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Abstract

In 2011, the “ADHD-200 Global Competition” was held with the aim of identifying biomark-
ers of attention-deficit/hyperactivity disorder from resting-state functional magnetic reso-
nance imaging (rs-fMRI) and structural MRI (s-MRI) data collected on 973 individuals.
Statisticians and computer scientists were potentially the most qualified for the machine
learning aspect of the competition, but generally lacked the specialized skills to imple-
ment the necessary steps of data preparation for rs-fMRI. Realizing this barrier to entry, the
Neuro Bureau prospectively collaborated with all competitors by preprocessing the data and
sharing these results at the Neuroimaging Informatics Tools and Resources Clearinghouse
(NITRC) (http://www.nitrc.org/frs/?group_id=383). This “ADHD-200 Preprocessed”
release included multiple analytical pipelines to cater to different philosophies of data anal-
ysis. The processed derivatives included denoised and registered 4D fMRI volumes, regional
time series extracted from brain parcellations, maps of 10 intrinsic connectivity networks,
fractional amplitude of low frequency fluctuation, and regional homogeneity, along with grey
matter density maps. The data was used by several teams who competed in the ADHD-200
Global Competition, including the winning entry by a group of biostaticians. To the best
of our knowledge, the ADHD-200 Preprocessed release was the first large public resource of
preprocessed resting-state fMRI and structural MRI data, and remains to this day the only
resource featuring a battery of alternative processing paths.
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1. Introduction

In 2011, the “ADHD-200 Global Competition” was held with the aim of engaging
researchers from a variety of analytical backgrounds to identify biomarkers of attention-
deficit/hyperactivity disorder (ADHD) from resting-state functional magnetic resonance
imaging (rs-fMRI) and structural MRI (s-MRI) data [1]. The competition made use of
the “ADHD-200 Sample” data collection that was aggregated from eight independent sites
and shared through the Intenational Neuroimaging Datasharing Initiative (INDI) [2]. The
data includes rs-fMRI, structural MRI (s-MRI), and basic phenotypic information for 973
individuals: some typically-developing controls (TDC) and patients diagnosed with ADHD
[1]. Competitors were given five and a half months to optimize a classification algorithm
on training data (776 individuals) and submit their predicted clinical labels on test data
for which diagnostic information was withheld. The competition data was distributed in a
raw form and, before any analysis could begin, the images had to be preprocessed to make
them comparable across individuals and reduce noise. These preprocessing steps present
a significant hurdle for would-be competitors who do not have the specialist knowledge of
neuroimaging methods, or access to high performance computing resources. Realizing this
barrier to entry, the Neuro Bureau, a non-profit organization aimed at facilitating open sci-
ence grassroots initiatives1, prospectively collaborated with all competitors by preprocessing
the data and sharing these results.

The “ADHD-200 Preprocessed” is a repository of preprocessed rs-fMRI and s-MRI data
along with statistical derivatives from the ADHD-200 Sample. Rather than favoring a
specific processing strategy, we followed a pluralistic approach by preprocessing the data
using multiple pipelines (called “Athena”, “Burner”, and “NIAK”) that differed in the
toolsets used, the philosophy motivating choices of algorithms and parameters, and the
statistical derivatives calculated. The Athena pipeline processed rs-fMRI and s-MRI images
using a combination of AFNI [3] and FSL [4] neuroimaging toolkits. The Burner pipeline
used SPM8 [5] to process s-MRI data for voxel-based morphometry. The NIAK pipeline
processed rs-fMRI and s-MRI using the NeuroImaging Analysis Kit [6].

2. Organization and access to the repository

The ADHD-200 Preprocessed data was released in 2011 and can be downloaded from
NITRC2. No data usage agreement is required to access or download the data, the only
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requirement is registering for a free NITRC account. This registration enables downloads to
be tracked for usage statistics and users to be contacted in the event that errors are found
in the dataset. The ADHD-200 Sample allows unrestricted data usage for non-commercial
research purposes provided that the specific datasets included in an analysis be cited appro-
priately and that their funding sources be acknowledged3. There are no more restrictions
placed on the preprocessed data or derivatives other than the request that the ADHD-200
Preprocessed Initiative is cited appropriately and that the specific pipeline is acknowledged
in publications using the data. A forum is available on the Neuro Bureau’s NITRC project
page for users to ask questions or report problems4. Questions regarding data acquisition
or phenotypic variables should be directed to INDI’s support forum5.

3. Contents of the repository

The ADHD-200 Preprocessed repository contains preprocessed outputs and derivatives
for data from the ADHD-200 Sample, which includes 973 individuals (352 F) between the
ages of 7 and 27 aggregated from 17 different studies conducted across 8 different sites
(for a breakdown of age and sex by diagnosis, see Table 1). For each individual, phe-
notypic data includes sex, age, handedness, ADHD diagnosis (585 TDC, 362 ADHD, 26
with diagnosis unavailable), ADHD subtype (ADHD-combined, ADHD-inattentive, ADHD-
hyperactive/impulsive), one of three different measures of ADHD severity, one of five mea-
sures of intelligence, co-morbid diagnoses, and whether or not they have used medication to
treat their symptoms [1]. Imaging data for each individual includes one or more T1-weighted
high-resolution s-MRI scan (s-MRI) and one or more rs-fMRI scan. The majority of data
was acquired during a single imaging session, although a second session is available for 15
individuals from the Washington University at Saint Louis (WUSTL) site. There is a sub-
stantial amount of variation in data acquisition procedures across sites including the type of
MRI system and scanning parameters, the length of the rs-fMRI scans, and the instructions
given to participants prior to the scan (see Tables 2 and 3).

Nearly all of the imaging data from the ADHD-200 Sample was included in the pre-
processing effort, though some individuals were excluded for poor quality or missing data6.
The results of the preprocessing are made available as a collection of compressed tar files
that are organized by pipeline, sites of data collection, training and test samples, as well
as by derivatives. A group-level file containing the phenotypic data is available in comma-
separated-values format (.csv).

Shared preprocessed data and extracted features include:

3http://fcon_1000.projects.nitrc.org/indi/ADHD-200/
4http://www.nitrc.org/forum/forum.php?forum_id=2046
5http://www.nitrc.org/forum/forum.php?forum_id=1735
6Further information regarding excluded data can be found at the respective pipeline wiki page: Athena:

http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline#Excluded_Data;
Burner: http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:BurnerPipeline; NIAK:
http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:NIAKPipeline.
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Figure 1: Average and standard deviation of the grey matter density maps generated by the Burner pipeline,
for all subjects in the test subsample of ADHD-200 Preprocessed.

Figure 2: The brain parcellations used to generate regional time series in the NIAK (ROI1000 and ROI3000)
and Athena (all other parcellations) pipelines. Each region was randomly assigned to one color in the
colormap, and the in-plane outline of regions was painted white at 1 mm resolution.

• 3D grey matter density maps suitable for voxel-based morphometry – Athena and
Burner (see Figure 1),

• 4D preprocessed resting-state fMRI data including limited intermediaries and quality
assessment – Athena and NIAK,

• Average time series for brain regions from structurally defined parcellations – Athena
(see Figures 2 and 3),

• Average time series for brain regions for regions defined by functional parcellation –
Athena and NIAK (see Figures 2 and 3),

• Spatial maps for 10 intrinsic connectivity networks (ICNs), fractional amplitude of
low frequency fluctuations (fALFF), and regional homogeneity (ReHo) – Athena (see
Figure 4).
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Figure 3: The average functional connectivity matrix (Pearson’s correlation coefficient between regional time
series) was generated across all individuals of the KKI site, for all parcellations of the release (see text for
details). This matrix was further binarized by retaining connections with an average correlation larger than
0.3. The resulting binary adjacency matrices have been represented with an automated layout generated by
Yfan Hu’s multilevel algorithm, as implemented in the Gephi software [7]. The size and color of each node
was set proportional to its degree, relative to the min and max inside the graph.

3.1. Athena Pipeline

The Athena pipeline7 processed rs-fMRI and s-MRI images using a custom BASH script
that combined AFNI [3] and FSL [4] neuroimaging toolkits and was run on the Athena

7http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
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Figure 4: Derivatives from the Athena pipeline including ten intrinsic connectivity networks (ICNs), frac-
tional amplitude of low-frequency fluctuations (fALFF), and regional homogeneity (ReHo). Asterisks (*) in
the latter two derivatives denote the difference in colorbar max/min values, as indicated.
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computer cluster at Virginia Tech’s Advanced Research Computing center8. The processing
scripts for each site are distributed in the repository, as well as on Github9, along with
output log files for each processed dataset.

3.1.1. Structural processing

Athena’s s-MRI pipeline began with skull-stripping to remove non-brain tissue and back-
ground from the images [8] and segmenting the results into white matter (WM), cerebro-
spinal fluid (CSF), and grey matter (GM) probability maps [9]. A non-linear warp was cal-
culated between the skull-off image and MNI space as represented by the NIHPD 4.5–18.5y
age-specific assymmetric template [10] using a two step procedure that calculates a lin-
ear transform [11], that is subsequently refined by a non-linear registration procedure [12].
Shared s-MRI outputs include: skull-stripped whole-brain images and smoothed (by a 6
mm FWHM Gaussian) and unsmoothed GM density maps in MNI space at 1×1×1 mm3

resolution, along with the FSL fNIRT non-linear warp, as compressed NIfTI files (.nii.gz).

3.1.2. Functional processing

Preprocessing. Athena’s rs-fMRI pipeline involved removing the first four volumes to allow
for magnetization to reach equilibrium, site-specific slice timing correction to the middle
slice, re-aligning each volume to the first volume to correct for motion [13], and calculating
a linear transform between the mean functional volume and the corresponding s-MRI [11].
The rs-fMRI to s-MRI transform was then combined with the s-MRI to MNI non-linear
warp to write the functional data into MNI152 space at 4 × 4 × 4 mm3 resolution. Mean
WM and CSF signals extracted using the masks calculated during s-MRI processing were
included along with 6 head motion parameters and a third-order polynomial in voxelwise
nuisance regression models to remove variation due to physiological noise, head motion,
and scanner drifts from the time series[14, 15]. The resulting denoised time series were
band-pass filtered (0.009 Hz < f < 0.08 Hz) to limit the data to the frequencies implicated
in resting state functional connectivity [16, 17] and then spatially smoothed with a 6 mm
FWHM Gaussian filter. Shared rs-fMRI outputs include: denoised rs-fMRI volumes, with
and without temporal bandpass filtering, in MNI space (compressed 4D NIfTIs, nii.gz), the
mean rs-fMRI image and brain mask in template space (.nii.gz), and six parameter head
motion traces (tab-separated values, AFNI .1D files).

Time series for structurally defined brain areas. Regional time series were extracted for the
automated anatomical labeling (AAL) [18], Eickhoff-Zilles (EZ) [19], Harvard-Oxford (HO)
[20–23], and Talairach and Tournoux (TT) [24] parcellations. The EZ parcellation was de-
rived from the max-propagation parcellation distributed with the SPM Anatomy Toolbox10

and was transformed into template space using the Colin 27 template (also distributed with
the toolbox) as an intermediary. The HO parcellation was constructed from 25% thresholded

8http://www.arc.vt.edu/
9https://github.com/preprocessed-connectomes-project/adhd200_athena_scripts

10http://www.fz-juelich.de/inm/inm-1/EN/Forschung/_docs/SPMAnatomyToolbox/

SPMAnatomyToolbox_node.html
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cortical and subcortical max-propagation parcellations distributed with FSL. The parcella-
tions were bisected into left and right hemispheres at the midline (x = 0), ROIs representing
left/right WM, left/right GM, left/right CSF and brainstem were removed from the sub-
cortical parcellation and then the subcortical and cortical ROIs were combined into a single
parcellation. The AAL parcellation distributed with the SPM8 version of the AAL Toolbox11

and the TT parcellation distributed with AFNI were coregistered and warped into template
space. Each of the structural parcellations were resampled into the functional space using
nearest-neighbor interpolation. The average time series within each parcel were extracted
from both the filtered and unfiltered data, and are distributed in tab-separated values for-
mat (AFNI .1D). Each of the conformed ROI parcellations are available as compressed 3D
NIfTI files (.nii.gz).

Time series for functionally defined parcellations. The CC200 and CC400 functional brain
parcellations were constructed using a two-stage spatially-constrained spectral clustering
procedure [25] applied to unfiltered preprocessed rs-fMRI data from a subset (N = 650)
of the participants in the training dataset. Participants were chosen for inclusion based on
registration quality and after excluding participants with more than 3 mm translation or 3
degrees rotations in their motion parameters. To reduce computation time, the clustering
was restricted to grey matter using a group GM mask that was constructed by averaging
individual GM masks derived from FreeSurfer automated segmentation [26]. Although 200
and 400 ROIs were specified in the functional parcellation procedure, the normalized cut
algorithm resulted in 190 and 351 clusters respectfully. Time series were extracted for each
parcellation from both the filtered and unfiltered data by averaging the voxel time series
contained within each labeled region and are distributed in tab-separated values format
(AFNI .1D). CC200 and CC400 brain parcellations are available as compressed 3D NIfTI
files (.nii.gz).

ICN time series and spatial maps. Time series and spatial maps were derived for 10 group
ICNs generated by [27], which were found to be consistent across resting-state datasets and
a variety of neuroimaging tasks. Based on these template ICNs, we applied a modified dual-
regression approach [28] to the unfiltered preprocessed data. A spatial multiple regression
was first used to extract time series corresponding to each network. In a second step, each
time course was independently correlated with whole-brain time series to generate subject-
specific functional connectivity maps for each network. Alternatively, all time series were
entered simultaneously into a multiple (temporal) regression, and the regression coefficients
associated with each time series constituted the functional connectivity maps. The resulting
ICN time series are distributed as tab-separated values (AFNI .1D) files and the spatial
maps for both temporal regression approaches are distributed as compressed 4D NIfTI files
(.nii.gz).

fALFF and ReHo. Whole brain fALFF maps were generated by dividing the variance of
each voxel’s bandpass-filtered time series by the variance of its unfiltered time series [29].

11http://www.cyceron.fr/index.php/en/plateforme-en/freeware
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ReHo was estimated from the unfiltered data at each voxel by the Kendall’s Coefficient of
Concordance [30] between the voxel and its 26 face-, edge-, and corner- touching neighbors.
The resulting fALFF and ReHo whole brain maps are distributed as compressed 3D NIfTI
files (.nii.gz).

3.1.3. Quality Control

Images were visually inspected and attempts were made to fix gross misregistration
errors by hand adjusting the offending images to center them on the anterior commisure
and rotate them into rough correspondence with the MNI template. With the exception
of a few datasets that were missing data, and one dataset that was corrupted, all of the
ADHD-200 Sample was processed and released by Athena, regardless of data quality. This
was done to accommodate differing opinions as to what qualifies as usable data, and to
provide poor quality data that may be used by others to develop methods that are robust
to noise. Files containing the six motion parameters for each rs-fMRI data and anatomical
and mean EPI images in template space have been included in the release to enable users
to determine high-motion data or poor registrations.

Additional quality metrics derived from the preprocessed s-MRI, GM masks, mean rs-
fMRI images, fALFF maps, and FC maps were also included to help with the QC process.
For each data type a mean and standard deviation image was calculated from all of the
scans (in stereotaxic space) from all of the subjects. These images were used to perform

a voxelwise z-score transformation on each data type for each subject zi = (vi−mi)
σi

. For
each image (or map), the number of these z-scores whose absolute value exceeded 3 where
summed to generate a quality score. The higher the resulting sum, the larger the number
of voxels a image has with |z| ≥ 3 and the more likely the images are outliers. Using this
metric it is possible to rank images for a more directed search for poor quality scans. These
metrics are distributed in participant-specific text files along with the BASH scripts that
implement the procedure.

A rigorous visual inspection of registration has also been performed using the same
procedures and raters (PB and YB) as the NIAK pipeline. The procedure entailed generating
an online report12 of registration quality for all subjects. The report includes a visualization
of the individual structural images in standard space overlaid onto the corresponding brain
template (MNI pediatric), as well as a visualization of the individual mean EPI image
overlaid onto the corresponding structural image, both in standard space. These images
were visually reviewed, and images with severe misregistraion or quality problems were
marked as “fail” (7% failure rate). The outcome of the visual quality assessment along with
all available phenotypic variables have been consolidated into a tabular-separated (.tsv)
spreadsheet that can be downloaded from NITRC13.

12http://preprocessed-connectomes-project.org/adhd200_visual_qc_athena/
13https://www.nitrc.org/frs/download.php/9024/adhd200_preprocessed_phenotypics.tsv
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3.2. Burner Pipeline

The Burner pipeline14 used SPM8 [5] to process s-MRI data for voxel-based morphometry
[31] style analyses.

3.2.1. Structural processing

Processing began by segmenting s-MRI images into GM and WM probability maps using
SPM8’s unified segmentation procedure, which iteratively registers the data to a template
and performs tissue classification until both are optimized [32]. Next, SPM8’s DARTEL
toolbox [33] was used to register the s-MRI of all participants into a common space using
an iterative method. Initially, all WM and GM maps were rigidly aligned, and the initial
GM and WM templates were created by averaging all aligned maps. Then, all WM and
GM maps were non-linearly registered to the templates. New templates were created after
each such iteration of registration. The procedure was repeated six times (i.e. template
creation and registration) to generate sharper templates and warping all participant WM
and GM maps to the template space. The final (6th iteration) non-linear deformations were
applied to each participant’s GM probability maps to transform them into the space of the
population average at 1.5 × 1.5 × 1.5 mm3 resolution and modulated to conserve the global
tissue volumes after normalization. The resulting grey matter density maps are distributed
as 3D NIfTI files (.nii).

3.2.2. Quality Control

Stringent quality control was not applied to the data in order to accommodate different
opinions on what constitutes poor quality data. Images for four participants were excluded
after visual inspection by Dr. Chu because they were determined to be of insufficient quality
for further processing.

3.3. NIAK Pipeline

The NIAK15 is a collection of workflows, implemented in the Pipeline System for Octave
and Matlab (PSOM) [34], that perform s-MRI and rs-fMRI processing using a combination of
generic medical image processing modules, the MINC tools16, and custom Matlab/Octave
scripts. The ADHD-200 Sample was processed using NIAK version 0.6.4.1, running on
a server of the Canadian Brain Imaging Research Platform (CBRAIN) [35]. The NIAK
is distributed as an open-source software under MIT license and the code is available on
NITRC17 and Github18. The processing scripts for ADHD200 are available on github19.
The log files for execution were included with the derivatives and can be accessed through
the PSOM interface20.

14http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:BurnerPipeline
15http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:NIAKPipeline
16http://en.wikibooks.org/wiki/MINC
17http://www.nitrc.org/frs/?group_id=411
18https://github.com/SIMEXP/niak
19https://github.com/preprocessed-connectomes-project/adhd200_niak_scripts
20http://psom.simexp-lab.org/how_to_use_psom.html
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3.3.1. Structural processing

The NIAK implements a variant of the CIVET pipeline [36]. Each individal s-MRI scan
was first corrected for intensity non-uniformities [37] and the brain was extracted using a
region growing algorithm [38]. Individual scans were then linearly registered (9 parameters)
with the T1 MNI symmetric template [10], restricted to the brain with the previous mask.
Note that, by selecting a symmetric template, it is possible to study functional connectivity
between homotopic regions by simply flipping the x axis in stereotaxic space, e.g. [39]. The s-
MRI scans were again corrected for intensity non-uniformities in stereotaxic space, this time
restricted to the template brain mask. An individual brain mask was extracted a second
time on this improved image [38] and combined with template priors. An iterative non-
linear registration was estimated between the linearly registered s-MRI and the template
space, restricted to the brain mask [40]. A final brain mask of the T1 image in native
space was extracted from the template brain mask by inverting the linear and non-linear
transformation. This final mask was used for registration between rs-fMRI and sMRI data
(see below). Shared s-MRI outputs include: non-uniformity corrected T1 volumes in native
and stereotaxic space (after linear or non-linear transformations) at 1 mm isotropic resolution
and brain masks in all spaces, in compressed NIFTI format (.nii.gz), as well as the linear
and non-linear transformations from native to template space, as .xfm MINC files.

3.3.2. Functional processing

Preprocessing. The NIAK rs-fMRI pipeline involved removing the first three volumes to
allow for magnetization to reach equilibrium, site-specific slice timing correction to the
middle slice, and estimating the parameters of a rigid-body motion between each time frame
and the median volume of a run, followed by spatial resampling across frames. The fMRI
time series were then corrected from slow time drifts (high-pass filter with a 0.01 Hz cut-off,
using a discrete cosines transform) and physiological noise using an automated labeling of
noise components in an individual independent component analysis, ICA [41]. Finally, the
median volume of one selected fMRI run for each subject was coregistered (restricted to
the brain) with the corresponding s-MRI scan using Minctracc [40]. The rs-fMRI to s-MRI
transform and s-MRI to template (non-linear) transform were combined to resample the rs-
fMRI volumes into MNI space at a 3 mm isotropic resolution and the results were spatially
smoothed with a 6 mm FWHMGaussian filter. Shared rs-fMRI outputs include: denoised rs-
fMRI volumes in MNI space (compressed 4D NIfTIs, nii.gz), the mean / standard deviation
rs-fMRI volumes and brain mask in native and template space (.nii.gz), six parameter head
motion traces (HDF5 .mat files) as well as individual ICA reports (.pdf).

Time series for functionally defined regions. A region-growing algorithm [42] based on the it-
erative merging of mutual-nearest-neighbours was implemented to generate functional brain
parcellations. The spatial dimension was selected arbitrarily by specifying the size where the
growing process should stop, measured in mm3. Two parameters (1000 mm3 and 330 mm3)
were selected, resulting in the ROI1000 and ROI3000 parcellations, which include roughly
1000 and 3000 ROIs covering the grey matter, respectively. The region growing was applied
on the time series concatenated across all participant’s rs-fMRI data (after correction to

11

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 19, 2016. ; https://doi.org/10.1101/037044doi: bioRxiv preprint 

https://doi.org/10.1101/037044
http://creativecommons.org/licenses/by/4.0/


zero mean and unit variance) from the KKI site (training data only). The homogeneity of
regions was thus maximized on average for all subjects, and the regions were identical for all
subjects. To limit the amount of memory required by the region-growing procedure, it was
applied seperatedly in each of the 116 areas of the AAL template [18]. The average time
series for each ROI were extracted for both parcellations and are distributed in individual
HDF5 (.mat) files. The ROI1000 and ROI3000 parcellations are also available as compressed
3D NIfTI files (.nii.gz).

3.3.3. Quality control

Outputs of the NIAK pipeline were subjected to a careful visual inspection and the QC
reports, along with head motion statistics, are available on the NIAK description page 21.
Estimates of the maximum motion (translation and rotation) between consecutive functional
volumes for each rs-fMRI dataset were inspected to categorize the datasets as containing
minimal (<1mm or degree), moderate (2 to 3 mm or degrees) or severe motion (>3 mm
or degrees). The individual brain registration of the NIAK pipeline were visually inspected
using online QC reports22, similar to those generated for the Athena pipeline. When sub-
standard registration outcomes were identified, a parameter controlling the non-uniformity
correction of the s-MRI was adjusted and the analysis was repeated until the coregistration
results were satisfactory. Satisfactory results could not be achived with some datasets and
have been indicated as “Fail” for QC (5.2% failure rate) in the .tsv spreadsheet including
QC assessments, available on NITRC23.

4. Usage recommendations

In line with the original purpose of the ADHD-200 Global competition, most of the
publications that have used the ADHD-200 Preprocessed initiative data have proposed new
machine learning techniques for predicting ADHD diagnosis or subtype. The most frequently
used derivatives have been Athena preprocessed fMRI volumes [e.g. 43, 44] and Athena
regional time series [e.g. 45, 46]. Works have used Burner pipeline data both in isolation
[e.g. 47–49] or in combination with the Athena functional derivatives [e.g. 50–52]. A fewer
number of publications have also used Athena ICN, ReHo and fALFF maps [e.g. 53] and the
NIAK high resolution (either ROI1000 or ROI3000) regional time series in their main analysis
[e.g. 54, 55]. Researchers have also found value in this initiative beyond the processed data,
such as the CC200 or CC400 functional brain parcellations [e.g. 56, 57] and the Athena
processing scripts [.e.g 58]. The three PhD dissertations [59–61] and three master’s theses
[62–64] that have used this resource have all focused on disease state prediction and data
dimensionality reduction techniques.

To the best of our knowledge, there are no published comparisons between the results
generated by the Athena and NIAK pipeline. The two pipelines conceptually implement

21http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:NIAKPipeline#Quality_

control_of_the_preprocessing_-_Training_dataset
22http://preprocessed-connectomes-project.org/adhd200_visual_qc_niak/
23https://www.nitrc.org/frs/download.php/9024/adhd200_preprocessed_phenotypics.tsv
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Table 1: ADHD-200 participants by site. BHBU: Bradley Hospital/ Brown University, KKI: Kennedy
Krieger Institute, NI: NeuroIMAGE sample, NYU: New York University Child Study Center, OHSU: Oregon
Health Sciences University, PKU: Peking University, Pitt: University of Pittsburgh, WUSTL: Washington
University at Saint Louis, avg.: average. ∗Diagnostic labels are currently not available for BHBU, they have
been listed as TDC in the table, but not included in the totals.

TDC ADHD
Site Sex N Age Range (avg.) N Age Range (avg.)

BHBU F 17∗ 8 - 18 (13.8) 0 -
M 9∗ 12 - 18 (16.1) 0 -

KKI F 28 8 - 12 (10.3) 10 8 - 13 (9.9)
M 41 8 - 13 (10.4) 15 8 - 13 (10.1)

NI F 25 12 - 26 (18.8) 5 12 - 20 (15.2)
M 12 13 - 25 (17.9) 31 11 - 21 (17.1)

NYU F 55 7 - 18 (12.2) 34 7 - 17 (10.1)
M 56 7 - 18 (12.0) 117 7 - 18 (11.2)

OHSU F 40 7 - 12 (9.0) 13 7 - 11 (8.9)
M 30 7 - 12 (9.5) 30 7 - 12 (8.9)

PKU F 59 8 - 15 (10.9) 10 9 - 16 (10.9)
M 84 8 - 15 (11.8) 92 8 - 17 (12.2)

Pitt F 44 10 - 20 (15.7) 1 15
M 50 10 - 19 (14.5) 3 14 - 17 (15.7)

WUSTL F 28 7 - 22 (11.3) 0 -
M 33 7 - 22 (11.5) 0 -

Totals F 279∗ 7 - 26 (12.3) 73 7 - 20 (10.4)
M 306∗ 7 - 25 (12.1) 288 7 - 21 (11.9)

very similar steps, with key operations including the non-linear volumetric registration of
individual structural MRIs in two different variants of the MNI space, and the registration
of individual EPI and T1 images. The most striking differences between the pipelines are
in the software that they used and the opinions that drove the parameter choices. The
Athena implemented nuisance variable regression [14, 15] (motion parameters, WM and GM
signals), while NIAK implemented an automated labeling of structured noise in a spatial
ICA [41]. The Athena strategy is fairly standard in the rs-fMRI community, while ICA-based
noise attenuation techniques are less common. Athena provided time series for a variety of
low-dimension anatomical and functional brain parcellations, whereas NIAK favored much
higher-resolution (several thousands) brain parcels. There are also differences in the type
of data that each pipeline offers, Athena provides a wide variety of statistical derivatives
calculated from both the functional and structural data, whereas Burner provided structural
derivatives only, and NIAK primarily focused on function. Beyond personal ideology, the
availability of particular features, or allegiances to certain software tools there is no clear
reason to prefer one pipeline over the other. It has recently become clear that even subtle
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variations of processing environments can impact the end-results of processing pipelines
[65], even when the same processing is replicated. The variety of data available through this
initiative enables researchers to compare the robustness of their tools or analysis results to
different processing choices and derivatives.

The ADHD-200 Preprocessed sample also provides ample opportunity for analyses be-
sides the identification of rs-fMRI based biomarkers of ADHD [66]. With 585 TDC partici-
pants between the ages of 7 and 26, and the inclusion of intelligence measures, the ADHD-200
Preprocessed is a valuable resource for mapping developmental trajectories [67–69] and other
sources of inter-individual variation [70]. Perhaps most exciting are new methods that clus-
ter individuals based on connectivity profiles [71, 72], which are providing new hope for using
neuroimaging data to parse the heterogeneity within mental health disorders [73]. One of
the outstanding needs for neuroimaging, and connectomics in particular, is the development
and validation of new analytical tools and processing strategies [66, 74, 75]. In the service of
this aim, the ADHD-200 Preprocessed repository has the necessary components to become
a benchmark dataset for evaluating new tools as they are proposed.

The two biggest challenges for using the ADHD-200 Preprocessed data are head motion
[76–81] and inter-site variation in the acquisition equipment, parameters, and experimental
procedures [82, 83]. A variety of different approaches have been proposed for addressing head
motion in hyperkinetic populations [76, 84], and in the ADHD-200 Sample in particular [79],
that should be considered when analyzing the data. At the very least, some statistic that
characterizes individual motion (such as root mean square deviation [85]) should be included
as a nuisance regressor in the group-level model [78, 80]. Differences in the manner in which
data was collected at each site can introduce additive and multiplicative effects (batch effects)
to the data, which may obscure the underlying biological signal [82, 83]. Including a regressor
for acquisition protocol (see Tables 2 and 3 for a summary of the different protocols), the
average pairwise correlation between all regions in the brain (GCOR) [86], or the whole-brain
average of the feature under inquiry [83], have all been shown to be effective for dealing with
inter-site variation.

5. Discussion and conclusions

The ADHD-200 Preprocessed initiative was successful in terms of its primary objectives:
the derivatives shared in the repository were effectively used by many researchers during
and after the ADHD-200 Global Competition, with over 10,500 downloads by more than
600 users, as well as 52 resulting publications [34, 43–58, 82, 87–120], 3 PhD theses [59–61],
3 master’s dissertations [62–64], and 1 patent [121] derived from the release in just over
three years. Further publications are either in press or under review, and an updated list of
publications will be maintained in a public Mendeley group24. Although there was clearly a
peak in usage around the ADHD-200 Global competition, there has been a sustained amount
of downloads and publications since then, see Figure 5, which we take as a demonstration
of a long-term interest from the community in this resource.

24https://www.mendeley.com/groups/4198361/adhd-200-preprocessed/
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Figure 5: Statistics on download and citations of the ADHD200 preprocessed initiative.

The ADHD-200 preprocessed has helped to expand the boundaries of the traditional
neuroimaging community, with several publications in core engineering and statistics jour-
nals that do not routinely feature neuroimaging applications, such as Statistica Sinica [55]
or the Journal of the American Statistical Association [104], amongst others [e.g. 43, 47–
50, 54, 89–91, 99–102, 113, 114]. In particular, the winning team of the ADHD-200 Global
Competition was based at the Johns Hopkins Biostatistics Department and used ADHD-200
Preprocessed to develop their diagnostic algorithm [51]. We also found interesting that a
handful of methodological publications used the ADHD-200 Preprocessed sample as one ap-
plication in a series of benchmarks that could be as varied as positron emission tomography
in Alzheimer’s disease [55], the Yeast gene regulatory network [102] or gene expression in
brain tissues of patients with HIV-1 associated neurocognitive disorders [91]. This suggests
that fully processed, easy-to-access imaging samples could help validate general-purpose
methods on a wider scope of applications.

The impact of the ADHD-200 Preprocessed repository demonstrated the need for re-
ducing computational barriers to participation in discovery neuroscience, including but not
limited to machine learning competitions based on neuroimaging data. While the ADHD-200
Preprocessed initiative will have a long-term impact on that need, we believe that a much
larger-scale effort will be necessary to unlock the full potential of openly shared neuroimag-
ing data in the service of accelerating neuroscience research. In line with the grassroots,
open science ethos of the Neurobureau, new contributors interested in sharing derivatives of
ADHD-200 or other open imaging data repository can contact us via our web-based forum25.
We are actively seeking new contributions to the Preprocessed Connectomes Project, notably

25http://www.nitrc.org/forum/?group_id=383
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during Brainhack events[122]. An important current project is the ABIDE preprocessed ini-
tiative26 [69]. This new resource, still under development, will include 16 different processing
strategies for rs-fMRI processing, implemented across 4 different software packages, and 2
different pipelines for structural MRI processing. The release will feature an harmonized
organization of processed derivatives across packages and extensive quality control. We are
planning to continue to expand this line on work on other data sources in the near future.
Our hope is that ADHD-200 Preprocessed and future related efforts will critically help fMRI
researchers to identify optimal analytical paths for a given task.
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[42] P. Bellec, V. Perlbarg, S. Jbabdi, M. Pélégrini-Issac, J.-L. Anton, J. Doyon, H. Benali, Identification
of large-scale networks in the brain using fMRI, Neuroimage 29 (4) (2006) 1231–1243.

[43] S.-F. Liang, T.-H. Hsieh, P.-T. Chen, M.-L. Wu, C.-C. Kung, C.-Y. Lin, F.-Z. Shaw, Differentia-
tion between resting-state fMRI data from ADHD and normal subjects: Based on functional con-
nectivity and machine learning, in: 2012 International conference on Fuzzy Theory and Its Appli-
cations (iFUZZY2012), IEEE, 294–298, URL http://ieeexplore.ieee.org/articleDetails.jsp?

arnumber=6409719, 2012.
[44] S. Carmona, E. Hoekzema, F. X. Castellanos, D. Garćıa-Garćıa, A. Lage-Castellanos, K. R. A. Van
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Table 2: Structural MRI acquisition parameters by site. Seq: imaging sequence, FA: flip angle, TE: echo time, TR: repetition time, TI:
inversion recovery delay, PA: parallel acquisition, Res: voxel resolution, BHBU: Bradley Hospital/ Brown University, KKI: Kennedy Krieger
Institute, NI: NeuroIMAGE sample, NYU: New York University Child Study Center, OHSU: Oregon Health Sciences University, PKU: Peking
University, Pitt: University of Pittsburgh, WUSTL: Washington University at Saint Louis, Trio: Siemens TIM Trio 3T, Allegra: Siemens
Allegra, Avanto: Siemens Avanto, MPRAGE: magnetization prepared rapid gradient echo, S: sensitivity encoding (SENSE), G: generalized
auto-calibrating partially parallel acquisition (GRAPPA)

Site Scanner Seq FA TE TR TI PA Res.

BHBU Trio 3T 3D MPRAGE 9◦ 2.98 ms 2250 ms 900 ms None 1.00× 1.00× 1.00 mm3

KKI Phillips 3T 3D MPRAGE 8◦ 3.7 ms 3500 ms 1000 ms S ×2 1.00× 1.00× 1.00 mm3

NI Avanto 1.5T 3D MPRAGE 7◦ 2.95 ms 2730 ms 1000 ms G ×2 1.00× 1.00× 1.00 mm3

NYU Allegra 3T 3D MPRAGE 7◦ 3.25 ms 2530 ms 1100 ms None 1.30× 1.00× 1.30 mm3

OHSU Trio 3T 3D MPRAGE 10◦ 3.58 ms 2300 ms 900 ms None 1.00× 1.00× 1.10 mm3

PKU 1 Trio 3T 3D MPRAGE 7◦ 3.39 ms 2530 ms 1100 ms None 1.30× 1.00× 1.30 mm3

PKU 2 Trio 3T 3D MPRAGE 7◦ 3.45 ms 2530 ms 1100 ms None 1.00× 1.00× 1.00 mm3

PKU 3 (1) Trio 3T 3D MPRAGE 12◦ 3.67 ms 2000 ms 1100 ms None 0.94× 0.94× 1.00 mm3

PKU 3 (2) Trio 3T 3D MPRAGE 10◦ 2.60 ms 1950 ms 900 ms None 1.00× 1.00× 1.30 mm3

PKU 3 (3) Trio 3T 3D MPRAGE 7◦ 3.37 ms 2530 ms 1100 ms None 1.00× 1.00× 1.33 mm3

PKU 3 (4) Trio 3T 3D MPRAGE 12◦ 3.92 ms 1770 ms 1100 ms None 0.50× 0.50× 1.00 mm3

PKU 3 (5) Trio 3T 3D MPRAGE 8◦ 2.89 ms 845 ms 600 ms None 1.02× 1.02× 1.30 mm3

Pitt Trio 3T 3D MPRAGE 8◦ 3.43 ms 2100 ms 1050 ms None 1.00× 1.00× 1.00 mm3

WUSTL Trio 3T 3D MPRAGE 8◦ 3.08 ms 2400 ms 1000 ms G ×2 1.00× 1.00× 1.00 mm3
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Table 3: Resting state fMRI acquisition parameters by site. Seq: imaging sequence, FA: flip angle, TE: echo time, TR: repetition
time, PA: parallel acquisition, Nslc: number of slices, Th.: slice thickness, Slc. Acq.: slice acquisition order, NTR: number of measurements
(TRs), BHBU: Bradley Hospital/ Brown University, KKI: Kennedy Krieger Institute, NI: NeuroIMAGE sample, NYU: New York University
Child Study Center, OHSU: Oregon Health Sciences University, PKU: Peking University, Pitt: University of Pittsburgh, Pitt 2: U. Pitt.
parameters used for acquiring the testing data, WUSTL: Washington University at Saint Louis, EPI: echo planar imaging, PACE: Prospective
Acquisition CorrEction (EPI with prospective motion correction), S: sensitivity encoding (SENSE), G: generalized autocalibrating partially
parallel acquisition (GRAPPA), int+: slices were acquired interleaved ascending, seq+: slices were acquired sequentially ascending, var.:
the number of measurements varies across datasets, fixate: participants were asked to keep their eyes open and fixate on an image, closed:
participants were asked to keep their eyes closed, open: participants were asked to keep their eyes open.

Site Seq FA TE TR PA Nslc Th. Slc. Acq. Resolution NTR Instructions

BHBU PACE 90◦ 25 ms 2000 ms None 35 3 mm int+ 3.0× 3.0 mm2 256 fixate
KKI EPI 75◦ 30 ms 2500 ms S ×3 47 3 mm seq+ 3.0× 3.0 mm2 128 fixate
NI EPI 80◦ 40 ms 1960 ms G ×2 37 3 mm int+ 3.5× 3.5 mm2 266 eyes closed
NYU EPI 90◦ 15 ms 2000 ms None 33 4 mm int+ 3.0× 3.0 mm2 180 eyes closed
OHSU EPI 90◦ 30 ms 2500 ms None 36 3.8 mm int+ 3.8× 3.8 mm2 82 fixate
PKU 1 EPI 90◦ 30 ms 2000 ms None 33 4.2 mm int+ 3.1× 3.1 mm2 240 closed or fixate
PKU 2 EPI 90◦ 30 ms 2000 ms None 33 3.6 mm int+ 3.1× 3.1 mm2 240 closed or fixate
PKU 3 EPI 90◦ 30 ms 2000 ms None 30 4.5 mm int+ 3.44× 3.44 mm2 240 closed or fixate
Pitt EPI 70◦ 29 ms 1500 ms G ×2 29 4.0 mm int+ 3.1× 3.1 mm2 200 open or closed
Pitt 2 EPI 90◦ 30 ms 3000 ms None 46 3.5 mm int+ 3.8× 3.8 mm2 128 open or closed
WUSTL EPI 90◦ 27 ms 2500 ms None 32 4.0 mm int+ 4.0× 4.0 mm2 var. fixate
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Table 4: Summary of the characteristics of all brain parcellations used in the ADHD-200

Preprocessed release. Sizes for the parcels are reported in mm3.

Name Type # parcels mean size std size min size max size
AAL structural 116 16726 11896 768 55552
EZ structural 116 15880 11059 1344 52608
HO structural 111 14540 15342 64 99200
TT structural 97 17106 16164 64 70400
CC200 functional 190 11351 2001 2880 17856
CC400 functional 351 6144 1207 64 10048
ROI1000 functional 954 1404 366 27 2781
ROI3000 functional 2843 471 109 27 1026
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