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1 Introduction

A unique feature of three spacetime dimensions (3D) is the existence of topologically mas-

sive Yang-Mills and gravity theories. They are obtained by augmenting the usual Yang-

Mills action or the gravitational action by a gauge-invariant topological mass term. Such a

mass term coincides with a non-Abelian Chern-Simons action in the Yang-Mills case [1–4]

and with a Lorentzian Chern-Simons term in the case of gravity [3, 4]. Without adding

the Lorentzian Chern-Simons term, the pure gravity action propagates no local degrees of

freedom. The Lorentzian Chern-Simons term can be interpreted as the action for conformal

gravity in three dimensions [3, 5, 6].1

Topologically massive theories of gravity possess supersymmetric extensions. In partic-

ular, N = 1 topologically massive supergravity was introduced in [9] and its cosmological

extension followed in [10]. The off-shell formulations for N -extended topologically massive

supergravity theories were presented in [11] for N = 2 and in [12] for N = 3 and N = 4. In

1The usual Einstein-Hilbert action for 3D gravity with a cosmological term can also be interpreted as

the Chern-Simons action for the anti-de Sitter group [7, 8].
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all of these theories, the action functional is a sum of two terms, one of which is the action

for pure N -extended supergravity (Poincaré or anti-de Sitter) and the other is the action

for N -extended conformal supergravity. The off-shell actions for N -extended supergravity

theories in three dimensions were given in [13] for N = 1, [14, 15] for N = 2, and [14]

for the cases N = 3, 4. The off-shell actions for N -extended conformal supergravity were

given in [5] for N = 1, [16] for N = 2, and [17] for N = 3, 4. The latter work made use of

the formulation for N -extended conformal supergravity presented in [18].

The off-shell structure of 3D N = 4 supergravity [14] is analogous to that of 4D N = 2

supergravity (see, e.g., [19] for a pedagogical review) in the sense that two superconformal

compensators are required (for instance, two off-shell vector multiplets, one of which is self-

dual and the other anti-self-dual) in order to realise pure Poincaré or anti-de Sitter (AdS)

supergravity theories. We recall that the equations of motion for pure N = 4 Poincaré

or AdS supergravity are inconsistent if one makes use of a single compensator [12]. By

construction, the off-shell N = 4 topologically massive supergravity theory of [12] makes

use of two compensators. However, in [20] the consistent system of dynamical equations

was proposed for N = 4 topologically massive AdS supergravity with a single compensating

hypermultiplet, following earlier work in [21–23] on ABJ(M) models. A peculiar feature of

this model, like those considered in [21–23], is that it has no free parameter. Consequently

the dimensionless combination, µ`, of mass µ and AdS radius ` takes a fixed value, µ` = 1,

as in chiral gravity [24]. In [24] it was argued that µ` = 1 is the only value for the quantum

theory to have a chance to be free of ghosts. It is thus interesting that the N = 4 theory

of [20] picks precisely this value.2

In [20] a supergravity action functional was also postulated to generate the dynamical

equations given. This action was claimed to be off-shell without giving technical details. In

this paper we propose a new off-shell model for N = 4 topologically massive supergravity

which is minimal in the sense that it makes use of a single compensating vector multiplet.

The theory is consistent only if the term corresponding to N = 4 conformal supergravity

is turned on. An important maximally supersymmetric solution for this theory is the so-

called critical (4,0) AdS superspace introduced in [25]. Our supergravity theory is first

presented in a manifestly supersymmetric form, and then its action functional is reduced

to components. By choosing appropriate gauge conditions at the component level and

performing a duality transformation, we show how to reduce our off-shell supergravity

action to the one postulated in [20].

This paper is organised as follows. In section 2 we recall the superspace geometry of

the two N = 4 vector multiplets and the corresponding locally supersymmetric actions.

In section 3 we present two models for minimal N = 4 topologically massive supergravity,

analyse their equations of motion and give a brief discussion of the maximally super-

symmetric solutions. Section 4 is devoted to the component structure of minimal N = 4

topologically massive supergravity. Concluding comments are given in section 5. The main

body of the paper is accompanied with three technical appendices. The essential details

2The only known models which pick precisely this value are the topologically gauged ABJ(M) models

of [21–23].
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of the known superspace formulations for N = 4 conformal supergravity are collected in

appendices A and B. Some useful super-Weyl gauge conditions in SO(4) superspace and

their implications are given in appendix C.

2 The N = 4 vector multiplets

There are two inequivalent irreducible N = 4 vector multiplets in three dimensions, self-

dual and anti-self-dual ones, as discovered by Brooks and Gates [26]. In this section we

review the superspace geometry of these supermultiplets in the presence of N = 4 conformal

supergravity [14, 18] and the corresponding locally supersymmetric actions [14].

Throughout this paper we make use of both the SO(4) superspace formulation of

conformal supergravity, which was sketched in [27] and fully developed in [14], and the

conformal superspace formulation presented in [18]. These formulations are related to

each other since SO(4) superspace may be viewed as a gauge fixed version of the N = 4

conformal superspace [18]. Due to this reason, we will first start by formulating vector

multiplets in conformal superspace. We refer the reader to appendix A for the salient

details of the conformal superspace formulation. The geometry of SO(4) superspace in

briefly reviewed in appendix B.

2.1 Kinematics

To describe an Abelian vector multiplet in a curved superspace M3|8 parametrised by

coordinates zM = (xm, θµI), we introduce gauge covariant derivatives

∇ = EA∇A , ∇A = (∇a,∇I
α) := ∇A − VAZ , [Z,∇A] = 0 , (2.1)

with EA = dZMEM
A the superspace vielbein, ∇A the superspace covariant deriva-

tives (A.2) obeying the (anti-)commutation relations (A.4), and V = EAVA the gauge

connection associated with the generator Z. The gauge transformation of V is

δV = dτ , (2.2)

where the gauge parameter τ(z) is an arbitrary real scalar superfield.

The algebra of gauge covariant derivatives is

[∇A,∇B} = −TABC∇C −
1

2
R(M)AB

cdMcd −
1

2
R(N)AB

PQNPQ −R(D)ABD

−R(S)AB
γ
IS

I
γ −R(K)AB

cKc − FABZ , (2.3)

where the torsion and curvatures are those of conformal superspace but with FAB corre-

sponding to the gauge covariant field strength F = 1
2E

B∧EAFAB = dV . The field strength

FAB satisfies the Bianchi identity

dF = 0 , ∇[AFBC} + T[AB
DF|D|C} = 0 (2.4)

and must be subject to covariant constraints to describe an irreducible vector multiplet.
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In order to describe an N = 4 vector multiplet, the superform F is subject to the

constraint (see [14] for more details)

F Iα
J
β = −2iεαβG

IJ , GIJ = −GJI , (2.5a)

and then the Bianchi identity fixes the remaining components of F to be

Fa
J
β =

1

3
(γa)β

γ∇γKGJK , (2.5b)

Fab = − i

48
εabc(γ

c)αβ [∇Kα ,∇Lβ ]GKL , (2.5c)

where GIJ is primary and of dimension 1,

SIαG
JK = 0 , KaG

IJ = 0 , DGIJ = GIJ . (2.6)

Moreover, the field strength GIJ is constrained by the dimension-3/2 Bianchi identity

∇IγGJK = ∇[I
γ G

JK] − 2

3
δI[J∇γLGK]L . (2.7)

It is well known (see [14] and references therein) that the constraint (2.7) defines a

reducible off-shell supermultiplet.3 The point is that the Hodge-dual of GIJ ,

G̃IJ :=
1

2
εIJKLGKL , (2.8)

obeys the same constraint as GIJ does,

∇IγG̃JK = ∇[I
γ G̃

JK] − 2

3
δI[J∇γLG̃K]L , (2.9a)

where εIJKL is the Levi-Civita tensor. As a result one may constrain the field strength

GIJ to be self-dual, G̃IJ = GIJ or anti-self-dual, G̃IJ = −GIJ . These choices correspond

to two different irreducible off-shell N = 4 vector multiplets, which we denote by GIJ+ and

GIJ− , respectively. In what follows we will make use of an (anti-)self-dual Abelian vector

multiplet such that its field strength GIJ± is nowhere vanishing, G2
± := 1

2G
IJ
± G±IJ 6= 0.

When working with N = 4 supersymmetric theories, a powerful technical tool is the

isospinor notation based on the isomorphism SO(4) ∼=
(
SU(2)L×SU(2)R

)
/Z2, which allows

one to replace each SO(4) vector index with a pair of isospinor ones. In defining the

isospinor notation, we follow [14] and associate with a real SO(4) vector VI a second-rank

isospinor Vīi defined as

VI → Vīi := (τ I)īiVI , VI = τI
īiVīi , (Vīi)

∗ = V īi , (2.10)

where we have introduced the τ -matrices

(τ I)īi = (1, iσ1, iσ2, iσ3) , I = 1, · · · , 4 , i = 1, 2 , ī = 1̄, 2̄ . (2.11)

3Such a long N = 4 supermultiplet naturally originates upon reduction of any off-shell N > 4 vector

multiplet to N = 4 superspace [28].
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The isospinor indices of SU(2)L and SU(2)R spinors ψi and χī, respectively, are raised and

lowered using the antisymmetric tensors εij , εij and εīj̄ , εīj̄ (normalised by ε12 = ε21 =

ε1̄2̄ = ε2̄1̄ = 1) according to

ψi = εijψj , ψi = εijψ
j , χī = εīj̄χj̄ , χī = εīj̄χ

j̄ . (2.12)

We then have the following dictionary:

V IUI = V īiUīi , (2.13a)

Aīijj̄ := AIJ(τ I)īi(τ
J)jj̄ = εijAīj̄ + εīj̄Aij , Aij = Aji , Aīj̄ = Aj̄ī , (2.13b)

1

2
AIJBIJ = AijBij +Aīj̄Bīj̄ , (2.13c)

εīijj̄kk̄ll̄ = εijεklεīl̄εj̄k̄ − εilεjkεīj̄εk̄l̄ , (2.13d)

where V I and U I are SO(4) vectors, AIJ and BIJ are anti-symmetric second-rank SO(4)

tensors. The left-hand side of (2.13d) is the Levi-Civita tensor in the isospinor notation.

In the isospinor notation, the self-dual (GIJ+ ) and anti-self-dual (GIJ− ) vector multiplets

take the form

G īijj̄
+ = −εijGīj̄ , G īijj̄

− = −εīj̄Gij , (2.14)

and the Bianchi identity (2.7) turns into

∇(īi
α G

kl) = 0 , ∇i(̄iα Gk̄l̄) = 0 . (2.15)

At this stage it is useful to introduce left and right isospinor variables vL := vi ∈ C2 \ {0}
and vR := vī ∈ C2 \ {0}, which can be used to package the anti-self-dual field strength Gij

and the self-dual field strength Gīj̄ into fields without isospinor indices, G
(2)
L (vL) := Gijv

ivj

and G
(2)
R (vR) := Gīj̄v

īvj̄ , respectively. The same isospinor variables can be used to define

two different subsets, ∇(1)̄i
α and ∇(1̄)i

α , in the set of spinor covariant derivatives ∇īiα by

the rule

∇(1)̄i
α := vi∇īiα , ∇(1̄)i

α := vī∇īiα . (2.16)

It follows from (A.17) that the operators ∇(1)̄i
α obey the anti-commutation relations:{

∇(1)̄i
α ,∇(1)j̄

β

}
= 2iεαβε

īj̄WL(2) + iεαβε
īj̄∇γ(1)

k̄WS(1)k̄
γ

−1

4
εαβε

īj̄∇γ(1)
k̄∇

(1)k̄
δ WKγδ , (2.17)

where L(2) = vivjL
ij and S

(1)̄i
α is defined similarly to ∇(1)̄i

α . The rationale for the definitions

given is that the constraints (2.15) now become the analyticity conditions

∇(1)̄i
α G

(2)
L = 0 , ∇(1̄)i

α G
(2)
R = 0 . (2.18)
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which tell us that each of G
(2)
L and G

(2)
R depends on half the Grassmann coordinates.

The constraints (2.18) do not change under re-scalings vi → cLv
i and vī → cRv

ī, with

cL, cR ∈ C \ {0}, with respect to which G
(2)
L (vL) and G

(2)
R (vR) are homogeneous polyno-

mials of degree two. We see that the isospinor variables vL and vR are defined modulo

the equivalence relations vi ∼ cLv
i and vī ∼ cRv

ī, and therefore they parametrise identi-

cal complex projective spaces CP 1
L and CP 1

R. The superfields G
(2)
L (vL) and G

(2)
R (vR) are

naturally defined on curved N = 4 projective superspace M3|8 × CP 1
L × CP 1

R introduced

in [14].

The field strengths G
(2)
L (vL) and G

(2)
R (vR) are examples of the covariant projective

multiplets introduced in [14] in SO(4) superspace and later reformulated in [12] within the

conformal superspace setting. There are two types of covariant projective multiplets, the

left and right ones. A left projective multiplet of weight n, Q
(n)
L (vL), is a superfield that

is defined on some open domain of C2 \ {0} and possesses the following four properties.

Firstly, it is a primary superfield,

S īiαQ
(n)
L = 0 , KaQ

(n)
L = 0 . (2.19)

Secondly, it is subject to the constraint

∇(1)̄i
α Q

(n)
L = 0 . (2.20)

Thirdly, it is a holomorphic function of vL. Fourthly, it is homogeneous function of vL of

degree n,

Q
(n)
L (c vL) = cnQ

(n)
L (vL) , c ∈ C \ {0} . (2.21)

Every left projective multiplet is inert with respect to SU(2)R and transforms under

SU(2)L as

δΛQ
(n)
L = ΛijLijQ

(n)
L , (2.22a)

ΛijLijQ
(n)
L = −(Λ

(2)
L ∂

(−2)
L − nΛ

(0)
L )Q

(n)
L , (2.22b)

where we have defined

Λ
(2)
L := Λijvivj , Λ

(0)
L :=

viuj
(vL, uL)

Λij (2.23)

and made use of the differential operator

∂
(−2)
L :=

1

(vL, uL)
ui

∂

∂vi
, (vL, uL) = viui . (2.24)

Here we have also introduced a second left isospinor variable uL := ui which is restricted

to be linearly independent of vL, that is (vL, uL) 6= 0. One may see that L(2)Q
(n)
L = 0,

and therefore the integrability condition
{
∇(1)̄i
α ,∇(1)j̄

β

}
Q(n) = 0 for the constraint (2.20)

holds, in accordance with (2.17). The right projective multiplets are defined similarly. The

covariant projective multiplets G
(2)
L (vL) and G

(2)
R (vR) are known as the left and right O(2)

multiplets, respectively.

– 6 –
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As shown in [14] the self-dual vector multiplet, G
(2)
R (vR), can be described in terms of a

gauge prepotential VL(vL), which is a left weight-0 tropical multiplet and is real with respect

to the analyticity preserving conjugation called the smile conjugation. The interested

reader is referred to [14] for the technical details. Similar properties hold for the anti-

self-dual vector multiplet except all ‘left’ objects have to be replaced by ‘right’ ones and

vice versa.

2.2 Dynamics

General off-shell matter couplings in N = 4 supergravity were constructed in [14]. The

action for such a supergravity-matter system may be represented as a sum of two terms

(one of which may be absent),

S = SL + SR . (2.25)

The left SL and right SR actions, are naturally formulated in curved N = 4 projective

superspace. The left action has the form

SL =
1

2π

∮
(vL, dvL)

∫
d3|8z E C

(−4)
L L(2)

L , E−1 = Ber(EA
M ) , (2.26)

where the Lagrangian L(2)
L (vL) is a real left projective multiplet of weight 2, and d3|8z

denotes the full superspace integration measure, d3|8z := d3x d8θ. Furthermore, the model-

independent primary isotwistor superfield C
(−4)
L (vL) has dimension −2, i.e. DC(−4)

L =

−2C
(−4)
L . It is defined to be real with respect to the smile-conjugation defined in [14]

and obeys the differential equation

∆
(4)
L C

(−4)
L = 1 . (2.27)

Here ∆
(4)
L denotes the following fourth-order operator4

∆
(4)
L =

1

96

(
∇(2)̄ij̄∇(2)

īj̄
−∇(2)αβ∇(2)

αβ

)
=

1

48
∇(2)̄ij̄∇(2)

īj̄
, (2.28)

with ∇(2)

īj̄
:= ∇(1)γ

(̄i
∇(1)

γj̄)
and ∇(2)

αβ := ∇(1)k̄
(α ∇

(1)

β)k̄
. The action (2.26) is independent of the

representative C
(−4)
L in the sense that it does not change under an arbitrary infinitesimal

variation of C
(−4)
L subject to the above conditions. The structure of SR is analogous.

There are two equivalent action functionals to describe the dynamics of a single self-

dual Abelian vector multiplet coupled to conformal supergravity. One of them is a right

action formulated in terms of a right O(2) multiplet G
(2)
R (vR) = vīvj̄G

ī j̄ , which is associated

with the superfield strength Gī j̄ of the vector multiplet. This action, has the form5 [14]

S
(+)
VM :=

√
2

π

∮
(vR, dvR)

∫
d3|8z E C

(−4)
R G

(2)
R ln

G
(2)
R

iΥ
(1)
R Ῠ

(1)
R

, (2.29)

4The operator ∆
(4)
L is a covariant projection operator. Given a covariant left projective multiplet Q

(n)
L (vL)

of weight n, it may be represented in the form Q
(n)
L = ∆

(4)
L T

(n−4)
L , for some left isotwistor superfield

T
(n−4)
L (vL), see [14] for details.

5We should emphasise that in this paper we have defined the vector multiplet actions with “wrong” sign,

because in our approach they correspond to superconformal compensators.
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where the weight-one arctic multiplet Υ
(1)
R and its smile conjugate Ῠ

(1)
R are pure gauge

degrees of freedom. The action (2.29) is the 3D N = 4 counterpart of the projective-

superspace action [29] for the 4D N = 2 improved tensor multiplet [30]. The other repre-

sentation for S
(+)
VM makes use of a left tropical prepotential VL(vL) of the self-dual vector

multiplet with gauge transformations

δVL = λL + λ̆L . (2.30)

The gauge parameter λL is an arbitrary left arctic multiplet of weight zero. The gauge

invariant field strength, Gīj̄ , is related to VL through

G
(2)
R (vR) = vīvj̄G

ī j̄ =
i

4
vīvj̄

∮
(vL, dvL)

2π

uiuj
(vL, uL)2

∇αīi∇αjj̄VL(vL) . (2.31)

Here uL = ui is a constant isospinor such that (vL, uL) 6= 0 along the closed integration

contour.6 The action (2.29) can be recast as a left BF -type action [12]

S
(+)
VM = − 1

2π

∮
(vL, dvL)

∫
d3|8z E C

(−4)
L VLG

(2)
L , (2.32)

where G
(2)
L (vL) = vivjG

ij is the composite left O(2) multiplet [12]

G
(2)
L = − i√

2
vivj

∮
(vR, dvR)

2π

uīuj̄
(vR, uR)2

∇αīi∇αjj̄ ln
G

(2)
R

iΥ
(1)
R Ῠ

(1)
R

=
i

4
vivj∇αīi∇jj̄α

(
Gīj̄
G+

)
. (2.33)

The composite left superfield Gij can be equivalently realised as the anti-self-dual SO(4)

bivector GIJ
− .

Similarly, the action for the anti-self-dual vector multiplet [14] can be recast as the

right BF -type action [12]

S
(−)
VM := − 1

2π

∮
(vR, dvR)

∫
d3|8z E C

(−4)
R VRG

(2)
R , (2.34)

where G
(2)
R (vR) = vīvj̄G

ī j̄ is the composite right O(2) multiplet [12]

G
(2)
R = − i√

2
vīvj̄

∮
(vL, dvL)

2π

uiuj
(vL, uL)2

∇αīi∇αjj̄ ln
G

(2)
L

iΥ
(1)
L Ῠ

(1)
L

= vīvj̄
i

4
∇αīi∇jj̄α

(
Gij
G−

)
, (2.35)

and VR(vR) is the tropical prepotential of the anti-self-dual vector multiplet. The composite

right superfield (2.35) can be equivalently realised as the self-dual SO(4) bivector GIJ
+ .

6One may show that the right-hand side of (2.31) is independent of uL.
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The composite O(2) multiplets can be expressed in terms of SO(4) vector indices as

follows [12]

GIJ
± = XIJ

∓ ±
1

2
εIJKLX∓KL ,

1

2
εIJKLG

KL
± = ±G±IJ , (2.36)

where we have defined

XIJ
± :=

i

6G±
∇γ[I∇γKGJ ]K

± +
2i

9G3
±
∇αPG±KP∇αQGQ[I

± G
J ]K
± . (2.37)

To show that GIJ
± is primary and satisfies the Bianchi identity, the following identities

prove useful

GIK± G±JK =
1

2
δIJG

2
± , (2.38a)

εIJKLG±LP = ∓3δ
[I
PG

JK]
± . (2.38b)

It is worth mentioning that the two N = 4 linear multiplet actions (2.32) and (2.34)

are universal [12] in the sense that all known off-shell supergravity-matter systems (with

the exception of pure conformal supergravity) may be described using such actions with

appropriately engineered composite O(2) multiplets G
(2)
L and G

(2)
R .

3 Minimal topologically massive supergravity

In this section we present two new supergravity-matter systems as models for minimal

topologically massive supergravity.

3.1 Action principle and equations of motion

Our models for minimal topologically massive supergravity are described by N = 4 con-

formal supergravity coupled to a vector multiplet, either self-dual or anti-self-dual, via the

following supergravity-matter actions:

κS± :=
1

µ
SCSG + S

(±)
VM , κ2 = 1 , (3.1)

where SCSG denotes the conformal supergravity action [17]. We will refer to the theories

with actions S+ and S− as the self-dual and anti-self-dual topologically massive supergrav-

ity (TMSG) theories, respectively.

As shown in [12], the equation of motion for the vector multiplet derived from the

action (3.1) is equivalent to

G∓
IJ = 0 , (3.2)

while the equation of motion for the conformal supergravity multiplet (that is, the N = 4

Weyl supermultiplet) is
1

µ
W + T± = 0 . (3.3)
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Here T± is the supercurrent, which corresponds to the action S
(±)
VM,

T± = ±G± . (3.4)

One can check that the supercurrent T± obeys the conservation equation [31]

∇α(I∇J)
α T± =

1

4
δIJ∇αK∇Kα T (3.5)

when the matter equation of motion (3.2) is satisfied.

Making use of the Bianchi identity (2.7) as well as the equations of motion (3.2)–(3.4),

one finds the following equations on G±:(
∇γ(I∇J)

γ −
1

4
δIJ∇γK∇

K
γ

)
G± = 0 , (3.6a)(

∇γK∇
K
γ ∓ 8iW

)
G−1
± = 0 , (3.6b)

1

µ
W ±G± = 0 , (3.6c)

∇[I
(α∇

J ]
β)G

−1
± = ±1

2
εIJKL∇(αK∇β)LG

−1
± . (3.6d)

We now turn to an analysis of the consequences of the equations of motion (3.6).

3.2 Analysing the equations of motion

To analyse the equations of motion corresponding to the action (3.1) we need to fix the

gauge freedom. Firstly, we use the special conformal transformations to make the dilatation

connection vanish, BA = 0. This corresponds to degauging of conformal superspace to

SO(4) superspace [14] and gives rise to new torsion terms7 which can be expressed in terms

of superfields SIJ , S, Ca
IJ and their covariant derivatives. We refer the reader to [14] for

details and provide a summary of the salient details of SO(4) superspace in appendix B.

Upon imposing the gauge BA = 0 one can show that (3.6) is equivalent to(
Dγ(IDJ)

γ −
1

4
δIJDγKD

K
γ − 4iSIJ

)
G± = 0 , (3.7a)(

DγKD
K
γ + 8i(2S ∓W )

)
G−1
± = 0 , (3.7b)

1

µ
W ±G± = 0 , (3.7c)

(D[I
(αD

J ]
β) − 4iCαβ

IJ)G−1
± = ±1

2
εIJKL(D(αKDβ)L − 4iCαβKL)G−1

± , (3.7d)

where DIα is the SO(4) superspace covariant derivative [14, 27] (see also [18]). In isospinor

index notation, for the self-dual vector multiplet one obtains(
DγīiDγīi + 8i(2S −W )

)
G−1

+ = 0 , (3.8a)

(D(̄ik̄
α Dβj)k̄ − 4iCαβ

ij)G−1
+ = 0 , (3.8b)

(Dγ(i(̄iDj)j̄)γ − 4iSijīj̄)G+ = 0 , (3.8c)

W + µG+ = 0 , (3.8d)

7See [17] for more details. It is important to note that the SO(4) connection of SO(4) superspace differs

from the one of conformal superspace by a redefinition, for details see [18].
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while for the anti-self-dual vector multiplet one finds(
DγīiDγīi + 8i(2S +W )

)
G−1
− = 0 , (3.9a)

(Dk(̄i
α Dβkj̄) − 4iCαβ

īj̄)G−1
− = 0 , (3.9b)

(Dγ(i(̄iDj)j̄)γ − 4iSijīj̄)G− = 0 , (3.9c)

W − µG− = 0 . (3.9d)

One should keep in mind that the equations of motion for G+ and G− derived from the

actions S+ and S−, respectively, were used in the above results.

Under super-Weyl transformations the SO(4)-covariant derivatives and the torsion

terms transform as8

DIα → D′Iα = e
1
2
σ
(
DIα + (DβIσ)Mαβ + (DαJσ)N IJ

)
, (3.10a)

SIJ → S ′IJ =
i

4
e2σ

(
Dγ(IDJ)

γ −
1

4
δIJDγKDγK − 4iSIJ

)
e−σ , (3.10b)

S → S ′ = − i

16
(DγKD

K
γ + 16iS)eσ , (3.10c)

C ′a
IJ → Ca

IJ = − i

8
(γa)

αβ(D[I
αD

J ]
β − 4iCαβ

IJ)eσ , (3.10d)

W →W ′ = eσW , (3.10e)

where σ is a real unconstrained superfield. Within the superconformal framework, all

supergravity-matter actions are required to be super-Weyl invariant.

The super-Weyl gauge freedom may be used to impose useful gauge conditions. For

instance, one can make use of the super-Weyl transformations to gauge away the self-dual

or anti-self-dual part of Ca
IJ such that the remaining torsion components are expressed

directly in terms of the matter fields. For concreteness, let us consider the theory described

by the action S+, with corresponding equations of motion (3.8), and gauge away Ca
īj̄ via

a super-Weyl transformation. We then find

W = −µG+ , (3.11a)

Sijīj̄ = − i

4
G−1

+ Dγ(i(̄iDj)j̄)γ G+ , (3.11b)

2S −W =
i

8
G+DγīiDγīiG−1

+ , (3.11c)

Cαβ
ij = − i

4
G+D(ik̄

α Dβj)k̄G
−1
+ , (3.11d)

Ca
īj̄ = 0 . (3.11e)

In this gauge, we see that the geometry is determined in terms of a single superfield, which

is chosen to be the scalar G+. After imposing this super-Weyl gauge condition it is possible

to show that there is enough super-Weyl freedom left to impose the additional condition

2S +W = 0 , (3.12)

8The infinitesimal form was given in [14, 25].
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see appendix C for the derivation. This condition proves to lead to the following nonlinear

equation for G+:

DγīiDγīiG−1
+ + 16iµ = 0 . (3.13)

The main virtue of the super-Weyl gauge conditions imposed is that all the torsion

and curvature tensors are descendants of the single scalar superfield G+. However, this

gauge choice is not particularly useful from the point of view of studying (maximally)

supersymmetric backgrounds. A more convenient super-Weyl gauge fixing is G+ = const.

We spell out the implications of such a gauge condition below.

Given a vector multiplet with a superfield strength GIJ such that G is nowhere vanish-

ing, one can always make use of the super-Weyl transformations to choose a gauge where

G =
1

2
GIJGIJ = 1 , DIαGJK = 0 . (3.14)

Such a gauge condition has slightly different consequences on the superspace geometry for

the two vector multiplets GIJ+ and GIJ− satisfying the equations of motion (3.2) and (3.3).

In both cases the super-Cotton tensor is constant,

W = const =⇒ SIJ = 0 , (3.15)

while the constraints on the remaining torsion components differ. For the on-shell self-dual

vector multiplet one finds the following consistency conditions

1

2
εIJKLCa

KL = CaIJ , 2S −W = 0 , (3.16)

while for the on-shell anti-self-dual vector multiplet one finds

− 1

2
εIJKLCa

KL = CaIJ , 2S +W = 0 . (3.17)

In the case where CIJa vanishes, the algebra of covariant derivatives coincides with that

of (4, 0) AdS superspace in the critical case where 2S ∓ W = 0, see [25].9 In general,

however, Ca
IJ does not vanish and instead satisfies some differential conditions implied by

the Bianchi identities

[[DA,DB},DC} + (−1)εA(εB+εC)[[DB,DC},DA}
+ (−1)εC(εA+εB)[[DC ,DA},DB} = 0 . (3.18)

To analyse the Bianchi identities in detail it will be useful to convert to isospinor notation.

We consider in detail the self-dual TMSG theory. In the isospinor notation, the co-

variant derivative algebra which follows from the equations of motion is

{Dīiα ,D
jj̄
β } = 2iεijεīj̄Dαβ + 4iεαβε

īj̄WLij + 4iCαβ
īj̄Lij

+2iεαβε
ijCγδīj̄Mγδ − 2iεijεīj̄WMαβ . (3.19a)

9The N = 4 super-Cotton tensor is denoted by X in [14, 25].
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Analysing the Bianchi identities (3.18) determines the remainder of the covariant derivative

algebra:[
Dαβ ,Dkk̄γ

]
= −εγ(αWDkk̄β) + (εγ(αCβ)δ

k̄j̄ + εδ(αCβ)γ
k̄j̄)Dδkj̄

+2εγ(αCβ)δρ
kk̄M δρ − 2Cαβγ

jk̄Lj
k , (3.19b)

[Dαβ ,Dγδ] = iεγ(αCβ)δρkk̄Dρkk̄ + iεδ(αCβ)γρkk̄Dρkk̄

+εδ(αW
2Mβ)γ + εγ(αW

2Mβ)δ

+
i

12
εδ(α

(
Dkk̄β)Dγk

l̄Cρσk̄l̄

)
Mρσ +

i

12
εγ(α

(
Dkk̄β)Dδk

l̄Cρσk̄l̄

)
Mρσ

−εδ(αCβ)γk̄l̄C
ρσk̄l̄Mρσ − εγ(αCβ)δk̄l̄C

ρσk̄l̄Mρσ , (3.19c)

as well as the following differential constraint on Ca
īj̄

DīiαCβγ j̄k̄ = 2εī(j̄Cαβγ
ik̄) . (3.20)

The above constraint implies, in turn,

DαγCβγ īj̄ + C(α
γ
k̄

(̄iCβ)γ
j̄)k̄ + 2WCαβ

īj̄ = 0 . (3.21)

Since the SU(2)R curvature vanishes, we can completely gauge away the corresponding

connection. Such a gauge condition is assumed in what follows. In this gauge, the field

strength Gīj̄ becomes a constant symmetric isospinor subject to the normalisation condition

Gīj̄Gīj̄ = 1. It is invariant under a U(1) subgroup of SU(2)R.

We are now in a position to describe all maximally supersymmetric solutions of the the-

ory. In accordance with the general superspace analysis of supersymmetric backgrounds in

diverse dimensions [32–34], such superspaces have to comply with the additional constraint

DīiαCβγ j̄k̄ = 0 , (3.22)

which leads to the integrability conditions

(Da −WMa)Cb
j̄k̄ = 0 , (3.23a)

Cγ(α
īj̄Cβ)γ

k̄l̄ = 0 . (3.23b)

The general solution of (3.23b) is

Cαβ
īj̄ = CαβC

īj̄ , (3.24)

where C īj̄ is a constant symmetric rank-2 isospinor. Without loss of generality, C īj̄ can

be normalised as C īj̄Cīj̄ = 1. The covariant constancy conditions (3.22) and (3.23a) now

amount to

DīiαCb = 0 , (Da −WMa)Cb = 0 . (3.25)
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We recall that the Lorentz generator with a vector index, Ma, acts on a three-vector by

the rule MaCb = εabcC
c. The second condition in (3.25) implies that Cb is a Killing vector

of constant norm,

DaCb +DbCa = 0 , C2 = CaCa = const . (3.26)

Thus there are three types of backgrounds depending on whether the Killing vector Ca is

chosen to be time-like, space-like or null. The algebra of covariant derivatives for such a

background is

{Dīiα ,D
jj̄
β } = 2iεijεīj̄(Dαβ −WMαβ) + 4iεαβε

īj̄WLij + 4iC īj̄CαβL
ij

+ 2iεαβε
ijC īj̄CγδMγδ , (3.27a)[

Dαβ ,Dkk̄γ
]

= −εγ(αWDkk̄β) + (εγ(αCβ)δ
k̄j̄ + εδ(αCβ)γ

k̄j̄)Dδkj̄ , (3.27b)

[Dαβ ,Dγδ] = W 2
(
εδ(αMβ)γ + εγ(αMβ)δ

)
−
(
εδ(αCβ)γ + εγ(αCβ)δ

)
CρσMρσ . (3.27c)

One may think of this algebra as a Lie superalgebra.10 By construction, the theory involves

the constant symmetric isospinor Gīj̄ being invariant under a U(1) subgroup of the group

SU(2)R. If C īj̄ does not coincide with Gīj̄ , then the group SU(2)R is completely broken.

This indicates that C īj̄ = Gīj̄ .

The simplest maximally supersymmetric solution of the theory is characterised by (see

also [20])

Ca
īj̄ = 0 . (3.28)

It corresponds to the critical (4,0) AdS superspace introduced in [25]. Its algebra of co-

variant derivatives is as follows:

{Dīiα ,D
jj̄
β } = 2iεijεīj̄(Dαβ −WMαβ) + 4iεαβε

īj̄WLij , (3.29a)

[Da,Djj̄β ] =
1

2
W (γa)β

γDjj̄γ , [Da,Db] = −W 2Mab . (3.29b)

The last relation shows that the cosmological constant is Λ = −W 2 = −`−2, in agreement

with [20, 25]. Here ` is the radius of curvature in AdS3. The latter relation is equivalent

to µ` = 1, which corresponds to chiral gravity [24].

More generally, the (p, q) AdS superspaces, p + q = N , in three dimensions were

classified in [25].11 In the N = 4 case, the (3,1) and (2,2) AdS superspaces are necessarily

conformally flat, W = 0. The distinguished feature of (4,0) AdS supersymmetry is that the

super-Cotton scalar W may have a non-zero value. The algebra of covariant derivatives is

given by [25]

{Dīiα ,D
jj̄
β } = 2iεijεīj̄Dαβ + 2iεαβε

īj̄(2S +W )Lij + 2iεαβε
ij(2S −W )Rīj̄

−4iSεijεīj̄Mαβ , (3.30a)

[Da,Djj̄β ] = S(γa)β
γDjj̄γ , [Da,Db] = −4S2Mab , (3.30b)

10More precisely, (3.27) is isomorphic to the Lie superalgebra corresponding to the isometry supergroup

of the background superspace under consideration.
11In three dimensions, N -extended AdS supergravity exists in several incarnations [7] known as the (p, q)

AdS supergravity theories, where the integers p ≥ q ≥ 0 are such that N = p+ q.
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where the positive constant S determines the curvature of AdS3. For a generic value of W

the entire SO(4) R-symmetry group belongs to the superspace holonomy group. But there

are two special values of W for which either the SU(2)R or the SU(2)L curvature vanishes

and the structure group is reduced. These are given by

W = ±2S (3.31)

and correspond to the critical (4,0) AdS superspaces. As briefly discussed in [35], the

isometry group of (4,0) AdS superspace is isomorphic to D(2, 1;α) × SL(2,R) in the non-

critical case W 6= ±2S, where D(2, 1;α) is one of the exceptional simple supergroups, with

the real number α 6= −1, 0, see e.g. [36, 37] for reviews. The supergroup parameter α is

related to the (4,0) AdS parameter q = 1 + W
2S introduced in [35]. If the values of α are

restricted to the range12 −1 < α ≤ −1
2 , then we can identify −2α = 1 + W

2S . The case

α = −1
2 corresponds to the conformally flat (4,0) AdS superspace, for which W = 0. Its

isometry group is OSp(4|2) × SL(2,R). The limiting choice α = −1 corresponds to one

of the two critical (4,0) AdS cases, W = 2S.13 The isometry group of this (4,0) AdS

superspace is SU(1, 1|2) o SU(2)× SL(2,R), see also the discussion in [38].

If Ca 6= 0, the maximally supersymmetric background (3.27) describes a warped criti-

cal (4,0) AdS superspace. The bosonic body of such a superspace is warped AdS3 spacetime

associated with the Killing vector ca(x) = Ca(z)|θ=0. Warped AdS3 spacetimes have been

discussed in detail in the literature, see [39–43] and references therein. In the N = 2 su-

persymmetric case, the (super)space geometry of maximally supersymmetric warped (2,0)

AdS backgrounds was described in [11] and further elaborated in [34]. Supersymmetric

warped (1,1) AdS backgrounds, which are necessarily non-maximal, were thoroughly stud-

ied in [40].

It is worth giving a few general comments about maximally supersymmetric warped

AdS backgrounds in N -extended supergravity theories. Such backgrounds do not exist

in the case of N = 1 supergravity. This result was first demonstrated by Gibbons, Pope

and Sezgin [44], and it follows trivially from the general superspace analysis of supersym-

metric backgrounds in diverse dimensions [32–34].14 However, maximally supersymmetric

warped AdS backgrounds do exist in extended supergravity, N > 1, if the structure group

includes not only the Lorentz group SL(2,R) but also a nontrivial R-symmetry group. For

instance, the structure group for N = (2, 0) AdS supergravity is SL(2,R) × U(1)R, and

thus this theory possesses maximally supersymmetric warped AdS backgrounds, which

were described in [11, 34] using the superspace techniques, and some time later in [41, 42]

using the component approach. On the other hand, the structure group for N = (1, 1)

12Not all values of α lead to distinct supergroups, since the supergroups defined by the parameters α±1,

−(1 + α)±1 and −α±1(1 + α)∓1 are isomorphic [36, 37].
13The isometry groups of the two critical (4,0) AdS superspaces are isomorphic.
14Indeed, the superspace geometry of N = 1 supergravity is determined by two torsion tensors, a scalar S

and a symmetric spinor Cαβγ = C(αβγ), see [13, 14] for more details. According to [33, 34], every maximally

supersymmetric background is characterised by the conditions Cαβγ = 0 and S = const, see also [45]. The

resulting algebra of covariant derivatives corresponds to N = 1 AdS superspace for S 6= 0, or Minkowski

superspace for S = 0.

– 15 –



J
H
E
P
0
3
(
2
0
1
7
)
1
0
9

AdS supergravity coincides with the Lorentz group, and therefore this theory possesses no

maximally supersymmetric warped AdS backgrounds, see [11, 34] for more details.

We now linearise the equation (3.21) around the critical (4, 0) AdS superspace and let

Ca
īj̄ = δCa

īj̄ where δCa
ij is a small disturbance. Eq. (3.21) turns into

Dα
γδCβγ

īj̄ − 2µδCαβ
īj̄ = 0 =⇒ DaδCa

īj̄ = 0 , (3.32)

where Da denotes the vector covariant derivative of the critical (4, 0) AdS superspace.

After applying another vector derivative one finds the equation

(DaDa − 2µ2)δCb
īj̄ = 0 . (3.33)

One can also derive further equations on descendants of δCαβ
īj̄ using the con-

straint (3.20). In particular, one finds(
Dα

δ − 3

2
µδδα

)
δCβγδ

īi = 0 , δCαβγ
īi :=

1

3
Dα

i
j̄δCβγ

īj̄ , (3.34a)

(Dα
ρ − µδρα)δCβγδρ = 0 , δCαβγδ := Dīi

(αδCβγδ)īi , (3.34b)

where Dīi
α denotes the spinor covariant derivative of the critical (4, 0) AdS superspace. The

component projection of δCαβγ
īi is proportional to the linearised gravitino field strength,

while δCαβγδ is proportional to the linearised Cotton tensor. These superfields can be

shown to satisfy the following consequences of eqs. (3.34):(
DaDa +

1

4
µ2

)
δCαβγ

īi = 0 , (3.35a)

(DaDa + 2µ2)δCαβγδ = 0 . (3.35b)

In the above we made use of the following result for a symmetric rank-(2s) superfield

Tα1···α2s = T(α1···α2s) (with isospinor indices suppressed):(
Dα1

β − δα1
β µ

η

)
Tα2···α2sβ = 0 =⇒

(
DaDa −

µ2

η2
+ (s+ 1)µ2

)
Tα1···α2s = 0 , (3.36)

with η a dimensionless parameter. Computing the bar-projection of the equa-

tions (3.32), (3.34a) and (3.34b), we can determine the representations of the AdS group

SO(2,2) to which the fields δCαβ
īj̄ |, δCαβγ īi| and δCαβγδ| belong. We recall that the uni-

tary representations of SO(2,2), denoted D(E0, ŝ), are labelled by two real weights (E0, ŝ),

where E0 is the lowest energy and ŝ is the helicity, see e.g. [46]. The weights obey the

unitarity bound E0 ≥ |ŝ| for ŝ > 0, where the representations with E0 = |ŝ| > 0 are called

singleton representations. For a superfield Tα1...α2s obeying the first-order equation (3.36),

its lowest component Tα1...α2s | transforms in the representation with

E0 = 1 +
1

|η|
, ŝ =

sη

|η|
, (3.37)
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as follows from the analysis in [46] (see also [47]). Thus the gravitational field δCαβγδ| is a

helicity 2 singleton, while the spin-1 and spin-3/2 fields, δCαβ
īj̄ | and δCαβγ

īi|, are massive.

In the above we worked with the self-dual TMSG theory, however the analysis of the

equations of motion corresponding to the action S− is completely analogous. There one

finds the covariant derivative algebra is

{Dīiα ,D
jj̄
β } = 2iεijεīj̄Dαβ − 4iεαβε

ijWRīj̄ + 4iCαβ
ijRīj̄

+2iεαβε
īj̄CγδijMγδ + 2iεijεīj̄WMαβ , (3.38)

where Ca
ij satisfies the Bianchi identity

DīiαCβγjk = 2εi(jCαβγ
k)̄i . (3.39)

Using the above equation one finds

DαγCβγij + C(α
γ
k

(iCβ)γ
j)k − 2WCαβ

ij = 0 . (3.40)

The solution Ca
ij = 0 corresponds to (4, 0) AdS superspace in the critical case 2S = −W .

We now linearise around the (4, 0) AdS superspace and set Ca
ij = δCa

ij where δCa
ij is a

small disturbance. It can be seen that δCa
ij obeys the equation

Dα
γδCβγ

ij − 2µδCαβ
ij = 0 , (3.41)

where Da corresponds to the vector covariant derivative of the (4, 0) AdS superspace. After

applying another vector derivative one finds

(DaDa − 2µ2)δCb
ij = 0 . (3.42)

4 Component actions

In this section we give the component results corresponding to the minimal N = 4 topo-

logically massive supergravity action (3.1).

4.1 The component conformal supergravity action

The complete component analysis of the N -extended Weyl multiplet was given in [17]. Here

we specialise to the N = 4 case where the auxiliary fields coming from the super-Cotton

tensor are defined as:

w :=
1

4!
εIJKLw

IJKL = W | , y :=
1

4!
εIJKLy

IJKL = − i

4
∇αI∇IαW | , (4.1a)

wαL :=
1

3!
εIJKLwα

IJK = − i

2
∇αLW | . (4.1b)

The full N = 4 conformal supergravity action was given in [17] and is

SCSG =
1

8

∫
d3x e

{
εabc

(
ωa

fgRbcfg −
2

3
ωaf

gωbg
hωch

f − i

2
Ψbc

α
I (γd)α

β(γa)β
γεdefΨef

I
γ

− 2RabIJVcIJ −
4

3
Va

IJVbI
KVcKJ

)
− 32iwαI w

I
α − 8wy − 16iψa

α
I (γa)α

βwIβw − 2iεabc(γa)αβψb
α
I ψc

βIw2

}
, (4.2)
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where the component curvatures Rabcd and RabIJ are defined as

Rabcd := 2ea
meb

n∂[mωn]
cd − 2ω[a

cfωb]f
d , (4.3a)

RabIJ := 2ea
meb

n∂[mVn]
IJ − 2V[a

IKVb]K
J . (4.3b)

4.2 The component vector multiplet actions

The component N = 4 linear multiplet actions were given in [12]. Making use of the results

there, one can construct the left and right vector multiplet actions.

The component fields of the vector multiplets are defined as

gIJ± := GIJ± | , (4.4a)

λ(±)
I
α :=

2

3
∇αJGIJ± | , (4.4b)

h(±)
IJ :=

i

3
∇γ[I∇γKGJ ]K

± | , (4.4c)

f(±)ab := − i

24
εabc(γ

c)αβ∇Kα ∇LβG±KL| −
1

2
(ψ[a

Kγb]λ(±)K) +
i

2
ψa

γKψb
L
γ g±KL , (4.4d)

where g±
IJ is (anti-)self-dual

1

2
εIJKLg±KL = ±g±IJ . (4.5)

The component gauge one-forms v(±)a are defined as

v(±)a := ea
mv(±)m , f(±)ab = 2ea

menb ∂[mv(±)n] , v(±)m := V±m| , (4.6)

where V± is the superspace gauge one-form associated with the field strength GIJ± .

It is useful to replace h(±)
IJ by the fields

ĥ±
IJ =

1

2
(h(∓)

IJ + h̃(∓)
IJ)

= h(∓)
IJ ∓ 2wg∓

IJ , (4.7)

which proves to be (anti-)self-dual

1

2
εIJKLĥ±KL = ±ĥIJ± . (4.8)

The component self-dual vector multiplet action is

S
(+)
VM = −

∫
d3x e

(
εabcv(+)af (+)bc +

1

4
ĥ+

IJg+IJ +
1

4
ĥ−

IJg−IJ −
i

2
λαIλαI

− 1

2
(γa)γδψa

γ
I (λδJg−J

I + λδJg+J
I) +

i

2
εabc(γa)γδψb

γ
Kψc

δ
L g+

KPg−
L
P

)
,

(4.9)
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where the bolded component fields correspond to those of the composite vector multiplet,

gIJ− = GIJ
− | , λIα =

2

3
∇αJGIJ

− | , ĥ+
IJ =

i

3
∇γ[I∇γKGJ ]K

− |+ 2wg−
IJ , (4.10a)

va = ea
mVm| = Va|+

1

2
ψa

α
I V

I
α | , (4.10b)

f (+)ab = − i

24
εabc(γ

c)αβ∇Kα ∇LβG−KL| −
1

2
(ψ[a

Kγb]λK) +
i

2
ψa

γKψb
L
γ g−KL . (4.10c)

The component anti-self dual vector multiplet action is

S
(−)
VM =−

∫
d3x e

(
εabcv(−)af (−)bc +

1

4
ĥ+

IJg+IJ +
1

4
ĥ−

IJg−IJ −
i

2
λαIλαI

− 1

2
(γa)γδψa

γ
I (λδJg−J

I + λδJg+J
I) +

i

2
εabc(γa)γδψb

γ
Kψc

δ
L g+

KP g−
L
P

)
, (4.11)

where

gIJ+ = GIJ
+ | , λIα =

2

3
∇αJGIJ

+ | , ĥ−
IJ =

i

3
∇γ[I∇γKGJ ]K

+ | − 2wg+
IJ , (4.12a)

va = ea
mVm| = Va|+

1

2
ψa

α
I V

I
α | , (4.12b)

f (−)ab = − i

24
εabc(γ

c)αβ∇Kα ∇LβG+KL| −
1

2
(ψ[a

Kγb]λK) +
i

2
ψa

γKψb
L
γ g+KL . (4.12c)

Plugging in the superspace expressions for G±
IJ one one can construct the component

fields of the composite vector multiplets. The component fields are found to be

g±
IJ =

1

g±
ĥIJ± −

i

2g3
±
λ±

α
KΛ±

[I
α g±

J ]K ± i

4g3
±
εIJLPλ±

α
Kλ±αLg±P

K , (4.13a)

Λ(±)
I
α =

2

g±
∇αγλ(±)

I
γ +

2

g3
±
f±αβλ(±)

β
Jg±

IJ +
1

3g3
±
ĥ∓JKλ(±)

I
αg±

JK

+
2

3g3
±
ĥ∓JKλ(±)

J
αg±

KI +
1

3g2
±
ĥ∓

IJλ(±)
K
α g±JK

+
2

3g3
±
∇αβg±JKλ(±)

βIg±
JK +

4

3g3
±
∇αβg±JKλ(±)

βJg±
KI

− 2

g3
(±)

∇αβg±IJλ(±)
βKg±JK

± 1

g±
wλ(±)

I
α ±

8i

g±
wαJg±

IJ +O(λ2) , (4.13b)

ĥ±
IJ =

4

g±
2gIJ± +

2

g3
±
f±abf±

abg±
IJ +

4

g3
±
εabcf±ab∇cg±K [Ig±

J ]K

− 1

4g3
±
ĥ∓

KLĥ∓KLg±
IJ − 2

g3
±
g±

KL∇ag±KL∇ag±IJ

+
1

g3
±
g±

IJ∇ag±KL∇ag±KL −
2

g±
w2g±

IJ ± 2

g±
yg±

IJ

+ fermion terms , (4.13c)
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f (±)mn := em
aen

bf (±)ab

= ∂[m

(
4

g±
f(±)n] −

2

g±
Vn]

IJg±IJ

)
− 1

g3
±
∂[mg±

IK∂n]g±
J
Kg±IJ

+ fermion terms , (4.13d)

where

f(±)
m =

1

2
εmnpf(±)np . (4.14)

Here we have introduced the following:

∇ag±IJ := Dag±IJ +
1

2
ψa

α[Iλ±
J ]
α ±

1

4
εIJKLψa

α
Kλ±αL , (4.15a)

2g±
IJ := DaDag±IJ +

1

4
Rg±IJ + fermion terms , (4.15b)

and15

Da := ea
m∂m −

1

2
ωa

bcMbc −
1

2
Va

IJNIJ − baD . (4.16)

4.3 N = 4 topologically massive supergravity in components

To simplify our results it is useful to make use of the gauge freedom to impose some gauge

condition. One can always choose a gauge condition where

BA = 0 , G± = 1 . (4.17)

At the component level these require

g± = 1 , λIα = 0 , bm = 0 . (4.18)

The first gauge condition fixes the dilatation transformations, the second fixes the S-

supersymmetry transformations and the third fixes the conformal boosts. For a right Gij

and left Gīj̄ vector multiplet we can use the respective SU(2) symmetry to fix their lowest

components to a constant. This then gives

∇ag±IJ = 2Va
K[Ig±K

J ] . (4.19)

With the above gauge conditons we find

ĥ
IJ

± g±IJ = 2R+ 4f±abf±
ab − 1

2
ĥ∓

IJ ĥ∓IJ

−2VaKLV
aKL + 4Va

IKV aJLg±IJg±KL

−4w2 ± 4y + fermion terms , (4.20a)

ĥIJ± g±IJ = ĥIJ± ĥ±IJ , (4.20b)

f (±)mn = ∂[m

(
4f(±)n] − 2Vn]

IJg±IJ

)
+ fermion terms . (4.20c)

15We have denoted the component vector derivative Da in the same way as the SU(2) superspace covariant

derivative. It should be clear from context to which we are referring to.

– 20 –



J
H
E
P
0
3
(
2
0
1
7
)
1
0
9

Using the above conditions one finds (upon integrating by parts) the self-dual vector

multiplet action is

S
(+)
VM =−

∫
d3x e

(
1

2
R− f(+)abf

ab
(+) − 2fa(+)Va

IJg+IJ −
1

2
VaKLV

aKL

+ Va
IKV aJLg+IJg+KL +

1

8
ĥIJ− ĥ−IJ − w2 + y + fermion terms

)
, (4.21)

while the anti-self-dual vector multiplet action is

S
(−)
VM =−

∫
d3x e

(
1

2
R− f(−)abf

ab
(−) − 2fa(−)Va

IJg−IJ −
1

2
VaKLV

aKL

+ Va
IKV aJLg−IJg−KL +

1

8
ĥIJ+ ĥ+IJ − w2 − y + fermion terms

)
. (4.22)

The complete component action for minimal N = 4 topologically massive supergrav-

ity (3.1) is then given by

κS± =
1

µ
SCSG + S

(±)
VM , (4.23)

where SCSG is the component action (4.2). As a simple check one can readily verify that

the equation of motion on the field y gives

w = ∓µ , (4.24)

which is consistent with the supergravity equation of motion being W = ∓µG± in the

presence of the vector multiplet compensator.

For completeness we will also give the component action in isospinor notation. The

N = 4 conformal supergravity action (4.2) becomes

SCSG =
1

8

∫
d3x e

{
εabc

(
ωa

fgRbcfg −
2

3
ωaf

gωbg
hωch

f

− 4RabijVcij −
8

3
Vai

jVbj
kVck

i − 4Rabīj̄Vcīj̄ −
8

3
Vaī

j̄Vbj̄
k̄Vck̄

ī

)
− 32iwαīiw

īi
α − 8wy − 16iψa

α
īi(γ

a)α
βwīiβw − 2iεabc(γa)αβψb

α
īiψc

βīiw2

}
, (4.25)

where the component SU(2) curvatures Rabij and Rabīj̄ are

Rabij := 2ea
meb

n∂[mVn]
ij − 2V[a

ikVb]k
j , (4.26a)

Rabīj̄ := 2ea
meb

n∂[mVn]
īj̄ − 2V[a

īk̄Vb]k̄
j̄ . (4.26b)

The self-dual vector multiplet action in isospinor notation is

S
(+)
VM =−

∫
d3x e

(
1

2
R− f(+)abf

ab
(+) − 4fa(+)Va

īj̄g+īj̄ − Vaīj̄V aīj̄

+ 2Va
īk̄V aj̄l̄g+īj̄g+k̄l̄ +

1

4
ĥij−ĥ−ij − w2 + y + fermion terms

)
, (4.27)
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while the anti-self-dual vector multiplet action is

S
(−)
VM =−

∫
d3x e

(
1

2
R− f(−)abf

ab
(−) − 4fa(−)Va

ijg−ij − VaijV aij

+ 2Va
ikV ajlg−ijg−kl +

1

4
ĥīj̄+ĥ+īj̄ − w2 − y + fermion terms

)
. (4.28)

Having derived the component actions for minimal N = 4 topologically massive su-

pergravity, it is worth elaborating on these results further. For instance, if we consider just

one of the vector multiplet actions without the conformal supergravity action, one can see

that the equation of motion for y leads to an inconsistency. This is equivalent to the fact

that the superfield equations of motion for the N = 4 gravitational superfield16 derived

from the actions S
(+)
VM and S

(−)
VM are G+ = 0 and G− = 0, respectively, and these equations

are inconsistent with the requirements G± 6= 0. However, one gets consistent equations of

motion if one adds the left and right vector multiplets [12] and considers the action

S = S
(+)
VM + S

(−)
VM . (4.29)

Now the superfield equation of motion for the N = 4 gravitational superfield is [12]

G+ −G− = 0 , (4.30)

which is completely consistent. Moreover, this equation is consistent with our gauge con-

ditions because imposing the gauge G+ = 1 implies G− = 1, which in turn implies that

the auxiliary field y cancels. Furthermore, the fields w and ĥIJ become auxiliary and their

equation of motion is the requirement that they vanish. The equations of motion on the

SU(2) connections requires f(−)a = f(+)a = 0 and we are left with just the N = 4 Poincaré

supergravity action (up to a normalisation factor)

S =−
∫

d3x eR + fermion terms . (4.31)

In the presence of the conformal supergravity action the gauge conditions G+ = G− = 1

are no longer consistent [12] and instead one has to use the results in subsection 4.2 in the

general gauge. If one also adds to (4.29) the supersymmetric cosmological term [14], the

resulting theory corresponds to (2,2) AdS supergravity as was described in detail in [12, 14].

It is worth mentioning some simplifications that can be made to the N = 4 topologi-

cally massive supergravity actions upon using the equations of motion. To illustrate this

let us consider the theory with a self-dual vector multiplet. In this case the equation of

motion for the SU(2)L gauge field is

Rabij = 0 , (4.32)

which tells us that the SU(2)L gauge field can be completely gauged away. The equation

of motion for the auxiliary field ĥij sets the auxiliary field to zero and removes it from the

16The N = 4 gravitational superfield is a scalar prepotential describing the multiplet of N = 4 conformal

supergravity. It is the 3D N = 4 counterpart of the N = 2 gravitational superfield in four dimensions [48].
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action. The equation of motion on y just sets w = −µ and gives rise to a cosmological

term. The resulting action is

κS+ =

∫
d3x e

[
1

8µ

{
εabc

(
ωa

fgRbcfg −
2

3
ωaf

gωbg
hωch

f

− 4Rabīj̄Vcīj̄ −
8

3
Vaī

j̄Vbj̄
k̄Vck̄

ī

)}
− 1

2
R+ µ2 + f(+)abf

ab
(+) + 4fa(+)Va

īj̄g+īj̄ + Vaīj̄V
aīj̄

− 2Va
īk̄V aj̄l̄g+īj̄g+k̄l̄ + fermion terms

]
. (4.33)

Similar simplifications can be made for the anti-self dual vector multiplet action.

We can now show how to derive the supergravity action postulated in [20] from our

theory S−. The crucial observation is that the U(1) gauge field appears in the action (4.28)

only via its field strength f(−)ab, and therefore it may be dualised into a scalar field. To

implement this, we replace (4.28) with an equivalent first-order action

S
(−)
FO =−

∫
d3x e

(
1

2
R− f(−)abf

ab
(−) − 4fa(−)Va

ijgij − VaijV aij + 2Va
ikV ajlg+ijg+kl

+
1

4
ĥīj̄+ĥ+īj̄ − w2 − y + 2fa(−)Daϕ+ fermion terms

)
, (4.34)

where f(−)ab is an unconstrained antisymmetric tensor field, and ϕ a Lagrange multipler.

Varying ϕ gives Dafa(−) = 0, and therefore f(−)ab becomes the field strength of a U(1)

vector multiplet. Then S
(−)
FO turns into the original action (4.28). On the other hand, we

may integrate out f(−)ab from S
(−)
FO using its equation of motion

f(−)a = Va
ijgij −

1

2
Daϕ . (4.35)

Plugging this back into (4.34) gives the dual action

S
(−)
hyper = −

∫
d3x e

(
1

2
R− 1

2
DaϕDaϕ+ 2DaϕV aijgij − 2VaijV

aij

+
1

4
ĥīj̄+ĥ+īj̄ − w2 − y + fermion terms

)
, (4.36)

where we used

Va
ikV ajlgijgkl = V ij

a V
aklgijgkl −

1

2
VaijV

aij . (4.37)

If we impose a Weyl gauge ϕ = 1 and make use of the equation of motion for the auxiliary

field ĥīj̄+, which is ĥīj̄+ = 0, we recover the bosonic matter sector of the topologically massive

supergravity action in [20] up to conventions and fermion terms. Since the auxiliary field

ĥīj̄+ has been integrated out, the action given in [20] does not appear to be off-shell.
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5 Discussion

In this paper we constructed minimal N = 4 topologically massive supergravity. It has

several unique features that we summarise here.

• Unlike the other N -extended TMSG theories with N ≤ 4 [9–12], its action cannot be

viewed as the supergravity action (with or without a supersymmetric cosmological

term) augmented by the conformal supergravity action playing the role of a topolog-

ical mass term. The point is that the theory becomes inconsistent upon removing

the conformal supergravity action, as was explained in section 4.3.

• Our theory makes use of a single superconformal compensator. We recall that all

known Poincaré or AdS supergravity theories with eight supercharges in diverse di-

mensions require, in general, two such compensators in order for the corresponding

dynamics to be consistent. One known exception is the off-shell formulation for

4D N = 2 AdS supergravity given in [49], which makes use a single massive ten-

sor compensator (described by an unconstrained chiral scalar prepotential) and no

compensating vector multiplet.17 In the case of higher derivative theories, two com-

pensators are no longer required. This was observed in four dimensions for models

involving the N = 2 supersymmetric R2 term [57], and in three dimensions for N = 4

topologically massive supergravity [20].

• Our minimal TMSG theory does not allow any supersymmetric cosmological term.

However, a cosmological term gets generated at the component level upon integrating

out the auxiliary fields. This is manifested in the fact that the critical (4,0) AdS

superspace [25] is a maximally supersymmetric solution of the theory.

• The theory has only one coupling constant.

• Our minimal TMSG theory is the first off-shell N = 4 supergravity theory in three

dimensions with the property that the critical (4,0) AdS superspace [25] is a solution

of the theory. Upon integrating out the auxiliary fields we recover the model discussed

in [20].

• Our theory is an off-shell N = 4 supersymmetric extension of chiral gravity [24]. It

is obvious that such an extension, which has never been constructed before, must

involve a single conformal compensator.

The above features demonstrate the physical relevance of the theory proposed.

As mentioned in section 1, there exist N = 6 and N = 8 supersymmetric extensions of

chiral gravity [24]. Unlike our theory, these TMSG theories are necessarily on-shell. The off-

shell structure of our N = 4 theory is indispensable for at least two reasons: (i) it allows for

17The vector multiplet has been eaten up by the tensor multiplet. The vector compensator acts as a

Stückelberg field to give mass to the tensor multiplet. This is an example of the phenomenon observed

originally in [50] and studied in detail in [29, 51–56].
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the general coupling to matter supermultiplets; and (ii) at the quantum level, it allows one

to derive supersymmetric power-counting rules through the use of supergraph techniques.

In the on-shell construction of topologically gauged N = 6 and N = 8 ABJM type

theories [21–23], a crucial role is played by a sixth order scalar potential. In the off-

shell approach, such a scalar potential is automatically generated upon elimination of the

auxiliary fields, as was demonstrated in [58] where the N = 6 and N = 8 ABJM models

were realised in N = 3 harmonic superspace. There is an analogous feature in our actions.

Specifically, before imposing any gauge condition there is a term w2g± in our actions

and upon eliminating the auxiliary fields the term µ2g3
± is generated. This term plays

a similar role as the sixth order polynomial in [21–23] in the sense that its coefficient is

fixed by the equations of motion (in terms of the coupling coefficient of the conformal

supergravity action) and the conformal coupling between the Einstein-Hilbert term and

the O(2) multiplet. In this respect our model is akin to those of [21–23].

Both models for minimal N = 4 topologically massive supergravity constructed in

this paper possess dual formulations. They are obtained by replacing the vector multiplet

actions S
(+)
VM and S

(−)
VM with off-shell hypermultiplet actions S

(+)
HM and S

(−)
HM, respectively,

such that

S
(+)
HM := − i

2π

∮
(vR, dvR)

∫
d3|8z E C

(−4)
R Υ

(1)
R Ῠ

(1)
R , (5.1)

and similarly for the left hypermultiplet action S
(−)
HM. In the dual formulation, its compen-

sating multiplet is the so-called polar hypermultiplet described by the weight-one arctic

multiplet Υ
(1)
R and its smile conjugate Ῠ

(1)
R . Duality between the theories with actions S

(+)
VM

and S
(+)
HM can be shown in complete analogy with the 4D N = 2 case [29].
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A The geometry of N = 4 conformal superspace

Here we collect the essential details of the N = 4 superspace geometry of [18]. We refer

the reader to [14, 18] for our conventions for 3D spinors.
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We begin with a curved three-dimensional N = 4 superspace M3|8 parametrized by

local bosonic (xm) and fermionic coordinates (θµI ):

zM = (xm, θµI ) , (A.1)

where m = 0, 1, 2, µ = 1, 2 and I = 1, · · · , 4. The structure group is chosen to be

OSp(4|4,R) and the covariant derivatives are postulated to have the form

∇A = EA − ωAbXb = EA −
1

2
ΩA

bcMbc −
1

2
ΦA

PQNPQ −BAD− FA
BKB . (A.2)

Here EA = EA
M∂M is the inverse vielbein, Mab are the Lorentz generators, NIJ are

generators of the SO(4) group, D is the dilatation generator and KA = (Ka, S
I
α) are the

special superconformal generators.

The Lorentz generators obey

[Mab,Mcd] = 2ηc[aMb]d − 2ηd[aMb]c , (A.3a)

[Mab,∇c] = 2ηc[a∇b] , [Mαβ ,∇Iγ ] = εγ(α∇Iβ) . (A.3b)

The SO(4) and dilatation generators obey

[NKL, N
IJ ] = 2δI[KNL]

J − 2δJ[KNL]
I , [NKL,∇Iα] = 2δI[K∇αL] , (A.3c)

[D,∇a] = ∇a , [D,∇Iα] =
1

2
∇Iα . (A.3d)

The Lorentz and SO(4) generators act on the special conformal generators KA as

[Mab,Kc] = 2ηc[aKb] , [Mαβ , S
I
γ ] = εγ(αS

I
β) , (A.3e)

[NKL, S
I
α] = 2δI[KSαL] , (A.3f)

while the dilatation generator acts on KA as

[D,Ka] = −Ka , [D, SIα] = −1

2
SIα . (A.3g)

Among themselves, the generators KA obey the algebra

{SIα, SJβ } = 2iδIJ(γc)αβKc . (A.3h)

Finally, the algebra of KA with ∇A is given by

[Ka,∇b] = 2ηabD + 2Mab , (A.3i)

[Ka,∇Iα] = −i(γa)α
βSIβ , (A.3j)

[SIα,∇a] = i(γa)α
β∇Iβ , (A.3k)

{SIα,∇Jβ} = 2εαβδ
IJD− 2δIJMαβ − 2εαβN

IJ . (A.3l)
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The covariant derivatives obey the (anti-)commutation relations of the form

[∇A,∇B} = −TABC∇C −
1

2
R(M)AB

cdMcd −
1

2
R(N)AB

PQNPQ

−R(D)ABD−R(S)AB
γ
KS

K
γ −R(K)AB

cKc , (A.4)

where TAB
C is the torsion, and R(M)AB

cd, R(N)AB
PQ, R(D)AB, R(S)AB

γ
K and R(K)AB

c

are the curvatures corresponding to the Lorentz, SO(4), dilatation, S-supersymmetry and

special conformal boosts, respectively.

The full gauge group of conformal supergravity, G, is generated by covariant general

coordinate transformations, δcgct, associated with a parameter ξA and standard supercon-

formal transformations, δH, associated with a parameter Λa. The latter include the dilata-

tion, Lorentz, SO(4), and special conformal (bosonic and fermionic) transformations. The

covariant derivatives transform as

δG∇A = [K,∇A] , (A.5)

where K denotes the first-order differential operator

K = ξC∇C +
1

2
ΛabMab +

1

2
ΛIJNIJ + ΛD + ΛAKA . (A.6)

Covariant (or tensor) superfields transform as

δGT = KT . (A.7)

In order to describe the Weyl multiplet of conformal supergravity, some of the com-

ponents of the torsion and curvatures must be constrained. Following [18], the spinor

derivative torsion and curvatures are chosen to resemble super-Yang Mills

{∇Iα,∇Jβ} = −2iεαβWIJ , (A.8)

where WIJ is some operator that takes values in the superconformal algebra, with PA
replaced by ∇A. In [18] it was shown how to constrain W IJ entirely in terms of the super

Cotton tensor (or scalar for N = 4). The super Cotton scalar W , is a primary superfield

of dimension 1,

SIαW = 0 , KaW = 0 , DW = W . (A.9)

The algebra of covariant derivatives is

{∇Iα,∇Jβ} = 2iδIJ∇αβ + iεαβε
IJKLWNKL − iεαβε

IJKL(∇γKW )SγL

+
1

4
εαβ(γc)γδεIJKL(∇γK∇δLW )Kc , (A.10a)

[∇a,∇Jβ ] =
1

2
εJPQK(γa)βγ(∇γKW )NPQ

− 1

4
(γa)βγε

JKLP (∇γL∇
δ
PW )SδK

− i

24
(γa)βγ(γc)δρε

JKLP (∇γK∇
δ
L∇

ρ
PW )Kc , (A.10b)
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[∇a,∇b] =
1

8
εabc(γ

c)αβε
PQIJ

(
i(∇αI∇

β
JW )NPQ

+
i

3
εLIJK(∇αI∇

β
J∇

γ
KW )SγL

+
1

24
(γd)γδε

IJKL(∇αI∇
β
J∇

γ
K∇

δ
LW )Kd

)
, (A.10c)

where the super Cotton scalar W satisfies the following dimension 2 Bianchi identity

∇αI∇JαW =
1

4
δIJ∇αP∇PαW . (A.11)

For each SO(4) vector VI we can associate a second-rank isospinor Vīi

VI ↔ Vīi := (τ I)īiVīi , (Vīi)
∗ = V īi . (A.12)

The original SO(4) connection turns into a sum of two SU(2) connections

ΦA = (ΦL)A + (ΦR)A , (ΦL)A = ΦA
klLkl , (ΦR)A = ΦA

k̄l̄Rkl . (A.13)

Here Lkl is the SU(2)L generator and Rk̄l̄ is the SU(2)R generator. They are related to the

SO(4) generators NKL as

NKL → Nkk̄ll̄ = εk̄l̄Lkl + εklRk̄l̄ . (A.14)

The left and right operators act on the covariant derivatives as

[Lkl,∇īiα] = εi(k∇l)̄iα , [Rkl,∇īiα] = εī(k̄∇il̄)α . (A.15)

In the isospinor notation, the Bianchi identity on W becomes

∇αīi∇jj̄αW =
1

4
εijεīj̄∇αkk̄∇

kk̄
α W . (A.16)

The algebra of spinor covariant derivatives becomes

{∇īiα,∇
jj̄
β } = 2iεijεīj̄∇αβ + 2iεαβε

īj̄WLij − 2iεαβε
ijWRīj̄

− iεαβε
ij∇γkīWSkj̄γ + iεαβε

īj̄∇γik̄WSjk̄γ

+
1

4
εαβ

(
εij∇γkī∇kj̄δ W − ε

īj̄∇γj k̄∇ik̄δ W
)
Kγδ (A.17)

and the action of the S-supersymmetry generator on ∇īiα is

{S īiα ,∇
jj̄
β } = 2εαβε

ijεīj̄D− 2εijεīj̄Mαβ + 2εαβε
īj̄Lij + 2εαβε

ijRīj̄ . (A.18)

B The geometry of SO(4) superspace

For many applications it is useful to work with a superspace formulation with a smaller

structure group than that of conformal superspace. The superspace formulation of [14,

27], known as SO(4) superspace, provides such a formulation and may be obtained from
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conformal superspace via a degauging procedure [18]. For the N = 4 case one chooses

the structure group to be SO(4). The SO(4) superspace formulation for N = 4 conformal

supergravity has been used to construct general off-shell supergravity-matter couplings [14].

The covariant derivatives have the form:

DA = EA − ΩA − ΦA . (B.1)

Here EA = EA
M (z)∂M is the supervielbein, with ∂M = ∂/∂zM , ΩA is the Lorentz con-

nection, and ΦA = 1
2ΦA

KLNKL is the SO(4)-connection. The supergravity gauge group is

generated by local transformations of the form

δKDA = [K,DA] , K = KC(z)DC +
1

2
Kcd(z)Mcd +

1

2
KPQ(z)NPQ , (B.2)

with all the gauge parameters obeying natural reality conditions.

The covariant derivatives satisfy the (anti)commutation relations

[DA,DB} = −TABCDC −
1

2
RAB

KLNKL −
1

2
RAB

cdMcd , (B.3)

with TAB
C the torsion, RAB

cd the Lorentz curvature and RAB
KL the SO(4) curvature. The

algebra of covariant derivatives must be constrained to describe conformal supergravity.

The appropriate constraints [27] lead to the following anti-commutation relation [14]:

{DIα,DJβ} = 2iδIJ(γc)αβDc − 2iεαβC
γδIJMγδ − 4iSIJMαβ

+
(

iεαβW
IJKL − 4iεαβS

K [IδJ ]L + iCαβ
KLδIJ − 4iCαβ

K(IδJ)L
)
NKL . (B.4a)

Here the dimension-1 components are real and satisfy the symmetry properties

W IJKL = W [IJKL] = εIJKLW , SIJ = S(IJ) , Ca
IJ = Ca

[IJ ] . (B.5)

It is useful to decompose the torsion superfield SIJ into its trace (S) and traceless (SIJ)

parts as

SIJ = SδIJ + SIJ , S =
1

N
δIJS

IJ , δIJSIJ = 0 . (B.6)

The torsion superfields satisfy the Bianchi identities

DIαSJK = 2TαI(JK) + Sα(JδK)I − 1

N
SαIδJK , (B.7a)

DIαCβγJK =
2

3
εα(β

(
Cγ)

IJK + 3Tγ)
JKI + 4(D[J

γ)S)δK]I +
(N − 4)

N
Sγ)

[JδK]I

)
+Cαβγ

IJK − 2Cαβγ
[JδK]I , (B.7b)

0 =

(
Dγ(IDJ)

γ −
1

4
δIJDγKDγK − 4iSIJ

)
W . (B.7c)

It is often useful to make use of the isomorphism SO(4) ∼=
(
SU(2)L× SU(2)R

)
/Z2 and

make use of isospinor notation, DIα → Dīiα , by replacing each SO(4) vector index by a pair

of isospinor ones. For our notation and conventions we refer the reader to [14].
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After introducing isospinor notation, the covariant derivatives are

DA = (Da,Dīiα) = EA − ΩA − ΦA , (B.8)

where the original SO(4) connection ΦA now turns into a sum of two SU(2) connections

ΦA = (ΦL)A + (ΦR)A , (ΦL)A = ΦA
klLkl , (ΦR)A = ΦA

k̄l̄Rk̄l̄ . (B.9)

The two SU(2) generators act on the spinor covariant derivatives Dīiα := DIα(τI)
īi as follows:[

Lkl,Dīiα
]

= εi(kDl)̄iα ,
[
Rk̄l̄,Dīiα

]
= εī(k̄Dil̄)α . (B.10)

The algebra of spinor covariant derivatives is

{Dīiα ,D
jj̄
β } = 2iεijεīj̄(γc)αβDc + 2iεαβε

īj̄(2S +X)Lij − 2iεαβε
ijSklīj̄Lkl + 4iCαβ

īj̄Lij

+2iεαβε
ij(2S −X)Rīj̄ − 2iεαβε

īj̄Sij k̄l̄Rk̄l̄ + 4iCαβ
ijRīj̄

+2iεαβ(εīj̄Cγδij + εijCγδīj̄)Mγδ − 4i(Sij īj̄ + εijεīj̄S)Mαβ , (B.11)

where the torsion components satisfy certain Bianchi identities given in [14].18

C Super-Weyl gauge conditions

In this appendix we show how one can use the super-Weyl freedom to impose certain gauge

conditions in SO(4) superspace. In particular, within the SO(4) superspace formulation we

will show that one can impose either

Ca
īj̄ = 0 , 2S +W = 0 (C.1)

or

Ca
ij = 0 , 2S −W = 0 . (C.2)

We begin by introducing, within the SO(4) superspace geometry, an off-shell self-dual

vector multiplet Gīj̄ and an anti-self-dual vector multiplet Gij . They are constrained by

the differential constraints for O(2) multiplets

Di(̄iα Gj̄k̄) = 0 , D(īi
α G

jk) = 0 . (C.3)

Using these constraints it is possible to build some of the components of the torsion in

terms of these multiplets. In particular, one finds

2S −W =
iG+

8
DγīiDγīiG−1

+ , (C.4a)

2S +W =
iG−

8
DγīiDγīiG−1

− , (C.4b)

Cαβ
ij = − i

4
G+D(ik̄

α Dβj)k̄G
−1
+ , (C.4c)

18As compared to [14], we have relabelled the superfield Bαβ
ij by Cαβ

ij .
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Cαβ
īj̄ = − i

4
G−Dαk(̄iDβkj̄)G−1

− , (C.4d)

S(k
p
īj̄Gl)p = − i

16
{Dγp(̄i,Dγpj̄)}Gkl , (C.4e)

Sij p̄
(k̄Gl̄)p̄ = − i

16
{Dγ(ip̄,Dγj)p̄}Gk̄l̄ , (C.4f)

where G2
+ = Gīj̄Gīj̄ and G2

− = GijGij .

The vector multiplets transform homogeneously under super-Weyl transformations

Gīj̄ → eσGīj̄ , Gij → eσGij , (C.5)

which tells us that the super-Weyl freedom can be completely fixed by imposing the gauge

condition G+ = 1 or G− = 1. If we impose G+ = 1 we find the conditions (C.1), while if

we impose G− = 1 we find the conditions (C.2). Therefore, these conditions can always be

imposed by an appropriate super-Weyl transformation.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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