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The repulsive Hubbard Hamiltonian is one of the foundational models describing strongly corre-
lated electrons and is believed to capture essential aspects of high temperature superconductivity.
Ultracold fermions in optical lattices allow for the simulation of the Hubbard Hamiltonian with
a unique control over kinetic energy, interactions and doping. A great challenge is to reach the
required low entropy and to observe antiferromagnetic spin correlations beyond nearest neighbors,
for which quantum gas microscopes are ideal. Here we report on the direct, single-site resolved
detection of antiferromagnetic correlations extending up to three sites in spin-1/2 Hubbard chains,

which requires an entropy well below s* = In(2).

Finally, the simultaneous detection of spin and

density opens the route towards the study of the interplay between magnetic ordering and doping

in various dimensions.

The Hubbard model, describing strongly correlated
lattice fermions, supports a rich phase diagram at low
temperatures. Despite the conceptual simplicity of the
Hubbard model, parts of its phase diagram, especially
away from half filling, and its connection to high temper-
ature superconductivity are still under debate [I]. Here,
controlled experiments with ultracold fermions in optical
lattices might provide new insight [2]. For one particle
per site, the so called half filling regime of a balanced two
component fermion mixture, and repulsive interactions,
the Hubbard model features a crossover from a metallic
to a Mott insulating state when lowering the temper-
ature. For even lower temperatures, antiferromagnetic
correlations are expected to develop in the Mott insu-
lating phase due to the superexchange mechanism [2-
5]. The paramagnetic Mott insulating state has been
observed in seminal ultracold atom experiments involv-
ing trap averaged quantities and, recently, at the sin-
gle atom level [6HI2Z]. Detailed experimental studies of
the thermodynamics of the Hubbard model also revealed
its equation of state in the density sector down to tem-
peratures at which short range spin ordering might oc-
cur [I3,[14]. Unfortunately, the experimental preparation
of low entropy lattice fermions has proven to be extremely
challenging, making the observation of longer ranged an-
tiferromagnetism difficult. Important progress in reveal-
ing magnetic ordering in the Hubbard model has been
reported with the observation of nearest neighbor cor-
relations via singlet-triplet spin oscillations [I5HI7] and
short range correlations deduced from optical Bragg spec-
troscopy [I8]. However, the detection of the onset of
magnetic order turned out to be difficult because of the
inhomogeneity of the trapped samples, in which different
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phases coexist. Microscopic control or detection helps
to overcome this limitation and the analogue of anti-
ferromagnetic correlations has been measured in small
systems of up to three fermions [I9]. Recently, local,
non spin-resolved detection of ultracold fermions in single
lattice sites has been demonstrated [20H23] and the non-
uniform entropy distribution in band and Mott insulating
states has been observed in the density sector [IT} T2} [24].

Here we report on a site- and spin-resolved study of
antiferromagnetic correlations in one-dimensional spin-
1/2 Hubbard chains realized with ultracold lithium-6 in
an optical superlattice. Using our novel spin and on-
site atom number sensitive quantum gas microscope, we
directly measure spin correlations together with density
fluctuations in the system. The measurements reveal
finite-range antiferromagnetic spin correlations extend-
ing over up to three sites. Furthermore, we measured
the strength of the spin correlations for increasing inter-
actions, revealing adiabatic cooling at large interaction
strengths. Finally, we observed the decrease of antifer-
romagnetic correlations away from half filling and the
freezing out of density fluctuations at low entropy.

The fermionic atoms in each of the one-dimensional
lattice tubes are well described by the single band Hub-
bard Hamiltonian
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(1)
Here the fermion creation (annihilation) operator is
denoted by 61-10 (¢i,0) at site ¢ for each of the two spin

states o =1,]. The operator n; , = ézgéi)g counts the
number of atoms with spin ¢ on the respective site.
Three competing energy scales govern the physics of this
system: intersite nearest-neighbor hopping with strength
t, onsite interactions of strength U and local trap induced
energy offsets ¢;. While ¢ is controlled via the lattice
depth, U can be tuned independently in the experiment
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FIG. 1. Schematic of the spin and density resolved detection. (A) Schematic of the spin resolved imaging. Each site
of the Hubbard chain was split spin-dependently into a local double well potential. During the splitting process a magnetic
field gradient B’ was applied to separate the two spins. This allows for the simultaneous detection of up spins (|1}, red), down
spins (|), green), doublons (up and down spins overlapping) and holes (gray spheres) and thus for a full characterization of the
Hubbard chains. (B) Typical fluorescence image of atoms in five mutually independent one-dimensional tubes imaged prior to
splitting. The lattice potentials are indicated by the black lines next to the images with a spacing along the tubes oriented in
the z-direction of 1.15 um and a transverse inter-tube separation of 2.3 um. The increasing fluorescence level is shown by darker
colors in relative units as represented by the color bar. The imaging slightly displaces the atoms from their original positions
and also allows for the detection of doubly occupied sites (saturated signal in the center) [24]. (C) Typical image with spin
resolved detection. A superlattice in the y-direction (indicated on the left of the image) was used to split each chain in a spin
dependent manner. The |[|) spins were pulled down, while the |1) spins were pulled upwards. The right image illustrates the

reconstructed Hubbard chains.

using the broad Feshbach resonance of lithium-6 between
the lowest hyperfine states |}) = |F =1/2,mp = —1/2)
and |1) = [1/2,1/2) [25]. In the experiments reported
here, we exclusively worked with repulsive interactions
U > 0, for which the Hubbard model supports finite
range antiferromagnetism with correlations suddenly
appearing at distances beyond nearest neighbors for
entropies per particle below the “critical” value of
s* = S/Nkp = In(2) [26H28]. Importantly, true long
range order is absent in the 1d Hubbard model even
at zero temperature [4, 29], and the resulting algebraic
decay of the correlations is significant even on a distance
of a few sites [27, 28]. In the limit of very strong
repulsive interactions and half-filling, the emerging spin
order is intuitively understood from the mapping of
the Hubbard model to a Heisenberg antiferromagnet
with superexchange coupling J = 4t?/U [3]. For lower
interactions, particle-hole fluctuations become important
and the ground state is characterized by a spin density
wave. In one dimension, the model is Bethe ansatz
integrable [4, 29] and precise predictions for the finite
entropy spin correlations and density fluctuations have
been reported in the relevant parameter regime of cold
atom based experiments [27], [28].

The experiments started with the preparation of a low
temperature balanced spin mixture of the |1) and |])
states in a single two dimensional lattice plane [24]. The
final temperature and atom number was controlled by
magnetic field driven spill-out evaporation at repulsive
interactions [30]. We set the final interaction strength
using a homogeneous magnetic offset field to control the
scattering length in the vicinity of the Feshbach reso-
nance centered at 832G [25]. Afterwards, we ramped
up the large spacing component (ag = 2.3 um) of a su-
perlattice [3T], 32] in the y-direction to prepare indepen-
dent one-dimensional (1d) tubes. Next, we slowly turned
on a lattice with spacing a; = 1.15 um along the tubes
in the z-direction using a 100 ms linear ramp to 11 Eg,
where Er = h? /8mal2 denotes the recoil energy of the
lattice for atoms of mass m. The hopping strength is ¢t =
hx125(9) Hz at this final lattice depth. The lattice filling
was controlled by varying the evaporation parameters.
To simultaneously detect the spin and density degrees of
freedom of the 1d Hubbard chains locally, we froze the
dynamics by rapidly increasing the lattice depth along
the tubes to 42 E'r within 1 ms, followed by a turn-off of
the magnetic offset field in 20ms. Spin resolution was
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FIG. 2. Antiferromagnetic spin correlations versus

distance. The main figure shows the measured spin corre-
lations at U/t = 12.6 for the loosely (blue circles) and more
tightly filtered data (red diamonds), see main text. The stag-
gered behavior directly visualizes the antiferromagnetic na-
ture of the correlations C(d). Correlations up to three sites
are statistically significant. The transverse correlations (gray
line) vanish within its one s.e.m. uncertainty (light gray
shading). The red and blue lines connecting filled symbols
are QMC results for a homogeneous system at half filling
corresponding to entropies per particle of s = 0.51(5) and
s = 0.61(1) respectively. The inset shows the decay of the
staggered spin correlator Cs(d) = (—1)“C(d) in a logarith-
mic plot together with an exponential fit Cs(d) x exp(—d/§)
revealing decay lengths of £ = 0.69(6) sites and £ = 1.3(4)
sites for the two data sets. For low entropies, an exponential
decay is expected to be strictly valid only at large distances.
However, within the statistical uncertainty of the experimen-
tal data the fit captures the observed behavior well. All error
bars represent one s.e.m.

obtained using the superlattice potential and a magnetic
field gradient in the y-direction in a Stern-Gerlach like
setting. The magnetic field gradient shifted the potential
minima experienced by the two spin states of opposite
magnetic moment and the subsequent adiabatic ramp-
up of the short scale component of the y-superlattice
with well separation a; caused a separation of the spins
into the two different sites of the local double well (see
Fig. 1a). Applying this technique to a spin polarized gas,
we inferred a splitting fidelity of 98% limited by super-
lattice phase fluctuations of 25mrad [30]. Finally, we
ramped up a three-dimensional pinning lattice for detec-
tion and reconstructed the lattice site occupations from
fluorescence images (see Fig. 1(b,c)) after deconvolution
with the measured point-spread-function [24] [30]. The
above detection procedure enables us to detect the posi-
tion of all spins, doublons and holes in the system with
single lattice site resolution, thereby obtaining complete
information about the system in Fock space.

First, we analyzed the spin correlations C(d) =
4((S? Af_i_d) - (g»Z)(Af_i_d)) between the spin operators

7
? = (N4 — Ny, )/2 versus distance d. To this end, we
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FIG. 3. Spin and density degrees of freedom at dif-

ferent interaction strength. (A) Spin correlations C(d)
for distances d = 1 (dark blue), 2 (light blue) and 3 (gray)
versus interaction strength U/¢. Starting close to zero at van-
ishing interactions, finite range spin correlations develop and
saturate for interaction strengths U/t > 8. The shaded ar-
eas indicate the QMC predictions in a homogeneous system
at half-filling for an entropy per particle between s = 0.60
(lower bound) and 0.65 (upper bound), the solid line is the
prediction for C(1) at s* = In(2). Dotted lines are isother-
mals for C(1) at the indicated temperature. For large U/t,
we observe adiabatic cooling, while both temperature and en-
tropy decrease in the analyzed spatial region at intermediate
U/t. The transverse nearest neighbor correlations (dark gray
line close to zero) is consistently above the d = 3 spin cor-
relator, supporting its statistical significance. Due to limited
statistics, only loosely filtered data (see main text) is shown.
(B) Evolution of the density degree of freedom. The main
figure shows the evolution of holes (circles) and doublons (di-
amonds) with interaction strength U/t. The hole (Py) and
doublon (Py) fractions decrease for low interactions and then
saturate. Here, data is shown for the loose (blue) and tight
(red) filter case. The inset shows the evolution of the normal-
ized onsite atom number variance Var(n)/(7n). The density
fluctuations are suppressed already at vanishing interactions
due to effects of Pauli blocking in the metal. This suppression
becomes stronger for increasing interactions until the fluctu-
ations saturate. All error bars represent one s.e.m and the
apparent fluctuation of the data is due to day-to-day system-
atics.

fixed the s-wave scattering length to 671(10) ap, where
ap is the Bohr radius, corresponding to U/t = 12.6 and
took a high statistics dataset of 1200 individual pictures.
We focused on the central region of the inhomogeneous



sample, defining two spatial regions of interest for the
analysis. The first one, referred to as the loose filter, in-
volves all sites with an average density (n;) = (7, ++7;)
in the range (7;) = 14+0.3. Here, we benefit from higher
statistics, but there is a considerable effect of lower den-
sity regions in the data. The second, so called tight fil-
ter, selects one specific tube and takes only sites closer to
unity density with (7;) =1 £ 0.1 into account [30]. The
strong nearest-neighbor correlations of C'(1) = —0.220(5)
observed for the loose filtering correspond to 37% of
the expected zero temperature signal in the Heisenberg
limit [27, 28] (see Fig. 2). For the tight filter we even mea-
sured a nearest-neighbor correlation of C(1) = —0.34(9)
corresponding to 58% of the zero temperature prediction.
This data is based on the average over all measurements
taken for U/t > 8 (cf. Fig. 3). We observed signifi-
cant correlations over a distance of up to three sites of
the staggered correlator Cy(d) = (—1)?C(d). A compari-
son between the experimentally measured correlator C(d)
and finite temperature quantum Monte Carlo (QMC) cal-
culations for homogeneous Hubbard chains at half filling
allows to determine the entropy and temperature of the
lattice gas [30]. We inferred an effective local entropy per
particle of s = 0.61(1) in the loosely filtered case, reduc-
ing to s = 0.51(5) for the tight filter, both, significantly
below s* = In(2) ~ 0.69. In a uniform system at half
filling this lowest entropy corresponds to a temperature
of kgT/t = 0.22(4) at U/t = 12.6 [30].

In order to explore the properties of the Hubbard
chains at different interaction strengths U/t, we mea-
sured spin correlations and particle-hole fluctuations for
varying onsite interactions U, while keeping the lattice
ramp and final lattice depth constant at 11 Er (Fig. 3).
We compare the measurements to QMC results for a ho-
mogeneous system at half filling for different tempera-
tures and entropies. The dependence of the correlations
on the interactions is rather different for isothermal or
isentropic state preparation. In the former case, a max-
imum of the correlations is expected at intermediate in-
teractions U/t, where part of the entropy is carried by
density modes [33], while at large interactions the cor-
relation decrease due to the smaller energy scale of spin
excitations given by the superexchange coupling J. In
the isentropic case of constant entropy, spin correlations
saturate towards strong interactions, where the energetic
gap between spin and density modes is large. At inter-
mediate interaction strengths, the correlation behavior
depends on the entropy and a weakly pronounced maxi-
mum exists for intermediate entropies around s* = In(2)
(cf. Fig. 3a), while below s = 0.6 a monotone increase
of the correlations with interaction strength is expected.
Experimentally, we observed a saturation behavior of the
spin correlations for U/t > 8. The inferred temperature
dropped from kgT = 0.6t to 0.3t while increasing U/t
from 8 to 16 as expected for adiabatic cooling. At in-
termediate interactions, U/t = 5, we observed reduced
spin correlations compared to the isentropic prediction
at half filling. We attribute this to a changing entropy
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FIG. 4. Interplay of density and spin fluctuations. We
show the nearest neighbor spin correlations C(1) for differ-
ent densities corresponding to different positions in the trap.
The data combines several measurements at an interaction
strength of U/t = 10.3, also including higher temperature
data. Every data point corresponds to two neighboring sites,
where between 30 and 2000 samples contribute. The spin
correlations C(1) peak just below densities of one, consistent
with the half filling regime taking the detection efficiency of
about 95% into account. The inset shows the normalized den-
sity fluctuations Var(n)/(n) versus C(1) for a density interval
(fi;) = 1£0.1 as indicated by the gray area. Density fluctua-
tions rise steeply for low values of the spin correlator signaling
the saturation of the entropy in the spin sector. This char-
acteristic dependence identifies the strong vertical scatter of
the data in the main figure mainly as a result of different lo-
cal entropies s as indicated by the arrow. For clarity of the
presentation we omit the error bars in the main figure. They
are of the same size as the ones in the inset and correspond
to one s.e.m.

distribution in the trap [8, B0] and a weak increase of
the mean density in the analyzed region by 5%. In the
regime of saturated spin correlations, the doublon and
hole fractions reached their lowest value of P; = 5% and
P, = 12%. The higher hole fraction is mainly due to
the loose filtering resulting in a slight effective hole dop-
ing in the analyzed region of the system, which is lower
(Pg = 3%, P, = ™%) for the tightly filtered data.

More insight into the behavior of the spin correlations
can be obtained by making use of the full microscopic
characterization of the system. To study the antifer-
romagnetic spin correlations away from half filling, we
show the nearest neighbor correlator C(1) per pair of
sites versus their mean density in Fig. 4. This data com-
bines different datasets taken at U/t = 10.3 and also con-
tains measurements at different temperatures, obtained
by holding the cloud for up to 2.5 s in the two-dimensional
plane. We observe a clear dependence of the spin correla-
tor on the local density, with strongest correlations close
to () = 1. Away from half filling, both to higher and
lower densities, a strong decrease of the correlations is
observed reflecting the fact that doping reduces spin or-



der [2]. Generally, the data scatters much stronger than
expected just by statistics, that is, at a given density
we observe events with a range of significantly different
nearest neighbor spin correlations. This reflects the dis-
tribution of entropy within each cloud, as well as between
the measurement settings. To further analyze the data,
we selected a density interval (7;) = 1 £ 0.1 and calcu-
lated the normalized variance of the density Var(n)/(n)
for all pairs of sites in this window. These fluctuations
reflect the entropy in the density sector, while the near-
est neighbor spin correlations are a measure of the spin
entropy. We show their mutual dependence in the inset
of Fig. 4, identifying two distinct regimes of total en-
tropy. In the regime below s* = In(2) (C(1) < 0.15),
the density fluctuations depend only weakly on the total
entropy [27) 28], which in turn is stored in the spin fluctu-
ations. Only when these are saturated at s*, the density
fluctuations grow, visible in their steep rise when the spin
correlations are just below zero. The freezing of density
fluctuations renders them useless as a thermometer in the
low entropy regime, while the highly temperature (and
entropy) sensitive spin correlations are ideal for this pur-
pose down to T' = 0 [27]. Combining the spin correlation
measurements for several distances can further improve
such a thermometer [30].

In conclusion, we have explored the low entropy regime
of one-dimensional Hubbard chains in which finite range
antiferromagnetism starts to develop. The inferred local
entropy is consistently below the critical value of In(2)
reaching s =~ 0.5 in the lowest entropy 1d tube. Combin-
ing our quantum gas microscope with optical superlat-
tices, we demonstrated the simultaneous detection of all
relevant degrees of freedom. We characterized the state
of the Hubbard chains at different interaction strength
in terms of spin correlations and density fluctuations.
The measurable spin correlation signal extended over
three sites, well beyond nearest-neighbors. Using a lo-
cal analysis, we were able to present a first study of the
behavior of the spin correlations away from half filling.
The demonstrated ability to characterize spin correla-
tions in 1d systems locally provides a useful thermometer
in the low entropy regime where density fluctuations are
frozen [27, 28] and cannot serve anymore as a thermome-
ter. Such a “spin thermometer” [34] is a crucial step to-
wards optimized cooling [35] [36] to even lower entropies
required to study, for example, d-wave superfluidity away
from half filling [37]. Furthermore, the combination of su-
perlattices and local detection will allow for the search
of an adiabatic path between low entropy valence bond
solids [I5] or plaquette resonating valence bond states
[38, B9] and the Heisenberg antiferromagnet [40], also in
two dimensions. Realization of the paradigmatic quan-
tum phase transition from such an artificial valence bond
solid to a Heisenberg antiferromagnet [41] thereby seem
within reach of present experiments.

Recently, we became aware of similar experimental re-
sults in two dimensions [42] [43].



SUPPORTING MATERIAL
I. CLOUD PREPARATION

The experiments started with a degenerate, incoherent
spin mixture of the lowest two hyperfine states of lithium-
6 in a single two-dimensional plane of a vertical lattice
with spacing a, = 3.1 ym and depth of V, = 185 Ei. The
resulting harmonic confinement in the z-direction was
w, = 27 x 22.5kHz. Distinct to prior experiments [24],
this single plane was directly loaded from a strongly ellip-
tical shaped dimple trap propagating in the y-direction
with beam waists w, = 10.3 pum and w, = 1.7 um in the
- and z-direction, respectively, at a magnetic field of
599 G corresponding to a scattering length as = 353 apg.
A further crossed dipole trap beam propagating along
the z-direction (wgy = 75 pm) was used to provide addi-
tional radial confinement in the two-dimensional plane.
The final evaporation was performed in the single lat-
tice plane with the additional cross trap by ramping up
a magnetic field gradient along the y-direction in 2.5s to
25G/cm. After ramping down the magnetic field gra-
dient, we set the scattering length (and thus the final
interaction strength U in the lattice) by varying the ho-
mogeneous magnetic field between 529 G and 657G . We
adjusted the peak density of the two dimensional gas to
approximately 1/(1.15 x 2.3) um~2, the required density
for unity lattice occupation, by lowering the power of the
cross trap beam. To prepare one dimensional tubes, we
linearly ramped up the long scale component of a su-
perlattice in the y-direction (agq = 2.3 pm) to a depth
of 34 Er in 100ms. The remaining tunnel coupling be-
tween the tubes is below one Hertz and negligible on the
timescales studied here, yielding decoupled and indepen-
dent tubes. Subsequently, we ramped up a short scale
lattice (a; = 1.15 um) along the tubes in the z-direction
in 100 ms to a lattice depth of 11.0(4) Er, which results
in a tunnel coupling of ¢ = h x 125(9) Hz. The lattice
depths in the x,y, z-direction are given in units of the re-
spective recoil energies: Fp = h x6.28 kHz, h x 1.57 kHz,
h x 0.87kHz.

II. DETECTION
A. Spin resolved detection

The detection sequence was initiated by freezing out
the dynamics along the tubes with an abrupt (1 ms) in-
crease of the lattice depths to 42 Er, 84 Er and 278 Eg
in the z- , y- and z- direction. Then, we ramped down
the magnetic Feshbach field to 1 G to enter the Zeeman
regime, where both spin components have equal and op-
posite magnetic moments. To directly probe both the
local population and the spin state, we used the short
scale component of the superlattice in the y-direction in
combination with a magnetic field gradient [45]. Here,
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FIG. S1. Spin selective imaging via deterministic
splitting in local double wells. The figure shows the local
atom number imbalance I = (et — Nright)/ (Tett + Mright) in
the local double wells for the central region of the cloud versus
the superlattice phase . This externally controlled phase ¢
sets the symmetry of the double wells. For this measurement
a spin polarized sample was used, of which the preparation is
described in ref. [24]. The red data were taken without, the
blue data with the magnetic gradient field of 60(5) G/cm, and
the solid lines are error function fits to the data. The splitting
was done at the symmetric point (¢ = 7/2) of the superlat-
tice potential, where the gradient-free measurement showed
zero imbalance (gray line). Taking into account the detection
fidelity of 95%, the splitting fidelity of 98% is estimated from
the value of the imbalance in presence of the magnetic field
gradient at ¢ = w/2. Error bars denote one s.e.m.

the full superlattice potential is described by

V = Vicos® (kiy + @) + Vi cos? (];ly> , (2)
with lattice depths V; o and wave vector k; = 7/a;. The
relative phase of the superlattice ¢ controlling its sym-
metry was set such that the local double wells were sym-
metric. This was verified by measuring the double well
imbalance versus superlattice phase ¢ for a spin polarized
sample as shown in Fig. S1. The magnetic field gradient
was first set to 60(5) G/cm before adiabatically ramping
up the short scale superlattice component with spacing
a; = ag/2 to V; = 17 ER in 10 ms while ramping down the
long scale component to Vi = 10 Eg. The corresponding
energy offset due to the Zeeman shift between the left
and the right lattice wells was AELr = +h x 6.2(6) kHz
for the spin up and down value respectively. As a re-
sult of their opposite magnetic moments, the spin com-
ponents were adiabatically transferred into different sites
of the local double well in a deterministic way and mea-
suring their positions gave access to their spin state. This
sequence ensured a spin separation fidelity of 0.98 (see
Fig. S1). For the magnetic field gradient of 60(5) G/cm,
we estimated that the relative phase ¢ = 7/2 between
the short and long scale components of the superlattice
had to be controlled to better than 100 mrad, which we
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FIG. S2. Reconstruction of the lattice occupation. (A) Typical raw fluorescence image with overlaid lattice grid. The
color scale gives the photon counts per pixel of the CCD camera. (B) Point-spread-function of the imaging system with color
scale in relative units. The Gaussian widths are o1 = 314nm and o2 = 363 nm along the principal axes. (C) Deconvolved
image from (A) using the point-spread-function shown in (B) using a Richardson-Lucy deconvolution algorithm [44]. The color
scale represents the counts per pixel after this deconvolution. (D) Reconstructed lattice site occupation showing empty sites,
singly occupied ones (blue) and one doublon (red). (E) Histogram of photon counts per site normalized to the n = 1 peak.
The separation between empty and singly occupied sites is excellent, with the counts in the intermediate region dominated by
hopping events. The inset is a zoom into the region indicated by the red box revealing the doublon peak, which is clearly visible
even for the very low number of detected doublons after magnetic splitting (< 1%). We indicate the boundaries for identifying

one and two atoms per site by the vertical lines.

extracted from the width of the red curve of Fig. S1 ob-
tained without applying any magnetic field gradient. The
shot-to-shot rms-fluctuation of the phase was measured
to be 25 mrad by direct imaging of the superlattice po-
tential after the chamber.

B. Reconstruction of the site occupation

Compared to our previous publication [24], we im-
proved the population reconstruction algorithm. In this
work, we used an accelerated Richardson-Lucy deconvo-
lution [44] with a measured point-spread-function that we
obtained by averaging the image of 1000 isolated atoms.
The resulting deconvolved image after 100 steps of the
Richardson-Lucy algorithm contained the signal for ev-
ery atom almost on a single pixel. Integration of the
counts in the region of each lattice site allowed us to iden-
tify sites with zero, one and two atoms with high fidelity
thanks to the parity-free detection [24]. We obtained a
fidelity of > 99% for distinguishing zero and one, and a fi-
delity of > 95% for distinguishing one and two atoms per
site. Doubly occupied sites after spin splitting arise from
atoms in higher band, non perfect splitting and tunneling
during the exposure. We detected less than 0.5 of these
events per image for the measurements reported here.
The reconstruction of a typical image is summarized in
Fig. S2.

C. Definition of the region of interest

To define the different regions of interest on which we
evaluated the data, we used the mean occupation and
the mean spin imbalance per site. In the loosely filtered
case, we include all sites with 0.7 < (7;) < 1.3, effectively
restricting the analysis region to the center of the cloud.
In the main text we also present results for a tighter
density filter of 0.9 < (f;) < 1.1, additionally restricted
to a single chain. This chain was selected based on the
highest nearest-neighbor spin correlations signal aver-
aged over all data sets taken for interactions U/t > 8,
for which we observed saturation of the spin correlations.

A second filter is required due to short-scale imperfec-
tions in the lattice potentials. These are due to inter-
ference fringes in the projected lattice beams, which we
minimized but did not removed entirely. These fringes
spoil the symmetry of the superlattice double wells lo-
cally, leading to a slightly biased splitting of the two spins
in either direction on some sites. To remove this effect
from the data, we took into account only sites on which
we detected a small enough spin imbalance (see Fig. S3).
The precise superlattice phase control ensured a typical
mean imbalance of I = 0.008(6). We filter sites that
are incompatible with a splitting imbalance of less than
I = 0.05 on a 3.50 level. The position of the fringes
drifts slowly on the timescale of days and we select the
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FIG. S3. Selection of the relevant lattice sites used
in the statistical analysis. We define the region of inter-
est for the statistical analysis based on the local density and
the mean imbalance after spin splitting as described in the
main text. The figure shows four different local observables
for the U/t = 12.6 dataset. Sites marked with an “x” are
discarded due to the loose density or imbalance filter and the
black box marks the tube considered in the tight filtered case.
(A) Density (n;) per lattice site. (B) Splitting error in the
spin resolved detection due to interference structures in the
lattice beams. Shown is the splitting error, that is, the mean
detected spin imbalance per site after splitting, normalized
to the root-mean-squared uncertainty of the mean of a bino-
mial distribution. We took only sites into account on which
the splitting error was below 3.5 standard deviations. (C)
Local measurement of the nearest neighbor spin correlator
C(d =1). (D) Local measurement of the next-nearest neigh-
bor spin correlator C(d = 2). In (C) and (D) we draw the
spin correlation only on the left partner of each pair. Sites
accepted by the filter but without a partner site to the right

are discarded and marked with an “o”.

relevant sites per dataset, typically measured over several
hours. Distinct to the density based site selection, this
last filtering is only required due to imperfections in the
detection, not due to physical properties of the system.
The local occupation, imbalance and extracted spin cor-
relators are shown in Fig. S3 for the dataset measured at
U/t =12.6.

III. CALIBRATION OF HUBBARD
PARAMETERS

A. Lattice depth and tunneling calibration

The generation of the lattice potentials via projec-
tion through the objective is described in our previ-
ous work [24]. We calibrated the depth of the var-

0.1}F

Central correlations C(d)

0.4 0.8 1.2 1.6
Trap average entropy s,

FIG. S4. Quantum Monte-Carlo results for the inho-
mogeneous system. QMC calculations of the spin correla-
tions C'(1) and C(2) in the trap center as a function of the
trap average entropy per particle s;, with constant particles
number N =~ 22 for s; < 0.9. The blue lines correspond to

C(1) and the red lines to C(2), while the symbols give the in-
teraction strength: U/t = 4 (circle), 6 (diamond), 8 (square),
10 (star). The shaded area corresponds to the estimated trap
average entropy per particle realized in the experiment. In
contrast to the homogeneous case the correlations gradually
increase when increasing the interaction strength U/t from 4
to 8 for s < 1. Statistical errors are smaller than the symbols.

ious lattices via lattice modulation spectroscopy. To
this end, we used a spin polarized sample in the |1) =
|F=1/2,mp =—1/2) state. After the lattice was
ramped to the desired value, we modulated its intensity
for 300ms with an amplitude of +£3%. We measured
the number of transferred atoms from the ground to the
second excited band versus the modulation frequency by
counting the number of holes. Finally, the tunneling rates
were estimated from a band structure calculation for the
measured lattice depths.

B. Calibration of the interaction strength

The calibration of the interaction strength is based
on the magnetic field tuned s-wave scattering length as,
which has been precisely characterized [25]. The required
magnetic field calibration was done by locating the nar-
row Feshbach resonance at 543.286 G [40] via its associ-
ated atom loss feature in a spin balanced sample, which
allowed for a calibration of the magnetic field to 0.2 G.
The onsite interaction U was then calculated using the
Wannier function of the lowest band for the measured
lattice depths. Because of the large lattice spacing, we
expect only small corrections to the interaction strength
due to multi-band effects [47]. Even at the largest scat-
tering length as = 904 ap used in this manuscript, the



Magnetic field (G)|Scattering length (ap)|Onsite interaction U/h (Hz)| U/t
529 8 19 0.1
573 200 463 3.7
586 272 630 5.1
598 353 820 6.6
611 445 1034 8.4
624 550 1279 10.3
637 671 1560 12.6
649 810 1883 15.2
657 904 2101 17.0

TABLE I. Summary of the interaction parameters used in the measurements.

ratio to the shortest lattice spacing is only as/a; = 0.04.
In Table S1 we summarize the relevant values of the mag-
netic field, the scattering length and the calculated inter-
action strength.

IV. QUANTUM MONTE-CARLO
CALCULATIONS

The numerical results presented in the manuscript
build on the mapping between the one-dimensional
fermionic Hubbard model and a system of two hard-core
bosonic species with on-site interspecies interactions [48].
Path integral Monte Carlo simulations with worm-type
updates [49], here employed in the implementation of
Ref. [50], have a linear scaling in the system volume when
simulating the resulting bosonic model. The method
overcomes critical slowing down for systems near a phase
transition, and also allows to treat the trap efficiently.
The charge C. (atomic density) and spin density wave Cj
are both diagonal observables with respect to the Fock

basis {|...,n;,...)} used in the algorithm, and can read-
ily be computed as
R B S
Coto (i) = 7 (M £n)) 0 £n))). (3)

Here, the arrows distinguish between the two species of
hard-core bosons, the upper (lower) sign refers to the
charge ¢ (spin s) density wave, and ¢ and j are site indices.

All the homogeneous simulations were carried out in
the grand-canonical ensemble on chains of size L = 20,
which was checked to be already large enough to rule out
finite size corrections for the (local) quantities and the
parameters regimes we are interested in. In the experi-
ment, the atom number as well as the total magnetiza-
tion in each tube fluctuates from shot to shot justifying
the use of the grand-canonical approach. Note that in
the canonical ensemble some quantities, for example, the
nearest-neighbor spin-spin correlator, show very strong
finite size effects at half filling and large values of U/t.
For the system sizes and temperatures of interest here,
the values can differ up to 50% from the grand-canonical
values, the latter being much closer to the thermody-
namic limit.

The computation of the entropy per particle s =
S/Nkp is usually more cumbersome in Monte Carlo sim-
ulations. At infinite temperature it is s(8 = 0) = 2 In(2)
while at at zero temperature, s(f = oo) = 0 (in this
section, all energies are measured in units of the hop-
ping t and § = 1/kgT). For intermediate temperatures,
the entropy is obtained by numerical integration of the
thermodynamic relation

B
S(B) = S(Buet) + 6’% dp (4)
Bref

where [..¢ is a reference inverse temperature for which
$(Bret) is known. The total energy E(8) is obtained
from the Monte Carlo simulations and interpolated us-
ing a cubic spline, which reduces the error. The stan-
dard choice was (B, = 0, but we crosschecked the results
by using high temperature series expansion methods [51]
for 8 < 0.01 and by repeating the integration procedure
starting from B = oo, finding very good agreement
between the different methods. The error on s is domi-
nated by the uncertainty on E(8), and was quantified by
bootstrapping the Monte Carlo energy samples and the
integration procedure.

Simulations of the trapped system were carried out
with a harmonic confining potential V' (r) = vr? coupled
to the particle density, effectively modifying the local ef-
fective chemical potential, ¢(r) = p—V(r), cf. Eq. 1. We
set the trap so that V' = 0 at the central site of each chain
and kept the trapping amplitude fixed to v = 0.05. The
total entropy was computed in the same way as described
for the homogeneous case but with S, = 0.01 in Eq.
This temperature is still sufficiently high that the use of
the high temperature series in combination with the local
density approximation remains justified to obtain the ref-
erence entropy. Similarly to the experimental conditions,
the measurements of local observables were restricted to
the sites at the bottom of the trap (sites i = —5,...,5
with respect to the center of the trap), where we veri-
fied that the average filling is close to one for large U/t.
Furthermore, we adjusted the chemical potential for each
interaction strength U/t to keep the total number of par-
ticles in the trap approximately constant (N = 22 for
B 2 2, corresponding to s; < 0.9). This results in the
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FIG. S5. Comparison between experimental spin cor-
relations and quantum Monte-Carlo calculations in a
homogeneous system. The red diamonds are experimental
data for the spin correlations evaluated with the loose density
filter. The data includes measurements for different interac-
tion strengths in the saturated regime of the spin correlator
12.6 < U/t < 17. Some of the measurements were taken for
longer hold times before loading into the lattice, thus increas-
ing the entropy. The black data point corresponds to the
tighter filtered case described in the main text. The solid line
is the quantum Monte-Carlo results for the spin correlators
C(1) and C(2) for a homogeneous system at half filling and
U/t = 12.6 with different entropies s indicated.

central region of the trap being slightly doped towards
higher densities for low U/t.
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V. ENTROPY ESTIMATES

As shown in Fig. S4, the QMC simulations in the trap
at constant total particle number qualitatively explain
the evolution of the spin correlations with increasing in-
teractions (cf. main text Fig. 3A). The entropy quoted in
this figure is the trap average entropy per particle s; and
in the marked regime around s; =~ 0.8 the simulations
reproduce the observed behavior of increasing spin cor-
relations between U/t = 4 and the plateau region above
U/t = 8. This indicates that the evolution of the trapped
system is isentropic also in the intermediate U/t regime.
Due to the imperfect knowledge of the trap details in the
experiment we did not attempt a more detailed compar-
ison here.

The spin correlator C(d) provides a good relative ther-
mometer since its modulus monotonously decreases with
temperature for a given lattice filling and interaction
strength. However, to obtain an absolute value for the
temperature or entropy, one needs to compare to a theo-
retical model. In Fig. S5 we plot the the correlators C(1)
and C(2) for different data sets and compare them to
QMC calculations in a homogeneous system of varying
entropy at half filling. Based on the good agreement be-
tween theory and experiment one can infer the entropy
of the system by finding the Monte-Carlo dataset that
best fits the experimental correlators C(d) for d = 1,2, 3.
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