
ar
X

iv
:1

61
0.

09
89

5v
1 

 [
he

p-
th

] 
 3

1 
O

ct
 2

01
6

October, 2016

Minimal N = 4 topologically massive supergravity

Sergei M. Kuzenkoa, Joseph Novakb and Ivo Sachsc

aSchool of Physics M013, The University of Western Australia

35 Stirling Highway, Crawley W.A. 6009, Australia

bMax-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut

Am Mühlenberg 1, D-14476 Golm, Germany

cArnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität

Theresienstrae 37, D-80333 München, Germany

sergei.kuzenko@uwa.edu.au, joseph.novak@aei.mpg.de,

ivo.sachs@physik.uni-muenchen.de

Abstract

Using the superconformal framework, we construct a new off-shell model for

topologically massive N = 4 supergravity which is minimal in the sense that

it makes use of a single compensating vector multiplet. Our theory provides a

counterexample to the common lore that two compensating multiplets are re-

quired within the conformal approach to supergravity with eight supercharges in

diverse dimensions. All solutions in this theory correspond to non-conformally

flat superspaces. Its maximally supersymmetric solutions include the so-called

critical (4,0) anti-de Sitter superspace introduced in arXiv:1205.4622. Other

maximally supersymmetric solutions describe warped critical (4,0) anti-de Sit-

ter superspaces. We also propose a dual formulation for the theory in which

the vector multiplet is replaced with an off-shell hypermultiplet. Upon elim-

ination of the auxiliary fields belonging to the hypermultiplet and imposing

certain gauge conditions, the dual action reduces to the one introduced in

arXiv:1605.00103.

http://arxiv.org/abs/1610.09895v1


1 Introduction

A unique feature of three spacetime dimensions (3D) is the existence of topologi-

cally massive Yang-Mills and gravity theories. They are obtained by augmenting the

usual Yang-Mills action or the gravitational action by a gauge-invariant topological

mass term. Such a mass term coincides with a non-Abelian Chern-Simons action in

the Yang-Mills case [1, 2, 3, 4] and with a Lorentzian Chern-Simons term in the case

of gravity [3, 4]. Without adding the Lorentzian Chern-Simons term, the pure gravity

action propagates no local degrees of freedom. The Lorentzian Chern-Simons term

can be interpreted as the action for conformal gravity in three dimensions [3, 5, 6].1

Topologically massive theories of gravity possess supersymmetric extensions. In

particular, topologically massive N = 1 supergravity was introduced in [9] and its

cosmological extension followed in [10]. The off-shell formulations for topologically

massive N -extended supergravity theories were presented in [11] for N = 2 and in

[12] for N = 3 and N = 4. In all of these theories, the action functional is a sum

of two terms, one of which is the action for pure N -extended supergravity (Poincaré

or anti-de Sitter) and the other is the action for N -extended conformal supergravity.

The off-shell actions for N -extended supergravity theories in three dimensions were

given in [13] for N = 1, [14, 15] for N = 2, and [14] for the cases N = 3, 4. The

off-shell actions for N -extended conformal supergravity were given in [5] for N = 1,

[16] for N = 2, and [17] for the cases N = 3, 4. The latter work made use of the

formulation for N -extended conformal supergravity presented in [18].

The off-shell structure of 3D N = 4 supergravity [14] is analogous to that of 4D

N = 2 supergravity (see, e.g., [19] for a pedagogical review) in the sense that two

superconformal compensators are required (for instance, two off-shell vector multi-

plets, one of which is self-dual and the other anti-self-dual) in order to realise pure

Poincaré or anti-de Sitter (AdS) supergravity theories. We recall that the equations

of motion for pure N = 4 Poincaré or AdS supergravity are inconsistent if one makes

use of a single compensator [12]. By construction, the off-shell topologically massive

N = 4 supergravity theory of [12] makes use of two compensators. However, in [20]

the consistent system of dynamical equations was proposed for topologically massive

N = 4 AdS supergravity with a single compensating hypermultiplet, following earlier

work in [21, 22, 23] on ABJ(M) models. A peculiar feature of this model, like those

considered in [21, 22, 23], is that it has no free parameter. Consequently the dimen-

sionless combination, µℓ, of mass µ and AdS radius ℓ takes a fixed value, µℓ = 1,

1The usual Einstein-Hilbert action for 3D gravity with a cosmological term can also be interpreted

as the Chern-Simons action for the anti-de Sitter group [7, 8].
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as in chiral gravity [24]. In [20] a supergravity action functional was also postulated

to generate the dynamical equations given. This action was claimed to be off-shell

without giving technical details. In this paper we propose a new off-shell model for

topologically massive N = 4 supergravity which is minimal in the sense that it makes

use of a single compensating vector multiplet. The theory is consistent only if the

term corresponding to N = 4 conformal supergravity is turned on. An important

maximally supersymmetric solution for this theory is the so-called critical (4,0) AdS

superspace introduced in [25]. Our supergravity theory is first presented in a mani-

festly supersymmetric form, and then its action functional is reduced to components.

By choosing appropriate gauge conditions at the component level and performing a

duality transformation, we show how to reduce our off-shell supergravity action to

the one postulated in [20].

This paper is organised as follows. In section 2 we recall the superspace geom-

etry of the N = 4 vector multiplets and the corresponding locally supersymmetric

actions. In section 3 we present two models for minimal topologically massive N = 4

supergravity, analyse their equations of motion and give a brief discussion of the

maximally supersymmetric solutions. Section 4 is devoted to the component struc-

ture of minimal topologically massive N = 4 supergravity. Concluding comments are

given in section 5. The main body of the paper is accompanied with three technical

appendices. The essential details of the known superspace formulations for N = 4

conformal supergravity are collected in Appendices A and B. Some useful super-Weyl

gauge conditions in SO(4) superspace and their implications are given in Appendix

C.

2 The N = 4 vector multiplets

There are two inequivalent irreducible N = 4 vector multiplets in three dimen-

sions, self-dual and anti-self-dual ones, as discovered by Brooks and Gates [26]. In this

section we review the superspace geometry of these supermultiplets in the presence of

N = 4 conformal supergravity [14, 18] and the corresponding locally supersymmetric

actions [14].

Throughout this paper we make use of both the SO(4) superspace formulation of

conformal supergravity, which was sketched in [27] and fully developed in [14], and the

conformal superspace formulation presented in [18]. These formulations are related

to each other since SO(4) superspace may be viewed as a gauge fixed version of the

N = 4 conformal superspace [18]. Due to this reason, we will first start by formulating

2



vector multiplets in conformal superspace. We refer the reader to Appendix A for

the salient details of the conformal superspace formulation. The geometry of SO(4)

superspace in briefly reviewed in Appendix B.

2.1 Kinematics

To describe an Abelian vector multiplet in a curved superspace M3|8 parametrised

by coordinates zM = (xm, θµI), we introduce gauge covariant derivatives

∇ = EA∇A , ∇A = (∇a,∇
I
α) := ∇A − VAZ , [Z,∇A] = 0 , (2.1)

with EA = dZMEM
A the superspace vielbein, ∇A the superspace covariant derivatives

(A.2) obeying the (anti-)commutation relations (A.4), and V = EAVA the gauge

connection associated with Z. The gauge transformation of V is

δV = dτ , (2.2)

where the gauge parameter τ(z) is an arbitrary scalar superfield.

The algebra of gauge covariant derivatives is

[∇A,∇B} = −TAB
C∇C − 1

2
R(M)AB

cdMcd −
1

2
R(N)AB

PQNPQ − R(D)ABD

−R(S)AB
γ
IS

I
γ −R(K)AB

cKc − FABZ , (2.3)

where the torsion and curvatures are those of conformal superspace but with FAB

corresponding to the gauge covariant field strength F = 1
2
EB ∧ EAFAB = dV . The

field strength FAB satisfies the Bianchi identity

dF = 0 , ∇[AFBC} + T[AB
DF|D|C} = 0 (2.4)

and must be subject to covariant constraints to describe an irreducible vector multi-

plet.

In order to describe an N = 4 vector multiplet, the superform F is subject to the

constraint (see [14] for more details)

F I
α
J
β = −2iεαβG

IJ , GIJ = −GJI , (2.5a)

and then the Bianchi identity fixes the remaining components of F to be

Fa
J
β =

1

3
(γa)β

γ∇γKG
JK , (2.5b)
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Fab = − i

48
εabc(γ

c)αβ[∇K
α ,∇L

β ]GKL , (2.5c)

where GIJ is primary and of dimension 1,

SI
αG

JK = 0 , KaG
IJ = 0 , DGIJ = GIJ . (2.6)

Moreover, the field strength GIJ is constrained by the dimension-3/2 Bianchi identity

∇I
γG

JK = ∇[I
γ G

JK] − 2

3
δI[J∇γLG

K]L . (2.7)

It is well known (see [14] and references therein) that the constraint (2.7) defines

a reducible off-shell supermultiplet.2 The point is that the Hodge-dual of GIJ ,

G̃IJ :=
1

2
εIJKLGKL , (2.8)

obeys the same constraint as GIJ does,

∇I
γG̃

JK = ∇[I
γ G̃

JK] − 2

3
δI[J∇γLG̃

K]L , (2.9a)

where εIJKL is the Levi-Civita tensor. As a result one may constrain the field strength

GIJ to be self-dual, G̃IJ = GIJ or anti-self-dual, G̃IJ = −GIJ . These choices corre-

spond to two different irreducible off-shell N = 4 vector multiplets, which we denote

by GIJ
+ and GIJ

− , respectively. In what follows we will make use of an (anti-)self-

dual Abelian vector multiplet such that its field strength GIJ
± is nowhere vanishing,

G2
± := 1

2
GIJ

± G±IJ 6= 0.

When working with N = 4 supersymmetric theories, a powerful technical tool is

the isospinor notation based on the isomorphism SO(4) ∼=
(

SU(2)L × SU(2)R
)

/Z2,

which allows one to replace each SO(4) vector index with a pair of isospinor ones. In

defining the isospinor notation, we follow [14] and associate with a real SO(4) vector

VI a second-rank isospinor Vīi defined as

VI → Vīi := (τ I)īiVI , VI = τI
īiVīi , (Vīi)

∗ = V īi , (2.10)

where we have introduced the τ -matrices

(τ I)īi = (1, iσ1, iσ2, iσ3) , I = 1, · · · , 4 , i = 1, 2 , ī = 1̄, 2̄ . (2.11)

The isospinor indices of SU(2)L and SU(2)R spinors ψi and χī, respectively, are raised

and lowered using the antisymmetric tensors εij , εij and ε
īj̄ , εīj̄ (normalised by ε12 =

ε21 = ε1̄2̄ = ε2̄1̄ = 1) according to

ψi = εijψj , ψi = εijψ
j , χī = εīj̄χj̄ , χī = εīj̄χ

j̄ . (2.12)

2Such a long N = 4 supermultiplet naturally originates upon reduction of any off-shell N > 4

vector multiplet to N = 4 superspace [28].
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We then have the following dictionary:

V IUI = V īiUīi , (2.13a)

Aīijj̄ := AIJ(τ
I)īi(τ

J)jj̄ = εijAīj̄ + εīj̄Aij , Aij = Aji , Aīj̄ = Aj̄ ī , (2.13b)

1

2
AIJBIJ = AijBij + Aīj̄Bīj̄ , (2.13c)

εīijj̄kk̄ll̄ = εijεklεīl̄εj̄k̄ − εilεjkεīj̄εk̄l̄ , (2.13d)

where V I and U I are SO(4) vectors, AIJ and BIJ are anti-symmetric second-rank

SO(4) tensors. The left-hand side of (2.13d) is the Levi-Civita tensor in the isospinor

notation.

In the isospinor notation, the self-dual (GIJ
+ ) and anti-self-dual (GIJ

− ) vector mul-

tiplets take the form

G īijj̄
+ = −εijGīj̄ , G īijj̄

− = −εīj̄Gij , (2.14)

and the Bianchi identity (2.7) turns into

∇(īi
α G

kl) = 0 , ∇i(̄i
α G

k̄l̄) = 0 . (2.15)

At this stage it is useful to introduce left and right isospinor variables vL := vi ∈
C2 \ {0} and vR := v ī ∈ C2 \ {0}, which can be used to package the anti-self-dual

field strength Gij and the self-dual field strength Gīj̄ into fields without isospinor

indices, G
(2)
L (vL) := Gijv

ivj and G
(2)
R (vR) := Gīj̄v

īvj̄, respectively. The same isospinor

variables can be used to define two different subsets, ∇(1)̄i
α and ∇(1̄)i

α , in the set of

spinor covariant derivatives ∇īi
α by the rule

∇(1)̄i
α := vi∇īi

α , ∇(1̄)i
α := vī∇īi

α . (2.16)

It follows from (A.17) that the operators ∇(1)̄i
α obey the anti-commutation relations:

{

∇(1)̄i
α ,∇(1)j̄

β

}

= 2iεαβε
īj̄WL(2) + iεαβε

īj̄∇γ(1)
k̄WS(1)k̄

γ

−1

4
εαβε

īj̄∇γ
(1)

k̄∇(1)k̄
δ WKγδ , (2.17)

where L(2) = vivjL
ij and S

(1)̄i
α is defined similarly to ∇(1)̄i

α . The rationale for the

definitions given is that the constraints (2.15) now become the analyticity conditions

∇(1)̄i
α G

(2)
L = 0 , ∇(1̄)i

α G
(2)
R = 0 . (2.18)

which tell us that each of G
(2)
L and G

(2)
R depends on half the Grassmann coordinates.

The constraints (2.18) do not change under re-scalings vi → cLv
i and v ī → cRv

ī,
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with cL, cR ∈ C \ {0}, with respect to which G
(2)
L (vL) and G

(2)
R (vR) are homoge-

neous polynomials of degree two. We see that the isospinor variables vL and vR are

defined modulo the equivalence relations vi ∼ cLv
i and v ī ∼ cRv

ī, and therefore

they parametrise identical complex projective spaces CP 1
L and CP 1

R. The superfields

G
(2)
L (vL) and G

(2)
R (vR) are naturally defined on curved N = 4 projective superspace

M3|8 × CP 1
L × CP 1

R introduced in [14].

The field strengths G
(2)
L (vL) and G

(2)
R (vR) are examples of the covariant projec-

tive multiplets introduced in [14] in SO(4) superspace and later reformulated in [12]

within the conformal superspace setting. There are two types of covariant projective

multiplets, the left and right ones. A left projective multiplet of weight n, Q
(n)
L (vL),

is a superfield that is defined on some open domain of C2 \ {0} and possesses the

following four properties. Firstly, it is a primary superfield,

S īi
αQ

(n)
L = 0 , KaQ

(n)
L = 0 . (2.19)

Secondly, it is subject to the constraint

∇(1)̄i
α Q

(n)
L = 0 . (2.20)

Thirdly, it is a holomorphic function of vL. Fourthly, it is homogeneous function of

vL of degree n,

Q
(n)
L (c vL) = cnQ

(n)
L (vL) , c ∈ C \ {0} . (2.21)

Every left projective multiplet is inert with respect to SU(2)R and transforms under

SU(2)L as

δΛQ
(n)
L = ΛijLijQ

(n)
L , (2.22a)

ΛijLijQ
(n)
L = −(Λ

(2)
L ∂

(−2)
L − nΛ

(0)
L )Q

(n)
L , (2.22b)

where we have defined

Λ
(2)
L := Λijvivj , Λ

(0)
L :=

viuj
(vL, uL)

Λij (2.23)

and made use of the differential operator

∂
(−2)
L :=

1

(vL, uL)
ui

∂

∂vi
, (vL, uL) = viui . (2.24)

Here we have also introduced a second left isospinor variable uL := ui which is re-

stricted to be linearly independent of vL, that is (vL, uL) 6= 0. One may see that

L(2)Q
(n)
L = 0, and therefore the integrability condition

{

∇(1)̄i
α ,∇(1)j̄

β

}

Q(n) = 0 for the

constraint (2.20) holds, in accordance with (2.17). The right projective multiplets
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are defined similarly. The covariant projective multiplets G
(2)
L (vL) and G

(2)
R (vR) are

known as the left and right O(2) multiplets, respectively.

As shown in [14] the self-dual vector multiplet, G
(2)
R (vR), can be described in terms

of a gauge prepotential VL(vL), which is a left weight-0 tropical multiplet and is real

with respect to the analyticity preserving conjugation called the smile conjugation.

The interested reader is referred to [14] for the technical details. Similar properties

hold for the anti-self-dual vector multiplet except all ‘left’ objects have to be replaced

by ‘right’ ones and vice versa.

2.2 Dynamics

General off-shell matter couplings in N = 4 supergravity were constructed in [14].

The action for such a supergravity-matter system may be represented as a sum of

two terms (one of which may be absent),

S = SL + SR . (2.25)

The left SL and right SR actions, are naturally formulated in curved N = 4 projective

superspace. The left action has the form

SL =
1

2π

∮

(vL, dvL)

∫

d3|8z E C
(−4)
L L(2)

L , E−1 = Ber(EA
M) , (2.26)

where the Lagrangian L(2)
L (vL) is a real left projective multiplet of weight 2, and

d3|8z denotes the full superspace integration measure, d3|8z := d3x d8θ. Furthermore,

the model-independent primary isotwistor superfield C
(−4)
L (vL) has dimension −2, i.e.

DC
(−4)
L = −2C

(−4)
L . It is defined to be real with respect to the smile-conjugation

defined in [14] and obeys the differential equation

∆
(4)
L C

(−4)
L = 1 . (2.27)

Here ∆
(4)
L denotes the following fourth-order operator3

∆
(4)
L =

1

96

(

∇(2)̄ij̄∇(2)

īj̄
−∇(2)αβ∇(2)

αβ

)

=
1

48
∇(2)̄ij̄∇(2)

īj̄
, (2.28)

with ∇(2)

īj̄
:= ∇(1)γ

(̄i
∇(1)

γj̄)
and ∇(2)

αβ := ∇(1)k̄
(α ∇(1)

β)k̄
. The action (2.26) is independent

of the representative C
(−4)
L in the sense that it does not change under an arbitrary

3The operator ∆
(4)
L is a covariant projection operator. Given a covariant left projective multiplet

Q
(n)
L (vL) of weight n, it may be represented in the form Q

(n)
L = ∆

(4)
L T

(n−4)
L , for some left isotwistor

superfield T
(n−4)
L (vL), see [14] for details.
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infinitesimal variation of C
(−4)
L subject to the above conditions. The structure of SR

is analogous.

There are two equivalent action functionals to describe the dynamics of a single

self-dual Abelian vector multiplet coupled to conformal supergravity. One of them is

a right action formulated in terms of a right O(2) multiplet G
(2)
R (vR) = vīvj̄G

ī j̄ , which

is associated with the superfield strength Gī j̄ of the vector multiplet. This action,

has the form4 [14]

S
(+)
VM :=

√
2

π

∮

(vR, dvR)

∫

d3|8z E C
(−4)
R G

(2)
R ln

G
(2)
R

iΥ
(1)
R Ῠ

(1)
R

, (2.29)

where the weight-one arctic multiplet Υ
(1)
R and its smile conjugate Ῠ

(1)
R are pure gauge

degrees of freedom. The action (2.29) is the 3D N = 4 counterpart of the projective-

superspace action [29] for the 4D N = 2 improved tensor multiplet [30]. The other

representation for S
(+)
VM makes use of a left tropical prepotential VL(vL) of the self-dual

vector multiplet with gauge transformations

δVL = λL + λ̆L . (2.30)

The gauge parameter λL is an arbitrary left arctic multiplet of weight zero. The gauge

invariant field strength, Gīj̄, is related to VL through

G
(2)
R (vR) = vīvj̄G

ī j̄ =
i

4
vīvj̄

∮

(vL, dvL)

2π

uiuj
(vL, uL)2

∇αīi∇α
jj̄VL(vL) . (2.31)

Here uL = ui is a constant isospinor such that (vL, uL) 6= 0 along the closed integration

contour.5 The action (2.29) can be recast as a left BF -type action [12]

S
(+)
VM = − 1

2π

∮

(vL, dvL)

∫

d3|8z E C
(−4)
L VLG

(2)
L , (2.32)

where G
(2)
L (vL) = vivjG

ij is the composite left O(2) multiplet [12]

G
(2)
L = − i√

2
vivj

∮

(vR, dvR)

2π

uīuj̄
(vR, uR)2

∇αīi∇α
jj̄ ln

G
(2)
R

iΥ
(1)
R Ῠ

(1)
R

=
i

4
vivj∇αīi∇jj̄

α

(Gīj̄

G+

)

. (2.33)

The composite left superfield Gij can be equivalently realised as the anti-self-dual

SO(4) bivector GIJ
− .

4We should emphasise that in this paper we have defined the vector multiplet actions with

“wrong” sign, because in our approach they correspond to superconformal compensators.
5One may show that the right-hand side of (2.31) is independent of uL.

8



Similarly, the action for the anti-self-dual vector multiplet [14] can be recast as

the right BF -type action [12]

S
(−)
VM := − 1

2π

∮

(vR, dvR)

∫

d3|8z E C
(−4)
R VRG

(2)
R , (2.34)

where G
(2)
R (vR) = vīvj̄G

ī j̄ is the composite right O(2) multiplet [12]

G
(2)
R = − i√

2
vīvj̄

∮

(vL, dvL)

2π

uiuj
(vL, uL)2

∇αīi∇α
jj̄ ln

G
(2)
L

iΥ
(1)
L Ῠ

(1)
L

= vīvj̄
i

4
∇αīi∇jj̄

α

(Gij

G−

)

, (2.35)

and VR(vR) is the tropical prepotential of the anti-self-dual vector multiplet. The

composite right superfield (2.35) can be equivalently realised as the self-dual SO(4)

bivector GIJ
+ .

The composite O(2) multiplets can be expressed in terms of SO(4) vector indices

as follows [12]

GIJ
± = XIJ

∓ ± 1

2
εIJKLX∓KL ,

1

2
εIJKLG

KL
± = ±G±IJ , (2.36)

where we have defined

XIJ
± :=

i

6G±
∇γ[I∇γKG

J ]K
± +

2i

9G3
±

∇αPG±KP∇αQG
Q[I
± G

J ]K
± . (2.37)

To show that GIJ
± is primary and satisfies the Bianchi identity, the following identities

prove useful

GIK
± G±JK =

1

2
δIJG

2
± , (2.38a)

εIJKLG±LP = ∓3δ
[I
PG

JK]
± . (2.38b)

It is worth mentioning that the two N = 4 linear multiplet actions (2.32) and

(2.34) are universal [12] in the sense that all known off-shell supergravity-matter

systems (with the exception of pure conformal supergravity) may be described using

such actions with appropriately engineered composite O(2) multiplets G
(2)
L and G

(2)
R .

3 Minimal topologically massive supergravity

In this section we present two new supergravity-matter systems as models for

minimal topologically massive supergravity.
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3.1 Action principle and equations of motion

Our models for minimal topologically massive supergravity are described byN = 4

conformal supergravity coupled to a vector multiplet, either self-dual or anti-self-dual,

via the following supergravity-matter actions:

κS± :=
1

µ
SCSG + S

(±)
VM , (3.1)

where SCSG denotes the conformal supergravity action [17]. We will refer to the the-

ories with actions S+ and S− as the self-dual and anti-self-dual topologically massive

supergravity (TMSG) theories, respectively.

As shown in [12], the equation of motion for the vector multiplet in the action

(3.1) is equivalent to

G∓
IJ = 0 , (3.2)

while the equation of motion for the conformal supergravity multiplet (that is, the

N = 4 Weyl supermultiplet) is

1

µ
W + T± = 0 , (3.3)

where T± is the supercurrent given by

T± = ±G± . (3.4)

One can check that the supercurrent T± obeys the conservation equation [31]

∇α(I∇J)
α T± =

1

4
δIJ∇α

K∇K
α T (3.5)

when the matter equation of motion (3.2) is satisfied.

Making use of the Bianchi identity (2.7) as well as the equations of motion (3.2)–

(3.4), one finds the following equations on G±:

(

∇γ(I∇J)
γ − 1

4
δIJ∇γ

K∇K
γ

)

G± = 0 , (3.6a)
(

∇γ
K∇K

γ ∓ 8iW
)

G−1
± = 0 , (3.6b)

1

µ
W ±G± = 0 , (3.6c)

∇[I
(α∇

J ]
β)G

−1
± = ±1

2
εIJKL∇(αK∇β)LG

−1
± . (3.6d)

We now turn to an analysis of the consequences of the equations of motion (3.6).
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3.2 Analysing the equations of motion

To analyse the equations of motion corresponding to the action (3.1) we need

to fix the gauge. Firstly, we use the special conformal transformations to make the

dilatation connection vanish, BA = 0. This corresponds to degauging of conformal

superspace to SO(4) superspace [14] and gives rise to new torsion terms6 which can

be expressed in terms of superfields SIJ , S, Ca
IJ and their covariant derivatives. We

refer the reader to [14] for details and provide a summary of the salient details of

SO(4) superspace in Appendix B.

Upon imposing the gauge BA = 0 one can show that (3.6) is equivalent to

(

Dγ(IDJ)
γ − 1

4
δIJDγ

KDK
γ − 4iSIJ

)

G± = 0 , (3.7a)
(

Dγ
KDK

γ + 8i(2S ∓W )
)

G−1
± = 0 , (3.7b)

1

µ
W ±G± = 0 , (3.7c)

(D[I
(αD

J ]
β) − 4iCαβ

IJ)G−1
± = ±1

2
εIJKL(D(αKDβ)L − 4iCαβKL)G

−1
± , (3.7d)

where DI
α is the SO(4) superspace covariant derivative [14, 27] (see also [18]). In

isospinor index notation, for the self-dual vector multiplet one obtains

(

DγīiDγīi + 8i(2S −W )
)

G−1
+ = 0 , (3.8a)

(D(̄ik̄
α Dβ

j)
k̄ − 4iCαβ

ij)G−1
+ = 0 , (3.8b)

(Dγ(i(̄iDj)j̄)
γ − 4iSijīj̄)G+ = 0 , (3.8c)

W + µG+ = 0 , (3.8d)

while for the anti-self-dual vector multiplet one finds

(

DγīiDγīi + 8i(2S +W )
)

G−1
− = 0 , (3.9a)

(Dk(̄i
α Dβk

j̄) − 4iCαβ
īj̄)G−1

− = 0 , (3.9b)

(Dγ(i(̄iDj)j̄)
γ − 4iSijīj̄)G− = 0 , (3.9c)

W − µG− = 0 . (3.9d)

One should keep in mind that the equations of motion for G+ and G− derived from

the actions S+ and S−, respectively, were used in the above results.

6See [17] for more details. It is important to note that the SO(4) connection of SO(4) superspace

differs from the one from the one of conformal superspace by a redefinition, for details see [18].
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Under super-Weyl transformations the SO(4)-covariant derivatives and the torsion

terms transform as7

DI
α → D′I

α = e
1

2
σ
(

DI
α + (DβIσ)Mαβ + (DαJσ)N

IJ
)

, (3.10a)

SIJ → S ′IJ =
i

4
e2σ(Dγ(IDJ)

γ − 1

4
δIJDγKDγK − 4iSIJ )e−σ , (3.10b)

S → S ′ = − i

16
(Dγ

KDK
γ + 16iS)eσ , (3.10c)

C ′
a
IJ → Ca

IJ = − i

8
(γa)

αβ(D[I
αDJ ]

β − 4iCαβ
IJ)eσ , (3.10d)

W →W ′ = eσW , (3.10e)

where σ is a real unconstrained superfield. Within the superconformal framework, all

supergravity-matter actions are required to be super-Weyl invariant.

The super-Weyl gauge freedom may be used to impose useful gauge conditions.

For instance, one can make use of the super-Weyl transformations to gauge away the

self-dual or anti-self-dual part of Ca
IJ such that the remaining torsion components

are expressed directly in terms of the matter fields. For concreteness, let us consider

the theory described by the action S+, with corresponding equations of motion (3.8),

and gauge away Ca
īj̄ via a super-Weyl transformation. We then find

W = −µG+ , (3.11a)

Sijīj̄ = − i

4
G−1

+ Dγ(i(̄iDj)j̄)
γ G+ , (3.11b)

2S −W =
i

8
G+DγīiDγīiG

−1
+ , (3.11c)

Cαβ
ij = − i

4
G+D(ik̄

α Dβ
j)
k̄G

−1
+ , (3.11d)

Ca
īj̄ = 0 . (3.11e)

In this gauge, we see that the geometry is determined in terms of a single superfield,

which is chosen to be the scalar G+. After imposing this super-Weyl gauge condition

it is possible to show that there is enough super-Weyl freedom left to impose the

additional condition

2S +W = 0 , (3.12)

see Appendix C for the derivation. This condition proves to lead to the following

nonlinear equation for G+:

DγīiDγīiG
−1
+ + 16iµ = 0 . (3.13)

7The infinitesimal form was given in [14, 25].
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The main virtue of the super-Weyl gauge conditions imposed is that all the torsion

and curvature tensors are descendants of the single scalar superfield G+. However, this

gauge choice is not particularly useful from the point of view of studying (maximally)

supersymmetric backgrounds. A more convenient super-Weyl gauge fixing is G+ =

const. We spell out the implications of such a gauge condition below.

Given a vector multiplet with a superfield strength GIJ such that G is nowhere

vanishing, one can always make use of the super-Weyl transformations to choose a

gauge where

G =
1

2
GIJGIJ = 1 , DI

αG
JK = 0 . (3.14)

Such a gauge condition has slightly different consequences on the superspace geometry

for the two vector multiplets GIJ
+ and GIJ

− satisfying the equations of motion (3.2)

and (3.3). In both cases the super-Cotton tensor is constant,

W = const =⇒ SIJ = 0 , (3.15)

while the constraints on the remaining torsion components differ. For the on-shell

self-dual vector multiplet one finds the following consistency conditions

1

2
εIJKLCa

KL = CaIJ , 2S −W = 0 , (3.16)

while for the on-shell anti-self-dual vector multiplet one finds

−1

2
εIJKLCa

KL = CaIJ , 2S +W = 0 . (3.17)

In the case where CIJ
a vanishes, the algebra of covariant derivatives coincides with

that of (4, 0) AdS superspace in the critical case where 2S ∓W = 0, see [25].8 In gen-

eral, however, Ca
IJ does not vanish and instead satisfies some differential conditions

implied by the Bianchi identities

[[DA,DB},DC} + (−1)εA(εB+εC)[[DB,DC},DA}
+ (−1)εC(εA+εB)[[DC ,DA},DB} = 0 . (3.18)

To analyse the Bianchi identities in detail it will be useful to convert to isospinor

notation.

We consider in detail the self-dual TMSG theory. In the isospinor notation, the

covariant derivative algebra which follows from the equations of motion is

{Dīi
α ,Djj̄

β } = 2iεijεīj̄Dαβ + 4iεαβε
īj̄WLij + 4iCαβ

īj̄Lij

8The N = 4 super-Cotton tensor is denoted by X in [14, 25] .
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+2iεαβε
ijCγδīj̄Mγδ − 2iεijεīj̄WMαβ . (3.19a)

Analysing the Bianchi identities (3.18) determines the remainder of the covariant

derivative algebra:

[

Dαβ,Dkk̄
γ

]

= −εγ(αWDkk̄
β) + (εγ(αCβ)δ

k̄j̄ + εδ(αCβ)γ
k̄j̄)Dδk

j̄

+2εγ(αCβ)δρ
kk̄M δρ − 2Cαβγ

jk̄Lj
k , (3.19b)

[Dαβ ,Dγδ] = iεγ(αCβ)δρkk̄Dρkk̄ + iεδ(αCβ)γρkk̄Dρkk̄

+εδ(αW
2Mβ)γ + εγ(αW

2Mβ)δ

+
i

12
εδ(α

(

Dkk̄
β)Dγk

l̄Cρσk̄l̄

)

Mρσ +
i

12
εγ(α

(

Dkk̄
β)Dδk

l̄Cρσk̄l̄

)

Mρσ

−εδ(αCβ)γk̄l̄C
ρσk̄l̄Mρσ − εγ(αCβ)δk̄l̄C

ρσk̄l̄Mρσ , (3.19c)

as well as the following differential constraint on Ca
īj̄

Dīi
αCβγ

j̄k̄ = 2εī(j̄Cαβγ
ik̄) . (3.20)

The above constraint implies, in turn,

Dα
γCβγ

īj̄ + C(α
γ
k̄
(̄iCβ)γ

j̄)k̄ + 2WCαβ
īj̄ = 0 . (3.21)

Since the SU(2)R curvature vanishes, we can completely gauge away the corresponding

connection. Such a gauge condition is assumed in what follows. In this gauge, the

field strengthGīj̄ becomes a constant symmetric isospinor subject to the normalisation

condition Gīj̄Gīj̄ = 1. It is invariant under a U(1) subgroup of SU(2)R.

We are now in a position to describe all maximally supersymmetric solutions of

the theory. In accordance with the general superspace analysis of supersymmetric

backgrounds in diverse dimensions [32, 33, 34], such superspaces have to comply with

the additional constraint

Dīi
αCβγ

j̄k̄ = 0 , (3.22)

which leads to the integrability conditions

(Da −WMa)Cb
j̄k̄ = 0 , (3.23a)

Cγ
(α

īj̄Cβ)γ
k̄l̄ = 0 . (3.23b)

The general solution of (3.23b) is

Cαβ
īj̄ = CαβC

īj̄ , (3.24)
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where C īj̄ is a constant symmetric rank-2 isospinor. Without loss of generality, C īj̄

can be normalised as C īj̄Cīj̄ = 1. The covariant constancy conditions (3.22) and

(3.23a) now amount to

Dīi
αCb = 0 , (Da −WMa)Cb = 0 . (3.25)

We recall that the Lorentz generator with a vector index, Ma, acts on a three-vector

by the ruleMaCb = εabcC
c. The second condition in (3.25) implies that Cb is a Killing

vector of constant norm,

DaCb +DbCa = 0 , C2 = CaCa = const . (3.26)

Thus there are three types of backgrounds depending on whether the Killing vector

Ca is chosen to be time-like, space-like or null. The algebra of covariant derivatives

for such a background is

{Dīi
α ,Djj̄

β } = 2iεijεīj̄(Dαβ −WMαβ) + 4iεαβε
īj̄WLij + 4iC īj̄CαβL

ij

+ 2iεαβε
ijC īj̄CγδMγδ , (3.27a)

[

Dαβ ,Dkk̄
γ

]

= −εγ(αWDkk̄
β) + (εγ(αCβ)δ

k̄j̄ + εδ(αCβ)γ
k̄j̄)Dδk

j̄ , (3.27b)

[Dαβ,Dγδ] =W 2
(

εδ(αMβ)γ + εγ(αMβ)δ

)

−
(

εδ(αCβ)γ + εγ(αCβ)δ

)

CρσMρσ . (3.27c)

One may think of this algebra as a Lie superalgebra.9 By construction, the theory

involves the constant symmetric isospinor Gīj̄ being invariant under a U(1) subgroup

of the group SU(2)R. If C īj̄ does not coincide with Gīj̄, then the group SU(2)R is

completely broken. This indicates that C īj̄ = Gīj̄.

The simplest maximally supersymmetric solution of the theory is characterised by

(see also [20])

Ca
īj̄ = 0 . (3.28)

It corresponds to the critical (4,0) AdS superspace introduced in [25]. Its algebra of

covariant derivatives is as follows:

{Dīi
α ,Djj̄

β } = 2iεijεīj̄(Dαβ −WMαβ) + 4iεαβε
īj̄WLij , (3.29a)

[Da,Djj̄
β ] =

1

2
W (γa)β

γDjj̄
γ , [Da,Db] = −W 2Mab . (3.29b)

The last relation shows that the cosmological constant is Λ = −W 2 = −ℓ−2, in

agreement with [20, 25]. Here ℓ is the radius of curvature in AdS3. The latter

relation is equivalent to µℓ = 1, which corresponds to chiral gravity [24].

9More precisely, (3.27) is isomorphic to the Lie superalgebra corresponding to the isometry su-

pergroup of the background superspace under consideration.
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More generally, the (p, q) AdS superspaces, p + q = N , in three dimensions were

classified in [25]10. In the N = 4 case, the (3,1) and (2,2) AdS superspaces are

necessarily conformally flat, W = 0. The distinguished feature of (4,0) AdS super-

symmetry is that the super-Cotton scalar W may have a non-zero value. The algebra

of covariant derivatives is given by [25]

{Dīi
α ,Djj̄

β } = 2iεijεīj̄Dαβ + 2iεαβε
īj̄(2S +W )Lij + 2iεαβε

ij(2S −W )Rīj̄

−4iSεijεīj̄Mαβ , (3.30a)

[Da,Djj̄
β ] = S(γa)βγDjj̄

γ , [Da,Db] = −4S2Mab , (3.30b)

where the positive constant S determines the curvature of AdS3. For a generic value

ofW the entire SO(4) R-symmetry group belongs to the superspace holonomy group.

But there are two points in which either the SU(2)R or the SU(2)L curvature vanishes

and the structure group is reduced. These are given by

W = ±2S (3.31)

and correspond to the critical (4,0) AdS superspaces. As briefly discussed in [35],

the isometry group of (4,0) AdS superspace is isomorphic to D(2, 1;α) × SL(2,R)

in the non-critical case W 6= ±2S, where D(2, 1;α) is one of the exceptional simple

supergroups, with the real number α 6= −1, 0, see e.g. [36, 37] for reviews. The

supergroup parameter α is related to the (4,0) AdS parameter q = 1+ W
2S

introduced

in [35]. If the values of α are restricted to the range11 −1 < α ≤ −1
2
, then we can

identify −2α = 1+W
2S
. The case α = −1

2
corresponds to the conformally flat (4,0) AdS

superspace, for whichW = 0. Its isometry group is OSp(4|2)×SL(2,R). The limiting

choice α = −1 corresponds to one of the two critical (4,0) AdS cases, W = 2S.12 The

isometry group of this (4,0) AdS superspace is SU(1, 1|2)⋊SU(2)×SL(2,R), see also

the discussion in [38].

If Ca 6= 0, the maximally supersymmetric background (3.27) describes a warped

critical (4,0) AdS superspace. The bosonic body of such a superspace is warped

AdS3 spacetime associated with the Killing vector ca(x) = Ca(z)|θ=0. Warped AdS3

spacetimes have been discussed in detail in the literature, see [39, 40, 41, 42] and

references therein. In the N = 2 supersymmetric case, the (super)space geometry of

maximally supersymmetric warped (1,1) and (2,0) AdS backgrounds was described in

10In three dimensions, N -extended AdS supergravity exists in several incarnations [7] known as

the (p, q) AdS supergravity theories, where the integers p ≥ q ≥ 0 are such that N = p+ q.
11Not all values of α lead to distinct supergroups, since the supergroups defined by the parameters

α±1, −(1 + α)±1 and −α±1(1 + α)∓1 are isomorphic [36, 37].
12The isometry groups of the two critical (4,0) AdS superspaces are isomorphic.
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[11] and further elaborated in [34]. Supersymmetric warped (1,1) AdS backgrounds

were thoroughly studied in [43].

We now linearise the equation (3.21) around the critical (4, 0) AdS superspace

and let Ca
īj̄ = δCa

īj̄ where δCa
ij is a small disturbance. Eq. (3.21) turns into

Dα
γδCβγ

īj̄ − 2µδCαβ
īj̄ = 0 =⇒ DaδCa

īj̄ = 0 , (3.32)

where Da denotes the vector covariant derivative of the critical (4, 0) AdS superspace.

After applying another vector derivative one finds the equation

(DaDa − 2µ2)δCb
īj̄ = 0 . (3.33)

One can also derive further equations on descendants of δCαβ
īj̄ using the constraint

(3.20). In particular, one finds

(Dα
δ − 3

2
µδδα)δCβγδ

īi = 0 , δCαβγ
īi :=

1

3
Dα

i
j̄δCβγ

īj̄ , (3.34a)

(Dα
ρ − µδρα)δCβγδρ = 0 , δCαβγδ := Dīi

(αδCβγδ)īi , (3.34b)

where Dīi
α denotes the spinor covariant derivative of the critical (4, 0) AdS superspace.

The component projection of δCαβγ
īi is proportional to the linearised gravitino field

strength, while δCαβγδ is proportional to the linearised Cotton tensor. These super-

fields can be shown to satisfy the following consequences of eqs. (3.34):

(DaDa +
1

4
µ2)δCαβγ

īi = 0 , (3.35a)

(DaDa + 2µ2)δCαβγδ = 0 . (3.35b)

In the above we made use of the following result for a symmetric rank-(2s) superfield

Tα1···α2s
= T(α1···α2s) (with isospinor indices suppressed):

(Dα1

β − δα1

βµ

η
)Tα2···α2sβ = 0 =⇒ (DaDa −

µ2

η2
+ (s+ 1)µ2)Tα1···α2s

= 0 , (3.36)

with η a dimensionless parameter. Computing the bar-projection of the equations

(3.32), (3.34a) and (3.34b), we can determine the representations of the AdS group

SO(2,2) to which the fields δCαβ
īj̄|, δCαβγ

īi| and δCαβγδ| belong. We recall that

the unitary representations of SO(2,2), denoted D(E0, ŝ), are labelled by two real

weights (E0, ŝ), where E0 is the lowest energy and ŝ is the helicity, see e.g. [44].

The weights obey the unitarity bound E0 ≥ |ŝ| for ŝ > 0, where the representations

with E0 = |ŝ| > 0 are called singleton representations. For a superfield Tα1...α2s

obeying the first-order equation (3.36), its lowest component Tα1...α2s
| transforms in

the representation with
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E0 = 1 +
1

|η| , ŝ =
sη

|η| , (3.37)

as follows from the analysis in [44] (see also [45]). Thus the gravitational field δCαβγδ|
is a helicity 2 singleton, while the spin-1 and spin-3/2 fields, δCαβ

īj̄ | and δCαβγ
īi|, are

massive.

In the above we worked with the self-dual TMSG theory, however the analysis

of the equations of motion corresponding to the action S− is completely analogous.

There one finds the covariant derivative algebra is

{Dīi
α ,Djj̄

β } = 2iεijεīj̄Dαβ − 4iεαβε
ijWRīj̄ + 4iCαβ

ijRīj̄

+2iεαβε
īj̄CγδijMγδ + 2iεijεīj̄WMαβ , (3.38)

where Ca
ij satisfies the Bianchi identity

Dīi
αCβγ

jk = 2εi(jCαβγ
k)̄i . (3.39)

Using the above equation one finds

Dα
γCβγ

ij + C(α
γ
k
(iCβ)γ

j)k − 2WCαβ
ij = 0 . (3.40)

The solution Ca
ij = 0 corresponds to (4, 0) AdS superspace in the critical case 2S =

−W . We now linearise around the (4, 0) AdS superspace and set Ca
ij = δCa

ij where

δCa
ij is a small disturbance. It can be seen that δCa

ij obeys the equation

Dα
γδCβγ

ij − 2µδCαβ
ij = 0 , (3.41)

where Da corresponds to the vector covariant derivative of the (4, 0) AdS superspace.

After applying another vector derivative one finds

(DaDa − 2µ2)δCb
ij = 0 . (3.42)

4 Component actions

In this section we give the component results corresponding to the minimal N = 4

topologically massive supergravity action (3.1).
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4.1 The component conformal supergravity action

The complete component analysis of the N -extended Weyl multiplet was given in

[17]. Here we specialise to the N = 4 case where the auxiliary fields coming from the

super-Cotton tensor are defined as:

w :=
1

4!
εIJKLw

IJKL = W | , y :=
1

4!
εIJKLy

IJKL = − i

4
∇α

I∇I
αW | , (4.1a)

wαL :=
1

3!
εIJKLwα

IJK = − i

2
∇αLW | . (4.1b)

The full N = 4 conformal supergravity action was given in [17] and is

SCSG =
1

8

∫

d3x e
{

εabc
(

ωa
fgRbcfg −

2

3
ωaf

gωbg
hωch

f − i

2
Ψbc

α
I (γd)α

β(γa)β
γεdefΨef

I
γ

− 2Rab
IJVcIJ − 4

3
Va

IJVbI
KVcKJ

)

− 32iwα
I w

I
α − 8wy − 16iψa

α
I (γ

a)α
βwI

βw − 2iεabc(γa)αβψb
α
I ψc

βIw2
}

, (4.2)

where the component curvatures Rab
cd and Rab

IJ are defined as

Rab
cd := 2ea

meb
n∂[mωn]

cd − 2ω[a
cfωb]f

d , (4.3a)

Rab
IJ := 2ea

meb
n∂[mVn]

IJ − 2V[a
IKVb]K

J . (4.3b)

4.2 The component vector multiplet actions

The component N = 4 linear multiplet actions were given in [12]. Making use of

the results there, one can construct the left and right vector multiplet actions.

The component fields of the vector multiplets are defined as

gIJ± := GIJ
± | , (4.4a)

λ(±)
I
α :=

2

3
∇αJG

IJ
± | , (4.4b)

h(±)
IJ :=

i

3
∇γ[I∇γKG

J ]K
± | , (4.4c)

f(±)ab := − i

24
εabc(γ

c)αβ∇K
α ∇L

βG±KL| −
1

2
(ψ[a

Kγb]λ(±)K) +
i

2
ψa

γKψb
L
γ g±KL , (4.4d)

where g±
IJ is (anti-)self-dual

1

2
εIJKLg±KL = ±g±IJ . (4.5)
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The component gauge one-forms v(±)a are defined as

v(±)a := ea
mv(±)m , f(±)ab = 2ea

menb ∂[mv(±)n] , v(±)m := V±m| , (4.6)

where V± is the superspace gauge one-form associated with the field strength GIJ
± .

It is useful to replace h(±)
IJ by the fields

ĥ±
IJ =

1

2
(h(∓)

IJ + h̃(∓)
IJ)

= h(∓)
IJ ∓ 2wg∓

IJ , (4.7)

which proves to be (anti-)self-dual

1

2
εIJKLĥ±KL = ±ĥIJ± . (4.8)

The component self-dual vector multiplet action is

S
(+)
VM =−

∫

d3x e
(

εabcv(+)af (+)bc +
1

4
ĥ+

IJg+IJ +
1

4
ĥ−

IJg−IJ − i

2
λαIλαI

− 1

2
(γa)γδψa

γ
I (λ

δJg−J
I + λδJg+J

I)

+
i

2
εabc(γa)γδψb

γ
Kψc

δ
L g+

KPg−
L
P

)

, (4.9)

where the bolded component fields correspond to those of the composite vector mul-

tiplet,

gIJ
− = GIJ

− | , λI
α =

2

3
∇αJG

IJ
− | , ĥ+

IJ =
i

3
∇γ[I∇γKG

J ]K
− |+ 2wg−

IJ , (4.10a)

va = ea
mVm| = Va|+

1

2
ψa

α
I V

I
α | , (4.10b)

f (+)ab = − i

24
εabc(γ

c)αβ∇K
α ∇L

βG−KL| −
1

2
(ψ[a

Kγb]λK) +
i

2
ψa

γKψb
L
γ g−KL . (4.10c)

The component anti-self dual vector multiplet action is

S
(+)
VM =−

∫

d3x e
(

εabcv(−)af (−)bc +
1

4
ĥ+

IJg+IJ +
1

4
ĥ−

IJg−IJ − i

2
λαIλαI

− 1

2
(γa)γδψa

γ
I (λ

δJg−J
I + λδJg+J

I)

+
i

2
εabc(γa)γδψb

γ
Kψc

δ
L g+

KPg−
L
P

)

, (4.11)

where

gIJ
+ = GIJ

+ | , λI
α =

2

3
∇αJG

IJ
+ | , ĥ−

IJ =
i

3
∇γ[I∇γKG

J ]K
+ | − 2wg+

IJ , (4.12a)
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va = ea
mVm| = Va|+

1

2
ψa

α
I V

I
α | , (4.12b)

f (−)ab = − i

24
εabc(γ

c)αβ∇K
α ∇L

βG+KL| −
1

2
(ψ[a

Kγb]λK) +
i

2
ψa

γKψb
L
γ g+KL . (4.12c)

Plugging in the superspace expressions for G±
IJ one one can construct the com-

ponent fields of the composite vector multiplets. The component fields are found to

be

g±
IJ =

1

g±
ĥIJ± − i

2g3±
λ±

α
KΛ±

[I
α g±

J ]K ± i

4g3±
εIJLPλ±

α
Kλ±αLg±P

K , (4.13a)

Λ(±)
I
α =

2

g±
∇α

γλ(±)
I
γ +

2

g3±
f±αβλ(±)

β
Jg±

IJ +
1

3g3±
ĥ∓JKλ(±)

I
αg±

JK

+
2

3g3±
ĥ∓JKλ(±)

J
αg±

KI +
1

3g2±
ĥ∓

IJλ(±)
K
α g±JK

+
2

3g3±
∇αβg±JKλ(±)

βIg±
JK +

4

3g3±
∇αβg±JKλ(±)

βJg±
KI

− 2

g3(±)

∇αβg±
IJλ(±)

βKg±JK

± 1

g±
wλ(±)

I
α ± 8i

g±
wαJg±

IJ +O(λ2) , (4.13b)

ĥ±
IJ =

4

g±
✷gIJ± +

2

g3±
f±abf±

abg±
IJ +

4

g3±
εabcf±ab∇cg±K

[Ig±
J ]K

− 1

4g3±
ĥ∓

KLĥ∓KLg±
IJ − 2

g3±
g±

KL∇ag±KL∇ag±
IJ

+
1

g3±
g±

IJ∇ag±KL∇ag±
KL − 2

g±
w2g±

IJ ± 2

g±
yg±

IJ

+ fermion terms , (4.13c)

f (±)mn := em
aen

bf (±)ab

= ∂[m

( 4

g±
f(±)n] −

2

g±
Vn]

IJg±IJ

)

− 1

g3±
∂[mg±

IK∂n]g±
J
Kg±IJ

+ fermion terms , (4.13d)

where

f(±)
m =

1

2
εmnpf(±)np . (4.14)

Here we have introduced the following:

∇ag±
IJ := Dag±

IJ +
1

2
ψa

α[Iλ±
J ]
α ± 1

4
εIJKLψa

α
Kλ±αL , (4.15a)

✷g±
IJ := DaDag±

IJ +
1

4
Rg±IJ + fermion terms , (4.15b)
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and13

Da := ea
m∂m − 1

2
ωa

bcMbc −
1

2
Va

IJNIJ − baD . (4.16)

4.3 N = 4 topologically massive supergravity in components

To simplify our results it is useful to make use of the gauge freedom to impose

some gauge condition. One can always choose a gauge condition where

BA = 0 , G± = 1 . (4.17)

At the component level these require

g± = 1 , λIα = 0 , bm = 0 . (4.18)

The first gauge condition fixes the dilatation transformations, the second fixes the

S-supersymmetry transformations and the third fixes the conformal boosts. For a

right Gij and left Gīj̄ vector multiplet we can use the respective SU(2) symmetry to

fix their lowest components to a constant. This then gives

∇ag±
IJ = 2Va

K[Ig±K
J ] . (4.19)

With the above gauge conditons we find

ĥ
IJ

± g±IJ = 2R+ 4f±abf±
ab − 1

2
ĥ∓

IJ ĥ∓IJ

−2VaKLV
aKL + 4Va

IKV aJLg±IJg±KL

−4w2 ± 4y + fermion terms , (4.20a)

ĥIJ± g±IJ = ĥIJ± ĥ±IJ , (4.20b)

f (±)mn = ∂[m

(

4f(±)n] − 2Vn]
IJg±IJ

)

+ fermion terms . (4.20c)

Using the above conditions one finds (upon integrating by parts) the self-dual

vector multiplet action is

S
(+)
VM =−

∫

d3x e
(1

2
R− f(+)abf

ab
(+) − 2fa

(+)Va
IJg+IJ −

1

2
VaKLV

aKL

+ Va
IKV aJLg+IJg+KL +

1

8
ĥIJ− ĥ−IJ − w2 + y + fermion terms

)

, (4.21)

13We have denoted the component vector derivative Da in the same way as the SU(2) superspace

covariant derivative. It should be clear from context to which we are referring to.
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while the anti-self-dual vector multiplet action is

S
(−)
VM =−

∫

d3x e
(1

2
R− f(−)abf

ab
(−) − 2fa

(−)Va
IJg−IJ −

1

2
VaKLV

aKL

+ Va
IKV aJLg−IJg−KL +

1

8
ĥIJ+ ĥ+IJ − w2 − y + fermion terms

)

. (4.22)

The complete component action for minimal N = 4 topologically massive super-

gravity (3.1) is then given by

κS± =
1

µ
SCSG + S

(±)
VM , (4.23)

where SCSG is the component action (4.2). As a simple check one can readily verify

that the equation of motion on the field y gives

w = ∓µ , (4.24)

which is consistent with the supergravity equation of motion being W = ∓µG± in

the presence of the vector multiplet compensator.

For completeness we will also give the component action in isospinor notation.

The N = 4 conformal supergravity action (4.2) becomes

SCSG =
1

8

∫

d3x e
{

εabc
(

ωa
fgRbcfg −

2

3
ωaf

gωbg
hωch

f

− 4Rab
ijVcij −

8

3
Vai

jVbj
kVck

i

− 4Rab
īj̄Vcīj̄ −

8

3
Vaī

j̄Vbj̄
k̄Vck̄

ī
)

− 32iwα
īiw

īi
α − 8wy − 16iψa

α
īi(γ

a)α
βwīi

βw − 2iεabc(γa)αβψb
α
īiψc

βīiw2
}

, (4.25)

where the component SU(2) curvatures Rab
ij and Rab

īj̄ are

Rab
ij := 2ea

meb
n∂[mVn]

ij − 2V[a
ikVb]k

j , (4.26a)

Rab
īj̄ := 2ea

meb
n∂[mVn]

īj̄ − 2V[a
īk̄Vb]k̄

j̄ . (4.26b)

The self-dual vector multiplet action in isospinor notation is

S
(+)
VM =−

∫

d3x e
(1

2
R− f(+)abf

ab
(+) − 4fa

(+)Va
īj̄g+īj̄ − Vaīj̄V

aīj̄

+ 2Va
īk̄V aj̄l̄g+īj̄g+k̄l̄ +

1

4
ĥij−ĥ−ij − w2 + y + fermion terms

)

, (4.27)

while the anti-self-dual vector multiplet action is

S
(−)
VM =−

∫

d3x e
(1

2
R− f(−)abf

ab
(−) − 4fa

(−)Va
ijg−ij − VaijV

aij
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+ 2Va
ikV ajlg−ijg−kl +

1

4
ĥīj̄+ĥ+īj̄ − w2 − y + fermion terms

)

. (4.28)

Having derived the component actions for minimal N = 4 topologically massive

supergravity, it is worth elaborating on these results further. For instance, if we

consider just one of the vector multiplet actions without the conformal supergravity

action, one can see that the equation of motion for y leads to an inconsistency. This

is equivalent to the fact that the superfield equations of motion for the N = 4

gravitational superfield14 derived from the actions S
(+)
VM and S

(−)
VM are G+ = 0 and

G− = 0, respectively, and these equations are inconsistent with the requirements

G± 6= 0. However, one gets consistent equations of motion if one adds the left and

right vector multiplets [12] and considers the action

S = S
(+)
VM + S

(−)
VM . (4.29)

Now the superfield equation of motion for the N = 4 gravitational superfield is [12]

G+ −G− = 0 , (4.30)

which is completely consistent. Moreover, this equation is consistent with our gauge

conditions because imposing the gauge G+ = 1 implies G− = 1, which in turn implies

that the auxiliary field y cancels. Furthermore, the fields w and ĥIJ become auxiliary

and their equation of motion is the requirement that they vanish. The equations of

motion on the SU(2) connections requires f(−)a = f(+)a = 0 and we are left with just

the N = 4 Poincaré supergravity action (up to a normalisation factor)

S =−
∫

d3x eR + fermion terms . (4.31)

In the presence of the conformal supergravity action the gauge conditions G+ = G− =

1 are no longer consistent [12] and instead one has to use the results in subsection 4.2

in the general gauge. If one also adds to (4.29) the supersymmetric cosmological term

[14], the resulting theory corresponds to (2,2) AdS supergravity as was described in

detail in [12, 14].

It is worth mentioning some simplifications that can be made to the N = 4

topologically massive supergravity actions upon using the equations of motion. To

illustrate this let us consider the theory with a self-dual vector multiplet. In this case

the equation of motion for the SU(2)L gauge field is

Rab
ij = 0 , (4.32)

14The N = 4 gravitational superfield is a scalar prepotential describing the multiplet of N = 4

conformal supergravity. It is the 3D N = 4 counterpart of the N = 2 gravitational superfield in

four dimensions [46].
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which tells us that the SU(2)L gauge field can be completely gauged away. The

equation of motion for the auxiliary field ĥij sets the auxiliary field to zero and

removes it from the action. The equation of motion on y just sets w = −µ and gives

rise to a cosmological term. The resulting action is

κS+ =

∫

d3x e
[ 1

8µ

{

εabc
(

ωa
fgRbcfg −

2

3
ωaf

gωbg
hωch

f

− 4Rab
īj̄Vcīj̄ −

8

3
Vaī

j̄Vbj̄
k̄Vck̄

ī
)

}

− 1

2
R+ µ2 + f(+)abf

ab
(+) + 4fa

(+)Va
īj̄g+īj̄ + Vaīj̄V

aīj̄

− 2Va
īk̄V aj̄l̄g+īj̄g+k̄l̄ + fermion terms

]

, (4.33)

Similar simplifications can be made for the anti-self dual vector multiplet action.

We can now show how to derive the supergravity action postulated in [20] from

our theory S−. The crucial observation is that the U(1) gauge field appears in the

action (4.28) only via its field strength f(−)ab, and therefore it may be dualised into a

scalar field. To implement this, we replace (4.28) with an equivalent first-order action

S
(−)
FO =−

∫

d3x e
(1

2
R− f(−)abf

ab
(−) − 4fa

(−)Va
ijgij − VaijV

aij + 2Va
ikV ajlg+ijg+kl

+
1

4
ĥīj̄+ĥ+īj̄ − w2 − y + 2fa

(−)Daϕ+ fermion terms
)

, (4.34)

where f(−)ab is an unconstrained antisymmetric tensor field, and ϕ a Lagrange multi-

pler. Varying ϕ gives Daf
a
(−) = 0, and therefore f(−)ab becomes the field strength of a

U(1) vector multiplet. Then S
(−)
FO turns into the original action (4.28). On the other

hand, we may integrate out f(−)ab from S
(−)
FO using its equation of motion

f(−)a = Va
ijgij −

1

2
Daϕ . (4.35)

Plugging this back into (4.34) gives the dual action

S
(−)
hyper = −

∫

d3x e
(1

2
R− 1

2
DaϕDaϕ+ 2DaϕV

aijgij − 2VaijV
aij

+
1

4
ĥīj̄+ĥ+īj̄ − w2 − y + fermion terms

)

, (4.36)

where we used

Va
ikV ajlgijgkl = V ij

a V
aklgijgkl −

1

2
VaijV

aij . (4.37)

If we impose a Weyl gauge ϕ = 1 and make use of the equation of motion for the

auxiliary field ĥīj̄+, which is ĥīj̄+ = 0, we recover the bosonic matter sector of the

topologically massive supergravity action in [20] up to conventions and fermion terms.

Since the auxiliary field ĥīj̄+ has been integrated out, the action given in [20] does not

appear to be off-shell.
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5 Discussion

In this paper we constructed minimal topologically massive N = 4 supergravity.

It has several unique features that we summarise here.

• Unlike the other N -extended TMSG theories with N ≤ 4 [9, 10, 11, 12], its

action cannot be viewed as the supergravity action (with or without a super-

symmetric cosmological term) augmented by the conformal supergravity action

playing the role of a topological mass term. The point is that the theory be-

comes inconsistent upon removing the conformal supergravity action, as was

explained in section 4.3.

• Our theory makes use of a single superconformal compensator. We recall that

all known Poincaré or AdS supergravity theories with eight supercharges in

diverse dimensions require, in general, two such compensators in order for the

corresponding dynamics to be consistent. One known exception is the off-shell

formulation for 4D N = 2 AdS supergravity given in [47], which makes use a

single massive tensor compensator (described by an unconstrained chiral scalar

prepotential) and no compensating vector multiplet.15 In the case of higher

derivative theories, two compensators are no longer required. This was observed

in four dimensions for models involving theN = 2 supersymmetric R2 term [55],

and in three dimensions for topologically massive N = 4 supergravity [20].

• Our minimal TMSG theory does not allow any supersymmetric cosmological

term. However, a cosmological term gets generated at the component level

upon integrating out the auxiliary fields. This is manifested in the fact that

the critical (4,0) AdS superspace [25] is a maximally supersymmetric solution

of the theory.

• The theory has only one coupling constant.

• Our minimal TMSG theory is the first off-shell N = 4 supergravity theory in

three dimensions with the property that the critical (4,0) AdS superspace [25]

is a solution of the theory. Upon integrating out the auxiliary fields we recover

the model discussed in [20].

15The vector multiplet has been eaten up by the tensor multiplet. The vector compensator acts

as a Stückelberg field to give mass to the tensor multiplet. This is an example of the phenomenon

observed originally in [48] and studied in detail in [29, 49, 50, 51, 52, 53, 54].
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Both models for minimal topologically massive N = 4 supergravity constructed

in this paper possess dual formulations. They are obtained by replacing the vector

multiplet actions S
(+)
VM and S

(−)
VM with off-shell hypermultiplet actions S

(+)
HM and S

(−)
HM,

respectively, such that

S
(+)
HM := − i

2π

∮

(vR, dvR)

∫

d3|8z E C
(−4)
R Υ

(1)
R Ῠ

(1)
R , (5.1)

and similarly for the left hypermultiplet action S
(−)
HM. In the dual formulation, its

compensating multiplet is the so-called polar hypermultiplet described by the weight-

one arctic multiplet Υ
(1)
R and its smile conjugate Ῠ

(1)
R . Duality between the theories

with actions S
(+)
VM and S

(+)
HM can be shown in complete analogy with the 4D N = 2

case [29].
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A The geometry of N = 4 conformal superspace

Here we collect the essential details of the N = 4 superspace geometry of [18].

We refer the reader to [14, 18] for our conventions for 3D spinors.

We begin with a curved three-dimensional N = 4 superspace M3|8 parametrized

by local bosonic (xm) and fermionic coordinates (θµI ):

zM = (xm, θµI ) , (A.1)

where m = 0, 1, 2, µ = 1, 2 and I = 1, · · · , 4. The structure group is chosen to be

OSp(4|4,R) and the covariant derivatives are postulated to have the form

∇A = EA − ωA
bXb = EA − 1

2
ΩA

bcMbc −
1

2
ΦA

PQNPQ −BAD− FA
BKB . (A.2)
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Here EA = EA
M∂M is the inverse vielbein, Mab are the Lorentz generators, NIJ are

generators of the SO(4) group, D is the dilatation generator and KA = (Ka, S
I
α) are

the special superconformal generators.

The Lorentz generators obey

[Mab,Mcd] = 2ηc[aMb]d − 2ηd[aMb]c , (A.3a)

[Mab,∇c] = 2ηc[a∇b] , [Mαβ ,∇I
γ] = εγ(α∇I

β) . (A.3b)

The SO(4) and dilatation generators obey

[NKL, N
IJ ] = 2δI[KNL]

J − 2δJ[KNL]
I , [NKL,∇I

α] = 2δI[K∇αL] , (A.3c)

[D,∇a] = ∇a , [D,∇I
α] =

1

2
∇I

α . (A.3d)

The Lorentz and SO(4 generators act on the special conformal generators KA as

[Mab, Kc] = 2ηc[aKb] , [Mαβ , S
I
γ ] = εγ(αS

I
β) , (A.3e)

[NKL, S
I
α] = 2δI[KSαL] , (A.3f)

while the dilatation generator acts on KA as

[D, Ka] = −Ka , [D, SI
α] = −1

2
SI
α . (A.3g)

Among themselves, the generators KA obey the algebra

{SI
α, S

J
β} = 2iδIJ(γc)αβKc . (A.3h)

Finally, the algebra of KA with ∇A is given by

[Ka,∇b] = 2ηabD+ 2Mab , (A.3i)

[Ka,∇I
α] = −i(γa)α

βSI
β , (A.3j)

[SI
α,∇a] = i(γa)α

β∇I
β , (A.3k)

{SI
α,∇J

β} = 2εαβδ
IJ
D− 2δIJMαβ − 2εαβN

IJ . (A.3l)

The covariant derivatives obey the (anti-)commutation relations of the form

[∇A,∇B} = −TAB
C∇C − 1

2
R(M)AB

cdMcd −
1

2
R(N)AB

PQNPQ

− R(D)ABD−R(S)AB
γ
KS

K
γ − R(K)AB

cKc , (A.4)

where TAB
C is the torsion, andR(M)AB

cd, R(N)AB
PQ, R(D)AB, R(S)AB

γ
K andR(K)AB

c

are the curvatures corresponding to the Lorentz, SO(4), dilatation, S-supersymmetry

and special conformal boosts, respectively.
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The full gauge group of conformal supergravity, G, is generated by covariant gen-

eral coordinate transformations, δcgct, associated with a parameter ξA and standard

superconformal transformations, δH, associated with a parameter Λa. The latter in-

clude the dilatation, Lorentz, SO(4), and special conformal (bosonic and fermionic)

transformations. The covariant derivatives transform as

δG∇A = [K,∇A] , (A.5)

where K denotes the first-order differential operator

K = ξC∇C +
1

2
ΛabMab +

1

2
ΛIJNIJ + ΛD+ ΛAKA . (A.6)

Covariant (or tensor) superfields transform as

δGT = KT . (A.7)

In order to describe the Weyl multiplet of conformal supergravity, some of the

components of the torsion and curvatures must be constrained. Following [18], the

spinor derivative torsion and curvatures are chosen to resemble super-Yang Mills

{∇I
α,∇J

β} = −2iεαβWIJ , (A.8)

where WIJ is some operator that takes values in the superconformal algebra, with PA

replaced by ∇A. In [18] it was shown how to constrain W IJ entirely in terms of the

super Cotton tensor (or scalar for N = 4). The super Cotton scalar W , is a primary

superfield of dimension-1,

SI
αW = 0 , KaW = 0 , DW =W . (A.9)

The algebra of covariant derivatives is

{∇I
α,∇J

β} = 2iδIJ∇αβ + iεαβε
IJKLWNKL − iεαβε

IJKL(∇γ
KW )SγL

+
1

4
εαβ(γ

c)γδεIJKL(∇γK∇δLW )Kc , (A.10a)

[∇a,∇J
β ] =

1

2
εJPQK(γa)βγ(∇γ

KW )NPQ

− 1

4
(γa)βγε

JKLP (∇γ
L∇δ

PW )SδK

− i

24
(γa)βγ(γ

c)δρε
JKLP (∇γ

K∇δ
L∇ρ

PW )Kc , (A.10b)

[∇a,∇b] =
1

8
εabc(γ

c)αβε
PQIJ

(

i(∇α
I∇β

JW )NPQ

+
i

3
εLIJK(∇α

I∇β
J∇γ

KW )SγL
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+
1

24
(γd)γδε

IJKL(∇α
I∇β

J∇γ
K∇δ

LW )Kd

)

, (A.10c)

where the super Cotton scalar W satisfies the following dimension 2 Bianchi identity

∇αI∇J
αW =

1

4
δIJ∇α

P∇P
αW . (A.11)

For each SO(4) vector VI we can associate a second-rank isospinor Vīi

VI ↔ Vīi := (τ I)īiVīi , (Vīi)
∗ = V īi . (A.12)

The original SO(4) connection turns into a sum of two SU(2) connections

ΦA = (ΦL)A + (ΦR)A , (ΦL)A = ΦA
klLkl , (ΦR)A = ΦA

k̄l̄Rkl . (A.13)

Here Lkl is the SU(2)L generator and Rk̄l̄ is the SU(2)R generator. They are related

to the SO(4) generators NKL as

NKL → Nkk̄ll̄ = εk̄l̄Lkl + εklRk̄l̄ . (A.14)

The left and right operators act on the covariant derivatives as

[Lkl,∇īi
α] = εi(k∇l)̄i

α , [Rkl,∇īi
α] = εī(k̄∇il̄)

α . (A.15)

In the isospinor notation, the Bianchi identity on W becomes

∇αīi∇jj̄
αW =

1

4
εijεīj̄∇α

kk̄∇kk̄
α W . (A.16)

The algebra of spinor covariant derivatives becomes

{∇īi
α,∇jj̄

β } = 2iεijεīj̄∇αβ + 2iεαβε
īj̄WLij − 2iεαβε

ijWRīj̄

− iεαβε
ij∇γ

k
īWSkj̄

γ + iεαβε
īj̄∇γi

k̄WSjk̄
γ

+
1

4
εαβ

(

εij∇γk
ī∇kj̄

δ W − εīj̄∇γ
j
k̄∇ik̄

δ W
)

Kγδ (A.17)

and the action of the S-supersymmetry generator on ∇īi
α is

{S īi
α ,∇jj̄

β } = 2εαβε
ijεīj̄D− 2εijεīj̄Mαβ + 2εαβε

īj̄Lij + 2εαβε
ijRīj̄ . (A.18)
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B The geometry of SO(4) superspace

For many applications it is useful to work with a superspace formulation with a

smaller structure group than that of conformal superspace. The superspace formula-

tion of [14, 27], known as SO(4) superspace, provides such a formulation and may be

obtained from conformal superspace via a degauging procedure [18]. For the N = 4

case one chooses the structure group to be SO(4). The SO(4) superspace formula-

tion for N = 4 conformal supergravity has been used to construct general off-shell

supergravity-matter couplings [14].

The covariant derivatives have the form:

DA = EA − ΩA − ΦA . (B.1)

Here EA = EA
M(z)∂M is the supervielbein, with ∂M = ∂/∂zM , ΩA is the Lorentz

connection, and ΦA = 1
2
ΦA

KLNKL is the SO(4)-connection. The supergravity gauge

group is generated by local transformations of the form

δKDA = [K,DA] , K = KC(z)DC +
1

2
Kcd(z)Mcd +

1

2
KPQ(z)NPQ , (B.2)

with all the gauge parameters obeying natural reality conditions.

The covariant derivatives satisfy the (anti)commutation relations

[DA,DB} = −TAB
CDC − 1

2
RAB

KLNKL − 1

2
RAB

cdMcd , (B.3)

with TAB
C the torsion, RAB

cd the Lorentz curvature and RAB
KL the SO(4) curvature.

The algebra of covariant derivatives must be constrained to describe conformal su-

pergravity. The appropriate constraints [27] lead to the following anti-commutation

relation [14]:

{DI
α,DJ

β} = 2iδIJ(γc)αβDc − 2iεαβC
γδIJMγδ − 4iSIJMαβ

+
(

iεαβW
IJKL − 4iεαβS

K [IδJ ]L + iCαβ
KLδIJ − 4iCαβ

K(IδJ)L
)

NKL . (B.4a)

Here the dimension-1 components are real and satisfy the symmetry properties

W IJKL =W [IJKL] = εIJKLW , SIJ = S(IJ) , Ca
IJ = Ca

[IJ ] . (B.5)

It is useful to decompose the torsion superfield SIJ into its trace (S) and traceless

(SIJ) parts as

SIJ = SδIJ + SIJ , S =
1

N δIJS
IJ , δIJSIJ = 0 . (B.6)
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The torsion superfields satisfy the Bianchi identities

DI
αSJK = 2Tα

I(JK) + Sα
(JδK)I − 1

N Sα
IδJK , (B.7a)

DI
αCβγ

JK =
2

3
εα(β

(

Cγ)
IJK + 3Tγ)

JKI + 4(D[J
γ)S)δK]I +

(N − 4)

N Sγ)
[JδK]I

)

+Cαβγ
IJK − 2Cαβγ

[JδK]I , (B.7b)

0 =
(

Dγ(IDJ)
γ − 1

4
δIJDγKDγK − 4iSIJ

)

W . (B.7c)

It is often useful to make use of the isomorphism SO(4) ∼=
(

SU(2)L × SU(2)R
)

/Z2

and make use of isospinor notation, DI
α → Dīi

α , by replacing each SO(4) vector index

by a pair of isospinor ones. For our notation and conventions we refer the reader to

[14].

After introducing isospinor notation, the covariant derivatives are

DA = (Da,Dīi
α) = EA − ΩA − ΦA , (B.8)

where the original SO(4) connection ΦA now turns into a sum of two SU(2) connec-

tions

ΦA = (ΦL)A + (ΦR)A , (ΦL)A = ΦA
klLkl , (ΦR)A = ΦA

k̄l̄Rk̄l̄ . (B.9)

The two SU(2) generators act on the spinor covariant derivatives Dīi
α := DI

α(τI)
īi as

follows:
[

Lkl,Dīi
α

]

= εi(kDl)̄i
α ,

[

Rk̄l̄,Dīi
α

]

= εī(k̄Dil̄)
α . (B.10)

The algebra of spinor covariant derivatives is

{Dīi
α ,Djj̄

β } = 2iεijεīj̄(γc)αβDc + 2iεαβε
īj̄(2S +X)Lij − 2iεαβε

ijSklīj̄Lkl + 4iCαβ
īj̄Lij

+2iεαβε
ij(2S −X)Rīj̄ − 2iεαβε

īj̄Sij k̄l̄Rk̄l̄ + 4iCαβ
ijRīj̄

+2iεαβ(ε
īj̄Cγδij + εijCγδ īj̄)Mγδ − 4i(Sij īj̄ + εijεīj̄S)Mαβ , (B.11)

where the torsion components satisfy certain Bianchi identities given in [14].16

C Super-Weyl gauge conditions

In this appendix we show how one can use the super-Weyl freedom to impose

certain gauge conditions in SO(4) superspace. In particular, within the SO(4) (or

SU(2)L × SU(2)R) superspace formulation we will show that one can impose either

Ca
īj̄ = 0 , 2S +W = 0 (C.1)

16 As compared to [14], we have relabelled the superfield Bαβ
ij by Cαβ

ij .
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or

Ca
ij = 0 , 2S −W = 0 . (C.2)

We begin by introducing, within the SO(4) superspace geometry, an off-shell self-

dual vector multiplet Gīj̄ and an anti-self-dual vector multiplet Gij. They are con-

strained by the differential constraints for O(2) multiplets

Di(̄i
α G

j̄k̄) = 0 , D(īi
α G

jk) = 0 . (C.3)

Using these constraints it is possible to build some of the components of the torsion

in terms of these multiplets. In particular, one finds

2S −W =
iG+

8
DγīiDγīiG

−1
+ , (C.4a)

2S +W =
iG−

8
DγīiDγīiG

−1
− , (C.4b)

Cαβ
ij = − i

4
G+D(ik̄

α Dβ
j)
k̄G

−1
+ , (C.4c)

Cαβ
īj̄ = − i

4
G−Dα

k(̄iDβk
j̄)G−1

− , (C.4d)

S(k
p
īj̄Gl)p = − i

16
{Dγp(̄i,Dγp

j̄)}Gkl , (C.4e)

Sij
p̄
(k̄Gl̄)p̄ = − i

16
{Dγ(ip̄,Dγ

j)
p̄}Gk̄l̄ , (C.4f)

where G2
+ = Gīj̄Gīj̄ and G

2
− = GijGij.

The vector multiplets transform homogeneously under super-Weyl transforma-

tions

Gīj̄ → eσGīj̄ , Gij → eσGij , (C.5)

which tells us that the super-Weyl freedom can be completely fixed by imposing the

gauge condition G+ = 1 or G− = 1. If we impose G+ = 1 we find the conditions

(C.1), while if we impose G− = 1 we find the conditions (C.2). Therefore, these

conditions can always be imposed by an appropriate super-Weyl transformation.
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[7] A. Achúcarro and P. K. Townsend, “A Chern-Simons action for three-dimensional anti-de Sitter

supergravity theories,” Phys. Lett. B 180, 89 (1986).

[8] E. Witten, “(2+1)-dimensional gravity as an exactly soluble system,” Nucl. Phys. B 311, 46

(1988).

[9] S. Deser and J. H. Kay, “Topologically massive supergravity,” Phys. Lett. B 120, 97 (1983).

[10] S. Deser, “Cosmological topological supergravity,” in Quantum Theory Of Gravity, S. M. Chris-

tensen (Ed.), Adam Hilger, Bristol, 1984, pp. 374-381.
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