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Abstract

Using the superconformal framework, we construct a new off-shell model for
topologically massive N = 4 supergravity which is minimal in the sense that
it makes use of a single compensating vector multiplet. Our theory provides a
counterexample to the common lore that two compensating multiplets are re-
quired within the conformal approach to supergravity with eight supercharges in
diverse dimensions. All solutions in this theory correspond to non-conformally
flat superspaces. Its maximally supersymmetric solutions include the so-called
critical (4,0) anti-de Sitter superspace introduced in arXiv:1205.4622. Other
maximally supersymmetric solutions describe warped critical (4,0) anti-de Sit-
ter superspaces. We also propose a dual formulation for the theory in which
the vector multiplet is replaced with an off-shell hypermultiplet. Upon elim-
ination of the auxiliary fields belonging to the hypermultiplet and imposing
certain gauge conditions, the dual action reduces to the one introduced in
arXiv:1605.00103.
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1 Introduction

A unique feature of three spacetime dimensions (3D) is the existence of topologi-
cally massive Yang-Mills and gravity theories. They are obtained by augmenting the
usual Yang-Mills action or the gravitational action by a gauge-invariant topological
mass term. Such a mass term coincides with a non-Abelian Chern-Simons action in
the Yang-Mills case [I, 2, 3} 4] and with a Lorentzian Chern-Simons term in the case
of gravity [3,4]. Without adding the Lorentzian Chern-Simons term, the pure gravity
action propagates no local degrees of freedom. The Lorentzian Chern-Simons term

can be interpreted as the action for conformal gravity in three dimensions [3| [5] 6]

Topologically massive theories of gravity possess supersymmetric extensions. In
particular, topologically massive N = 1 supergravity was introduced in [9] and its
cosmological extension followed in [10]. The off-shell formulations for topologically
massive N -extended supergravity theories were presented in [I1] for N' = 2 and in
[12] for N' = 3 and N’ = 4. In all of these theories, the action functional is a sum
of two terms, one of which is the action for pure N-extended supergravity (Poincaré
or anti-de Sitter) and the other is the action for N-extended conformal supergravity.
The off-shell actions for N -extended supergravity theories in three dimensions were
given in [13] for N = 1, [14, [15] for N' = 2, and [14] for the cases N’ = 3, 4. The
off-shell actions for N -extended conformal supergravity were given in [5] for N' = 1,
[16] for N' = 2, and [I7] for the cases N’ = 3, 4. The latter work made use of the

formulation for M -extended conformal supergravity presented in [18].

The off-shell structure of 3D N = 4 supergravity [14] is analogous to that of 4D
N = 2 supergravity (see, e.g., [19] for a pedagogical review) in the sense that two
superconformal compensators are required (for instance, two off-shell vector multi-
plets, one of which is self-dual and the other anti-self-dual) in order to realise pure
Poincaré or anti-de Sitter (AdS) supergravity theories. We recall that the equations
of motion for pure N' = 4 Poincaré or AdS supergravity are inconsistent if one makes
use of a single compensator [12]. By construction, the off-shell topologically massive
N = 4 supergravity theory of [12] makes use of two compensators. However, in [20]
the consistent system of dynamical equations was proposed for topologically massive
N = 4 AdS supergravity with a single compensating hypermultiplet, following earlier
work in [21], 22 23] on ABJ(M) models. A peculiar feature of this model, like those
considered in [21], 22| 23], is that it has no free parameter. Consequently the dimen-

sionless combination, pf, of mass p and AdS radius ¢ takes a fixed value, uf = 1,

!The usual Einstein-Hilbert action for 3D gravity with a cosmological term can also be interpreted

as the Chern-Simons action for the anti-de Sitter group [7, [§].



as in chiral gravity [24]. In [20] a supergravity action functional was also postulated
to generate the dynamical equations given. This action was claimed to be off-shell
without giving technical details. In this paper we propose a new off-shell model for
topologically massive N = 4 supergravity which is minimal in the sense that it makes
use of a single compensating vector multiplet. The theory is consistent only if the
term corresponding to N = 4 conformal supergravity is turned on. An important
maximally supersymmetric solution for this theory is the so-called critical (4,0) AdS
superspace introduced in [25]. Our supergravity theory is first presented in a mani-
festly supersymmetric form, and then its action functional is reduced to components.
By choosing appropriate gauge conditions at the component level and performing a
duality transformation, we show how to reduce our off-shell supergravity action to

the one postulated in [20].

This paper is organised as follows. In section 2 we recall the superspace geom-
etry of the N/ = 4 vector multiplets and the corresponding locally supersymmetric
actions. In section 3 we present two models for minimal topologically massive N' = 4
supergravity, analyse their equations of motion and give a brief discussion of the
maximally supersymmetric solutions. Section 4 is devoted to the component struc-
ture of minimal topologically massive N' = 4 supergravity. Concluding comments are
given in section 5. The main body of the paper is accompanied with three technical
appendices. The essential details of the known superspace formulations for N = 4
conformal supergravity are collected in Appendices A and B. Some useful super-Weyl

gauge conditions in SO(4) superspace and their implications are given in Appendix

C.

2 The N =4 vector multiplets

There are two inequivalent irreducible N = 4 vector multiplets in three dimen-
sions, self-dual and anti-self-dual ones, as discovered by Brooks and Gates [26]. In this
section we review the superspace geometry of these supermultiplets in the presence of
N = 4 conformal supergravity [14, 18] and the corresponding locally supersymmetric

actions [14].

Throughout this paper we make use of both the SO(4) superspace formulation of
conformal supergravity, which was sketched in [27] and fully developed in [14], and the
conformal superspace formulation presented in [I8]. These formulations are related
to each other since SO(4) superspace may be viewed as a gauge fixed version of the

N = 4 conformal superspace [18]. Due to this reason, we will first start by formulating



vector multiplets in conformal superspace. We refer the reader to Appendix [Al for
the salient details of the conformal superspace formulation. The geometry of SO(4)

superspace in briefly reviewed in Appendix [Bl

2.1 Kinematics

To describe an Abelian vector multiplet in a curved superspace M3!® parametrised

by coordinates 2 = (2™, 6%), we introduce gauge covariant derivatives
V=EV4, Vui=(V,V):=Va-VaZ 6 [Z,V4=0, (2.1)

with E4 = dZM E,;4 the superspace vielbein, V 4 the superspace covariant derivatives
(A2) obeying the (anti-)commutation relations (A4), and V = E4V, the gauge

connection associated with Z. The gauge transformation of V is
OV =dr (2.2)

where the gauge parameter 7(z) is an arbitrary scalar superfield.

The algebra of gauge covariant derivatives is
1 1
(Va,Vp}=-TypVe — §R(M)ABCndd - §R(N)ABPQNPQ — R(D)apD
— R(S)aB]S) — R(K)ap°K. — FapZ | (2.3)

where the torsion and curvatures are those of conformal superspace but with Fyp
corresponding to the gauge covariant field strength F' = %EB A EAF, 5 = dV. The
field strength F4p satisfies the Bianchi identity

dF =0, VuFsey+ Tas”Fipiey =0 (2.4)

and must be subject to covariant constraints to describe an irreducible vector multi-

plet.

In order to describe an N = 4 vector multiplet, the superform F is subject to the

constraint (see [14] for more details)
Fié = 2ie,sGY . GV = -G, (2.5a)
and then the Bianchi identity fixes the remaining components of F' to be

1
Fuy = 5(0)s"Vox G (2.5b)



i
Fab = —4—85[11,0(70)“6[Vf, vé]GKL s (25C)

where G/ is primary and of dimension 1,
sig’" =0, K,G" =0, DGY=qG". (2.6)
Moreover, the field strength G!7 is constrained by the dimension-3/2 Bianchi identity
2
vIGTK = vIGM — gél[JVVLGK]L . (2.7)

It is well known (see [I4] and references therein) that the constraint (2.7) defines
a reducible off-shell supermultipletH The point is that the Hodge-dual of G/,
~ 1
Gt o= §EUKLGKL : (2.8)

obeys the same constraint as G'7 does,

- - 2 -
VIGTE = VG = 2V G (2.9a)

where /751 is the Levi-Civita tensor. As a result one may constrain the field strength

G to be self-dual, G/ = GI7 or anti-self-dual, GI7 = —G!/. These choices corre-
spond to two different irreducible off-shell N' = 4 vector multiplets, which we denote
by G and G/, respectively. In what follows we will make use of an (anti-)self-
dual Abelian vector multiplet such that its field strength G/ is nowhere vanishing,
G2 = 1GYGe #0.

When working with A/ = 4 supersymmetric theories, a powerful technical tool is
the isospinor notation based on the isomorphism SO(4) = (SU(2)1, x SU(2)g)/Z»,
which allows one to replace each SO(4) vector index with a pair of isospinor ones. In
defining the isospinor notation, we follow [14] and associate with a real SO(4) vector

V a second-rank isospinor V;; defined as
Vi = V= (aVi, Vi=m''Va, (Va) =V", (2.10)

where we have introduced the T-matrices
(715 = (1,104,109, i03) | I=1,---,4, i=12, i=1,2. (2.11)

The isospinor indices of SU(2)y, and SU(2)g spinors ¢; and y;, respectively, are raised
and lowered using the antisymmetric tensors €, ¢;; and gl £7; (normalised by gl? =
€91 = €12 = 571 = 1) according to

W = Eij%‘ , Y= 5z'j¢j ) Xi = 5in3 . ¢ 525Xj . (2.12)

2Such a long N' = 4 supermultiplet naturally originates upon reduction of any off-shell N” > 4

vector multiplet to A" = 4 superspace [28].



We then have the following dictionary:

ViU, = ViU, | (2.13a)

Aiji = Ay (Ta(t)) 5 = eijAiy +e5Aiy . Ay =4, Ay = Az, (2.13b)
%A”B,J = AYB; + AYB;; | (2.13¢c)

Eiijikkil = €ijERIEFETE — CilEikETERT » (2.13d)

where V1 and U” are SO(4) vectors, A’/ and B!/ are anti-symmetric second-rank
SO(4) tensors. The left-hand side of (2.13d)) is the Levi-Civita tensor in the isospinor

notation.
In the isospinor notation, the self-dual (G27) and anti-self-dual (G~/) vector mul-
tiplets take the form
Gfﬁ _ _EijGﬁ’ Gfﬁ _ —{—:EG”, (2.14)
and the Bianchi identity (2.7)) turns into
viGH =,  vIiGgM = 9. (2.15)

At this stage it is useful to introduce left and right isospinor variables vy, = v* €
C2\ {0} and vg = v' € C2\ {0}, which can be used to package the anti-self-dual
field strength G% and the self-dual field strength G¥ into fields without isospinor
indices, G(Lz) (vr,) := Giv'0? and Gg) (vR) :== ngvgvj , respectively. The same isospinor
variables can be used to define two different subsets, vﬁ}ﬁ and Vg)i, in the set of
spinor covariant derivatives V¥ by the rule

L B (2.10)

67

It follows from (A.IT) that the operators V" obey the anti-commutation relations:
[VOL VDY = 2ie,5eTW LD +ie,5e7 VIO SR

1 - _

—igaﬁngw,—fvg”’“wmé , (2.17)
where L®?) = vv;L¥ and S is defined similarly to V. The rationale for the
definitions given is that the constraints (2.15) now become the analyticity conditions

vwic® — g Vg —o . (2.18)

07

which tell us that each of Gf) and Gg) depends on half the Grassmann coordinates.

The constraints (ZI8) do not change under re-scalings v — cpv’ and v — cgv,

>



with ¢, cg € C\ {0}, with respect to which Gg)(UL) and Gg) (vr) are homoge-
neous polynomials of degree two. We see that the isospinor variables vy, and vg are
defined modulo the equivalence relations vi ~ cpv® and v' ~ cgo’, and therefore
they parametrise identical complex projective spaces CP! and CP}. The superfields

G£2)(UL) and Gg)(vR) are naturally defined on curved N’ = 4 projective superspace
M3I® x CP! x CP; introduced in [14].

The field strengths Gf)(vL) and Gg) (vr) are examples of the covariant projec-
tive multiplets introduced in [I4] in SO(4) superspace and later reformulated in [12]
within the conformal superspace setting. There are two types of covariant projective
multiplets, the left and right ones. A left projective multiplet of weight n, Q(L") (vL),
is a superfield that is defined on some open domain of C? \ {0} and possesses the

following four properties. Firstly, it is a primary superfield,
SiQM =0, K,Q™ =0, (2.19)
Secondly, it is subject to the constraint
vwign = . (2.20)

Thirdly, it is a holomorphic function of vr,. Fourthly, it is homogeneous function of

vy, of degree n,
M) = QM (w),  ceC\{0}. (2.21)

Every left projective multiplet is inert with respect to SU(2)g and transforms under
SU(2), as

0O = AL (2.22a)
AL = — (AP0 — A | (2.22b)

where we have defined

ViU

AP = Ny, ALY = A 2.23
L J L (ULa UL) ( )
and made use of the differential operator
_ 1 -0 .
oY = i (on,ur) = vl 2.24
- (UL>UL)U o' (b, w) = v (2.24)

Here we have also introduced a second left isospinor variable wy, := u® which is re-
stricted to be linearly independent of vy, that is (v, ur) # 0. One may see that
L(Q)Q(L") = 0, and therefore the integrability condition {v&lﬁ, V(ﬁl)i }Q™ =0 for the
constraint (Z20) holds, in accordance with (2I7). The right projective multiplets

6



are defined similarly. The covariant projective multiplets GI(?) (v,) and Gg)(vR) are

known as the left and right O(2) multiplets, respectively.

As shown in [14] the self-dual vector multiplet, Gg) (vr), can be described in terms
of a gauge prepotential Vp (vy,), which is a left weight-0 tropical multiplet and is real
with respect to the analyticity preserving conjugation called the smile conjugation.
The interested reader is referred to [14] for the technical details. Similar properties
hold for the anti-self-dual vector multiplet except all ‘left” objects have to be replaced

by ‘right’” ones and vice versa.

2.2 Dynamics

General off-shell matter couplings in N' = 4 supergravity were constructed in [14].
The action for such a supergravity-matter system may be represented as a sum of

two terms (one of which may be absent),
S =5+ 5k - (2.25)

The left St and right Sk actions, are naturally formulated in curved N' = 4 projective

superspace. The left action has the form

1 _
Sum i fladn) [a:BCTED B b, (220

where the Lagrangian E(Lz) (uv) is a real left projective multiplet of weight 2, and
d3®z denotes the full superspace integration measure, d*%z := d®z d%0. Furthermore,
the model-independent primary isotwistor superfield C£_4) (vr,) has dimension —2, i.e.
]DC£_4) = —2C£_4). It is defined to be real with respect to the smile-conjugation
defined in [I4] and obeys the differential equation

AWCED — 1 (2.27)

Here A£4) denotes the following fourth-order operatOIH

1
06

1 ——
— vy (2.28)

A(4) -
L 48 g

(V(2ﬁ§v%%> _ V@)ozavfg) -

with V%) = vy and Vfﬁ) = VEBEV(BI))E- The action (2.26]) is independent

of the representative C£_4) in the sense that it does not change under an arbitrary

3The operator A£4) is a covariant projection operator. Given a covariant left projective multiplet
i") (vL) of weight n, it may be represented in the form Q£n) = A£4)TIE"_4), for some left isotwistor
superfield Tén74)(UL), see [14] for details.



infinitesimal variation of C£_4) subject to the above conditions. The structure of Sy

is analogous.

There are two equivalent action functionals to describe the dynamics of a single
self-dual Abelian vector multiplet coupled to conformal supergravity. One of them is
a right action formulated in terms of a right O(2) multiplet Gg) (vr) = v;v;Gw , which
is associated with the superfield strength Gi7 of the vector multiplet. This action,
has the formH [14]

V2 9@, GY
s . Ve (vR, dur) /d3|8zEC( el R
= n G

, (2.29)
where the weight-one arctic multiplet Tg) and its smile conjugate Tg ) are pure gauge
degrees of freedom. The action (229) is the 3D N = 4 counterpart of the projective-
superspace action [29] for the 4D A = 2 improved tensor multiplet [30]. The other
representation for S\(,J{v)[ makes use of a left tropical prepotential Vi, (vy,) of the self-dual

vector multiplet with gauge transformations
VL= AL+ AL . (2.30)
The gauge parameter \j, is an arbitrary left arctic multiplet of weight zero. The gauge

invariant field strength, G%, is related to V;, through

i (vp,doL)  wiu;

2 ij
G%)(UR) = WU;G I = ZW”}% 2 (’UL UL)

SVOIY V(o) . (2.31)

Here up, = u' is a constant isospinor such that (vy,ur) # 0 along the closed integration
contourH The action (229) can be recast as a left BF-type action [12]

1 .
SH — ~5 P (e dur) / Pz Ec G | (2.32)

where Gf) (v1,) = v;v;GY is the composite left O(2) multiplet [12]

i dog) wu; - (2)
G(2) — b v (’UR’ R (] AL VRZE| Rv
SR, R (7 PRETE i OyD
i aiivrjj GT
= {0,V vgg(G—j) . (2.33)

The composite left superfield G can be equivalently realised as the anti-self-dual
SO(4) bivector G™’.

4We should emphasise that in this paper we have defined the vector multiplet actions with

“wrong” sign, because in our approach they correspond to superconformal compensators.
®One may show that the right-hand side of (Z.31]) is independent of uy,.

8



Similarly, the action for the anti-self-dual vector multiplet [14] can be recast as
the right BF-type action [12]

. 1 .
SU = ~5 ]f (vg, dog) / B2 ECC Y VRGE | (2.34)

where Gg) (vr) = Ug’UjGw is the composite right O(2) multiplet [12]

i 7d 1 Wy i1 i7 G(2)
Gg) — —L’U"U—-% (UL2 UL) U; U 2Vomva]j In ‘ (1)Lv @
™ (v, ur) v Ty

= vy vy (2 (2.35)

and Vg (vgr) is the tropical prepotential of the anti-self-dual vector multiplet. The
composite right superfield (2:35) can be equivalently realised as the self-dual SO(4)
bivector Gf.

The composite O(2) multiplets can be expressed in terms of SO(4) vector indices
as follows [12]

1 1
GY =X+ §5IJKLX$KL ) §5UKLG£L =+Gi (2.36)
where we have defined
) 9
XiJ = 6(1; V’Y[IVA,KG;QK + 9C;13 vapGivaaQGg[leK . (237)
+ T

To show that Gi‘] is primary and satisfies the Bianchi identity, the following identities
prove useful

1
Gﬁ:KGj:JK = §5§Gi y (238&)
TRl Gy p = F30E G (2.38b)
It is worth mentioning that the two N = 4 linear multiplet actions (2.32) and
(234) are universal [12] in the sense that all known off-shell supergravity-matter

systems (with the exception of pure conformal supergravity) may be described using

such actions with appropriately engineered composite O(2) multiplets G(L2) and Gg ),

3 Minimal topologically massive supergravity

In this section we present two new supergravity-matter systems as models for

minimal topologically massive supergravity.

9



3.1 Action principle and equations of motion

Our models for minimal topologically massive supergravity are described by NV = 4
conformal supergravity coupled to a vector multiplet, either self-dual or anti-self-dual,

via the following supergravity-matter actions:
1
kSt = ;SCSG + Sg/il\/)[ , (31)

where Scse denotes the conformal supergravity action [17]. We will refer to the the-
ories with actions S, and S_ as the self-dual and anti-self-dual topologically massive

supergravity (TMSG) theories, respectively.

As shown in [I2], the equation of motion for the vector multiplet in the action
(B.1) is equivalent to
G+ =0, (3.2)

while the equation of motion for the conformal supergravity multiplet (that is, the

N = 4 Weyl supermultiplet) is
1
L
where 7Y is the supercurrent given by
Ty =+Gy . (3.4)
One can check that the supercurrent 7'y obeys the conservation equation [31]
1
v, = Za”v;zvffT (3.5)

when the matter equation of motion (B.2)) is satisfied.

Making use of the Bianchi identity (2.7) as well as the equations of motion (B:2)—
(34)), one finds the following equations on G4:

1
(v - 10 VEVE )Gs =0, (3.6a)
(VivEFsiw)6it =0, (3.6b)
1
WG =0, (3.6¢)
1
Vi VaGit = +5¢"" MV 0k VG (3.6d)

We now turn to an analysis of the consequences of the equations of motion (3.6]).

10



3.2 Analysing the equations of motion

To analyse the equations of motion corresponding to the action (B we need
to fix the gauge. Firstly, we use the special conformal transformations to make the
dilatation connection vanish, B4 = 0. This corresponds to degauging of conformal
superspace to SO(4) superspace [14] and gives rise to new torsion termsH which can
be expressed in terms of superfields S7/, S, C,7 and their covariant derivatives. We
refer the reader to [14] for details and provide a summary of the salient details of

SO(4) superspace in Appendix [Bl

Upon imposing the gauge B4 = 0 one can show that (B3.6)) is equivalent to

1
(p'D) — 19" D DY —4i8Y ) Gi = 0, (3.7a)
(D}(Df 4 8i(2S T W))G;l ~0, (3.7b)
1
WG =0, (3.7¢)
1 . .
(D[l — 4 CagIJ)G_ :t§€IJKL(D(aKDB)L — 4ICaBKL)G:|:1 y (37d)

where D! is the SO(4) superspace covariant derivative [14, 27] (see also [18]). In

isospinor index notation, for the self-dual vector multiplet one obtains

(D7D + 8i(25 = W) )Gy =0, (3.82)
(DU*Dp);, — 4iC,5 "G = 0, (3.8b)
(DD — 4iSTG, =0, (3.8¢)
W+uGy =0, (3.8d)

while for the anti-self-dual vector multiplet one finds

(D’Y“Dm 1 8i(28 + W))G:1 ~0, (3.9a

(DEDgY) — 4iC57) G~ = 0, (
(DD — 4iSTHG_ =0, (3.9¢
W—uG_ =0, (3.9d

One should keep in mind that the equations of motion for G, and G_ derived from

the actions S, and S_, respectively, were used in the above results.

6See [17] for more details. It is important to note that the SO(4) connection of SO(4) superspace

differs from the one from the one of conformal superspace by a redefinition, for details see [18].

11



Under super-Weyl transformations the SO(4)-covariant derivatives and the torsion
terms transform aﬂy

Dl 5l = e%”(Di 4 (Do) Mg + (DQJU)N”) , (3.102)
S — s = iez"(D’Y(ID:Y’) - ié”D”’KD,YK — 4i8')e 7 (3.10b)
S—8 = —1;16(1)’;{1)5 + 16iS)e” | (3.10c)

Ol 5 €1 =~ () (DD~ 4iC™ ) (3.10d)
W =W =W, (3.10e)

where o is a real unconstrained superfield. Within the superconformal framework, all

supergravity-matter actions are required to be super-Weyl invariant.

The super-Weyl gauge freedom may be used to impose useful gauge conditions.
For instance, one can make use of the super-Weyl transformations to gauge away the
self-dual or anti-self-dual part of C,’/ such that the remaining torsion components
are expressed directly in terms of the matter fields. For concreteness, let us consider
the theory described by the action Sy, with corresponding equations of motion (B.8]),

and gauge away C," via a super-Weyl transformation. We then find

W = —uG, , (3.11a)
S — —iG;l’DW(i(gD?;)G—l— : (3.11b)

i i —
28 — W = gG+DV D.,;G', (3.11c)
Cap" = _iGJrDSEDBj)EGII ) (3.11d)
C,7=0. (3.11¢)

In this gauge, we see that the geometry is determined in terms of a single superfield,
which is chosen to be the scalar Gy. After imposing this super-Weyl gauge condition
it is possible to show that there is enough super-Weyl freedom left to impose the
additional condition

25 +W =0, (3.12)

see Appendix [(] for the derivation. This condition proves to lead to the following
nonlinear equation for G

DD G+ 16iu =0 . (3.13)

%A

"The infinitesimal form was given in [14] 25].

12



The main virtue of the super-Weyl gauge conditions imposed is that all the torsion
and curvature tensors are descendants of the single scalar superfield G. However, this
gauge choice is not particularly useful from the point of view of studying (maximally)
supersymmetric backgrounds. A more convenient super-Weyl gauge fixing is G, =

const. We spell out the implications of such a gauge condition below.

Given a vector multiplet with a superfield strength G’7 such that G is nowhere
vanishing, one can always make use of the super-Weyl transformations to choose a
gauge where

G = %G”GU =1, D¢'*=0. (3.14)

Such a gauge condition has slightly different consequences on the superspace geometry
for the two vector multiplets G17 and G!7 satisfying the equations of motion (3.2)

and (3.3)). In both cases the super-Cotton tensor is constant,
W =const — &7 =0, (3.15)

while the constraints on the remaining torsion components differ. For the on-shell

self-dual vector multiplet one finds the following consistency conditions

1
§EIJKLCaKL =Cory, 285-W =0, (3-16)

while for the on-shell anti-self-dual vector multiplet one finds

1
—§€]JKLCGKL: alJ 5 23+W:O . (317)

In the case where CI7 vanishes, the algebra of covariant derivatives coincides with
that of (4,0) AdS superspace in the critical case where 28§ FW = 0, see [QS]H In gen-
eral, however, C,’/ does not vanish and instead satisfies some differential conditions

implied by the Bianchi identities

[D4, Di}, Do} + (=1)°4€249)[[Dg, Do}, Da}
+ (—1)cCates) Do, Dy}, D} =0 . (3.18)
To analyse the Bianchi identities in detail it will be useful to convert to isospinor
notation.

We consider in detail the self-dual TMSG theory. In the isospinor notation, the

covariant derivative algebra which follows from the equations of motion is

(D Dg} = 2ic¥e" Dy + dicage? W LY + 4iCo5" LY

8The N = 4 super-Cotton tensor is denoted by X in [14] 25] .
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+2ie 03 OO M5 — 2 TW My . (3.19a)

Analysing the Bianchi identities (3.18) determines the remainder of the covariant

derivative algebra:
[Dag, 'Dijk] = —c":‘.y(OlVV'Dg;C + (éy(aCB)gkj + 85(0605)7]6]‘)1)%3
+26,(0Cp5, M — 2C 5,7  L;* | (3.19b)
[Dag: Dys| = igv(acﬁ)épkléppkk + igé(acﬁ)vpk%DPkE
+es(@W? My, + 40 W Mp)s
i

_ _ 1 _ _
+1588 <D§§“Dwkl0pam) M" + 5y (Dg’;nglcpa,;[> Mre

—50CaykiCP P My — £1(aClayoiiCP M M,y (3.19¢)
as well as the following differential constraint on C,%
DIiCy TF = 260 0L, ™ (3.20)
The above constraint implies, in turn,
Do Ciay + Clo 130 Cs, ) + 2W Cp = 0 (3.21)

Since the SU(2)g curvature vanishes, we can completely gauge away the corresponding
connection. Such a gauge condition is assumed in what follows. In this gauge, the
field strength G becomes a constant symmetric isospinor subject to the normalisation
condition G¥Gy; = 1. Tt is invariant under a U(1) subgroup of SU(2)x.

We are now in a position to describe all maximally supersymmetric solutions of
the theory. In accordance with the general superspace analysis of supersymmetric
backgrounds in diverse dimensions [32], [33] [34], such superspaces have to comply with

the additional constraint
DiCy % =0, (3.22)
which leads to the integrability conditions

(Dy — WM,)C/* =0, (3.23a)

C7" 0y, =0 . (3.23b)
The general solution of (3.23D)) is

Cop? = CopCl (3.24)
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where C is a constant symmetric rank-2 isospinor. Without loss of generality, C

can be normalised as C% Cs;; = 1. The covariant constancy conditions (3.22) and

(3:23a) now amount to
DiC, =0, (Dy—WM,)C,=0. (3.25)
We recall that the Lorentz generator with a vector index, M,, acts on a three-vector

by the rule M,Cj, = £44.C¢. The second condition in ([B:25]) implies that C is a Killing

vector of constant norm,
D,C, +DyC, =0, C*=C, = const . (3.26)

Thus there are three types of backgrounds depending on whether the Killing vector
C*“ is chosen to be time-like, space-like or null. The algebra of covariant derivatives
for such a background is
(DI, DY)} = Qigiﬂ'gﬁ(pfﬁ — W Mag) + dicase "W LY + 4107 Cop LY
+ 2ia5e? CICTY M5 (3.27a)
[Das, DE| = —&,@WDSS + (64aCiys™ + 250 Ca™ D5 (3.27b)
['Daﬁ, D’Y5] = W2 (Eg(aMB)-y + E.Y(QMB)(;) - (85(0605)7 + E-Y(QCB)(;) CpoMpU . (3.27C)
One may think of this algebra as a Lie superalgebra@ By construction, the theory
involves the constant symmetric isospinor G¥ being invariant under a U(1) subgroup

of the group SU(2)g. If C¥ does not coincide with G%, then the group SU(2)g is
completely broken. This indicates that C% = G¥.

The simplest maximally supersymmetric solution of the theory is characterised by
(see also [20])

7 =0. (3.28)

It corresponds to the critical (4,0) AdS superspace introduced in [25]. Its algebra of

covariant derivatives is as follows:

(DI, DY} = 2 (Do — W Mag) + dicape? WLV (3.29a)
-1
[D., DY] = §W(%)ﬁ"’D§J , Dy, Dy] = —W?*My, . (3.29b)
The last relation shows that the cosmological constant is A = —W? = —¢72, in

agreement with [20, 25]. Here ¢ is the radius of curvature in AdSs;. The latter

relation is equivalent to pf = 1, which corresponds to chiral gravity [24].

9More precisely, ([327) is isomorphic to the Lie superalgebra corresponding to the isometry su-
pergroup of the background superspace under consideration.
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More generally, the (p,q) AdS superspaces, p+ ¢ = N, in three dimensions were
classified in [25]1. In the N/ = 4 case, the (3,1) and (2,2) AdS superspaces are
necessarily conformally flat, W = 0. The distinguished feature of (4,0) AdS super-
symmetry is that the super-Cotton scalar W may have a non-zero value. The algebra

of covariant derivatives is given by [25]

{D¥ D“} — 2Dy + 2ieape (28 + W)LY + e 567 (28 — W)RY
—4iSeY e M5 | (3.30a)
[D., DY) = S8(7)s"D¥ ,  [Da, D] = 48> My , (3.30D)

where the positive constant S determines the curvature of AdS3. For a generic value
of W the entire SO(4) R-symmetry group belongs to the superspace holonomy group.
But there are two points in which either the SU(2)g or the SU(2)y, curvature vanishes

and the structure group is reduced. These are given by
W =128 (3.31)

and correspond to the critical (4,0) AdS superspaces. As briefly discussed in [35],
the isometry group of (4,0) AdS superspace is isomorphic to D(2,1;«) x SL(2,R)
in the non-critical case W # £28, where D(2,1; ) is one of the exceptional simple
supergroups, with the real number o« # —1,0, see e.g. [36 37] for reviews. The
supergroup parameter « is related to the (4,0) AdS parameter ¢ = 1 + mtroduced
in [35]. If the values of a are restricted to the range &1 -1 < a < - then we can
identify —2a = 1+ 3¢, The case @ = —1 corresponds to the conformally ﬂat (4,0) AdS
superspace, for Wthh W = 0. Its isometry group is OSp(4]2) x SL(2,R). The limiting
choice & = —1 corresponds to one of the two critical (4,0) AdS cases, W = 28114 The
isometry group of this (4,0) AdS superspace is SU(1, 1|2) x SU(2) x SL(2, R), see also

the discussion in [3§].

If C* # 0, the maximally supersymmetric background (3.27)) describes a warped
critical (4,0) AdS superspace. The bosonic body of such a superspace is warped
AdSs spacetime associated with the Killing vector ¢*(x) = C%(2)]g=o. Warped AdS;
spacetimes have been discussed in detail in the literature, see [39, 40, 41}, 42] and
references therein. In the N' = 2 supersymmetric case, the (super)space geometry of

maximally supersymmetric warped (1,1) and (2,0) AdS backgrounds was described in

0Tn three dimensions, A-extended AdS supergravity exists in several incarnations [7] known as
the (p,q) AdS supergravity theories, where the integers p > g > 0 are such that N =p + q.
1Not all values of « lead to distinct supergroups, since the supergroups defined by the parameters

atl, —(1+a)*! and —a*(1 + a)F! are isomorphic [36, 37].
12The isometry groups of the two critical (4,0) AdS superspaces are isomorphic.
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[11] and further elaborated in [34]. Supersymmetric warped (1,1) AdS backgrounds
were thoroughly studied in [43].

We now linearise the equation (B.2I]) around the critical (4,0) AdS superspace
and let C,% = 6C," where 6C," is a small disturbance. Eq. (321)) turns into

D, 6Cs,"7 —2u0Co5"7 =0 — DWC,7 =0, (3.32)

where D,, denotes the vector covariant derivative of the critical (4,0) AdS superspace.

After applying another vector derivative one finds the equation

(DD, — 212)5C,7 =0 . (3.33)

One can also derive further equations on descendants of o C’QBE using the constraint
(B20). In particular, one finds

3 1 .
(D, — §u52)50w“ =0, 6Cup," = gpaljaoﬁw , (3.34a)
(Dap - /J,(Sg)(SCB»ﬂsp =0, 5Ca5’y5 = Dfiécﬁfy&)ﬁ ) (334b)

where ij denotes the spinor covariant derivative of the critical (4,0) AdS superspace.
The component projection of 50065727 is proportional to the linearised gravitino field
strength, while 6C,3,s is proportional to the linearised Cotton tensor. These super-

fields can be shown to satisfy the following consequences of eqs. (B.34):

1 ~
(DD, + Zu2)50am“ =0, (3.35a)
(D*D, + 24*)6C5,5 = 0 . (3.35b)

In the above we made use of the following result for a symmetric rank-(2s) superfield
Toy-ans = Tlay-ass) (With isospinor indices suppressed):

2
(D.,? — 5016%)%2...&285 —0 — (DD, - % (s 1)) ey, =0, (3.36)

with 7 a dimensionless parameter. Computing the bar-projection of the equations
(3:32), (3:34al) and (3.34D)), we can determine the representations of the AdS group
SO(2,2) to which the fields 6C,57|, 0Cap,"| and 6Cqp.s| belong. We recall that
the unitary representations of SO(2,2), denoted D(FEy,$), are labelled by two real
weights (Ep, §), where Ej is the lowest energy and § is the helicity, see e.g. [44].
The weights obey the unitarity bound FEy > |§| for § > 0, where the representations
with Ey = [§| > 0 are called singleton representations. For a superfield T}, ..
obeying the first-order equation (B.30]), its lowest component Ty, ,,.| transforms in

the representation with
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1
Bo=1+—, §=-1

) T (337)
bl 7|

as follows from the analysis in [44] (see also [45]). Thus the gravitational field §Cgs|
is a helicity 2 singleton, while the spin-1 and spin-3/2 fields, 5C’a5ﬁ | and 5Ca5,yﬁ\, are

massive.

In the above we worked with the self-dual TMSG theory, however the analysis
of the equations of motion corresponding to the action S_ is completely analogous.

There one finds the covariant derivative algebra is

{DI DY} = 27D, — dicase "W RY + 4iCog" R
21037 O M5 + 2V TW My (3.38)

where C,¥ satisfies the Bianchi identity
DOy % = 21005 M1 (3.39)
Using the above equation one finds
DQWCQWU + C(awk(ng)«,]‘)k — 2WCaﬁij =0. (340)

The solution C,* = 0 corresponds to (4,0) AdS superspace in the critical case 25 =
—W. We now linearise around the (4,0) AdS superspace and set C,% = 6C," where

5C,Y is a small disturbance. It can be seen that 6C,¥ obeys the equation
D, 6Cs," —2u6C,5"7 =0 , (3.41)

where D,, corresponds to the vector covariant derivative of the (4,0) AdS superspace.

After applying another vector derivative one finds

(DD, — 2u*)6C,7 =0 . (3.42)

4 Component actions

In this section we give the component results corresponding to the minimal N = 4

topologically massive supergravity action (B.1)).
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4.1 The component conformal supergravity action

The complete component analysis of the N -extended Weyl multiplet was given in
[17]. Here we specialise to the N' = 4 case where the auxiliary fields coming from the

super-Cotton tensor are defined as:

1 1 i
w 4,€1JKLw TRE = wi, Yy = 4,€IJKL?J KL = —EV?VQW‘ ) (4.1a)
1 i
WL - 3'€[JKL1UQIJK = —ivaLW| . (41b)

The full N = 4 conformal supergravity action was given in [I7] and is

1 2
SCSG = g/dgxe {é’:‘abc(wangbcfg 3

4
— 2R Vers — gVaIJ%IK‘/cKJ)

— 32wl w!, — 8wy — 161¢,5(1%)a wh — ziga“(%)aﬁzpbwcﬁfw?} . (42)

~Warwhy"wen” — ‘I’bc.r (Va)a” (o) g €™ Wy

2

where the component curvatures R, and Ry’ are defined as

R = Qeamebnﬁ[mwnfd — QW[achb]fd , (4.3a)
Ra'” = 2e,"e," 0 Vi)' — 2Vi * Vyyie” (4.3b)

4.2 The component vector multiplet actions

The component N = 4 linear multiplet actions were given in [12]. Making use of

the results there, one can construct the left and right vector multiplet actions.

The component fields of the vector multiplets are defined as

gs = G2l (4.4a)
2
)\(i)I = _vaJGIJ| (4.4b)
ol = Bt »
1 i
fee _ﬂgabc( 1)V VG| = —(@D[a WAK) + 5¥a U gekcr , (4.4d)
where g+!7 is (anti-)self-dual
1
ey = +g:" (4.5)
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The component gauge one-forms v(+), are defined as
V) = € Vtym > Sty = 2€a" €y OmV)n) ,  Vtym = Viml (4.6)

where V. is the superspace gauge one-form associated with the field strength G%/.

It is useful to replace h(y)’” by the fields
hul) = %(h(x)u i)
= he" Fowgs" | (4.7)
which proves to be (anti-)self-dual
%EIJKL;HEKL ———t (4.8)
The component self-dual vector multiplet action is

abc 1. 1. 1 o
S\(/—;/).[ = /d3x6<€ b 'U(-I-)af(-i-)bc + _h/—i-IJg-i-IJ + Zh—IJg_IJ - 5)\ IAOJ

4
1 a
- 5(7 )75%}’(”‘]94[ + )‘5J9+JI>
i
5 P (Ya)ys Vo U, 9+KP9_LP> ; (4.9)
where the bolded component fields correspond to those of the composite vector mul-
tiplet,
IJ IJ I 2 IJ r 1J 1 A1 JIK IJ
g’ =G|, A, = gvaJG_ |, hy' = gv V.kGZ" | +2wg_" , (4.10a)
1
Vo = € Vin| = Va| + 5%?1/; |, (4.10b)

1

o 1 1
Feoa = —58ae(7%) VEVEG kLl - §(¢[aK%]>\K) + 5%“%5 9_kr - (4.10c)

The component anti-self dual vector multiplet action is

1. 1.~ 1
Sun =-— /dsf’f ‘3<5abcv(—)af(—)bc + Zh+1‘]9+u + Zh_”g_U - QXXIMI
1 a
— = ()5l (A g+ X7 g ;")

1 aoc
+ 5 (Ya)rs UiV, g+KPg_Lp) : (4.11)

- N

[\]

where
2

o =Gl =

Ve, GY|, R = %vaA,KGfK\ —2wg, ', (4.12a)

20



1
Vg = eamvm| = V:z‘ + iwa?voﬂ ) (412b)

1

1 i
F o = —ﬂ5abc(76)a5V§V§G+KL| - §(¢[aK%})\K) + 5%7]{%5 9ixr - (4.12¢)

Plugging in the superspace expressions for G4’/ one one can construct the com-

ponent fields of the composite vector multiplets. The component fields are found to
be

1. i i
g:t]‘] = —h,i‘] — —3)\i?{AiggiJ]K + —351JLP)\:I:?{)\:I:0¢L9:I:PK ) (4133“)
g+ 294 49t

2 2 1
Al = g—ivau(i)i + Efj:aﬁ)\(i)ggiIJ +

393

iL:FJK)\(:I:)ég:I:JK

~

‘I’—hq:JK)\(j:)igj:KI +

~

—2h:FIJ)\(j:)£{gj:JK

392 3951
2 4
‘l’—gvaﬁgiJK)\(j:)BIg:tJK + —3vaﬁg:|:JK)\(:|:)BJg:I:KI
393 394
2
_Tvaﬁgijj)\(:t)ﬁKg:tJK
I()
1 1, 8 1J 2
:l:—w>\(:|:)a + —way9+ 7 + O()\ ) , (4.13b)
g+ g+
po1J 4y, 2 w17, L abe I JK
he'” = —0gy + = fran 9+ + = [t Vg 9+
g+ 9% 9+
1 . A 2
_4—3h:FKLh:FKLg:I:IJ - TgiKLVagiKLVagiU
9+ 9%
1y o KL 2 9o 15, 2
+—=9+ "VagrxLVigs wige £ —ygs
9+ g+ g+
+ fermion terms , (4.13c¢)

f(:l:)mn = 6maenbf(:l:)ab

4 2 1
= 8[m <_f(:|:)n} - —Vn}UgﬂJ> - _38[mgj:IK8n]gj:JKg:|:1J
9+ 9+ 9+
+ fermion terms , (4.13d)
where 1
f(i)m = §€m7wf(:|:)np . (4.14)
Here we have introduced the following:
1 1
VagiIJ = DagiIJ + §waa[l)\:|:£ + ZEIJKL’QDQ?()H:QL s (415&)
1
Ogy!? = D"D,gs! + ZRgiU + fermion terms , (4.15b)
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an

1 1
Dy =€ 0m — §wabchc - §VaUNIJ — b, D . (4.16)

4.3 N = 4 topologically massive supergravity in components

To simplify our results it is useful to make use of the gauge freedom to impose

some gauge condition. One can always choose a gauge condition where
By=0, Gi=1. (4.17)
At the component level these require
ge=1, N =0, b,=0. (4.18)

The first gauge condition fixes the dilatation transformations, the second fixes the
S-supersymmetry transformations and the third fixes the conformal boosts. For a
right G and left G¥ vector multiplet we can use the respective SU(2) symmetry to

fix their lowest components to a constant. This then gives

Vgl =2V, Kl g 1 (4.19)

With the above gauge conditons we find

~1J 14 ~
hy gi1g = 2R+ Afsanfe™ — §h11‘]h¢u
— W VL 4 AV, BV g gk

—4w? & 4y + fermion terms , (4.20a)
iliJgiIJ - il;ijilijj y (420b)
f @ymn = m <4f(i)n] — 2Vn}IJg:|:IJ> + fermion terms . (4.20¢)

Using the above conditions one finds (upon integrating by parts) the self-dual

vector multiplet action is

1 a a 1 a
Syt =— /d3$€<§73 — fomfly = 2f8Va" g1y — ivaKLv KL

1o,
FVIKVeILg, g+ ghl_‘]h_u — w? 4 y + fermion terms) . (4.21)

13We have denoted the component vector derivative D, in the same way as the SU(2) superspace

covariant derivative. It should be clear from context to which we are referring to.
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while the anti-self-dual vector multiplet action is
_ 1 u u 1 "
Syt = — /d3956<§72 — fomf = 2 Ve g1y — §VaKLV Kr
1a,,4
+ VBVl g kr + éhi‘]hHJ — w? — y + fermion terms) . (4.22)

The complete component action for minimal N = 4 topologically massive super-

gravity (3. is then given by
1
kSt = ;SCSG + Sg/il\/)[ , (423)

where Scsq is the component action (4.2). As a simple check one can readily verify

that the equation of motion on the field y gives

w=Fu, (4.24)

which is consistent with the supergravity equation of motion being W = FuG4 in

the presence of the vector multiplet compensator.

For completeness we will also give the component action in isospinor notation.

The N = 4 conformal supergravity action (£.2) becomes

1 2
Scsa = ] /dgi’f € {Eabc (wangbcfg - gwafgwbghwchf
g 8 . .
— ARw Veiy = G Vail Vi Vi’

— AR " Vei; — 5%2]%3k%%z>

— 32iwgwi — 8wy — 161 9,%(v") o Pwhw — 2i€“bc(%)a5wb%wcﬁﬁw2} , (4.25)

where the component SU(2) curvatures Ry and R are

R = 2e,"e," Opn Vi) — 2Vi"Viph? (4.26a)

Rap? = 2e, ey O Veg? — 2V " Vigi? (4.26D)
The self-dual vector multiplet action in isospinor notation is
1 o o 17 aij
S\hl = — /dgﬂf 6(573 — oy [y — 418 Va 9455 — Var VY
s 1asin
+ QVGZ’“V‘Iﬂgg;gH;; + Zh’fh_ij — w? 4+ y + fermion terms) : (4.27)

while the anti-self-dual vector multiplet action is
S(—) — d3 lR - ab 4 a Vij o V ”Vaij
VM re 9 f(—)abf(_) f(_) a” 9—ij aij
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. . 1 ATTETA
+ 2Valkva]lg—ijg—kl + thﬁhg; — w? — y + fermion terms) ) (4.28)

Having derived the component actions for minimal A" = 4 topologically massive
supergravity, it is worth elaborating on these results further. For instance, if we
consider just one of the vector multiplet actions without the conformal supergravity
action, one can see that the equation of motion for y leads to an inconsistency. This
is equivalent to the fact that the superfield equations of motion for the N = 4
gravitational superﬁel derived from the actions S\(,J{V)I and S\(/I\/)I are G4 = 0 and
G_ = 0, respectively, and these equations are inconsistent with the requirements
G4 # 0. However, one gets consistent equations of motion if one adds the left and

right vector multiplets [12] and considers the action
S =80+ 54 (4.29)
Now the superfield equation of motion for the N = 4 gravitational superfield is [12]
G, —-G_=0, (4.30)

which is completely consistent. Moreover, this equation is consistent with our gauge
conditions because imposing the gauge G, = 1 implies G_ = 1, which in turn implies
that the auxiliary field y cancels. Furthermore, the fields w and h!7 become auxiliary
and their equation of motion is the requirement that they vanish. The equations of
motion on the SU(2) connections requires f(_y, = f(+)a = 0 and we are left with just

the N' = 4 Poincaré supergravity action (up to a normalisation factor)
S=- /dgateR + fermion terms . (4.31)

In the presence of the conformal supergravity action the gauge conditions Gy = G_ =
1 are no longer consistent [I2] and instead one has to use the results in subsection
in the general gauge. If one also adds to (£.29)) the supersymmetric cosmological term
[14], the resulting theory corresponds to (2,2) AdS supergravity as was described in
detail in [12], [14].

It is worth mentioning some simplifications that can be made to the N' = 4
topologically massive supergravity actions upon using the equations of motion. To
illustrate this let us consider the theory with a self-dual vector multiplet. In this case

the equation of motion for the SU(2)y, gauge field is

Ra'? =0, (4.32)

14The N = 4 gravitational superfield is a scalar prepotential describing the multiplet of N' = 4
conformal supergravity. It is the 3D N = 4 counterpart of the N’ = 2 gravitational superfield in
four dimensions [46].
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which tells us that the SU(2);, gauge field can be completely gauged away. The
equation of motion for the auxiliary field hii sets the auxiliary field to zero and
removes it from the action. The equation of motion on y just sets w = —pu and gives

rise to a cosmological term. The resulting action is

1 2
l‘€5+ :/dgllfe [@{gabc (Wangbcfg - gCUafnggthhf
8
3
- _R + :U“ + f(-‘r abf(+ + 4f Z]g_H] + Va"Vm]

— AR Vg = Ve Vi Vi) }

— 2V, ’kV‘”lg =g, + fermion terms| , 4.33
+ij9+

Similar simplifications can be made for the anti-self dual vector multiplet action.

We can now show how to derive the supergravity action postulated in [20] from
our theory S_. The crucial observation is that the U(1) gauge field appears in the
action (£.28) only via its field strength f(_q, and therefore it may be dualised into a

scalar field. To implement this, we replace (£.28)) with an equivalent first-order action
_ 1 . . .
5120) = /d?’iL’@(—R - f( Yab ( 4f wgm Vaijva” + 2Valkva]lg+ijg+kl
th hH] w? —y+ 2f(\Dap + fermion terms) , (4.34)

where f(_)q is an unconstrained antisymmetric tensor field, and ¢ a Lagrange multi-
pler. Varying ¢ gives D, f(“_) = 0, and therefore f__),, becomes the field strength of a
U(1) vector multiplet. Then Séa) turns into the original action (£.28)). On the other

hand, we may integrate out f(_), from Séz)) using its equation of motion

ij 1
f(—)a = Va Jgij - §,Da<p . (435)
Plugging this back into (4.34]) gives the dual action
~ 1 1 3 3
Sl(lyIZer = — /d?’xe(—R — 517“4,07)&30 + 2Da<pV“”gij — 2Vm-jV‘”]
h”h+,3 w? — y + fermion terms) : (4.36)
where we used .
V5Vl g = VAV g — _V:u'jvaij - (4.37)

If we impose a Weyl gauge ¢ = 1 and make use of the equation of motion for the
auxiliary field 27, which is h” = 0, we recover the bosonic matter sector of the
topologically massive supergravity action in [20] up to conventions and fermion terms.
Since the auxiliary field fziz has been integrated out, the action given in [20] does not
appear to be off-shell.
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5 Discussion

In this paper we constructed minimal topologically massive N' = 4 supergravity.

It has several unique features that we summarise here.

e Unlike the other NV-extended TMSG theories with N < 4 [9, [10, 11], 12], its
action cannot be viewed as the supergravity action (with or without a super-
symmetric cosmological term) augmented by the conformal supergravity action
playing the role of a topological mass term. The point is that the theory be-
comes inconsistent upon removing the conformal supergravity action, as was
explained in section

e Our theory makes use of a single superconformal compensator. We recall that
all known Poincaré or AdS supergravity theories with eight supercharges in
diverse dimensions require, in general, two such compensators in order for the
corresponding dynamics to be consistent. One known exception is the off-shell
formulation for 4D N = 2 AdS supergravity given in [47], which makes use a
single massive tensor compensator (described by an unconstrained chiral scalar
prepotential) and no compensating vector multiplet In the case of higher
derivative theories, two compensators are no longer required. This was observed
in four dimensions for models involving the ' = 2 supersymmetric R? term [55],

and in three dimensions for topologically massive N' = 4 supergravity [20].

e Our minimal TMSG theory does not allow any supersymmetric cosmological
term. However, a cosmological term gets generated at the component level
upon integrating out the auxiliary fields. This is manifested in the fact that
the critical (4,0) AdS superspace [25] is a maximally supersymmetric solution
of the theory.

e The theory has only one coupling constant.

e Our minimal TMSG theory is the first off-shell NV = 4 supergravity theory in
three dimensions with the property that the critical (4,0) AdS superspace [25]
is a solution of the theory. Upon integrating out the auxiliary fields we recover
the model discussed in [20].

15The vector multiplet has been eaten up by the tensor multiplet. The vector compensator acts
as a Stiickelberg field to give mass to the tensor multiplet. This is an example of the phenomenon
observed originally in [48] and studied in detail in [29] 49 50, 5T, 52, 53], 54].
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Both models for minimal topologically massive N/ = 4 supergravity constructed
in this paper possess dual formulations. They are obtained by replacing the vector
multiplet actions S\(,J{V)I and S\(/_1\/)1 with off-shell hypermultiplet actions SI({J{V)I and SI({IV)I,

respectively, such that
SI({J{V)I = —2i %(UR,d’UR)/ngZECI({_4)Tg)Tg) : (5.1)
T

and similarly for the left hypermultiplet action SI({IV)[ In the dual formulation, its
compensating multiplet is the so-called polar hypermultiplet described by the weight-
one arctic multiplet Tg) and its smile conjugate Tg). Duality between the theories
with actions S{,J{v)[ and Sﬁlﬁ can be shown in complete analogy with the 4D N = 2

case [29)].

Acknowledgements:

SMK acknowledges the hospitality of the Arnold Sommerfeld Center for Theoretical
Physics at the Ludwig Maximilian University of Munich in July 2015, and of the
Theoretical Physics Group at Imperial College, London in April 2016. SMK and JN
thank the Galileo Galilei Institute for Theoretical Physics for the hospitality and the
INFN for partial support during the completion of this work in September 2016. The
work of SMK was supported in part by the Australian Research Council, project
No. DP140103925. JN acknowledges support from GIF — the German-Israeli Foun-
dation for Scientific Research and Development. 1.S. would like to thank DAMTP at
Cambridge University for hospitality during the initial stages of this work. L.S. was
supported by the DFG Transregional Collaborative Research Centre TRR 33 and the

DFG cluster of excellence “Origin and Structure of the Universe”.

A The geometry of N = 4 conformal superspace

Here we collect the essential details of the N/ = 4 superspace geometry of [1§].

We refer the reader to [14) [I8] for our conventions for 3D spinors.

We begin with a curved three-dimensional N = 4 superspace M?3I® parametrized

by local bosonic (z™) and fermionic coordinates (6%):
M= (2™, 0)), (A1)

where m = 0,1,2, p = 1,2 and [ = 1,--- ,4. The structure group is chosen to be
OSp(4]4,R) and the covariant derivatives are postulated to have the form
1

1
Va=FEa—wi’Xy=Es— §QAbCMbC — 5<1>APQNPQ —BsD—-F4PKp. (A2)
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Here E4 = E4M0y, is the inverse vielbein, M, are the Lorentz generators, N;; are
generators of the SO(4) group, D is the dilatation generator and K4 = (K,, S.) are

the special superconformal generators.

The Lorentz generators obey

[Map, Meg] = 2n¢iaMyja — 21qja My (A.3a)
[May, Vel = 206V s [Map, V] = €4V - (A.3b)

The SO(4) and dilatation generators obey

[Nir, N'] =26 Npy” — 201 Npy' [Nk, Vi = 26(cVary (A.3c)
1
[]D)>Va] = Va ’ [D,Vé] = §vi . (A3d)

The Lorentz and SO(4 generators act on the special conformal generators K4 as

[Mab> KC] = QUC[aKb} ) [Maﬁa Sﬂ = Efy(asé) ) (A3e)
[Nk, Si] = 20k Sar) (A.3f)

while the dilatation generator acts on K4 as
I Lo
D, K,]=-K,, [DS,)]= _§Sa . (A.3g)
Among themselves, the generators K 4 obey the algebra
{55, 59} =2i6" (7*)ap K. . (A.3h)

Finally, the algebra of K, with V4 is given by

[Ka, V] = 20D + 2My, (A.3i)
[Kau vi] = _i(7a>aﬁsé 5 (A?)J)
[Sas V] = i(72)a"V§ (A.3k)
{SL,V3} =2e036""D — 26" Myp — 2e,5N" . (A.3])

The covariant derivatives obey the (anti-)commutation relations of the form
1 1
[Va,Vp}=-TapVe — §R(M)ABCndd - §R(N)ABPQNPQ
— R(D) 4D — R(S)apkSY — R(K)ap°K. (A.4)

where T3¢ is the torsion, and R(M) 45°Y, R(N)ag”®, R(D) 5, R(S)as}) and R(K)ap°
are the curvatures corresponding to the Lorentz, SO(4), dilatation, S-supersymmetry

and special conformal boosts, respectively.
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The full gauge group of conformal supergravity, G, is generated by covariant gen-
eral coordinate transformations, O, associated with a parameter ¢4 and standard
superconformal transformations, d1, associated with a parameter A%. The latter in-
clude the dilatation, Lorentz, SO(4), and special conformal (bosonic and fermionic)

transformations. The covariant derivatives transform as
0gVa = [K,Va], (A.5)
where I denotes the first-order differential operator
K=¢Ve + %A“bMab + %A”NU +AD + MKy, . (A.6)
Covariant (or tensor) superfields transform as

5T = KT . (A7)

In order to describe the Weyl multiplet of conformal supergravity, some of the
components of the torsion and curvatures must be constrained. Following [I§], the

spinor derivative torsion and curvatures are chosen to resemble super-Yang Mills
{VL,Vi} = =2ie,sW" | (A.8)

where W!” is some operator that takes values in the superconformal algebra, with P4
replaced by V4. In [I8] it was shown how to constrain W/ entirely in terms of the
super Cotton tensor (or scalar for N = 4). The super Cotton scalar W, is a primary

superfield of dimension-1,
S'w=0, KW=0, DW=W. (A.9)
The algebra of covariant derivatives is
v Vg} = 21017V o5 + icape’ LW Niep, — iéaﬁﬁleL(V}/(W)S«/L

1
+ Zaag(vc)véalJKL(VyKV(;LW)KC : (A.10a)

1
Vo, V3] = 527" ()3 (VW) N

1
- Z(%)ﬁﬁJKLP(VZV(;W)SéK

1
24

1 e
Vo, Vil = gean(1)ase™ ((VFV5W)Neo

(Va) gy (V) 5pe” P (VL VI VAW K, | (A.10b)

+ %aL”K(v?vﬁv;(W)sﬂ
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1

+ ﬁ(Vd)n,(sa”KL(V‘}“V§V}<V‘2W)Kd> , (A.10¢)

where the super Cotton scalar W satisfies the following dimension 2 Bianchi identity

1
VAIVIW = L6YVEVIW (A.11)

For each SO(4) vector V; we can associate a second-rank isospinor Vj;

Vi V= (DaVie, (V) =V7. (A.12)

The original SO(4) connection turns into a sum of two SU(2) connections
Oy=(PL)a+ (Pr)a, (PL)a=Pa"Ly, (Pr)a= PRy . (A.13)

Here Ly is the SU(2)y, generator and Ry is the SU(2)g generator. They are related
to the SO(4) generators Nk as

Nkr = Nyjr = gl + en R - (A.14)
The left and right operators act on the covariant derivatives as
(LM Vi =V [RM, V] = £tV (A.15)
In the isospinor notation, the Bianchi identity on W becomes
VORI = ie%“vg@vg’ﬂw . (A.16)
The algebra of spinor covariant derivatives becomes

[V, VY = 290V 15 + 2ieape W LY — 2izape/ W RY
— icape VWY + it VIV S

1 . == —
+ 420 (TR TIW — TV 17w ) K00 (A.17)
and the action of the S-supersymmetry generator on ij is

{sz, fo} = 22446767 D — 266 Mg + 260567 LY + 2605 RV . (A.18)
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B The geometry of SO(4) superspace

For many applications it is useful to work with a superspace formulation with a
smaller structure group than that of conformal superspace. The superspace formula-
tion of [14], 27], known as SO(4) superspace, provides such a formulation and may be
obtained from conformal superspace via a degauging procedure [18]. For the N' =4
case one chooses the structure group to be SO(4). The SO(4) superspace formula-
tion for A" = 4 conformal supergravity has been used to construct general off-shell

supergravity-matter couplings [14].

The covariant derivatives have the form:
Dy=Es—Qyu— Dy . (B.1)

Here E4 = E4M(2)0y is the supervielbein, with 0y, = 0/02™, Q4 is the Lorentz
connection, and ¢, = %(I)AKLNKL is the SO(4)-connection. The supergravity gauge

group is generated by local transformations of the form

1 1
0kDa=[K,Dal, K=K2)Dc+ iKCd(Z)Mcd + §KPQ(Z)NPQ , (B2)

with all the gauge parameters obeying natural reality conditions.

The covariant derivatives satisfy the (anti)commutation relations
c 1 KL 1 cd
[Da,Dp} = —Tup"Dc — §RAB Nk — §RAB Meq (B.3)

with T4 5¢ the torsion, R 5 the Lorentz curvature and R,p®* the SO(4) curvature.
The algebra of covariant derivatives must be constrained to describe conformal su-
pergravity. The appropriate constraints [27] lead to the following anti-commutation
relation [14]:
{DL, D]} = 216" (v)agDe — 2ieasC?*" M5 — 415" M5

o (izas WK = diz g SEUGIE 41C05H61 — 4iCs™ U677 ) Nigy, . (B.4a)

Here the dimension-1 components are real and satisfy the symmetry properties
WIIKL _ yyUIKL] _ JIIKLyy, glJ _ g(1)) o1 — (B.5)

It is useful to decompose the torsion superfield S’/ into its trace (S) and traceless
(87) parts as

1
S =86 48" 8= zoust oSt =0. (B.6)
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The torsion superfields satisfy the Bianchi identities

DS = 27,1V 4.8, 5 — %5;5” : (B.7a)
2 N —4
DICBVJK gfa(ﬁ (C )IJK n 37;)JKI (D[JS)5K ( - )S [J5K]1>
+Cs, " = 2C, 5,765 (B.7b)
1
0= (DWDj) — 6 DD, i - 4iS”>W . (B.7c)

It is often useful to make use of the isomorphism SO(4) = (SU(2), x SU(2)r)/Z-
and make use of isospinor notation, D% — fo, by replacing each SO(4) vector index
by a pair of isospinor ones. For our notation and conventions we refer the reader to
[14].

After introducing isospinor notation, the covariant derivatives are
Da = (Do, D) = Ea—Qu— 04, (B.8)

where the original SO(4) connection ®4 now turns into a sum of two SU(2) connec-

tions
Dy=(PL)a+ (Pr)a, (PL)a=P4"Liy, (Pr)a=Ps" Ry . (B.9)

The two SU(2) generators act on the spinor covariant derivatives D¥ := DI (1) as

follows:

(L4, D3| =D, [R¥,DF] = D (B.10)

The algebra of spinor covariant derivatives is
(DI DJ} = 277 (1%)0pD. + 2icape™ (28 + X)LV — 2icape"S™ U Ly + 4iC,57 LY
+2iga56 (28 — X)R” — 2ig,p Z”S”MJR’" + 4lCaﬁ”R”
+2ieqs(e g0 4 EUCV‘S”) V6 — 41(3”” + 6”5”3) B (B.11)

where the torsion components satisfy certain Bianchi identities given in [14]

C Super-Weyl gauge conditions

In this appendix we show how one can use the super-Weyl freedom to impose
certain gauge conditions in SO(4) superspace. In particular, within the SO(4) (or

SU(2)1, x SU(2)g) superspace formulation we will show that one can impose either

C,7=0, 25+W =0 (C.1)

16 As compared to [14], we have relabelled the superfield B,g™ by Cphg®.
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or

C,"=0, 28-W=0. (C.2)

We begin by introducing, within the SO(4) superspace geometry, an off-shell self-
dual vector multiplet G¥ and an anti-self-dual vector multiplet G%. They are con-

strained by the differential constraints for O(2) multiplets
DG =, DM = . (C.3)

Using these constraints it is possible to build some of the components of the torsion

in terms of these multiplets. In particular, one finds

29 — W = %D’Y”DWG;I , (C.4a)
28 +W = %DWDWGT : (C.4b)
ol = —%Gmgjkmﬂke;l | (C.4c)
Cog® = —iG_Da’“GDBJ)G:l : (C.4d)
560G = DD IYGH (C.4e)
S EGhP — —%{pr,w)p}aﬁ : (C.4f)

where G2 = GUGy; and G2 = GGy
The vector multiplets transform homogeneously under super-Weyl transforma-
tions
GY = e"GY | GY = e"GY (C.5)
which tells us that the super-Weyl freedom can be completely fixed by imposing the
gauge condition Gy = 1 or G_ = 1. If we impose G, = 1 we find the conditions

([C), while if we impose G_ = 1 we find the conditions (C2)). Therefore, these
conditions can always be imposed by an appropriate super-Weyl transformation.
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