion equation for the reduced

PDF p1(x, t) is a non-Markovian trasport equation for superdiffusion along the backbone

CD
1−µ/2
t p1(x, t) =

Dx

2
√

Dy

∂α

∂|x|α p1(x, t), (24)

where CD
1−µ/2
t is the Caputo time fractional derivative (3) of order 1/2 < 1− µ/2 < 1,

and ∂α

∂|x|α
is the Riesz space fractional derivative of order α = 3+ν

2
. The initial

condition is p1(x, 0+) = δ(x), and the boundary conditions are defined at infinities

p1(±∞, t) = ∂
∂x
p1(±∞, t) = 0. Taking into account the initial and the boundary

conditions, one obtains the solution of Eq. (24) in terms of the Fox H-function (see

Appendix A, Eq. (A.8))

p1(x, t) =
1

α|x|H
2,1
3,3











|x|
(

Dx

2
√

Dy
t1−µ/2

)1/α

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1, 1
α
), (1, 1−µ/2

α
), (1, 1

2
)

(1, 1), (1, 1
α
), (1, 1

2
)











. (25)

Repeating the calculation of the fractional q-th moment in Eq. (A.9), one obtains

〈|x(t)|q〉 = Cα(q)
t
2−µ
2α

q

Γ
(

1 + 2−µ
2α
q
) , (26)

which also yields 〈|x(t)|q〉2/q ≃ t(2−µ)/α. One concludes here that superdiffusion appears

for 2µ+ν < 1, and subdiffusion takes place for 2µ+ν > 1. These effects result from the

combination of the memory kernels that eventually leads to the competition between

long rests and long jumps. Note that in the limit case of ν = 1, there is subdiffusion

with the correct MSD 〈x2(t)〉 ≃ t1−µ/2 [35, 42].

2.4. Special case III: Distributed order memory kernels

Note that there are many choices of the memory kernels that can lead to more specific

situations. For example, as it is shown in Refs. [11, 27, 39], distributed order memory

kernels can lead to a strong anomaly in fractional kinetics like ultra-slow diffusion, where

for example the Sinai diffusion [45] is one of the best-known realizations of anomalous

kinetics.
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Let us consider the distributed order memory kernel of the form [11, 12, 24, 27]

γ(t) =
∫ 1

0
dµ

t−µ

Γ(1− µ)
, (27)

which yields γ(s) = s−1
s log(s)

[11, 27], and for η(t) = δ(t) one obtains ξ(s) = 1
s

√

s−1
log s

. For

the calculation of the q-th moment, it is convenient to use here the Tauberian theorem

[17], which states that for a slowly varying function L(t) at infinity, i.e., limt→∞
L(at)
L(t)

= 1,

a > 0, if R̂(s) ≃ s−ρL
(

1
s

)

, s→ 0, ρ ≥ 0, then r(t) = L−1
[

R̂(s)
]

≃ 1
Γ(ρ)

tρ−1L(t), t→ ∞.

Therefore, applying the Tauberian theorem, one obtains the behavior of the fractional

q-th moments in the long time limit

〈|x(t)|q〉 = Cα(q)L−1





1

s

(

log s

s− 1

)
q
2α



 ≃ Cα(q)L−1





1

s

(

log
1

s

)

2q
α



 ≃ Cα(q) log
q
2α t, (28)

which yields 〈|x(t)|q〉2/q ≃ log
1
α t. This result also contains the correct limit of the

continuous comb with ν = 1 (α = 2), when the MSD reads 〈x2(t)〉 ≃ Dx√
Dy

log1/2 t [41].

It should be stressed that ultra-slow diffusion takes place here even in the presence of

the Lévy flights. However the latter affects only the power of the logarithm, since ultra-

slow diffusion is the robust process with respect to the inhomogeneous distribution of

the fingers.

For a more general distributed order memory kernel of the form [12]

γ(t) =
∫ 1

0
dµ λµλ−1 t−µ

Γ(1− µ)
, (29)

where λ > 0, one obtains for the long time limit γ(s) ≃ Γ(1+λ)

s logλ 1
s

, and for η(t) = δ(t) the

q-th moment reads

〈|x(t)|q〉 ≃ Cα(q)L−1





1

s

(

logλ 1
s

Γ(1 + λ)

)

q
2α



 ≃ Cα(q)

(

logλ t

Γ(1 + ν)

)

q
2α

. (30)

This q-th moment behavior eventually yields 〈|x(t)|q〉2/q ≃
(

logλ t
Γ(1+ν)

)1/α
, which also

contains the limiting case of the continuous comb with the MSD 〈x2(t)〉 ≃ Dx√
Dy

logλ/2 t√
Γ(1+λ)

[41].

2.5. Diffusion along fingers

One easily finds that the solution (11) does not describe diffusion in the y direction.

Indeed, it follows from Eq. (11) that

˜̂p2(κy, s) =
1

s
, (31)

where p2(y, t) =
∫∞
−∞ dxP (x, y, t), which means that p2(y, t) = δ(y), from where one

obtains that the MSD along the y-direction is equal to zero. However diffusion in the

y direction does take place with the diffusivity Dy. To resolve this paradox, one should

understand that the MSD is obtained by averaging over the total volume, which yields



Lévy processes on a generalized fractal comb 11

zero power of the set: limL→∞
1
L

∫ L
0 dx x

ν−1 ∼ limL→∞ Lν−1 = 0. To obtain a finite

result, one has to average over the fractal volume Lν . Therefore, the Fourier inversion

over the fractal measure |κx|ν−1dκx yields for the MSD

〈

y2(t)
〉

= L−1

[

− ∂2

∂κ2y

˜̂
P (κx, κy, s)|κx|ν−1

]∣

∣

∣

∣

∣

κx=0,κy=0

= L−1







2Dysγ̂(s)− 6D2
y|κx|1−νκ2y

(

sγ̂(s) +Dy|κx|1−νκ2y
)3 · sγ̂(s)ξ̂(s)

sξ̂(s) + Dx

2
√

Dy
|κx|

3+ν
2







∣

∣

∣

∣

∣

∣

∣

κx=0,κy=0

= 2DyL−1







1

s2γ̂(s)
· sξ̂(s)

sξ̂(s) + Dx

2
√

Dy
|κx|

3+ν
2







∣

∣

∣

∣

∣

∣

∣

κx=0

= 2DyL−1

[

1

s2γ̂(s)

]

,

(32)

where
˜̂
P (κx, κy, s) is given by Eq. (11). This result is the same as the one obtained

for the generalized continuous comb model ν = 1 [41], which follows from Eq. (11) for

ν = 1. We finally note that for the various forms of the memory kernel γ(t) one can find

different diffusive regimes along the fingers, such as anomalous and ultraslow diffusion.

3. Fractal structure of fingers and the Weierstrass function

3.1. General solution of the problem

Let us rewrite the last term in Eq. (2) in the form of the convolution with the Weierstrass

function in the Fourier κx space. This reads

Dy
∂2

∂y2
1

2π

∫ ∞

−∞
dκx

′Ψ (κx − κx
′) P̃ (κx

′, y, t). (33)

Here Ψ (κx − κx
′) is the Weierstrass function [5, 40] with the scaling property

Ψ(z/l) ≃ l

b
Ψ(z), (34)

which, for example, can be defined by the procedure suggested in Appendix C.

This scaling property leads to the power-law asymptotic behavior of the Weierstrass

function Ψ(z) ∼ 1
z1−ν̄ , where ν̄ = log b/ log l, with the fractal dimension 0 < ν̄ < 1.

Therefore, the term in Eq. (33) can be presented in the form of the Riesz fractional

integral in the reciprocal Fourier space

Dy
1

2π

∂2

∂y2

∫ ∞

−∞
dκx

′ P̃ (κx
′, y, t)

|κx − κx′|1−ν̄
. (35)

Applying the inverse Fourier transform in respect to κx, and changing the order of

integration, one obtains

Dy
1

2π

∂2

∂y2
F−1
κx

[

∫ ∞

−∞
dκx

′P̃ (κx
′, y, t)

1

|κx − κx′|1−ν̄
]

= DyCν |x|−ν̄
∂2

∂y2
P (x, y, t), (36)
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where Cν̄ = Γ(ν̄) cos ν̄π
2
. Thus, Eq. (2) becomes

∫ t

0
dt′ γ(t− t′)

∂

∂t′
P (x, y, t′) = Dxδ(y)

∫ t

0
dt′ η(t− t′)

∂2

∂x2
P (x, y, t′)

+DyCν̄ |x|−ν̄
∂2

∂y2
P (x, y, t). (37)

Note that in contrast to Eq. (2), here the continuous comb model corresponds to the

limit with ν̄ = 0. In this mean ν̄ is dual to ν with the relation ν̄ + ν = 1. Performing

the Laplace transform, one obtains

γ̂(s)
[

sP̂ (x, y, s)− δ(x)δ(y)
]

= Dxδ(y)η̂(s)
∂2

∂x2
P̂ (x, y, s) +DyCν̄ |x|−ν̄

∂2

∂y2
P̂ (x, y, s).

(38)

By analogy with Eq. (15), the solution of Eq. (38) can be presented in the form

P̂ (x, y, s) = exp



−
√

√

√

√

sĝ(x, s)

Dy
|y|


 f̂(x, s), (39)

where ĝ(x, s) is obtained from the condition that the second derivative of the exponential

compensates the first term in the l.h.s. of Eq. (37). This reads

ĝ(x, s) =
1

Cν̄
γ̂(s)|x|ν̄ , (40)

and the solution P̂ (x, y, s) becomes

P̂ (x, y, s) = exp



−
√

√

√

√

1

Cν̄

sγ̂(s)

Dy
|x|ν̄/2|y|



 f̂(x, s). (41)

From here we find that

p̂1(x, s) =
∫ ∞

−∞
dy P̂ (x, y, s) = 2

√

Dy

sĝ(x, s)
f̂(x, s), (42)

and

P̂ (x, y = 0, s) = f̂(x, s). (43)

Integrating Eq. (38) over y and taking into account Eq. (40), one obtains the

boundary value problem for the Green function f̂(x, s) with zero boundary conditions

at infinities

2C
1/2
ν̄

√

Dys

γ̂(s)
|x|−ν̄/2f̂(x, s)−Dx

η̂(s)

γ̂(s)

∂2

∂x2
f̂(x, s) = δ(x). (44)

Follow the standard procedure, we consider the homogeneous part of the equation, which

reads

2C
1/2
ν̄

√

Dysγ̂(s)

η̂(s)
|x|−ν̄/2Ĝ(x, s) = Dx

∂2

∂x2
Ĝ(x, s). (45)
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3.2. Special case with γ(t) = η(t) = δ(t)

To be specific, we consider first a special case with γ̂(s) = η̂(s) = 1. Thus Eq. (45) reads

C
1/2
ν̄

2
√

Dy

Dx
s1/2|x|−ν̄/2Ĝ(x, s) = ∂2

∂x2
Ĝ(x, s). (46)

It is symmetric with respect to x → −x and has a form of the Lommel differential

equation u′′(x) − c2x2ζ−2u(x) = 0 [18]. The solution is given in terms of the Bessel

functions u(x) =
√
xZ 1

2ζ

(

ı c
ζ
xζ
)

, where Z 1
2ζ
(x) = C1J 1

2ζ
(x) + C2N 1

2ζ
(x). Here J 1

2ζ
(x) is

the Bessel function of the first kind and N 1
2ζ
(x) is the Bessel function of the second kind

(Neumann function). Therefore, the solution of Eq. (46) reads

Ĝ(x, s) =
√
xZ 2

4−ν̄





i C
1/4
ν̄

4

4− ν̄

√

√

√

√

2
√

Dy

Dx

s1/4x
4−ν̄
4





 . (47)

Due to the zero boundary conditions, Green’s function (47) is given by the modified

Bessel function (of the third kind) K 2
4−ν̄

(z), which can be expressed in terms of the Fox

H-function as well (see relation (B.8))

Ĝ(x, s) =
√
xK 2

4−ν̄





C
1/4
ν̄

4

4− ν̄

√

√

√

√

2
√

Dy

Dx
s1/4x

4−ν̄
4







=

√
x

2
H2,0

0,2





4C
1/2
ν̄

(4− ν̄)2

2
√

Dy

Dx
x

4−ν̄
2 s1/2

∣

∣

∣

∣

∣

∣
( 1
4−ν̄

, 1), (− 1
4−ν̄

, 1)



 . (48)

Considering the inhomogeneous Lommel Eq. (44), we use the solution f̂(|x|, s) =
Cν̄(s)Ĝ(|x|, s) = Cν̄(s)Ĝ(y, s) obtained in Eq. (44), where y = |x|, and Cν̄(s) is a function

which depends on s,

− 2Dx
∂

∂y
f̂(y = 0, s) = 1. (49)

Substituting Eq. (48) in Eq. (44), and using relations (49) and (B.9), one obtains

Cν̄(s) =
2

4− ν̄

1

Γ
(

2−ν̄
4−ν̄

)

Dx



C
1/2
ν̄

4

(4− ν̄)2

2
√

Dy

Dx





− 1
4−ν̄

s−
1

2(4−ν̄) , (50)

which yields the solution of Eq. (44)

f̂(x, s) =
1

4− ν̄

1

Γ
(

2−ν̄
4−ν̄

)

Dx



C
1/2
ν̄

4

(4− ν̄)2

2
√

Dy

Dx





− 1
4−ν̄

s−
1

2(4−ν̄) |x|1/2

×H2,0
0,2





4C
1/2
ν̄

(4− ν̄)2

2
√

Dy

Dx
|x| 4−ν̄

2 s1/2

∣

∣

∣

∣

∣

∣
( 1
4−ν̄

, 1), (− 1
4−ν̄

, 1)



 . (51)

From relations (42) and (B.7), one finds the solution for the reduced PDF p1(x, t)
+

p1(x, t) =
C

1/2
ν̄

4− ν̄

1

Γ
(

2−ν̄
4−ν̄

)

2
√

Dy

Dx



C
1/2
ν̄

4

(4− ν̄)2

2
√

Dy

Dx





− 1
4−ν̄ |x| 1−ν̄

2

t
3−ν̄

2(4−ν̄)

+ One can easily check from relations (B.3) and (B.5) that p1(x, t) is normalized
∫∞

−∞
dx p1(x, t) = 1.
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×H2,0
1,2





4C
1/2
ν̄

(4− ν̄)2

2
√

Dy

Dx

|x| 4−ν̄
2

t1/2

∣

∣

∣

∣

∣

∣

( 5−ν̄
2(4−ν̄)

, 1/2)

( 1
4−ν̄

, 1), (− 1
4−ν̄

, 1)



 . (52)

Solution (52) describes a subdiffusive behavior with the MSD
〈

x2(t)
〉

= 2
∫ ∞

0
dx x2p1(x, t) ≃ t

2
4−ν̄ , (53)

where the transport exponent changes in the range 1
2
< 2

4−ν̄
< 2

3
. Note that the limiting

case with ν̄ = 0 results in the continuous comb with the MSD 〈x2(t)〉 ≃ t1/2.

3.3. Special case with γ(t) = δ(t) and η(t) = t−1/2/Γ(1/2)

Next we consider the case with the kernels γ̂(s) = 1 and η̂(s) = s−1/2∗, which yields

Eq. (45) in the form

C
1/2
ν̄

2
√

Dy

Dx
s|x|−ν̄/2Ĝ(x, s) = ∂2

∂x2
Ĝ(x, s). (54)

Following the same procedure as above, we find the PDF p1(x, t) in the form

p1(x, t) =
C

1/2
ν̄

4− ν̄

1

Γ
(

2−ν̄
4−ν̄

)

2
√

Dy

Dx



C
1/2
ν̄

4

(4− ν̄)2

2
√

Dy

Dx





− 1
4−ν̄ |x| 1−ν̄

2

t
3−ν̄
4−ν̄

×H2,0
1,2



C
1/2
ν̄

4

(4− ν̄)2

2
√

Dy

Dx

|x| 4−ν̄
2

t

∣

∣

∣

∣

∣

∣

( 1
4−ν̄

, 1)

( 1
4−ν̄

, 1), (− 1
4−ν̄

, 1)





=
C

1/2
ν̄

4− ν̄

1

Γ
(

2−ν̄
4−ν̄

)

2
√

Dy

Dx



C
1/2
ν̄

4

(4− ν̄)2

2
√

Dy

Dx





− 1
4−ν̄ |x| 1−ν̄

2

t
3−ν̄
4−ν̄

×H1,0
0,1



C
1/2
ν̄

4

(4− ν̄)2

2
√

Dy

Dx

|x| 4−ν̄
2

t

∣

∣

∣

∣

∣

∣
(− 1

4−ν̄
, 1)





=
C

1/2
ν̄

4− ν̄

1

Γ
(

2−ν̄
4−ν̄

)

2
√

Dy

Dx



C
1/2
ν̄

4

(4− ν̄)2

2
√

Dy

Dx





− 2
4−ν̄ |x|−ν̄/2

t
2−ν̄
4−ν̄

× exp



−C1/2
ν̄

4

(4− ν̄)2

2
√

Dy

Dx

|x| 4−ν̄
2

t



 , (55)

which is normalized to one as well, and is of stretched exponential form. Here we used

relations (B.4) and (B.10). The MSD now reads
〈

x2(t)
〉

= 2
∫ ∞

0
dx x2p1(x, t) ≃ t

4
4−ν̄ . (56)

This solution describes superdiffusion with the transport exponent ranging in the

interval 1 < 4
4−ν̄

< 4
3
, which is enhanced diffusion in comparison to the solution in

Eq. (52). This is a Levy-like process, where the CTRW with spatio-temporal coupling

∗ For the continuous comb (21), these memory functions give superdiffusion for the case 0 < ν < 1,

and normal diffusion for ν = 1.
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takes place. The diffusion in the x direction is enhanced due to the generalized

compensation memory kernel η(t) = t−1/2

Γ(1/2)
♯. The long jumps on the fractal comb are

penalized by long waiting times. This mechanism leads to the stretched exponential

behavior in the last line of Eq. (55), which eventually yields the finite MSD. The case

with ν̄ = 0 recovers the result of the continuous comb with 〈x2(t)〉 ≃ t.

4. Summary

We considered Lévy processes in a generalized fractal comb model, which is derived

from general properties of the Liouville equation, and we presented an exact analytical

analysis of the solutions of equation (2) for the probability distribution function (PDF)

for anomalous diffusion of particles for various realizations of the generalized comb

model. Comb geometry is one of the most simple paradigms where anomalous diffusion

can be realized in the framework of Markovian processes as in Eq. (1). However, the

intrinsic properties of the structure can destroy this Markovian transport. These effects

violate the Markov consideration of Eq. (1) and lead to the introduction of the memory

η(t), γ(t), and spatial ρ(x) kernels in Eq. (2). The fractal structure of fingers, which is

controlled by the spatial kernel ρ(x) in the form of the power-law distributions in both

real and Fourier spaces, leads to the Lévy processes (Lévy flights) and superdiffusion.

In the former case, when the spatial kernel is defined in the real space, this effect

is manifested by the Riesz fractional derivative of the order of α = (3 + ν)/2 < 2,

where ν is the fractal dimension of the fingers. This was observed for the first time

in Ref. [19], where a qualitative analytical analysis has been suggested. In the present

analysis, this problem is solved exactly and exact analytical solutions are obtained in

the form of the Fox H-functions. In some extend, here we demonstrated an application

of the Fox H-functions in solving anomalous diffusion equations. The interplay between

the spatial kernel and the memory kernels, controlled by the heavy tail exponent µ,

is reflected in the transport exponent of the anomalous diffusion 2−µ
α
, such that when

2µ + ν < 1 there is superdiffusion. In the opposite case when 2µ + ν > 1 subdiffusion

takes place. For the completeness of the analysis, cases with distributed order memory

kernels are also investigated by employing the Tauberian theorem. As a result, we

obtained ultra-slow diffusion. It is a robust slow process, which cannot be destroyed by

the Lévy flights. Finally, we considered the fractional structure of the fingers controlled

by the Weierstrass function, which leads to the power-law kernel in the Fourier space.

A superdiffusive solution in Eq. (55) is found as well. It is expressed in the form of

a stretched exponential function (55). It is a special case, when the second moment

exists for superdiffusion, since the Lévy flights are interrupted by fingers-traps with the

power-law waiting time PDF. In this case, the superdiffusive MSD is exactly calculated

from the second moment 〈x2(t)〉 = t
4

4−ν .

♯ The presence of this compensation memory kernel in the continuous comb model (2) yields normal

diffusion in the x direction in comparison to the subdiffusive behavior with the transport exponent

equals to 1/2 in the classical comb model (1).
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In conclusion, we discuss the question on the relation between fractal structures (like

shown in Fig. 2) and fractional Riesz derivative as a reflection of the Lévy dynamics.

This problem has been considered in many studies [6, 19, 25, 26, 36, 37, 44]. Here, we

also concern with a question what kind of information is neglected when random walk on

quenched fractal structure is described by the Riezs fractional integral ††. The answer

is as follows. The fractal structure, like in Fig. 2 can be described for example by the

Weierstrass function, which depends on two parameters l and b, which lead to the scaling

in Eq. (C.6) and to the log periodicity, and as well as to the fractal volume with the

fractal dimension ν̄ = log b/ log l. However, the asymptotic approximation contains only

the fractal volume, while the self-similarity and log periodicity properties are already

lost. This expression is explicitly obtained in Appendix C. In this case a regular fractal

is considered as a random fractal with the fractal volume |x|ν . It should be admitted

that in Sec. 2, our construction of the Riesz space fractional integration by means of

the power law kernel ρ(x) is exact. In this sense, our analytical description of the Lévy

process is exact, however, its relation to the Cantor set of the fingers is just illustrative.

A rigorous coarse-grained procedure, which relates the fractal structure of the comb

fingers to the Riesz fractional derivative has been established in Ref. [19]. The situation

changes dramatically in Sec. 3, where the Weierstrass function describes rigorously

the fractal comb. However, in our analytical treatment we use only its asymptotic

approximation [6] to obtain fractional integro-differentiation. As admitted above, in

this case all information on self-similarity and log periodicity is lost.
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Appendix A. Solution of Eqs. (21) and (24)

We note, first, that Eqs. (21) is a particular case of Eq. (24), which is a general form of

a space-time fractional diffusion equation

CD
λ
t p1(x, t) = Dλ,α

∂α

∂|x|α p1(x, t), t > 0, −∞ < x < +∞, (A.1)

where CD
λ
t is the Caputo time fractional derivative (3) of order 0 < λ < 1, ∂α

∂|x|α
is

the Riesz space fractional derivative of order 1 < α < 2, and Dλ,α is the generalized

††This relates to the link between fractal geometry and fractional integro-differentiation [36], which is

constituted in the procedure of averaging an extensive physical value that is expressed by means of a

smooth function over a Cantor set, which leads to fractional integration. However, as criticized in Ref.

[37], the Cantor set “as a memory function allows for no convolution”. In its eventual form, the link

has been presented in Ref. [36] as an averaging procedure over the log periodicity of the fractal.
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diffusion coefficient with physical dimension [Dλ,α] = mαs−λ. The boundary conditions

at infinities are

p1(±∞, t) = 0,
∂

∂x
p1(±∞, t) = 0, t > 0, (A.2)

while the initial condition is

p1(x, 0) = δ(x), −∞ < x < +∞. (A.3)

Applying the Fourier-Laplace transform in Eq. (A.1), and accounting the initial

condition (A.3) and the boundary conditions (A.2), one finds

˜̂p1(κ, s) =
sλ−1

sλ +Dλ,α|κ|α
. (A.4)

Here we use the property of the Laplace transform for the Caputo derivative [38]

L
[

CD
λ
t f(t)

]

= sλL [f(t)]− sλ−1f(0). (A.5)

From the inverse Laplace transform, by employing formula [27]

L
[

tβ−1Eα,β(±atα)
]

=
sα−β

sα ∓ a
, (A.6)

for ℜ(s) > |a|1/α, where Eα,β(z) is the two parameter Mittag-Leffler function (B.11), it

follows

p̃1(κ, t) = Eλ
(

−Dλ,αt
λ|κ|α

)

. (A.7)

Here Eλ(z) is the one parameter Mittag-Leffler function (B.11). From relations (B.12)

and (B.3), and the Fourier transform formula (B.6), one obtains the solution of Eq. (A.1)

in terms of the Fox H-function (B.1) [28, 46]:

p1(x, t) =
2

2π

∫ ∞

0
dκ cos(κx)H1,1

1,2

[

Dλ,αt
λ|κ|α

∣

∣

∣

∣

∣

(0, 1)

(0, 1), (0, λ)

]

=
1

απ

∫ ∞

0
dκ cos(κx)H1,1

1,2

[

(

Dλ,αt
λ
)1/α |κ|

∣

∣

∣

∣

∣

(0, 1/α)

(0, 1/α), (0, λ/α)

]

=
1

α|x|H
2,1
3,3

[

|x|
(Dλ,αtλ)

1/α

∣

∣

∣

∣

∣

(1, 1
α
), (1, λ

α
), (1, 1

2
)

(1, 1), (1, 1
α
), (1, 1

2
)

]

. (A.8)

From the solution (A.8), by using relation (B.5), we obtain the fractional moments (16)

[46]

〈|x|q(t)〉 = 2

α

∫ ∞

0
dx xq−1H2,1

3,3

[

x

(Dλ,αtλ)
1/α

∣

∣

∣

∣

∣

(1, 1
α
), (1, λ

α
), (1, 1

2
)

(1, 1), (1, 1
α
), (1, 1

2
)

]

=
2

α

(

Dλ,αt
λ
)q/α

θ(−q) = 4

α
· Γ (q) Γ(1 + q/α)Γ(−q/α)

Γ(q/2)Γ(−q/2) ·
(

Dλ,αt
λ
)q/α

Γ
(

1 + λq
α

) ,

(A.9)

where we apply Γ(1− z)Γ(z) = π
sin(πz)

[14], and where, for the current example,

θ(q) =
Γ(1 + q)Γ(1 + q/α)Γ(−q/α)

Γ(−q/2)Γ(1 + λq/α)Γ(1 + q/2)
=

2Γ(q)Γ(1 + q/α)Γ(−q/α)
Γ(−q/2)Γ(1 + λq/α)Γ(q/2)

.

(A.10)
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Appendix B. Fox H-function and Mittag-Leffler functions

Appendix B.1. Fox H-function

A detailed description of the Fox H-function and its application can be found in

Refs. [31, 30].

The Fox H-function is defined in terms of the Mellin-Barnes integral

Hm,n
p,q

[

z

∣

∣

∣

∣

∣

(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , bq, Bq)

]

=
1

2πı

∫

Ω
ds θ(s)z−s, (B.1)

where

θ(s) =

∏m
j=1 Γ(bj +Bjs)

∏n
j=1 Γ(1− aj − Ajs)

∏q
j=m+1 Γ(1− bj −Bjs)

∏p
j=n+1 Γ(aj + Ajs)

, (B.2)

with 0 ≤ n ≤ p, 1 ≤ m ≤ q, ai, bj ∈ C, Ai, Bj ∈ R+, i = 1, . . . , p, and j = 1, . . . , q. The

contour Ω, starting at c− i∞ and ending at c+ i∞, separates the poles of the function

Γ(bj +Bjs), j = 1, . . . , m from those of the function Γ(1− ai − Ais), i = 1, . . . , n.

The Fox H-function is symmetric in the pairs (a1, A1), . . . , (an, An), likewise

(an+1, An+1), . . . , (ap, Ap); in (b1, B1), . . . , (bm, Bm) and (bm+1, Bm+1), . . . , (Bq, Bq).

The Fox H-function has the following properties

Hm,n
p,q

[

zδ
∣

∣

∣

∣

∣

(ap, Ap)

(bq, Bq)

]

=
1

δ
Hm,n
p,q

[

z

∣

∣

∣

∣

∣

(ap, Ap/δ)

(bq, Bq/δ)

]

, (B.3)

where δ > 0,

Hm,n
p,q

[

z

∣

∣

∣

∣

∣

(a1, A1), . . . , (ap−1, Ap−1), (b1, B1)

(b1, B1), (b2, B2), . . . , (bq, Bq)

]

= Hm−1,n
p−1,q−1

[

z

∣

∣

∣

∣

∣

(a1, A1), . . . , (ap−1, Ap−1)

(b2, B2), . . . , (bq, Bq)

]

, (B.4)

where m ≥ 1, and p > n.

The Mellin transform of the Fox H-function is given by
∫ ∞

0
dx xξ−1Hm,n

p,q

[

ax

∣

∣

∣

∣

∣

(ap, Ap)

(bq, Bq)

]

= a−ξθ(ξ), (B.5)

where θ(ξ) is defined in relation (B.1).

The Mellin-cosine transform of the Fox H-function is given by
∫ ∞

0
dκ κρ−1 cos(κx)Hm,n

p,q

[

aκδ
∣

∣

∣

∣

∣

(ap, Ap)

(bq, Bq)

]

=
π

xρ
Hn+1,m
q+1,p+2

[

xδ

a

∣

∣

∣

∣

∣

(1− bq, Bq), (
1+ρ
2
, δ
2
)

(ρ, δ), (1− ap, Ap), (
1+ρ
2
, δ
2
)

]

, (B.6)

where

ℜ
(

ρ+ δ min
1≤j≤m

(

bj
Bj

))

> 1, xδ > 0,

ℜ
(

ρ+ δ max
1≤j≤n

(

aj − 1

Aj

))

<
3

2
, | arg(a)| < πα/2,
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α =
n
∑

j=1

Aj −
p
∑

j=n+1

Aj +
m
∑

j=1

Bj −
q
∑

j=m+1

Bj > 0.

The following Laplace transform formula is true for the Fox H-function

L−1

[

s−ρHm,n
p,q

[

asσ
∣

∣

∣

∣

∣

(ap, Ap)

(bq, Bq)

]]

= tρ−1Hm,n
p+1,q

[

a

tσ

∣

∣

∣

∣

∣

(ap, Ap), (ρ, σ)

(bq, Bq)

]

.

(B.7)

The Bessel function of third kind Kν(z) is a special case of the Fox H-function

H2,0
0,2

[

z2

4

∣

∣

∣

∣

∣ (a+ν
2
, 1), (a−ν

2
, 1)

]

= 2
(

z

2

)a

Kν(z). (B.8)

Series representation of modified Bessel function of the second kind is given by

Kν(z) ≃
Γ(ν)

2

(

z

2

)−ν
[

1 +
z2

4(1− ν)
+ . . .

]

+
Γ(−ν)

2

(

z

2

)ν
[

1 +
z2

4(ν + 1)
+ . . .

]

, z → 0, ν /∈ Z. (B.9)

For special case of parameters of the Fox H-function, one obtains

H1,0
0,1

[

z

∣

∣

∣

∣

∣ (b, B)

]

= B−1zb/B exp
(

−z1/B
)

. (B.10)

Appendix B.2. Mittag-Leffler functions

The two parameter Mittag-Leffler function is defined by [27]

Eα,β(z) =
∞
∑

k=0

zk

Γ(αk + β)
. (B.11)

The one parameter Mittag-Leffler function Eα(z) is a special case of the two parameter

Mittag-Leffler function if we set β = 1.

The two parameter Mittag-Leffler function (B.11) is a special case of the Fox H-

function [31]

Eα,β(−z) = H1,1
1,2

[

z

∣

∣

∣

∣

∣

(0, 1)

(0, 1), (1− β, α)

]

. (B.12)

Appendix C. Weierstrass function

Here we will show that the discrete, fractal distribution of fingers, can be constructed

by means of the Weierstrass function. We will follow the approach recently used in [40],

where it is shown that the fractal structure of backbones corresponds to the Weierstrass

function inside the backbones. Let us consider Eq. (2), where the last term is given by

Dy
∂2

∂y2
∑∞
j=1wjδ(x− lj)P (x, y, t), i.e., we investigate the following equation

∫ t

0
dt′ γ(t− t′)

∂

∂t′
P (x, y, t′) = Dxδ(y)

∫ t

0
dt′ η(t− t′)

∂2

∂x2
P (x, y, t′)

+Dy

∞
∑

j=1

wjδ(x− lj)
∂2

∂y2
P (x, y, t). (C.1)
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The last term in this equation means that the diffusion along the y axis occurs on

infinite number of fingers located at x = lj , j = 1, 2, ..., 0 ≤ l1 < l2 < . . . < lN < . . ., at

positions x which belong to the fractal set Sν with fractal dimension 0 < ν < 1, and wj
are structural constants such that

∞
∑

j=1

wj = 1. (C.2)

The summation in the last term of Eq. (C.1), is a summation over a fractal set Sν .

In order to obtain the Weierstrass function we follow the procedure given in [40, 44].

Therefore, we use that wj =
l−b
b

(

b
l

)j
, where l, b > 1, l−b ≪ b (l and b are dimensionless

scale parameters), from where we find

∞
∑

j=1

wj =
l − b

l

∞
∑

j=0

(

b

l

)j

= 1, (C.3)

as it should be for the structural constants (C.2). From (33) and (C.3) it follows

Ψ(z) =
l − b

b

∞
∑

j=1

(

b

l

)j

exp
(

i
z

lj

)

, (C.4)

where lj = L/lj , z = (κx − κx
′)L, and l1 = L = 1. From here one obtains [40]

Ψ(z/l) =
l

b
Ψ(z)− l − b

b
exp

(

i
z

l

)

, (C.5)

and by neglecting the last term (l − b≪ b), the following scaling is found

Ψ(z/l) ≃ l

b
Ψ(z). (C.6)

This means that Ψ(z) ∼ 1
z1−ν̄ , where ν̄ = log b/ log l, 0 < ν̄ < 1, is the fractal dimension.

From here, for the last term in (C.1) we have

Dyκ
2
y

1

2π

∫ ∞

−∞
dκx

′ P̃ (κx
′, κy, t)

|κx − κx′|1−ν̄
, (C.7)

which is the Riesz fractional integral [38] in the reciprocal Fourier space.

References

[1] Arkhincheev V E 2007 Chaos 17 043102

[2] Arkhincheev V E and Baskin E M 1991 Sov. Phys. JETP 73 161

[3] Barthelemy P, Bertolotti J and Wiersma D S 2008 Nature 453 495

[4] Baskin E and Iomin A 2004 Phys. Rev. Lett. 93 120603

[5] Berry M V and Lewis Z V 1980 Proc. R. Soc. London Ser. A 370 459

[6] Blumen A, Klafter J, and Zumofen G 1985 in Fractals in Physics, edited by L. Pietronero and E.

Tosatti (Amsterdam: North-Holland), p. 399.

[7] Bouchaud J -P and Georges A 1990 Phys. Rep. 195 127

[8] Burioni R, Caniparoli L and Vezzani A 2010 Phys. Rev. E 81 060101R

[9] Burioni R, Ubaldi E and Vezzani A 2014 Phys. Rev. E 89 022135

[10] Cassi D and Regina S 1996 Phys. Rev. Lett. 76 2914

Baldi G, Burioni R and Cassi D 2004 Phys. Rev. E 70 031111

[11] Chechkin A V, Gorenflo R and Sokolov I M 2002 Phys. Rev. E 66 046129
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