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We analyze the stability of the electroweak vacuum in neutrino mass models containing right
handed neutrinos or fermionic isotriplets. In addition to considering absolute stability, we place
limits on the Yukawa couplings of new fermions based on metastability and thermal stability in
the early Universe. Our results reveal that the upper limits on the neutrino Yukawa couplings can
change significantly when the top quark mass is allowed to vary within the experimental range of
uncertainty in its determination.

I. INTRODUCTION

With the recent discovery [1, 2] of the Higgs boson at
a mass of 125 GeV, it is possible to answer the question
of vacuum stability [3] in the standard model up to any
given scale of new physics. The exceptionally large top
quark coupling to the Higgs field renders the electroweak
vacuum metastable, but with a lifetime larger than the
age of the universe [4]. At extreme temperatures present
in the early universe, thermal fluctuations can cause tran-
sitions away from the electroweak vacuum [5–8], and puts
an upper limit on the reheating temperature at the end of
inflation assuming no new physics beyond the standard
model [9].

It is possible that the presence of new unknown
fermions sizably coupled to the Higgs can exacerbate
the already precarious state of the electroweak vacuum.
Models of neutrino mass generation typically contain ad-
ditional fermionic degrees of freedom coupled to the stan-
dard model Higgs. In this paper, we explore the effects
of these new fermions on electroweak vacuum stability,
metastability, and stability against thermal fluctuations
in the early Universe.

In the past, there has been some work in this area. In
[10], the absolute stability bounds in high scale type-I
seesaw models were considered. The analysis was ex-
tended in [11] to include metastability and thermal sta-
bility bounds, and in [12, 13] to cover the possibility of
large neutrino Yukawa couplings due to non-trivial fla-
vor structure. Most recently, constraints from vacuum
metastability were studied in the context of inverse see-
saw model [14] and linear seesaw models [15]. In [16, 17],
constraints on type-III seesaw models were found by re-
quiring absolute stability.

We separately analyze the impact of right handed neu-
trinos (isosinglets) or fermion isotriplets on the absolute
stability of the electroweak vacuum. A novel feature of
our analysis is that it accommodates the possibility that
these new degrees of freedom are at the low scale, and in a
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manner that is general with respect to the specific flavor
structure of the Yukawa coupling matrix. Furthermore,
this allows us to clearly present results as a function of the
top quark pole mass. We include vacuum metastability
and thermal stability analyses for both cases. And, while
our findings confirm literature for the case of high scale
right handed neutrinos, our results for fermion isotriplets
and low scale right handed neutrinos are new.

In section II we briefly describe the theory behind our
analysis of vacuum stability. In section III and IV we
analyze and derive vacuum stability bounds in models
with right handed neutrinos and in models with isospin
triplets. We discuss the implications of our findings on
experimental observables in Section V, and we conclude
in section VI.

II. THEORY

In this section, we summarize the theory underlying
the analysis of vacuum stability at zero and finite tem-
perature. For further details, the interested reader should
consult the papers referenced in this section.

A. Absolute vacuum stability and metastability

We analyze the vacuum structure and the question of
metastability by closely following the methods of [4, 18]
applied to the case of the standard model.

In our analysis, we assume that there is no new physics
that significantly modifies the form of the Higgs potential
apart from the additional degrees of freedom needed to
generate neutrino masses below the Planck scale. Abso-
lute electroweak vacuum stability is lost if the value of
the Higgs field effective potential

V (h) =
1

4
λ(µ)h4 (1)

dips below that of the electroweak vacuum. This require-
ment is well-approximated by the condition that the ef-
fective coupling λ(µ) remain positive for the scale µ up
to the Planck scale. The Higgs quadratic coupling can
be safely neglected because, for values of the electroweak
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parameters near their measured values, destabilization
occurs at values of µ much higher than the electroweak
scale. We use the two-loop standard model beta func-
tions, and the two-loop relationship between the MS and
pole masses for the Higgs boson and the top quark [4].

Although the electroweak vacuum may not be the
global minimum of the effective potential, it may be a
long-lived metastable state with a lifetime much larger
than the age of the universe. The tunneling rate is com-
puted in the semiclassical approximation based on po-
tential in (1). The bounce solution and action associated
with tunneling are [18]

hB(r) =

√
2

|λ(µ)|
2R

r2 +R2
, SB(hB) =

8π2

3|λ(µ)|
. (2)

Here, R characterizes the size of the “bounce” solution,
and is undetermined on account of the scale invariance
exhibited by the potential in (1) at the classical level.
However, the anomalous scaling of λ under the renormal-
ization group breaks the scale invariance. To minimize
the impact of large logarithms at higher order, we set the
renormalization scale µ = R−1. Then the probability for
tunneling is given by

p ≈ maxR
vol.

R4
exp

[
− 8π2

3|λ(R−1)|

]
, (3)

where “vol.” = 0.15H−4
0 is volume of our past lightcone.

The fraction of space in the true vacuum goes like e−p

[19], and our criteria for stability is p & 1.

B. Thermal stability

We are also interested in the question of stability
against thermal fluctuations in the early Universe. We
follow the procedure laid out in [6] which is an applica-
tion of Kramer’s barrier crossing formalism [20] to the
standard model Higgs potential. It is sufficient for us to
use the high-temperature effective action retaining just
the O(T 2) terms in the effective potential,

Veff(h, T ) =
1

4
λ(µ)h4 +

1

2
κ2(µ)h2T 2, (4)

where in the standard model,

κ2 =
1

16
(g′2 + 3g2 + 4y2

t + 8λ) . (5)

Although the impact of dropping subleading terms in the
high-T expansion leads to a substantial underestimate of
the crossing probability, its impact on the bounds of the
model parameters is miniscule [6, 9]. Furthermore, be-
cause the subleading terms are gauge dependent, this ap-
proximation has the additional advantage of maintaining
gauge independence in our final results [21].

The critical bubble profile is obtained by minimizing
the temperature dependent energy functional

E = κT
|λ|
∫
d3r̄
[

1
2 (∇h̄)2 + 1

2 h̄
2 − 1

4 h̄
4
]
, (6)

subject to the boundary condition

dh̄(r̄)
dr̄

∣∣
r̄=0

= 0, h̄(r̄)
∣∣
r̄=∞ = 0 , (7)

where r̄ = κT |x| and h̄ =
√
|λ|h/(κT ) are the dimen-

sionless radial coordinate and Higgs field strength. The
bounce profile and the dimensionless integral are com-
puted numerically, yielding the energy of the critical bub-
ble

EB = 6.015π
κ(µ)T

|λ(µ)|
. (8)

To minimize the impact of large logarithms at higher
order, we take the renormalization scale µ = T . The dif-
ferential probability for thermal crossing in the radiation
dominated Universe is

dp

dT
≈ (t0T0)3mPl

T 2
e−EB/T , (9)

where t0 is the age of the Universe and T0 is the current
CMB temperature. We obtain the total probability by
numerical integration starting from the highest tempera-
ture achieved in the universe Tmax. The integral is domi-
nated near temperatures corresponding to scales when |λ|
is maximized, making the energy of the critical bubble in
(8) its smallest.

Having established our methods of computation, in the
next two sections we analyze the impact of adding addi-
tional fermions in neutrino mass models to the stability of
the electroweak vacuum at zero and finite temperature.

III. RIGHT HANDED NEUTRINOS

In this section, we analyze and derive the electroweak
vacuum stability bounds coming from fermionic singlets
such as from right handed neutrinos. Sizable Yukawa
couplings to the right handed neutrinos appear in type-I
seesaw models [22] with peculiar flavor structure, or in
inverse [23, 24] or linear seesaw models [25].

The relevant part of the Lagrangian governing the in-
teractions of three right handed neutrinos νR is given by

L = −`LH̃YννR −
1

2
νRMRν

c
R + c.c. , (10)

where Yν is the neutrino Yukawa coupling matrix, and
MR is the right-handed neutrino mass matrix.

The coupling of the right handed neutrinos to the stan-
dard model Higgs affects the running of the quartic cou-
pling λ through its modification of various renormaliza-
tion group equations (RGEs) at scales above MR. At one
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loop order the modifications to the beta functions for λ
and the top quark Yukawa coupling yt are [26, 27]

∆βλ =
1

(4π)2

(
4λTr

[
Y†νYν

]
− 2Tr

[
Y†νYνY†νYν

])
, (11)

∆βyt =
1

(4π)2
ytTr

[
Y†νYν

]
. (12)

The beta function for neutrino Yukawa couplings is given
by

[βYν ]ij =
1

(4π)2

[3

2
(YνY†νYν)ij

+ (Yν)ij

(
Tr
[
Y†νYν

]
+ 3y2

t −
3

4
g′2 − 9

4
g2
)]
,

from which it follows the beta function of the trace of the
product of neutrino Yukawa coupling matrix,

βTr[Y†
νYν ] =

1

(4π)2

[
3Tr[Y†νYνY†νYν ] + 2

(
Tr
[
Y†νYν

])2
+ Tr

[
Y†νYν

](
6y2
t −

3

2
g′2 − 9

2
g2
)]
. (13)

For small λ the dominant contribution to the modified
beta function ∆βλ is the second term in (11), which
drives it downwards at high energies.

We would like to solve the RGEs without specify-
ing all the elements of Yν separately. Therefore, we
attempt to draw a simplifying connection between the
traces Tr[Y†νYν ] and Tr[Y†νYνY†νYν ] appearing in (13).
To effect this, we consider two distinct cases.

In the first case, we assume that one of the right
handed neutrinos couples more strongly to the standard
model Higgs, allowing us to take

Tr
[
(Y†νYν)

]
→ y2

ν , Tr
[
Y†νYνY†νYν

]
→ y4

ν , (14)

where yν is the effective Yukawa coupling to that neu-
trino. This configuration can be realized in high-scale
type-I seesaw model, or in low-scale inverse, double, or
linear seesaw models.

However, this assumption is unlikely to hold in low
scale type-I seesaw unless the neutrino Yukawa couplings
are so small that they have negligible impact on the Higgs
potential. This prompt us to treat this case separately,
as follows. We start with the general parametrization of
the Yukawa coupling matrix given by [28]

Yν =

√
2

v

√
MRR

√
MνU

†
PMNS , (15)

where v = 246 GeV is the standard model Higgs vev,
and Mν = diag(m1,m2,m3) is the diagonalized light-
neutrino mass matrix. Following [29], we parametrize
the complex orthogonal matrix R in terms of its po-
lar decomposition R = O exp[iA], where O is real or-
thogonal and A is real antisymmetric. For simplicity,
we assume degeneracy among the right handed neutrino
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FIG. 1. The renormalization group evolution of the Higgs
quartic coupling λ in the presence of right handed neutrinos
(solid blue) and in the standard model (dashed blue). In
green is the thermal coefficient κ defined in (5) and modified
by (21).

masses MR ≡ M1 = M2 = M3. Then, the Yukawa ma-
trix traces can be computed as

Tr[Y†νYν ] =
2MR

v2
Tr
[
Mνe

2iA] , (16)

Tr
[
Y†νYνY†νYν

]
=
(2MR

v2

)2

Tr
[
Mνe

2iAMνe
2iA] , (17)

and are independent of O and UPMNS. Consider for
now the case where the light neutrinos are degenerate
mν ≡ m1 ≈ m2 ≈ m3. Recalling that the eigenvalues
of an antisymmetric 3 × 3 matrix A can be written as

{0, ±iρ}, where ρ =
√
− 1

2Tr[AA] is positive semidefi-

nite, the traces in (16) and (17) can be written in terms
of the sums of the eigenvalues of the matrix exponentials,

Tr[Y†νYν ] =
2MR

v2
mν(e2ρ + 1 + e−2ρ) , (18)

Tr
[
Y†νYνY†νYν

]
=
(2MR

v2

)2

m2
ν(e2ρ + 1 + e−2ρ)2 . (19)

Given that these traces are what appear in the RGE for
λ, it has a sizable effect on vacuum stability only if they
are large, and hence when ρ � 1. But it is precisely in
this limit that the final two terms in parenthesis 1+e−2ρ

are negligible compared to the first term e+2ρ. Upon
dropping these terms we obtain the useful relationship

Tr
[
Y†νYνY†νYν

]
≈
(

Tr
[
Y†νYν

])2

. (20)

We find that this relationship also holds for normal
and inverted mass hierarchies following similar consider-
ations. Therefore, we can use this approximation in (13)
to solve the set of RGEs without knowing the detailed
structure of the Yukawa matrix.

At temperatures above MR, the Higgs thermal mass
coefficient (5) picks up an additional contribution from
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the right handed neutrinos given by

δκ2 =
1

12
Tr
[
Y†νYν

]
. (21)

In Fig. 1 we show how the renormalization group evo-
lution of the Higgs quartic coupling λ in this model com-
pares with that of the standard model, for MR = 500
GeV, and Tr

[
Y†νYν

]∣∣
µ=MR

= 0.25. On the same plot, we

show how the thermal coefficient κ runs with scale. No-
tice that the presence of right handed neutrinos causes
λ to run more negatively, further destabilizing the Higgs
potential. This will lead to limits on the neutrino Yukawa
couplings.

Because of the sensitivity of the running of λ to the
top quark pole mass and relatively large experimental
uncertainty in its value Mt = 173.34 ± 0.76 GeV [30]
and additional theoretical uncertainty, we leave the top
quark mass as a free parameter when placing limits on
neutrino Yukawa couplings. We fix the Higgs mass to be
mH = 125.09 GeV [31].

In Fig. 2, we show the phase diagram in the Mt–yν
plane for this class of models for three choices of the
right-handed neutrino mass MR = {500, 108, 1014} GeV.
We show both, the combination Tr

[
Y†νYν

]∣∣
µ=MR

on the

left axis, and yν on the right axis, corresponding to the
two cases of the treatment of the neutrino Yukawa ma-
trix, respectively. The region in green is where the elec-
troweak vacuum is absolutely stable (below the Planck
scale). In yellow and orange regions, the electroweak vac-
uum is metastable but with a quantum tunneling lifetime
that is longer than the age of the Universe; in the red re-
gion the lifetime is shorter than the age of the Universe.
In the orange region, thermal fluctuations lead to tran-
sitions away from the electroweak vacuum in the early
Universe, with the lines correspond to different maximum
temperature achieved in the universe, as indicated in the
caption.

Our findings confirm the following results in the liter-
ature [10–13]:

1. The bounds on neutrino Yukawa couplings are only
logarithmically sensitive to MR.

2. The neutrino Yukawa couplings play a similar role
as does that of the top quark by also destabilizing
the electroweak vacuum, implying bounds on these
couplings.

However, we add the following point:

3. The sensitivity of these bounds to the precise value
of the top quark mass is substantially greater. We
can readily understand the sensitivity by inspecting
the behavior of βλ with respect to variations in the
coupling constants yt and yν :

δβλ ∼ y3
t δyt + y3

νδyν

Since the value of yt ≈ 1 is bigger than the values
of yν near the bounds, the coefficient in front of δyt
is much bigger, explaining the higher sensitivity.
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FIG. 2. Phase diagram of the standard model coupled to
three right-handed neutrinos in the plane of Mt and yν , for
representative values of MR. The plane is divided into re-
gions of absolute stability (green), zero temperature quantum
mechanical tunneling metastability (yellow and orange), and
instability (red). The region shaded in orange corresponds to
an instability due to thermal transitions in the early Universe
assuming a maximum temperature achieved in the Universe
of Tmax = 1018. The orange region shrinks according to the
dashed and dotted orange lines for lower maximum tempera-
tures of 1015 GeV and 1012 GeV, respectively. Note that at
2σ C.L., the top quark pole mass is ∼ 171–175 GeV.
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IV. CASE: FERMIONIC TRIPLET

In this section, we turn our attention to models con-
taining fermionic isotriplets. As before, sizable Yukawa
couplings to the fermionic triplet appear in type-III see-
saw models [32] with peculiar flavor structure, or in in-
verse seesaw models.

The Lagrangian governing the coupling of three isospin
triplets ΣR to the standard model Higgs is

L = −
√

2¯̀
LY†ΣΣRH̃ +

1

2
Tr
[
Σ̄RMΣΣR

]
+ c.c. (22)

For simplicity, we assume that the isotriplets are mass
degenerate, MΣ ≡M1 = M2 = M3.

The standard model beta function is modified as fol-
lows1 [33]

∆βλ =
1

(4π)2

(
12λTr

[
Y†ΣYΣ

]
− 5Tr

[
Y†ΣYΣY†ΣYΣ

])
(23)

∆βyt =
1

(4π)2
3ytTr

[
Y†ΣYΣ

]
(24)

∆βg =
1

(4π)2
4g3 . (25)

The running of the Yukawa couplings are governed by
the matrix-RGE:

[βYΣ
]ij =

1

(4π)2

[5

2
(YΣY†ΣYΣ)ij

+ (YΣ)ij

(
3Tr
[
Y†ΣYΣ

]
+ 3y2

t −
3

4
g′2 − 33

4
g2
)]
, (26)

from which it follows the beta function of the trace

βTr[Y†
ΣYΣ] =

1

(4π)2

[
5Tr[Y†ΣYΣY†ΣYΣ] + 6

(
Tr
[
Y†ΣYΣ

])2
+ Tr

[
Y†ΣYΣ

](
6y2
t −

3

2
g′2 − 33

2
g2
)]
. (27)

As in the previous section, we assume that one triplet
couples dominantly to the Higgs giving the relation in
(14). And, in the case of low scale type-III seesaw with
large triplet Yukawa couplings we use the relation in (20).

At temperatures above MΣ, the Higgs thermal mass
coefficient (5) picks up an additional contribution from
the fermionic isotriplets given by

δκ2 =
1

4
Tr
[
Y†νYν

]
. (28)

In Fig. 3, we compare the renormalization group run-
ning of λ and SU(2) gauge coupling g in this model with
that in the standard model. The nontrivial SU(2) charge

1 Note that the second term in the beta function of λ is in dis-
agreement with that of [16] by a factor of 2.

103 106 109 1012 1015 1018
�0.2

0.0

0.2

0.4

0.6

0.8

Μ �GeV�

M��500 GeV, Tr�Y�
†Y�� Μ�M�

�0.25

Mt�173.34 GeV

Λ

Κ

g

FIG. 3. The renormalization group evolution of the Higgs
quartic coupling λ (blue) and SU(2) gauge coupling g (red)
in the presence of isospin triplets (solid) and in the standard
model (dashed). In green is the thermal coefficient κ defined
in (5) and modified by (28).

of the triplet causes g to run larger at high energies,
driving the running of λ in the positive direction. The
fermion triplet Yukawa coupling makes λ run in the nega-
tive direction. Therefore, there is a competition between
the increased stabilizing effect of g and the destabilizing
effect of yΣ.

The phase diagram in the Mt–yΣ plane for this model
is shown in Fig. 4. In addition to our findings in the
case of right handed neutrinos, we make two additional
observations for this case:

4. For small Yukawa couplings, the only effect of
fermionic triplets is in the effective value of g at
high scales, indirectly affecting λ to make the elec-
troweak vacuum more stable. This is evident by
the enlarged region of absolute stability near small
values of yΣ.

5. The thermal stability bound is insensitive to Tmax

for small MΣ. The reason is that the thermal cross-
ing rate is controlled by the critical bubble energy
in equation (8). Therefore, the highest rate occurs
at a temperature T∗ when |λ(µ = T∗)| is largest.
According to the Fig. 3, |λ| is maximized at around
T∗ = 1015. As a result, having Tmax larger than this
T∗ does not change the bound.

V. CONNECTION TO OBSERVABLES

In this section, we discuss the implications of our find-
ings on experiments that can probe models of neutrino
mass generation. Sizable neutrino Yukawa couplings
can allow the production of heavy neutrinos at collid-
ers, leading to same sign dilepton final states. The ab-
sence of these events in the CMS [34, 35] and ATLAS
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FIG. 4. Phase diagram of the standard model coupled to three
fermionic isotriplets in the plane of Mt and yΣ, for represen-
tative values of MΣ. Coloring is equivalent to that in Fig. 2.
Note that at 2σ C.L., the top quark pole mass is ∼ 171–175
GeV.

[36] detectors constrain the mixing of right handed neu-
trinos with the electron and muon neutrinos |VlN |2 ∼(
(Yν)lNv/MR

)2
to be in the range 10−3–100 for values of

MR in the range 100–500 GeV. The mixing with tau neu-
trinos is not constrained by LHC searches. For a recent
analysis of bounds on heavy neutrino production at the
LHC, see [37, 38]. Searches by experiments at the LHC
[39, 40] for fermion isotriplets via Drell-Yan production

observe no evidence for their existence for masses up to
300–500 GeV depending on their decay channels.

Electroweak precision data constrain |VlN | in the range
0.06–0.08 [41, 42]. Broadly speaking, this leads to
a constraint on the Yukawa coupling of |(Yν)lN | .
0.4(MR/TeV) with l = {e, µ, τ} and N = {1, 2, 3}. For a
recent analysis of heavy neutrino effects on electroweak
precision observables, lepton number and flavour violat-
ing decays, see [43].

Hierarchical thermal leptogenesis puts a bound on the
mass of the lightest right handed neutrino and on the
reheating temperature TRH & 2× 109 GeV [44, 45]. Our
analysis shows that such high temperatures are allowed
in the early Universe by stability bounds.

VI. CONCLUSIONS

In this paper, we derived bounds by considering ab-
solute, meta-, and early Universe thermal stability of
the electroweak vacuum in models containing either right
handed neutrinos or fermionic isotriplets. To parametrize
the effect of large neutrino Yukawa couplings in the renor-
malization group evolution equations for low scale type-I
and III seesaw models by a single parameter, we demon-
strate the validity of the approximate relationship (20)
between traces of Yukawa coupling matrices. Within the
uncertainty of the measured value of the top quark mass,
there is significant variation in the stability bounds on
the neutrino Yukawa couplings. We confirm the findings
by [16, 17] that for small isotriplet Yukawa couplings, its
modification of the beta function of g helps to stabilize
the electroweak vacuum.
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