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Secondary metabolite diversity is considered an important fitness
determinant for plants’ biotic and abiotic interactions in nature. This
diversity can be examined in two dimensions. The first one considers
metabolite diversity across plant species. A second way of looking at
this diversity is by considering the tissue-specific localization of path-
ways underlying secondary metabolism within a plant. Although
these cross-tissue metabolite variations are increasingly regarded as
important readouts of tissue-level gene function and regulatory pro-
cesses, they have rarely been comprehensively explored by nontar-
geted metabolomics. As such, important questions have remained
superficially addressed. For instance, which tissues exhibit prevalent
signatures of metabolic specialization? Reciprocally, which metabolites
contribute most to this tissue specialization in contrast to those me-
tabolites exhibiting housekeeping characteristics? Here, we explore
tissue-level metabolic specialization in Nicotiana attenuata, an ecolog-
ical model with rich secondary metabolism, by combining tissue-wide
nontargeted mass spectral data acquisition, information theory analy-
sis, and tandem MS (MS/MS) molecular networks. This analysis was
conducted for two different methanolic extracts of 14 tissues and
deconvoluted 895 nonredundant MS/MS spectra. Using information
theory analysis, anthers were found to harbor the most specialized
metabolome, and most unique metabolites of anthers and other
tissues were annotated through MS/MS molecular networks. Tissue–
metabolite association maps were used to predict tissue-specific gene
functions. Predictions for the function of two UDP-glycosyltransferases
in flavonoid metabolism were confirmed by virus-induced gene silenc-
ing. The present workflow allows biologists to amortize the vast
amount of data produced by modern MS instrumentation in their
quest to understand gene function.
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Plants are elegant synthetic chemists making use of their
metabolic prowess to produce complex blends of structurally

diverse chemicals. Commonly quoted estimates state that plants
produce somewhere on the order of 200,000 chemical structures.
Secondary metabolites, also referred to as specialized metabo-
lites or natural products, contribute to the largest fraction of this
structural diversity. Compared with their counterparts in central
metabolism (primary metabolites), secondary metabolite groups
have diversified to the extreme in plant lineages, likely as a result
of the multiple ecological roles they fulfill (1). The high degree
of plasticity of secondary metabolism pathways is consistent with
the existence of large families of metabolism-related genes such
as cytochrome P450s and UDP-glycosyltransferases in plant ge-
nomes that can create structural and chemical modifications
almost without limits. The majority of metabolic gene functions
remain unknown, however, either because the metabolites that
they produce are unknown or significant associations remain to
be identified between the expression of specific metabolic genes
and characterized metabolic groups.
The biosynthesis of particular secondary metabolites or of com-

plete metabolic groups is frequently taxonomically restricted (2).

For this reason, certain secondary metabolite classes have been
used as signature characters for biochemical investigation of specific
plant families: for instance, quinolizidine alkaloids for Fabaceae (3),
tropane and steroidal alkaloids for Solanaceae (4), and iridoids for
Lamiaceae (5). Another way of looking at plant secondary metab-
olism diversity is to consider the precise tissue-specific localization
of pathways responsible for their production. Compositional dif-
ferences are, for instance, readily apparent across floral tissues that
produce metabolic blends very different from their vegetative
counterparts (6). In the most extreme cases, the accumulation of
secondary metabolites can be restricted to specific cell types. For
instance, plant defense metabolites are frequently produced in
specialized tissues/cell types as a means of minimizing autotoxicity
reactions in the surrounding tissues and/or of maximizing the de-
fensive function of these metabolites toward aggressors that attack
in a spatially specific manner (7, 8). A better exploration of tissue-
level metabolic specialization is therefore particularly helpful in
understanding the contribution of a given tissue to an organism’s
fitness. Deep biological insight based on single-cell metabolomics
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has remained technically challenging; however, important steps
have been taken toward this goal in the field of microbial metab-
olomics, but not yet in plant science, and the technique has been
proven as an excellent indicator of phenotypic heterogeneity in
this field.
From a mechanistic standpoint, the accumulation of secondary

metabolites in a given tissue requires the spatial-temporal co-
ordination of a vast array of cellular processes in which systems
controlling biosynthesis, storage, and degradation are of central im-
portance. Regulatory mechanisms coordinating these processes are
only beginning to be uncovered for some model metabolic pathways
such as the metabolic pathways of the family of glucosinolates in
Brassicacae (9). Coexpression analysis using information about gene
and secondary metabolite cross-tissue expression patterns has been
applied successfully to infer biosynthetic genes in secondary metab-
olism (4, 10, 11). In Arabidopsis, several “-omics”-based tissue atlases
(e.g., for gene expression, alternative splicing, proteome) are publicly
accessible to conduct such types of analysis (12).
Tissue-level nontargeted metabolomics of downstream met-

abolic readouts are more challenging to implement. Notably,
the potential of mass spectrometry (MS)-based metabolomics
and of the large-scale acquisition of tandem MS (MS/MS)
spectra for as many metabolites as possible within a metabolic
profile is severely constrained by the absence of straightforward
classification and visualization pipelines that enable facile
pathway interpretations. Metabolite annotation and identifica-
tion are the obvious bottlenecks that thwart the metabolomics
analysis of secondary metabolism (13, 14). Ideally, we need ap-
proaches that combine the strengths of state-of-the-art statisti-
cal methods currently emerging from the genomics field with the
recent advances in metabolomics data mining, such as the
method of MS/MS molecular networking, which allow un-
known metabolites to be readily classified based solely on their
fragmentation patterns.
Here, we developed a pipeline combining tissue-wide non-

targeted MS data acquisition and information theory to mine
patterns of tissue-specific structural diversity. With this pipeline,
we analyzed a compendium of 14 dissected tissues of Nicotiana
attenuata, an ecological model for chemically mediated adaptive
traits in the wild. The analysis resulted in the deconvolution of 895
nonredundant MS/MS spectra, of which 565 exhibited preferential
tissue specificity. Using information theory analysis, we asked
whether certain tissues exhibited a higher degree of tissue meta-
bolic specialization and which MS/MS data were linked to these
patterns. From all this information, tissue–metabolite association
maps were created to provide predictions about the tissue-level
analysis of gene functions, some of which were tested by gene
silencing techniques.

Results
A Compendium of MS Profiles Obtained from Isolated N. attenuata
Tissues. Here, we isolated 14 tissues from 28- and 50-d-old
N. attenuata plants growing under controlled growth conditions in
the glasshouse (Fig. 1A). Pools of 100-mg tissues were extracted
using independent extractions with 80% or 20% (vol/vol) methanol
to increase the coverage of the metabolome with polar to semipolar
compounds not efficiently extracted by 80% (vol/vol) methanol. We
used an optimized ultrahigh-performance liquid chromatography
(UHPLC) electrospray ionization (ESI)/quadrupole time-of-flight
(qTOF) MS method to analyze the metabolome profiles of these
tissues. Identical chromatographic conditions were used for the
analysis of these two extraction types because retention time con-
sistency for identical mass features (with mass features being m/z
signals detected at a given retention by the peak picking method) is
one of the criteria implemented in our bioinformatics workflow.
The dataset (Dataset S1) was processed using the R package

XCMS utilizing optimized parameters and analyzed by principal
component analysis (PCA), which confirmed that extensive

variations in the composition of mass features exist among the
different tissue profiles (SI Appendix, Fig. S1). The XCMS × PCA
processing procedure is a very common one and is, together with a
priori knowledge annotation of prominent mass features and of in-
source fragmentation patterns, frequently considered as the cen-
tral mining step in most metabolomics studies. However, patterns
revealed from this type of data mining provide little to no in-
formation with respect to compound diversity among samples.
This type of biological interpretation critically requires an analysis
at the level of metabolites described by deconvoluted spectra, and
not at the level of individual mass features, which is what prior
work has used.

Creating a Multitissue Indiscriminant MS/MS Library for Metabolite
Structural Analysis. To collect a holistic repertoire of structural
information on the metabolic diversity in our tissue compendium,
we implemented a tissue-wide analytical pipeline for indiscrimi-
nant (data-independent) MS/MS (idMS/MS) analysis. Compared
with data-dependent acquisition methods involving the pre-
selection of a restricted list of precursor ions for collision-induced
dissociation (CID) fragmentation, this approach considers for
fragmentation analysis all signals within an m/z range set as large
as possible (15). In recent years, the idMS/MS technique, some-
times referred to as shotgun or broad-scale MS/MS, has gained
considerable interest as an exploratory method for metabolomics
measurements. In a previous study, we showed that idMS/MS can
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Fig. 1. Integration of MS-basedmetabolomics and information theory analysis
highlights tissue-specific metabolome specialization. (A) Tissues were collected
and analyzed separately for metabolomic profiling. Detailed explanations
of the tissue collection procedure are provided in Materials and Methods.
(B) Hierarchical clustering, using the Euclidean distance as the clustering metric,
of tissue-specific idMS/MS relative expression profiles. The heat map coloring
depicts the scaled intensities. Z-score–normalized median absolute distances
captured the cross-tissue variations for idMS/MS intensities (895 idMS/MSs)
obtained for each tissue. (C) Information theory analysis of tissue-level idMS/MS
composition δj and Hj based on idMS/MS cross-tissue distributions is displayed
in a 2D space to reveal gradients of metabolic specialization. ANT, anthers;
BUD, floral bud; COR, corolla tube; FIL, filaments; LEA, rosette leaves; LIM,
corolla limb; PED, floral pedicel; ROO, root; SEE, seeds; SEP, floral sepals; STE,
stem; STY, floral style and stigma.
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be efficiently implemented to most qTOF instruments by running
replicated measurements of the same sample using idMS/MS at
different CID voltages to maximize fragment coverage (16). Fur-
thermore, because the idMS/MS method has the disadvantage of
being uninformative about precursor-to-fragment relationships, we
optimized a computational pipeline based on cross-sample corre-
lation calculations to perform fragment relationship assignments
with high confidence (16).
Here, we improved the previous computational pipeline for

exploiting cross-tissue metabolic variations to gain statistical power
in precursor-to-fragment assignments. Briefly, for each CID volt-
age, precursor and fragment relationships were assigned using
Pearson correlation coefficient (PCC) analysis across all tissues
(Materials and Methods). The idMS/MS spectra reconstructed at
each CID voltage were merged into a composite idMS/MS spec-
trum, and some of redundant sub-idMS/MSs were grouped si-
multaneously via the calculation of spectral similarity. Notably, not
all putatively redundant sub-idMS/MSs could be merged into re-
spective compound-specific idMS/MS spectra using the single
spectral similarity threshold value applied to the dataset; hence,
metabolites prone to particularly intense in-source fragmentation
frequently produced several idM/MS spectra by the analysis. This
possible challenge was likely minimal in our study, however, be-
cause these different sub-idMS/MSs are expected to covary across
the tissue dataset and to form tight clusters during the structural
clustering analysis applied later on in the workflow (SI Appendix,
Fig. S2). The discrimination of nearly coeluting isobaric peaks,
resulting from compounds with the same molecular weight but
different structures, is a challenge inherent to all large-scale
metabolomics studies and one that can only be partly resolved via
technical advances such as enhanced ion mobility MS. From a data
processing standpoint, if two nearly coeluting isobaric species
return overlapping fragmentation patterns, the correlation score
for the precursor-fragment assignment will consequently be
affected. Such a scenario could explain challenges encountered
during the assembly of certain spectra (which were therefore not
included in subsequent analyses). However, an advantage of the
precursor-fragment assignment method in our pipeline is that it
does not rely solely on the chromatography behavior of candidate
m/z signals but also on their coregulated behavior across the tissue
dataset, which, to a certain extent, improves the assembly of nearly
coeluting metabolites. The deconvolution efficiency was tested by
comparing idMS/MS spectra with previously reported MS/MS
spectra at optimized CID voltages for majorN. attenuata secondary
metabolites as well as unknowns (Dataset S1). Altogether, the
computational pipeline (merging of CID voltage-specific data and
partial redundancy filtering) retrieved a library of 895 non-
redundant idMS/MSs (Dataset S1); these idMS/MSs were used as
the data for all subsequent analyses presented here.

Tissues Differ in Their Degree of Metabolic Specialization. For a first
perspective into tissue metabolic relationships, we normalized
idMS/MS spectra intensities (precursor intensities in MS mode)
using a modified Z-score method, termed ZMAD (Z-score nor-
malized median absolute distance) (Materials and Methods) and
used hierarchical clustering analysis (HCA) (Fig. 1B). When
merging the datasets obtained from the two extraction procedures,
three main clusters appeared from the HCA based on Euclidean
distance calculations (Fig. 1B): one cluster with most non-
reproductive tissues of flowers (corolla limb, corolla tube, sepal,
pedicel, bud, and filament), one with the reproductive parts (an-
ther, nectary, ovary, style, and stigma), and a last one with vege-
tative tissues (leaf, root, stem, and seed). Interestingly, tissues that
connect reproductive and nonreproductive parts in flowers,
namely, filaments and stamens, exhibited strongly divergent idMS/
MS compositional profiles, demonstrating that relatively fine-scale
spatial modulations of metabolism can be analyzed by this ap-
proach. It should be noted that the upstream computational

procedure used to deconvolute idMS/MS spectra was performed
tissue-wide (and not at the individual tissue level) and relied on
matrix alignment and noise filtering steps to produce an idMS/MS
tissue-wide matrix that was of a consistent size (Dataset S1). A
drawback of this computational approach is that no information
about the number of idMS/MSs per tissue is readily available to
explore tissue-level metabolic specialization. Intuitively, the pres-
ence of few high-intensity idMS/MSs in a given tissue compared
with the average calculated across all tissues could be indicative of
a high degree of metabolic specialization, whereas the presence of
a large number of average-intensity idMS/MSs could reflect a low
metabolic specialization. Such interpretations are linked to the
frequency distribution of each idMS/MS within the dataset. In-
formation theory, which was pioneered by Shannon (17) in a
seminal article in 1948, provides the statistical framework to cope
with this type of analysis. In defining tissue metabolic diversity and
specialization, we therefore considered idMS/MS spectra as sym-
bols, in the sense of information theory, and estimated for each
tissue’s metabolome its diversity based on the Shannon entropy of
its frequency distribution. In other words, tissue-level metabolome
specialization was measured as the average specificity of each of
its idMS/MS components. Using previously implemented formu-
lae (18), we retrieved values for the following indexes: diversity
(Hj) reflecting the tissue-level idMS/MS diversity and specializa-
tion (δj) for the tissue-level idMS/MS specialization as inferred
from the average idMS/MS specificity in the dataset.
Visualizing tissue metabolic profiles in a 2D space using these

two indexes as coordinates revealed a number of interesting pat-
terns (Fig. 1C). A most obvious one was that tissues significantly
vary in their degree of δj and Hj. When extraction types were
merged to achieve a more comprehensive view, anthers emerged as
the tissue with the least diverse, most specialized metabolome (Hj =
5.16, δj = 1.95). In other words, several idMS/MSs exhibited relative
high-intensity levels concomitant with low-frequency distributions
across tissues. Root (Hj = 6.66, δj = 1.49), stem (Hj = 6.91, δj =
1.32), and sepal (Hj = 7.39, δj = 1.38) samples followed anthers in
terms of low idMS/MS diversity and middle to high idMS/MS
specialization. In the case of roots, the relatively high specialization
index value retrieved for this tissue was especially supported by
idMS/MS spectra collected from the 20% (vol/vol) methanol ex-
traction (SI Appendix, Fig. S3). The signature for low diversity and
low specialization detected in seeds (Hj = 6.34, δj = 1.09) was in line
with the low density of chromatographic peaks seen for this tissue.
Style and stigma (Hj = 6.47, δj = 1.11), filaments (Hj = 7.32, δj =
1.08), ovary (Hj = 7.31, δj = 1.10), corolla tube (Hj = 7.81, δj =
1.12), and pedicel (Hj = 8.17, δj = 1.16) were the tissues exhibiting
lowest specialization indexes. The pedicel had the most diverse
idMS/MS profile of all tissues analyzed.

Tissue-Level Differentiations in 17-Hydroxygeranyllinalool Diterpene
Glycosides and Phenolamines. As a first step toward mining metabo-
lite compositional variations across tissues, we amortized previous
chemical knowledge acquired from N. attenuata leaves and evalu-
ated whether the distribution across tissues was differentially mod-
ulated at different levels of know secondary metabolic pathways.
For this analysis, we selected as a case study the 17-hydroxyger-
anyllinalool diterpene glycosides (17-HGL-DTGs) pathway that
produces abundant acyclic diterpenes with antiherbivore functions
(19). For this metabolic group, we retrieved the corresponding
idMS/MSs for the most abundant metabolites and investigated
cross-tissue modulations as visualized by plotting individual tissue
ZMAD-normalized values (SI Appendix, Fig. S4). The 17-HGL-
DTGs can be subcategorized based on their sugar/malonyl deco-
rations as follows: the precursor molecule (lyciumoside I), core
structures with a higher degree of glycosylation but no malonyl
groups (nicotianoside III, lyciumoside IV, and attenoside), and
monomalonylated (nicotianosides IV, Ia, and VI) and dimalony-
lated (nicotianosides V, II, and VII) structures. Lyciumoside I and
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lyciumoside IV, its direct rhamnosylation product, were detected in
young and photosynthetically active rosette leaves and at lower
normalized levels in certain floral organs. The analysis revealed that
17-HGL-DTGs varied significantly among tissues, and the variance
was organized by biosynthetic sequence in the pathway. The gen-
eral trend was that greater tissue-specific variation was found in the
downstream steps of the pathway. This trend was particularly ap-
parent for monomalonylated 17-HGL-DTGs and suggests an in-
creased translocation from source to sink tissues that increased with
17-HGL-DTG glycosylation and malonylation. Dimalonylated
17-HGL-DTGs were more abundant in certain reproductive organs
relative to all other tissues. Another pathway monitoring example is
provided for the phenolamide pathway, for which an apparent
greater specificity toward certain reproductive organs was detected
for polyacylated spermidine conjugates (SI Appendix, Fig. S4).

Large-Scale Inference of IdMS/MS Tissue Specificity Reveals Basic
Principles of Tissue Interdependencies. The above descriptions con-
firmed that tissue-based differentiations are detectable for char-
acterized metabolic pathways. This finding is consistent with the
idea that specific groups of metabolites specifically accumulate in
one or several tissues, albeit being detectable at lower levels in
almost all other tissues. The specificity index of information theory
of a given idMS/MS serving for δj calculation tends to be stringent
and excludes features exhibiting a significant degree of specificity
(association) with more than one tissue (Fig. 2A, Center). In an
attempt to assess the degree of association of an idMS/MS toward
one or several tissues statistically, we analyzed idMS/MS expression
distribution across tissues using reduction of kurtosis as developed
by Li et al. (20). The kurtosis analysis measures expression distri-
bution patterns rather than frequencies and skirts the restriction of
the number of tissues with which a given idMS/MS can be associ-
ated. As such, the method has been found to be highly successful in
detecting tissue specificity from large-scale data. Briefly, idMS/MS
spectra that exhibit high tissue specificity are characterized by high
kurtosis values with either right- or left-tailed leptokurtic distri-
butions, whereas idMS/MS spectra that exhibit low tissue speci-
ficity have low kurtosis values with normal distributions (Fig. 2 A
and B). A total of 595 of 895 idMS/MSs exhibited preferential
tissue associations (Q < 0.05), with the rest of the idMS/MSs being
considered as non–tissue-associated features. For ease of inter-
pretation, SI Appendix, Fig. S5 reports the statistical support via
mapping of kurtosis Q values and inferred tissue associations for
previously discussed tissue-level differentiations in the 17-HGL-
DTG and phenolamide pathways.
To retrieve tissue idMS/MS–specific associations, we defined a

tissue relative expression threshold Z (Z = 2) through the cal-
culation of a reduction of kurtosis according to the rationale
proposed by Li et al. (20) (Fig. 2C and SI Appendix, Fig. S6).
Seeds harbored again the smallest associated metabolome had
99 specifically expressed idMS/MSs, followed by stem (158 idMS/
MSs) and root (278 idMS/MSs), whereas a general trend was that
floral organs had the largest numbers of associated idMS/MSs.
An interesting level of analysis was therefore to look at the
percentage of tissue-specific idMS/MSs compared with non-
specific ones per tissue. For instance, a number, albeit small (278
idMS/MSs), of idMS/MSs specific to roots represented 72.3% of
the total detectable root metabolome, indicating the relatively
high metabolic specialization of this tissue.
In agreement with the importance of not restricting the analysis

only to single tissue-specific idMS/MSs and considering different
degrees of specificity based on the number of tissues in which
a given idMS/MS accumulates, we detected that idMS/MSs spe-
cifically associated with more than one tissue were highly preva-
lent (97%) in the tissue-specific idMS/MS pool (SI Appendix, Fig.
S7). The relative strength of the metabolic interdependencies
between two tissues based on the number of shared tissue-specific
idMS/MSs was scored using the Jaccard index (Fig. 2D). Clus-

tering based on this score again supported the fact that vegetative
tissues such as leaf, stem, and root cluster apart from floral coun-
terparts in terms of secondary metabolite profiles. The “floral”
cluster subdivided into three smaller clusters: one with tight con-
nections between tissues not directly involved in reproductive tis-
sues (besides the complete bud); one comprising tissues with mostly
reproductive functions (filament, style, ovary, but also the nectary);
and, finally, anthers. The individualized positioning of anthers in
this clustering analysis is in agreement with the information theory
specialization signature detected in this tissue as discussed above.

MS/MS Structural Analysis of IdMS/MS Associations. Examples of an-
notated tissue-specific idMS/MS spectra shared by different tissues
are presented in Dataset S1. Metabolite annotation remains a
bottleneck in metabolomics studies because public spectral data-
bases are poorly populated with plant-specialized metabolites,
with many of them being taxa-specific and frequently species-
specific. The MS/MS molecular network method pioneered by
Dorrestein and coworkers (21) circumvents the limitation of
spectral databases via the analysis of within-dataset MS/MS simi-
larities to accelerate hypothesis generation about the identity of
unknown MS/MS (21). This approach also has the advantage of
being amenable to the visualization of putative biochemical rela-
tionships among metabolites corresponding to highly similar MS/
MS spectra (16). In a recent study, we improved the scoring and
classification of MS/MS similarities for plant secondary metabo-
lites notably by the implementation of a biclustering method that
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detects possible compound familial groupings according to frag-
ment and neutral loss (NL)-based similarities (16). Applying this
method to the total pool of idMS/MSs from the present study
resulted in the formation of nine modules within which idMS/MSs
are expected to share high structural similarities (Fig. 3A). Modules
4, 6, 7, 8, and 9 largely corresponded to previously identified
compound classes: flavonoid glycosides, phenolics, 17-HGL-DTGs,
acyl sugars, and nicotine and polyamine derivatives, respectively. As
expected, uncharacterized metabolites likely belonging to these
groups and not previously thoroughly investigated were also de-
tected as sub-idMS/MSs that did not merge during the redundancy
filtering step. A comprehensive view is provided in Dataset S1 that
concatenates MS/MS spectral content and NLs, as well as their
clustering and association with tissues. A critical consideration was
whether tissues differ in their module relative composition as
depicted in the stacked bar chart of Fig. 3B. For instance, it is
clearly visible that complete O-acyl sugar metabolism (M8) is ab-
sent from anthers and the style, that the stem and seeds lack
17-HGL-DTG metabolism (M7), and that the flavonoid module
(M4) is overrepresented in certain flower tissues. Molecular net-
works can be constructed for each module to visualize structural
relationships among idMS/MSs better (Fig. 3C). The case of mod-
ule M4 is presented (Fig. 4). A subpart of this flavonoid-enriched
module contains O-acyl sugar type II due to shared NLs with fla-
vonoid glycosides; those two groups are still discriminated according
to the edge density and by the careful inspection of idMS/MS tissue
coexpression scores. By simply mapping the relative expression of
idMS/MSs onto nodes, it is possible to pinpoint metabolites that are
characteristic of a given tissue rapidly, for instance, the dramatic

overrepresentation of kaempferol-3-O-glucoside (KG) at the limb
level (808.684 ZMAD scaled intensity). Also, the idMS/MS form/z
295.102 specific to anthers and not coexpressed across tissues with
any other flavonoid glycosides from module M4 is putatively an-
notated by our method as a glucose ester with C4 side chains,
depicted here as 6-tuliposide B (22).

Exploring Metabolite and Gene Coassociations Across Tissues
Facilitates Metabolic Gene Pathway Assignment. In this last section,
we illustrate the power of first determining tissue–metabolite as-
sociations in generating predictions about the assignment of un-
known genes to particular pathways. In the case of a unimodal
regulation (with cross-tissue transport being minimal), the logic
behind these predictions is that a gene responsible for the pro-
duction of a given set of metabolites will share maximal tissue
associations with these metabolites. As for gene expression data,
we used an RNA-sequencing (RNAseq) transcriptome dataset
(SI Appendix, Table S2) in which tissues and developmental stages
largely overlap with those tissues and developmental stages used
for metabolomics but that also included treatment responses to
account for the fact that certain genes are expressed constitutively
at low levels but the metabolites can accumulate without turnover
to high levels. Similar to idMS/MS data, the kurtosis filtering
allowed us to filter out genes with quasiconstant expression and
focus on the genes exhibiting leptokurtic distributions (SI Appendix,
Figs. S6 and S8). Thirty-seven percent of the total genes expressed
exhibited leptokurtic distributions (i.e., expressed specifically in one
or several tissues) (Fig. 5A). Subsequent analysis steps followed the
steps presented above for the analysis of metabolites. Over-
represented gene ontologies (GOs) within the complete set of
genes with preferential tissue associations corresponded to general
processes such as chloroplast thylakoid activity, monocarboxylic
acid biosynthetic process, anion transport, and metal ion transport
(SI Appendix, Fig. S9). This GO overrepresentation analysis was
also conducted on a module basis for a gene set specifically asso-
ciated with a given idMS/MS module using an Ochiai similarity
index (SI Appendix, Figs. S9 and S10). For this calculation, em-
phasis is placed on tissue specificity rather than on the character-
ization of a trend of coexpression across the complete tissue set
such as is the case when using simple PCC analysis. Through this
approach, it is now possible to target specific metabolic gene
families, UDP-glycosyltransferases here, and to predict their im-
portance for the metabolic group enriched within a given idMS/MS
module (Fig. 5B). For mining this latter gene family, an additional
filtering criterion is the presence within the coassociated idMS/MSs
of NLs corresponding to glucose or rhamnose moieties. Modules 4,
7, and 8 are made up of idMS/MSs corresponding to glycosylated
secondary metabolites, and hence enriched in the presence of these
latter NLs (Fig. 5B). We extracted 10 members of this gene family
that had cotissue specificities with members of M4. Next, we tested,
by transient gene silencing using virus-induced gene silencing
(SI Appendix, Fig. S11), the pathway assignment of two of these
UDP-glycosyltransferases highlighted by the Ochiai similarity
analysis: UDP-glycosyltransferase-A (UGT-A) [Ochiai similarity =
0.71 with quercetin-3-O-glucose (QG)] and UDP-glycosyltransferase-
B (UGT-B) (Ochiai similarity = 0.71 with rutin). Briefly, when si-
lencing UGT-A, a majority of the flavonoid glycosides in flower
buds were significantly decreased in their accumulations, namely,
KG, QG, kaempferol-3-O-glucose-rhamnose (KGR), and quercetin-
3-O-glucose-glucose (QGG). On the other hand, silencing UGT-B
translated into significant decreases in the levels of rhamnose-
containing KGR and rutin, whereas QGG, QG, and KG accumu-
lated to higher levels compared with the empty vector control. This
result is consistent with the conclusion that UGT-B likely controls
the rhamnosylation of these flavonoid glycosides and that the
higher accumulations of nonrhamnose flavonoid glycosides reflect
the metabolic tension existing with the UGT-A–mediated glucosy-
lation process (Fig. 5C and SI Appendix, Fig. S11). Future work
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could test these predictions and examine the enzymatic properties
of these two UDP-glycosyltransferases.

Discussion
In this study, we investigated tissue-level variations in secondary
metabolism in an ecological model plant using computational
metabolomics and information theory statistics. Information theory
has been used for multivariate data generated in a broad scope of
biological contexts ranging from plant ecology (23) to microbiome
diversity (24), but, to our knowledge, it has never been used to
summarize trends in MS-based metabolomics data. Previous stud-
ies identified preferential tissue-based redirectionalities in second-
ary metabolism, for instance, during the maturation of tomato
fruits for which the green, turning, and red developmental stages
are characterized by rearrangements in pathways related to flavo-
noids, phenolics, and glycoalkaloids (25). However, to our knowl-
edge, no unbiased metabolomics study, other than a study of the
AtMetExpress database (6), has been applied with rigorous statis-
tical analysis to such a broad range of tissues as in the present study.
This statistical portfolio revealed that tissues exhibit distinct

states of secondary metabolism activity but also that they differ in
their degree of specialization. An extracted feature illustrative of
the explorative power of this approach was that connecting tissues
of flowers such as the anthers and filaments, on one hand, and the
corolla limb and tube, on the other hand, differed dramatically in
their metabolite specialization signatures. For the corolla, this
contrast highlights the fact that limbs are functionally specialized
for attracting and guiding pollinators, and likely require a highly
specialized metabolome to fulfill this function. The latter is espe-
cially expected in a species such as N. attenuata whose main pol-
linator, the hawkmoth Manduca sexta, is also a voracious folivore

during its larval stage (26), requiring that the plant critically fine-
tune its blend of secondary metabolites to solve the dilemma im-
posed by these two contrasting interactions (27, 28). As expected,
the green tissues of our dataset display the most prototypic and
undifferentiated metabolic profiles, as highlighted by both targeted
and nontargeted analyses.
N. attenuata is a pioneer plant in postfire habitats (29, 30), and

as such, it represents one of the primary food sources for herbiv-
orous insects (31). It is well established that the photosynthetically
active tissues of this plant mount a very strong specialized meta-
bolic response locally and systemically during biotic challenges
such as insect herbivory (32). It would therefore be very interesting
to reassess how the specialization indices readjust during stress
adaptation, taking advantage of preexisting knowledge on anti-
herbivory function of many secondary metabolite classes (6, 19,
33). Also, the pools of many of these defensive secondary me-
tabolites are rearranged during ontogeny in the form of quanti-
tative gradients established across tissues (19, 34). The optimal
defense theory provides a conceptual framework that links these
quantitative patterns with the fitness of different tissues for the
plant’s fitness (35, 36). Even though the developmental stages of
multiple tissues would need to be separately analyzed using our
analytical approach to evaluate this theory thoroughly, several
defense-related metabolites exhibited higher relative levels in re-
productive tissues than in vegetative counterparts, a central pre-
diction of the optimal defense theory. A last remark concerns the
extremely low metabolic diversity detected in seeds, a result that
could possibly be due to the fact that most apolar metabolites
present in the seed endosperm were poorly recovered with our
extraction systems. This result speaks to the need to use a more
sophisticated combination of extraction and chromatographic
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systems in future experiments to capture the behavior of a broader
range of compound classes.
It is tempting to consider that signatures of high metabolic

specializations observed for certain tissues correlate with their
highly specialized physiological functions. Previous tissue-level
-omics analyses in plants and animals are consistent with the
expectation that physiological differentiation is accompanied by
qualitative variations of metabolic capacities (37, 38). As pre-
viously noted, this claim is difficult to support only with metab-
olomics due to the sparse knowledge about secondary metabolite
biosynthetic schemes. The GO enrichment analysis conducted in
this study supports the fact that the kurtosis-based method is able
to discriminate gene signatures involved in the tissue-specialized
physiological processes from housekeeping ones (e.g., pollen tube

growth) (SI Appendix, Figs. S9 and S10), so it is reasonable to
propose that metabolites extracted by the kurtosis method also
reflect tissue-level functions, even if transport processes may
obfuscate some of these trends. In this regard, the case of anthers
exhibiting a prevalent signature of high idMS/MS specialization,
greater than all other reproductive organs, is particularly ger-
mane. In line with our observation of the manufacture of a spe-
cific set of metabolites in this tissue (Dataset S1), previous studies
have shown that metabolites, notably certain phenolic derivatives,
are abundant and highly specific for the tapetum (specialized
layer of nutritive cells and source of precursors for the pollen coat
within anthers) of anthers and pollen grains (39–41). The bio-
synthesis of these phenolic derivatives, with potential roles in
pollen coat composition and establishment of fertilization bar-
riers, has been linked to rapid metabolic gene evolution through
retroposition and neofunctionalization (42). In a cross-species
study on transcriptome evolutionary divergence, the fastest rates
of gene expression divergence and signatures of transcriptome
specialization were detected in anthers, whereas the lowest rates
of evolution were detected in roots (43). Our metabolomics study
therefore suggests that transcriptome and metabolome speciali-
zation may be coupled patterns in anthers, likely as a result of
strong reproduction-related selection pressures exerted at this
tissue level. More broadly, it would therefore be very interesting
to analyze whether such kinds of metabolic specialization patterns
are consistent across species for homologous tissues.
Navigating large datasets in such a way that knowledge can be

made more efficiently accessible for hypothesis formulation is one
of the challenges that thwart the routine application of certain
-omics technologies to nonmodel systems organisms. In this study,
we used data-independent MS/MS acquisition. This approach,
albeit suffering from redundant data collection for certain me-
tabolites prone to intense in-source fragmentation, maximizes the
comprehensiveness of fragment data collection, which forms the
foundation of such unbiased analysis. The present study also
speaks to the power of the previously described molecular net-
work method for plant samples and identifies directions for its
integration with genomics data. The latter is illustrated by our
functional studies on UDP-glycosyltransferases and the assign-
ment of two previously uncharacterized genes of N. attenuata to
the glucosylation and rhamnosylation steps in floral flavonoid
glycoside metabolism (44, 45) (Fig. 5). Importantly, the data
platform generated here can also be mined for additional meta-
bolic gene families (e.g., P450, BAHD acyltransferases).
Tissue-level PCC coexpression analysis among genes and me-

tabolites has traditionally been shown to be an efficient way for-
ward for gene function analysis in secondary metabolism (6, 44, 46,
47). However, one important message of the present study is that
because PCC-based coexpression analysis relies on trends inferred
from gene/metabolite expression levels, certain tissue-level gene–
metabolite associations are difficult to capture via this approach
because they take place only in a few of the analyzed tissues,
thereby resulting in a poor coexpression output. Consistent with
this finding, a recent study on gene-sharing analysis in plants and
animals demonstrated that an approach that puts emphasis on
gene expression tissue specificities is significantly more efficient in
identifying functional gene clusters than one that relies on the
complete tissue-level expression dataset (20). Our kurtosis analy-
ses show that this inference is likely to be more pronounced when
incorporating metabolomics as another -omics dimension, because
up to 97% of detected secondary metabolites exhibit tissue-spe-
cific expression in only a few of the tissue atlases. As such, we
concluded that relying on expression levels monitored across the
overall tissue set would decrease rather than increase the statis-
tical power to discover biologically meaningful gene–metabolite
associations. We thus adopted for gene-to-metabolite analysis a
modified Ochiai similarity analysis in which the emphasis is placed
on tissue specificity. Comparison of performance between this
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rhamnosylation. Identifications of KG, KGG, KGR, QG, QGG, and QGR (Rutin)
are according to Snook et al. (53). *P < 0.05; **P < 0.01; ***P < 0.001.
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Ochiai similarity analysis and the PCC-based coexpression analysis
revealed that the PCC analysis returned poor coexpression values
(PCC for the association QG/UGT-A is only 0.09, whereas the
Ochiai similarity for the same association is 0.71) and failed to
associate UGT-A and UGT-B specifically to flavonoids (SI Ap-
pendix, Table S3). Similar comparisons of performance between
these two approaches for a compendium of 70 previously char-
acterized gene–metabolite associations also confirmed that the
Ochiai similarity analysis systemically outperforms the PCC-based
approach, especially when metabolites exhibited high tissue spec-
ificity (SI Appendix, Table S3). Taken together, this study rein-
forces the power of applying approaches combining large-scale
metabolomics and information theory analysis to accelerate hy-
pothesis generation on metabolic gene function.

Conclusion
In summary, a major strength of this unique study is that it
synergistically combines, using a three-pronged approach, the
strengths of (i) information theory to capture signatures of di-
versity and specialization in the dataset, (ii) computational MS
to accelerate the structural annotation of the diversity of com-
pounds collected, and (iii) experimental gene silencing to falsify
hypotheses regarding metabolic gene functions from metab-
olomics–transcriptomics integration. A recent breakthrough
study on mammals’ metabolomes has highlighted the power of
metabolomics to predict markers associated with organ spe-
cialization in a phylogenetic context (48). Future directions will
make use of genomics resources existing for related species
of N. attenuata to extend the approach to the diagnosis of
gene divergence effects contributing the most to tissue-metabolic
specialization.

Materials and Methods
Tissue-Level Metabolite Extraction. Here, we extracted 14 different tissues
from 28- and 50-d-old N. attenuata plants growing in the glasshouse (Fig.
1A). For nonreproductive tissues, the sample collection included a pool of all
nonsenescing rosette leaves; combined lower, middle, and higher segments
of the stem; the complete root system; and matured seeds. Reproductive
parts were harvested as follows. Complete floral buds of 8-mm length, a
stage at which the corolla has not yet protruded from the sepals and for
which important gene expression and metabolic reconfigurations have been
detected in previous work (49), were harvested. Mature flowers at anthesis
(5 d after 8-mm stage, 7:00 PM), were carefully separated into the following
parts: pedicel, complete sepal ring, nectary, ovary (not including the nec-
tary), style, anthers, filaments (not including anthers), corolla tube (not in-
cluding the limb), and corolla limb.

Pools of 100 mg of isolated tissues (SI Appendix, Materials and Methods)
were extracted as follows using extraction buffers containing either 20% or
80% (vol/vol) methanol to increase the coverage of chemically diverse me-
tabolite classes. One milliliter of extraction buffer [50 mM acetate buffer (pH
4.8) containing 20% or 80% (vol/vol) methanol] per 100 mg of tissue was
added, and samples were homogenized in a ball mill (Genogrinder 2000;
SPEX CertiPrep) for 45 s at a rate of 1× and at 250 strokes per minute. Ho-
mogenized samples were centrifuged at 16,000 × g at 4 °C for 30 min, and
supernatants were transferred into 1.5-mL microcentrifuge tubes and
recentrifuged as before. Supernatants of 400 μL were transferred to 2-mL
glass vials for MS-based metabolomics. To prevent the discarding of tissue-
specific metabolites from the XCMS analysis due to poor grouping across
samples (SI Appendix, Materials and Methods), five mixed extracts contain-
ing all 14 tissues at different ratios were generated and processed simulta-
neously with all other tissue samples.

UHPLC-ESI/qTOF-MS Conditions for IdMS/MS Data Acquisition. Data-independent
or idMS/MS fragmentation analysis was conducted to gain structural information
on the overall detectablemetabolic profile. Injection andUHPLC binary gradient-
based separation conditions used for the MS and MS/MS mode analyses are
described in SI Appendix, Materials and Methods. For all MS analyses, the col-
umn eluent was infused into a MicrOTOF-Q II (Bruker Daltonics) equipped with
quadrupole and TOF analyzers and fitted with an electrospray source operated
in positive ionization mode (capillary voltage = 4,500 V, capillary exit = 130 V,
dry temperature = 180 °C, dry gas flow = 8 L·min−1). The concept of the idMS/MS

approach relies on the fact that the quadrupole is operated with a very large
mass isolation window (so that quasi all m/z signals are considered for
fragmentation). For this determination, several independent analyses are
performed with increasing CID collision energy (CE) values because the
MicrOTOF-Q II instrument can operate neither alternated scans collected in
MS and MS/MS mode nor CE ramping. Briefly, samples were first analyzed by
UHPLC-ESI/qTOF-MS using the single-MS mode (low-fragmentation condition
derived from in-source fragmentation) by scanning from m/z 50–1,400 at a
rate of 5,000 scans per second. MS/MS analyses were conducted using nitro-
gen as collision gas and involved independent measurements at the following
four different CID voltages: 20, 30, 40, and 50 eV. The quadrupole was op-
erated throughout the measurement with the largest mass isolation window,
from m/z 50–1,400. This mass range is automatically activated by the oper-
ating software of the instrument when the precursor m/z and the isolation
width are set to 400 and 300 Da, respectively. Mass fragments were scanned
in the single-MS mode between m/z 50 and 1,400 at a rate of 5,000 scans per
second. Mass calibration was performed using sodium formate (50 mL of
isopropanol, 200 μL of formic acid, 1 mL of 1 M NaOH in water). Data files
were calibrated postrun on the average spectrum from this time segment,
using the Bruker high-precision calibration algorithm. The idMS/MS dataset
has been deposited in the open metabolomics database Metabolights (www.
ebi.ac.uk) under accession no. MTBLS335.

Assembly of Compound-Specific IdMS/MS. We used a previously designed pre-
cursor-to-product assignment pipeline (15) using the output results from
processing with the R packages XCMS and CAMERA. The idMS/MS assembly
was achieved via correlational analysis betweenMS1 and idMS/MSmass signals
for low- and high-CEs and newly implemented rules (SI Appendix, Materials
and Methods). The correlation analysis for precursor-to-product assignment
was implemented using an R script, and rules were operated using a C# script
available at GitHub (https://github.com/PlantDefenseMetabolism).

Defining Tissue Metabolic Diversity and Specialization Using Information
Theory. Tissue metabolic diversity, the Hj index, was calculated using Shan-
non entropy of idMS/MS tissue-level frequency distribution. Tissue metabolic
specialization, the δj index, was measured by the average idMS/MS specificity
of each of the tissue idMS/MS components. Framework details are described
in SI Appendix, Materials and Methods.

IdMS/MS Similarity Scoring. The idMS/MS spectra were aligned in a pairwise
manner, and their similarity was calculated according to two scores. First, a
standard normalized dot product (NDP), also referred to as cosine correlation
method, was used to score fragment similarity among spectra using the
following equation:

NDP =  

�PS1&S2
i WS1,iWS2,i

�2

P
iW

2
S1,i

P
iW

2
S2,i

,

where S1 and S2 correspond, respectively, to spectrum 1 and spectrum 2 and
WS1,i and WS2,i indicate peak intensity-based weights given to ith common
peaks differing by less than 0.01 Da between the two spectra. Weights were
calculated as follows:

W = ½Peak  intensity�m½Mass�n,

with m = 0.5 and n = 2 as suggested by MassBank (50).
A second scoring method involving the analysis of shared NLs among

individual idMS/MSs was implemented as described in SI Appendix, Materials
and Methods. For this analysis, we used a list of 52 NLs commonly encoun-
tered during MS/MS fragmentation (Dataset S1) as well as more specific ones
that had been previously annotated for MS/MS spectra of N. attenuata
secondary metabolite classes.

IdMS/MS Tissue-Specificity Inference Using Kurtosis Filtering. We used an
outlier-insensitive Z-score measure, generally considered preferable for the
statistical description of sample groups containing extreme differences in
values, by using median and median absolute deviation (MAD) instead of
mean and SD for the normalization of both idMS/MS and RNAseq datasets
to obtain relative expressions within tissues, as calculated using the fol-
lowing equation described by Birmingham et al. (51):

Zi = ðEi −MedianðEÞÞ=MADðEÞ,

where Ei is the expression level of a metabolite or a gene in tissue i. E is a
vector of a metabolite or a gene in all tissue samples.
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Kurtosis (K) was calculated for each metabolite and gene using an R
package (moments) utilizing the following equation:

K =
1
n

Pn
i=1

�
Xi − �X

�4
�

1
n

Pn
i=1

�
Xi − �X

�2�2,

where Xi stands for the expression level of a metabolite or a gene in the ith tissue
and �X is the mean of the same metabolite or gene. The P value of the kurtosis
was calculated using Anscombe.test function in the R “moments” package.

Tissue specificity for ametabolite or a genewas defined using the reduction
of kurtosis method as previously described (20). When a leptokurtic expressed
metabolite or gene removes high expression values for certain tissues, the
kurtosis of the metabolite or the gene will be reduced. Threshold Z filtering
of the data from a particular tissue was obtained by plotting the cumulative
reductions in the kurtosis curves for any given kurtosis threshold using dif-
ferent Z threshold values (SI Appendix, Fig. S6). When defining the false
discovery rate-adjusted P value as Q, we chose a Z threshold of 2 for me-
tabolite datasets, where 98.3% (the highest) of the metabolites with Q < 0.01
exhibit reduced kurtosis after applying the threshold cutoff. Similarly, a
threshold of 3 was applied for the RNAseq dataset.

RNAseq Dataset of Different Tissues and Data Mining.A detailed overview of the
RNAseq dataset and National Center for Biotechnology Information database
accession numbers are available in SI Appendix, Table S2. A list of the tissues
collected for RNAseq analysis and of metadata related to this experiment is
also available at the Nicotiana attenuata Data Hub database web site (nadh.
ice.mpg.de/NaDH). This experiment had been conducted and involved addi-
tional tissues and physiological conditions in addition to those tissues and
physiological conditions reported in the metabolomics study presented here.

Virus-InducedGene Silencing.Vector construction, plant growth, and inoculation
conditions were as described by Saedler and Baldwin (52) and are described in
SI Appendix, Materials and Methods.
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Materials and Methods 

 

Conditions for UHPLC-ESI/qTOF-MS analysis 

An Acclaim column (150×2.1 mm, particle size 2.2 µm) with a 4 mm×4 mm guard column 

of the same material was used for the analysis. The following binary gradient was used with a 

Dionex Ultimate 3000 UHPLC system: 0 to 1 min, isocratic 90% A (de-ionized water, 0.1% 

[vol/vol] acetonitrile and 0.05% formic acid), 10% B (acetonitrile and 0.05% formic acid); 1 to 40 

min, gradient phase to 15% A, 85% B; 40 to 45 min, isocratic 15% A, 85% B. Flow rate was 300 

µL/min. Eluted compounds were detected by a high-resolution micrOTOF-Q II mass 

spectrometer (Bruker Daltonics, Bremen, Germany) equipped with an electrospray ionization 

source operating in positive ionization mode. Typical instrument settings were as follows: 

capillary voltage 4500 V, capillary exit 130 V, dry gas temperature 180°C, dry gas flow of 8 

L/min. Ions were detected from m/z 50 to 1400 at a repetition rate of 1 Hz. Mass calibration was 

performed using sodium formate clusters (10 mM solution of NaOH in 50/50% vol/vol 

isopropanol/water containing 0.2% formic acid). Raw data files were converted to netCDF format 

using the export function of the Data Analysis v4.0 software (Bruker Daltonics, Bremen, 

Germany). 

 

Additional rules for the assembly of compound-specific idMS/MS 

To reduce false positive errors resulting from spurious correlations from background 

noise due to the fact that some m/z features are only detected in a few samples, we compared 

data processing results obtained with and without the “fill peaks” function of XCMS (use for 
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background noise correction) and calculated a background noise value from the average 

correction estimate used by this function to replace “NA” not detected peak intensities. When the 

“fill peaks” function is used, there still were many “0” intensity values in the dataset which affect 

the calculation of correlations, and these were replaced with the calculated background value. 

We also only considered features with intensities that were more than 3 times the background 

value and considered these as “true peaks”. Only m/z signals with at least six “true peaks” for 

the 28 samples precursors (MS1) and fragments datasets were considered for PCC calculation.  

A precursor mass feature is further defined if its intensities across samples significantly correlate 

with the decreased intensities of the same mass feature subjected to low or high collision 

energies and that this feature is not annotated as an isotope peak by CAMERA. The correlation 

analysis was then conducted by calculating all possible precursor-to-product pairs within 9s – 

estimated maximum retention time window for peak deviation. Logically, m/z values for 

fragments should be lower than that of the precursor and MS/MS fragmentation should occur in 

the same sample position within the 28 sample dataset as the precursor from which it is derived. 

Based on these two simple rules, we excluded assigned fragments at m/z values larger 

than that of the identified precursor as well as fragments mismatched with precursor sample 

position. Many in-source-fragmentation-generated mass features produced in the MS1 mode 

can also be selected as candidate precursors resulting in redundant compound idMS/MSs. To 

reduce such data redundancy, we merged spectra if their NDP similarity exceeded 0.9 and they 

belong to the chromatographic “pcgroup” annotated by CAMERA. Finally we merged all the 4 

collision energy results for precursor-to-fragment associations into a final deconvoluted spectrum 

by choosing the highest intensity peak among all candidate peaks of the same m/z value at the 

different collision energies. This latter processing step is based on the composite spectrum 

concept and accounts for the different collision energy conditions required to maximize 

fragmentation possibilities since certain fragments are detected only at specific collision 

energies. After applying the entire pipeline and set of rules, 895 deconvoluted non-redundant 

spectra were reconstructed from the tissue-wide analysis.  

 

Information theory framework for defining tissue metabolic diversity and specialization 

Tissue metabolic diversity was calculated using Shannon entropy of idMS/MS tissue-

level frequency distribution by the following equation as described in Martinez et al., (2008) (1): 

𝐻𝑗 =  − ∑ 𝑃𝑖𝑗

𝑚

𝑖=1

log2(𝑃𝑖𝑗) 
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where 𝑃𝑖𝑗 correspond to relative frequency of the 𝑖th idMS/MS (𝑖 = 1, 2, …, 𝑚) in the 𝑗th tissue 

(𝑗 = 1, 2, …, 𝑡). 

The average frequency of the 𝑖th idMS/MS among tissues was calculated as: 

𝑃𝑖 =  
1

𝑡
∑ 𝑃𝑖𝑗

𝑡

𝑗=1

 

idMS/MS specificity was calculated as: 

𝑆𝑖 =  
1

𝑡
(∑

𝑃𝑖𝑗

𝑃𝑖

𝑡

𝑗=1

log2

𝑃𝑖𝑗

𝑃𝑖
) 

The tissue specialization δj index was measured for each 𝑗th tissue, the average of the idMS/MS 

specificities using the following formula: 

δ𝑗 =  ∑ 𝑃𝑖𝑗

𝑚

𝑖=1

𝑆𝑖 

 

idMS/MS molecular networking by bi-clustering 

To perform this clustering, we used the R package DiffCoEx which is based an extension 

of the Weighted Gene Coexpression Analysis (WGCNA). Using NDP and NL-scoring matrices 

for 895 idMS/MS spectra, we computed a comparative correlation matrix using DiffCoEx with the 

parameters of “cutreeDynamic” set to method="hybrid", cutHeight = 0.999, deepSplit = T, 

minClusterSize = 10. The R source code of DiffCoEx is downloaded from additional file 1 in 

Tesson et al. (2010) (2), the required R WGCNA package can be found at 

http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA. 

 

Gene-to-metabolite tissue-association similarities 

Cross-tissue gene-to-metabolite associations provide valuable clues in formulating 

functional hypothesis about metabolic genes. To do so, we used as data input the idMS/MS and 

RNAseq binary data-sets computed separately for the following Z-scores: a Z-score of 1 

indicating tissue-specificity and 0 indicating no tissue-specificity for a given feature. Similarities 

in gene and metabolite tissue-specificity were calculated using Ochiai coefficient calculated as 

following: 

𝑂𝑐ℎ𝑖𝑎𝑖 =
𝑎

√(𝑎 + 𝑏)√(𝑎 + 𝑐)
 

http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA
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where a is the number of tissue-associations for which both a metabolite and a gene exhibit a Z-

score of 1, b is the number of  tissue-associations where a metabolite is 1 and the gene is 0, c is 

the number of  tissue-associations where the metabolite is 0 and the gene is 1. 

 

Virus-induced gene silencing (VIGS) 

Vector construction, plant growth, and inoculation conditions were as described by 

Saedler and Baldwin (2004) (3). Briefly, 200- to 300-bp fragments of N. attenuata target genes 

were amplified by PCR using specific primer pairs as listed in SI Appendix, Table S1. Amplified 

fragments were cloned into pTV00 vector, and plasmids were transformed by electroporation 

into Agrobacterium tumefaciens strain GV3101. A pTV00 plasmid without insert (EV) was used 

as a negative control in all experiments. Three leaves of 24- to 25-d-old N. attenuata plants were 

infiltrated with a 1:1 mixture of A. tumefaciens transformed with pBINTRA and one of the gene 

fragment-containing construct or the pTV00 construct. Phytoene desaturase (pTVPDS) causing 

bleaching of tobacco leaves due to the depletion of carotenoids was used as a positive control to 

monitor the progression of VIGS in a separate set of inoculated plants. VIGS-silenced plants 

were used for treatment after PDS-VIGS leaves developed a strong bleaching phenotype. 

Silencing efficiency was verified by RT-qPCR of target gene transcripts after RNA extraction and 

cDNA synthesis. 

 

RT-qPCR analysis of gene silencing efficiency 

Total RNA was extracted by adding Trizol reagent (Invitrogen; http://www.invitrogen.com) 

to approximately 150 mg of powdered leaf material ground in liquid nitrogen following the 

manufacturer’s protocol. A total of 500 ng of DNA-free RNA samples was reverse transcribed 

using oligo(dT)18 primers and SuperScript II enzyme (Invitrogen) following the manufacturer’s 

recommendations. All RT-qPCR assays were performed with a Stratagene MX3005P instrument 

(http://www.stratagene.com) as recommended by the manufacturer. To normalize transcript 

levels, primers specific for the elongation factor-1 gene from Nicotiana tabacum (EF1-α; 

accession no. D63396) were used. Specific primers in the 5′to 3′direction used for SYBR 

Green-based analyses are listed in SI Appendix, Table S1. 

 

Accession numbers 

For construction of the UDP-Glycosyltransferase tree in different species, we used the 

following Genbank accessions for Allium cepa (UGT73G1, AAP88406.1; UGT73J1, 

AAP88407.1), Antirrhinum majus (AmC4GT, BAE48239; UGT73E2 (Amugt36), BAG16513.1; 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3252090/#bib45
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UGT73N1 (Amugt38), BAG16514.1; UGT88D4, BAG31945), Arabidopsis thaliana (AtF3G7GT, 

Q9ZQ95; AtF3GT, AAM91339; AtF5GT, AAM91686; AtF7GT, AAL90934; AtUGT89C1, 

AAP31923; DOGT1, NP_181218; UGT75D1, AAB58497.1), Aralia cordata (AcGAT, BAD06514), 

Avena sativa (AvUGT80A1, CAB06081), Bellis perennis (UGT94B1 (BpUGAT), BAD77944), 

Beta vulgaris (BvUGT71F1, AAS94330; BvUGT73A4, AAS94329.1), Brassica napus (UGT84A9 

(BnSGT1), AF287143_1), Catharanthus roseus (CaUGT3, BAH80312; CaUGT1, BAD29721; 

CaUGT2, BAD29722; UGT85A2a (CrUGT6), BAK55749; UGT709C2 (CrUGT8),BAO01109), 

Celosia cristata (CcCDOPA5GT, BAD91804), Citrus maxima (CmF7G12RT, AAL06646), Citrus 

sinensis (CsUFGT, AAS00612), Citrus unshiu (CuLGT, BAA93039), Crocus sativus (CsGT45, 

ACM66950.1; CsUGT707B1, CCG85331; Glt2 (UGTCs2), AAP94878.1), Dianthus caryophyllus 

(DcF3GT, BAD52004; DicGT1, BAD52003; DicGT2, BAD52005; DicGT4 (DcC2GT), BAD52006; 

DicGT5, BAD52007), Dorotheanthus bellidiformis (DbB5GT, CAB56231; DbB6GT, AAL57240), 

Forsythia x intermedia (FiF3GT, AAD21086), Fragaria x ananassa (FaFGT, AAU12367; FaGT2, 

AAU09443), Gentiana triflora (Gt5GT7, BAG32255; GtF3GT, BAA12737; GtGTX, BAC54092), 

Glycine max (GmF3G6R, BAN91401; GmIF7GT, BAF64416), Glycyrrhiza echinata (GeIF7GT, 

BAC78438), Hordeum vulgare subsp. vulgar (HvF3GT, CAA33729), Ipomoea nil 

(In3GGT(InA32GT), BAD95885; InGTase1, BAF75917), Ipomoea purpurea (Ip3GGT(IpA32GT), 

BAD95882), Iris x hollandica (Ih3GT, BAD83701; Ih5GT, BAD06874), Lamium galeobdolon 

(LgF3GT, AEB61487), Linaria vulgaris (LvC4GT, BAE48240), Lycium barbarum (Ugt73a10, 

BAG80536), Maclura pomifera (MpUGT75L4, ABL85474; MpUGT88A4, ABL85471), Medicago 

trunculata (MtUGT73C8, ABI94020; MtUGT73K1, AAW56091; MtUGT73P1, ABI94026; 

MtUGT78G1, ABI94025; MtUGT84F1, ABI94023; MtUGT85H2, ABI94024.1; MtUGT88E1, 

ABI94021; MtUGT88E2, ABI94025; UGT71G1, AAW56092), Mirabilis jalapa (CDOPA5GT, 

BAD91804), Nicotiana tabacum (NTGT1A, BAB60720.1; NTGT1b, BAB60721.1; NtGT2, 

BAB88935; NtGT3, BAB88934; NtSAGT, AAF61647; TOGT 1, AAK28303; TOGT 2, 

AAK28304), Perilla frutescens (PfA5GT, BAA36421; PfF3GT, BAA19659; PfUGT88D7 (F7GAT), 

BAG31948), Petunia x hybrida (PhA3ART, CAA50376; PhA3GT, BAA89008; PhA5GT, 

BAA89009; PhF3GalTase, AF165148_1), Phaseolus lunatus (PlZOG1, AAD04166); Phaseolus 

vulgaris (PvZOX1, AF116858_1), Phytolacca americana (PaGT2, BAG71125; PaGT3, 

BAG71127), Pilosella officinarum (PoUGT95A1, ACB56927), Prunus dulcis (PdUGT85A19, 

ABV68925), Pyrus communis (PcF7GT, AAY27090), Quercus robur (QrUGT84A13, AHA54051), 

Rauwolfia serpentine (RsAS, CAC35167), Rhodiola sachalinensis (RsUGT73B6, AAS55083; 

RsUGT74R1, ABP49574; RsUGT72B14, ACD87062), Rosa hybrida (RhA53GT, BAD99560), 

Scutellaria baicalensis (SbB7GAT, BAD99560; SbF7GT, BAA83484), Scutellaria laeteviolacea 

var. yakusimensis (SlUGT88D5, BAG31946), Sesamum indicum (SiUGT88D6, BAG31947), 
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Solanum aculeatissimum (SaGT4A, BAD89042.1), Solanum berthaultii (SbGT, AAB62270.1), 

Solanum lycopersicum (Gtsatom, CAI62049.1), Solanum melongena (SmUGT76, CAA54558.1), 

Solanum tuberosum (Sgt2.1, ABB29873.1; Sgt2.2, ABB29874.1; StSgt1, AAB48444.1; StSgt3, 

ABB84472.1), Stevia rebaudiana (SrUGT74G1, AY345982; SrUGT76G1, AY345974; 

SrUGT85C2, AY345978), Torenia hybrida (ThA5GT, BAC54093), Verbena hybrida (VhA5GT, 

BAA36423), Vigna angularis (VaABAGT, BAB83692), Vigna mungo (VmUF3GaT, BAA36972; 

VmUFGlyT, BAA36410), Vitis labrusca (VlGT, ABR24135), Vitis vinifera (VvGT1, AAB81682), 

Withania somnifera (WsFGT, FJ560880; WsUGT73A16, FJ654696/ACO44747.1), Zea mays 

(Zm-BX8, AF331854_1; Zm-BX9, CAX02221; ZmcisZog1, AAK53551; ZmcisZog2, AAL92460; 

ZmIaglu, AAA59054; ZmUFGT, CAA30760; ZmUGT71A1, CAA31856). 
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Tables 

 

Table S1. List of primers used for qRT-PCR and gene fragment cloning for VIGS 

Name For VIGS cloning (5' to 3')  For qRT-PCR (5' to 3') 

UGT-A 
forward 

GCGGCGCTCGAGGTTGAGCATTATACTAAGGTGC GACGCTAGAAGGAGTTTCAGG 

UGT-A 
reverse 

GCGGCGGGATCCCAGGCAACCAATCTTCGTTGTC CCACTGAATCGAACCAACAC 

UGT-B 
forward 

GCGGCGCTCGAGGTGGTCCTACTGTATATGACC
G 

GGGAATTATTCATTCAGGTTGG
G 

UGT-B 
reverse 

GCGGCGGGATCCGGTAGCCCAGTTTGCTCCAGA
C 

GGCAACATAACCACTTGACAG 

Elongation 
factor 
forward 

 

TGGTATGGTTAAGATGCTTCCC 

Elongation 
factor 
reverse 

TGTCAACGCTCTTGATAACAC 

 

Table S2. Overview of RNAseq transcriptome data  
 
NCBI 
accession 
number 

Tissue 
type 

Treatment/development stage Additional note on sampling 
procedure 

NA1498ROT Root 
(ROT) 

Rosette stage plants, treated with 
5 µL 1:1 diluted M. sexta oral 
secretion three times in leaves 

Roots of rosette stage plants that were 
treated three times on leaves were 
collected for RNA extraction. The 
treatments were performed at 10 am 
and 6pm on the day before sampling 
and 10 am on the day of sampling. 
Samples were collected at 11 am. 

NA1500LET Leaf 
(LET) 

Rosette stage plants, treated with 
5 µL 1:1 diluted M. sexta oral 
secretion three times in leaves 

Local leaves of rosette stage plants that 
were treated three times on leaves were 
collected for RNA extraction. The 
treatments were performed at10 am, 
6pm on the day before sampling and 10 
am on the day of sampling. Samples 
were collected at 11 am. 

NA1717LEC Leaf 
(LEC) 

Rosette stage plants, no 
treatment 

Rosette stage leaves were collected for 
RNA extraction. Samples were 
collected at 11 am. 
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NA1504STT Stem 
(STT) 

Rosette stage plants, treated with 
5 µL 1:1 diluted M. sexta oral 
secretion three times in leaves 

Stems of rosette stage plants that were 
treated three times on leaves were 
collected for RNA extraction. The 
treatments were performed at 10 am, 
6pm on the day before sampling and 10 
am on the day of sampling. Samples 
were collected at 11 am. 

NA1505COE Corolla 
(COE) 

Early developmental stage, no 
treatment 

Samples were collected in the 
afternoon, 60 samples were pooled. 

NA1515COL Corolla 
(COL) 

Late developmental stage, no 
treatment 

Samples were collected at 6 pm (open 
flowers) and 9am (closed flower after 
opening), 4-10 samples were pooled. 

NA1506STI Stigma 
(STI) 

Mature stigma, no treatment Stigma samples were collected in the 
afternoon, 40 samples were pooled. 

NA1507POL Pollen 
tube 
(POL) 

No treatment Pollen tubes were pooled. 

NA1508SNP Style 
(SNP) 

Mature style without pollination Styles were collected at 7 am, anthers 
were removed one day before, and 50 
samples were pooled. 

NA1509STO Style 
(STO) 

Mature style, pollinated with 
pollens from different genotype 

Styles were collected at two hours after 
pollination, at 7 am. Anthers were 
removed one day before, and 30 
samples were pooled. 

NA1510STS Style 
(STS) 

Mature style, self-pollinated Styles were collected at two hours after 
pollination, at 7 am. Anthers were 
removed one day before, and 30 
samples were pooled. 

NA1511NEC Nectary 
(NEC) 

Mature nectary, no treatment Samples were collected in the 
afternoon, 60 samples were pooled. 

NA1512ANT Anther 
(ANT) 

Mature anther no treatment Samples were collected in the 
afternoon, 60 samples were pooled. 

NA1513OVA Ovary 
(OVA) 

Mature ovary, no treatment Samples were collected in the 
afternoon, 60 samples were pooled. 

NA1514PED Pedicel 
(PED) 

Mature pedicel, no treatment Samples collected at 9 am (heading 
down) and 4 pm (heading up) were 
pooled. 

NA1516OFL Flower 
(OFL) 

Fully opened flowers, no 
treatment 

Both morning (7 am) and evening (6 
pm) flowers were collected, 1 sample of 
each were pooled. 

NA1517FLB Flower 
bud 
(FLB) 

Two early developmental stages 
of flowers, no treatment 

Samples were collected at 6pm, 1 bud 
and 1 middle stage flower were 
collected. Sepals were removed from 
the samples. 

NA1501SES Seed 
(SES) 

Treated with liquid smoke 100 mg seeds treated with 1:50 diluted 
liquid smoke solution for 9-15 min were 
used for RNA extraction. 

NA1502SEW Seed 
(SEW) 

Treated with water 100 mg seeds treated with water for 9-
15 min were used for total RNA 
extraction. 

NA1503SED Seed 
(SED) 

Dry seeds 100 mg dried seeds directly used for 
total RNA extraction. 
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Table S3. Performance of the Ochiai distance-based integration of genes and idMS/MS 

data for known gene-metabolite associations 

 

References for Table S3: 1, Onkokesung et al. Plant Physiology 158.1 (2012): 389-407; 2, 

Jillian et al. Planta 221.6 (2005): 904-914; 3, Gaquerel et al. Journal of Agricultural and Food 

Chemistry 58.17 (2010): 9418-9427; 4, Ricarda et al. Nature Biotechnology 22.6 (2004): 746-

754; 5, Heiling et al. The Plant Cell 22.1 (2010): 273-292; 6, Heiling, et al. The Plant Journal 

85.4 (2016): 561-577; 7, Falara, et al. Plant Physiology 166.1 (2014): 428-441; 8, Fan, et al.  

Proc. Natl. Acad. Sci. U. S. A. 113.2 (2015): E239-E248; 9, Schilmiller, et al.  Plant Physiology 

170.3 (2016): 1331-1344   



10 
 

Datasets 

 

Dataset S1. idMS/MS data analysis.  

Spreadsheet S1.1, XCMS-processed data-set; Spreadsheet S1.2, cross-tissue ZMAD scaled 

data and results of the Kurtosis analysis; Spreadsheet S1.3, deconvoluted idMS/MS spectra; 

Spreadsheet S1.4, structural and tissue annotation of the idMS/MS bi-clustering. 

 

Figures 

 

 

Figure S1. Principal component analysis (PCA) of the UHPLC-ESI/qTOF-MS metabolic 

profiles for all tissue and extraction types. The PCA score plot was conducted on the auto-

scaled complete mass feature matrix resulting from XCMS processing of the samples extracted 

by 20% and 80% methanol (vol/vol) which are represented as circle and rectangular shapes 

respectively. Detailed explanations of the tissue collection procedure are provided in the Method 

section. (a) Separate PCA score plot of 20% and 80% methanolic (vol/vol) extracts. (b) PCA of 

the combined data-set. 
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Figure S2. Tissue-wide indiscriminant acquisition and assembly of metabolite MS/MS 

spectral information. (a) Optimized pipeline to achieve indiscriminant acquisition of MS/MS 

data from tissue-wide metabolic variations. Indiscriminant MS/MS targets every mass signal 

within a range of 50 to 1400 m/z for fragmentation using 4 increasing collision energies (CE). 

Each tissue sample is processed using idMS/MS via individual analyses performed at different 

CID voltages in order to maximize fragment diversity. Information regarding a fragment’s 

assignment to a given precursor mass is lost during indiscriminant MS/MS (idMS/MS) but can be 

computationally-retrieved for each CID voltage run, based on mathematical and 

chromatographic correlation analyses (see Method section). The pipeline harnesses the 

important chemical diversity among tissue samples. Reciprocally, cross-tissue quantitative 

variation provides the statistical power required for computing high confidence Pearson 

correlation coefficients (PCC) among the variation in intensities of precursors and candidate 

fragments. idMS/MSs assembled at each CID voltage for a given precursor m/z occurring at a 
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given retention time are then merged together into a composite MS/MS which displays the 

complete fragment diversity. The resulting output is a three-dimensional entry matrix with non-

redundant idMS/MS spectra across tissues and their relative intensities. (b) idMS/MS coverage 

for a representative 80% methanol (vol/vol) pedicel sample. The lower heatmap displays the 

retention time position, aligned to the total ion current chromatogram, of the 370 idMS/MS 

spectra recorded for this sample. (c) Density plot summarizing the idMS/MS coverage across all 

14 analyzed tissues denoted by their symbols. Bars represent the relative density of collected 

idMS/MSs for a 9 s retention time window. Red lines represent smoothed density curves. (d) 

Example of the idMS/MS obtained for m/z 484.243 @ 506 s corresponds to the [M+H]+ of an 

N’,N’’-caffeoyl,feruloylspermidine isomer – ’ and ’’ denote that the exact position of the caffeoyl 

and feruloyl moieties on the spermidine backbone cannot be assigned by MS analysis alone. 

idMS/MSs were also assembled for m/z 322.212 and m/z 308.196 as these m/z signals are 

already present as in-source ionization derived fragments in the MS mode analysis.  
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Figure S3. Information theory-based analysis of the degree of specialization and diversity 

in the idMS/MS composition across tissues. Tissue specialization (δj) and diversity (Hj) are 

mapped in a two-dimensional space using two indexes, where Hj, tissue-level idMS/MS diversity 

is calculated by Shannon entropy of idMS/MS frequency distribution of each tissue and δj, 

tissue-level idMS/MS specialization is measured by the average specificity of each idMS/MS 

component by taking into consideration its frequency among tissues. Tissue metabolomes 

extracted for two different extraction conditions (20% or 80% methanol (vol/vol)) were separately 

analyzed and visualized into two panels and tissue types are differentiated by different colors. 
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Figure S4. Tissue-based variations in the accumulation of HGL-DTGs and phenolic 

derivatives. 17-hydroxygeranyllinalool (HGL) diterpene glycosides are abundant secondary 
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metabolites in N. attenuata which differ in the number and types of sugar (Glc, glucose; Rha, 

Rhamnose; with or without malonyl, Ma, groups) decorations added to the acyclic HGL 

backbone which is characteristic of this compound family (a.1). Z-score-normalized median 

absolute distances are employed to visualize cross-tissue variations in the idMS/MSs 

corresponding to the main (a.2) HGL-DTG intermediates as well as (b) major phenylpropanoid-

quinate and -polyamine conjugates. For both metabolic groups, important changes in cross-

tissue variations are detected. In the case of the HGL-DTG metabolic pathway, a progressive 

enrichment of certain metabolites is noticeable in reproductive floral tissues. CFS, N’,N’’-

caffeoyl,feruloyl-spermidine; CGA, Chlorogenic acid; CoCS, N’,N’’-coumaraoyl,caffeoyl-

spermidine; CP, N-caffeoylputrescine; CS, N-caffeoylspermine; FP, N-feruloylputrescine; DCS, 

N’, N’’-dicaffeoylspermidine; DFS, N’,N’’-diferuloyl-spermidine. 
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Figure S5. Significant levels of tissue-specificity derived from Kurtosis filtering for 

particular metabolic steps in the HGL-DTG and phenolic pathway. Q-values present in color 
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boxes derived from Kurtosis filtering analysis (see Method section) for the distribution of 

idMS/MSs corresponding to particular HGL-DTGs (17-hydrogeranyllinalool diterpene glycosides) 

(a) and phenolic derivatives (b). Associated tissues for each idMS/MS are presented as tissue 

icons below the Q-value box. Low Q-values indicate strong tissue-specificity in the accumulation 

of particular HGL-DTGs and phenolic derivatives. Strongest tissue-associations are detected for 

upstream steps in the pathway indicating clear tissue-specificities in the biosynthesis of these 

upstream intermediates from which the complete HGL-DTG chemotype derives from. Complete 

results of the Kurtosis analysis are presented in SI Appendix, Dataset S1. CFS, N’,N’’-

caffeoyl,feruloyl-spermidine; CGA, Chlorogenic acid; CoCS, N’,N’’-coumaraoyl,caffeoyl-

spermidine; CP, N-caffeoylputrescine; CS, N-caffeoylspermine; FP, N-feruloylputrescine; DCS, 

N’, N’’-dicaffeoylspermidine; DFS, N’,N’’-diferuloyl-spermidine. 
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Figure S6. Implementing the reduction of Kurtosis analysis to infer idMS/MS and gene 

expression with high tissue-specificity. Cumulative distribution of idMS/MS (a) and gene (b) 

cross-tissue expression generated for q-value (Q) <0.01 obtained from R qvalue package (6). 

The analysis is based on the Anscombe test for kurtosis using the Anscombe.test function in the 

R “moments” package as described in Li et al. (7) and in the Method section. The x axis reports 

on the Kurtosis reduction when a certain Z threshold (ZMAD-normalized expression values) was 

applied, the y axis reports on the corresponding cumulative density. The insert panels 

correspond to the Kurtosis reduction percentage of idMS/MSs or genes when a given Z 

threshold was selected. Different colors denote for different Z thresholds and the corresponding 

cumulative curves. Z=2 was selected as the threshold to extract idMS/MSs with leptokurtic 

behaviors and Z=3 for genes. 
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Figure S7. Different degrees of idMS/MS tissue-specificity inferred from the Kurtosis 

reduction analysis. The kurtosis analysis was used to discriminate leptokurtic idMS/MSs from 

those distributed in all tissues and the Z threshold of 2 that obtained from the reduction of 

Kurtosis analysis enabled the detection of single-tissue-specific and tissue-co-associated 

metabolites. The approach not only extracts single-tissue-specific idMS/MSs (3% of the 565 

idMS/MSs with a Q<0.05 for the Kurtosis analysis; two upper panel as examples) but also those 

preferentially accumulating in several tissues (97% of idMS/MSs; two lower panels as 

examples). 1 and 2 indices after tissue names refer to the 20 % and 80 % methanol (vol/vol)  

extractions respectively. 
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Figure S8. Gene-tissue specificity and gene-sharing among tissues of the transcriptome 

data-set. Left bar chart, % of genes showing tissue-specificity (Q<0.05) per tissue. Right 

Heatmap matrix visualizes genes sharing between tissues as measured using Jaccard index. 

LEA, rosette stage leaves; LET, rosette stage leaves treated with Manduca sexta oral secretion 

(OS); STT, stem from plants with leaves treated with OS; ROT, root from plants with leaves 

treated with OS; PED, pedicels; BUD, flower buds; COE, non-matured corolla collected 3 days 

after protrusion from the calyx; COL, matured corolla collected 5 days after protrusion from the 

corolla; OFL, open flowers; ANT, anthers; STI, stigma; POL, pollen tubes; SNP, style without 

pollination; STO, style outcross-pollinated (2h after pollination); STS,  style self-pollinated (2h 

after pollination); OVA, ovary; NEC, nectary;  SES, seeds treated with liquid smoke; SEW, 

watered seeds; SED, matured seeds. Detailed overview of RNAseq dataset is available in SI 

Appendix, Table S2.  
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Figure S9. GO enrichment analysis for the pool of genes exhibiting tissue-specificity and 

co-tissue association with idMS/MSs classified as parts of modules M4 and M8. GO 

enrichment was generated via GlueGO (8). The significant GO enrichment was depicted in 

overview pie charts as well as functionally grouped networks with terms as nodes and edges 

linked based on their kappa score level (>0.4), where only the label of the most significant term 

per group is shown. Node size is in proportion to the term enrichment significance and 

functionally related groups partially overlap. (a) Significant GO enrichment obtained for all tissue-

specific genes (Q<0.05) from transcriptomic data. (b) and (c) GO enrichment from transcriptomic 

data sharing tissue co-associations (Ochiai>0.6) with the tissue-specific metabolites (Q<0.05) in 

module 4 and 8.  
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Figure S10. GO terms from transcriptomic data sharing significant tissue co-associations 

with targeted metabolites of modules 8 and 4.  Molecular networks constructed from modules 

M8 (a) and M4 (b) are enriched in O-acyl sugars and flavonoids respectively. Nodes represent 

idMS/MS spectra and edges correspond to structural similarities based on the two score types 

(NDP similarity calculated based on shared fragments between spectra and NL similarity 

calculated based on shared common neutral losses between spectra). Tissue-specificity is 

mapped onto the molecular network with node colors. Nodes in the sub-network of module M8 

that share typical O-acyl sugars neutral losses of glucose, methyl pentanoic acid, methyl 

butanoic acid and isobutyric acid are additionally circled in apricot. Identified flavonoids in 

module M4 are circled in red. A zoom-in of the network depicts metabolite-to-gene tissue co-
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association calculated as Ochiai similarity. GO terms were generated by GlueGO (8) from 

transcriptomic data sharing significant tissue co-associations with targeted metabolites.  

  



24 
 

 



25 
 

Figure S11. Characterization of UGT-A and UGT-B association with flavonoid metabolism. 

(a) The tree was obtained by aligning characterized glycosyltransferases of the GT superfamily 1 

(GT 1, 136 GT amino acid sequences) and inferring their phylogenetic relationship using the 

Maximum Likelihood method (bootstrap = 1000) based on the JTT matrix-based model(9). 

Evolutionary analyses were conducted in MEGA5 (10). UGT-A (UGT-02515) and UGT-B (UGT-

02184) analyzed in the present study are highlighted with purple branches. The red marked 

branches represent 8 other putative GTs (no names reported) initially considered for virus-

induced gene-silencing in N. attenuata. Accession numbers for construction of the UDP-

Glycosyltransferase tree in different species are list in SI Appendix, Materials and Methods. 

(b) Gene silencing efficiency for the UDP-glycosyltransferases tested during VIGS experiments. 

Transcript levels (left panel, pTV-UGT-A; right panel, pTV-UGT-B) normalized to those of 

ELONGATION FACTOR1 were determined in flower buds. Asterisks denote for significant 

differences between pTV-00 and UGT silenced lines (t-test, *P < 0.05, ** < 0.01). pTV-00, empty 

vector; pTV-UGT-A, UDP-glycosyltransferase-A silencing VIGS construct; pTV-UGT-B, UDP-

glycosyltransferase-B silencing VIGS construct. (c) UHPLC-MS analysis of flower buds of plants 

inoculated with empty vector and gene silencing constructs for UGT-A and UGT-B. UHPLC-MS 

analysis of flower buds of plants inoculated with empty vector and gene silencing constructs for 

UGT-A and UGT-B. Chromatograms are traces corresponding to idMS/MS signals with strong 

co-association with these two UGTs. As supported by the annotation of idMS/MS spectra, 

silencing UGT-A decreases the glucosylation of flavonols while silencing UGT-B decreases their 

additional rhamnosylation (Figure 5c). Asterisks denote significant differences between empty 

vector (EV) and UGT silenced lines (t-test, *P < 0.05, ** < 0.01). KG, kaempferol-3-O-glucoside; 

KGG, kaempferol-3-O-sophoroside (glucosyl(1-2)glucoside); KGR, kaempferol-3-O-rutinoside 

(glucosyl(1-2)rhamnoside); QG, quercetin-3-O-glucoside; QGG, quercetin-3-O-sophoroside 

(glucosyl(1-2)glucoside); QGR (Rutin), kaempferol-3-O-rutinoside (glucosyl(1-2)rhamnoside). 
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