
ar
X

iv
:1

60
7.

08
02

8v
1 

 [
cs

.S
C

] 
 2

7 
Ju

l 2
01

6

SC2: Satisfiability Checking meets

Symbolic Computation
(Project Paper)

Erika Ábrahám1, John Abbott12, Bernd Becker2, Anna M. Bigatti3,
Martin Brain11, Bruno Buchberger4, Alessandro Cimatti5,

James H. Davenport6, Matthew England7, Pascal Fontaine9,
Stephen Forrest10, Alberto Griggio5, Daniel Kroening11,

Werner M. Seiler12, and Thomas Sturm8,13

1 RWTH Aachen University, Aachen, Germany
2 Albert-Ludwigs-Universität, Freiburg, Germany

3 Università degli studi di Genova, Italy
4 Johannes Kepler Universität, Linz, Austria
5 Fondazione Bruno Kessler, Trento, Italy

6 University of Bath, Bath, U.K.
7 Coventry University, Coventry, U.K.
8 CNRS, LORIA, Inria, Nancy, France

9 LORIA, Inria, Université de Lorraine, Nancy, France
10 Maplesoft Europe Ltd

11 University of Oxford, Oxford, U.K.
12 Universität Kassel, Kassel, Germany

13 Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. Symbolic Computation and Satisfiability Checking are two
research areas, both having their individual scientific focus but shar-
ing also common interests in the development, implementation and ap-
plication of decision procedures for arithmetic theories. Despite their
commonalities, the two communities are rather weakly connected. The
aim of our newly accepted SC

2 project (H2020-FETOPEN-CSA) is to
strengthen the connection between these communities by creating com-
mon platforms, initiating interaction and exchange, identifying common
challenges, and developing a common roadmap from theory along the
way to tools and (industrial) applications. In this paper we report on
the aims and on the first activities of this project, and formalise some
relevant challenges for the unified SC

2 community.

Keywords: Logical Problems, Symbolic Computation, Computer Alge-
bra Systems, Satisfiability Checking, Satisfiability Modulo Theories

1 Introduction

The use of advanced methods to solve practical and industrially relevant prob-
lems by computers has a long history. While it is customary to think that “com-
puters are getting faster” (and indeed, they were, and are still getting more

http://arxiv.org/abs/1607.08028v1


powerful in terms of multicores etc.), the progress in algorithms and software
has been even greater. One of the leaders in the field of linear and mixed in-
teger programming points out [9, slide 37] that you would be over 400 times
better off running today’s algorithms and software on a 1991 computer than
you would running 1991 software on today’s computer. The practice is heavily
inspired by the theory: [9, slide 31] shows that the biggest version-on-version
performance advance in software was caused by “mining the theory”. But this
progress has been in what is, mathematically, quite a limited domain: that of
linear programming, possibly where some of the variables are integer-valued.

There has been also much progress in the use of computers to solve hard non-

linear algebraic14 problems. This is the area generally called Symbolic Compu-
tation (or Computer Algebra). It includes solving non-linear problems over both
the real and complex numbers, though generally with very different techniques.
This has produced many new applications and surprising developments: in an
area everyone believed was solved, non-linear solving over the reals (using cylin-
drical algebraic decomposition — CAD) has recently found a new algorithm for
computing square roots [35]. CAD is another area where practice is (sometimes)
well ahead of theory: the theory [18, 29] states that the complexity is doubly
exponential in the number of variables, but useful problems can still be solved
in practice ([3] points out that CAD is the most significant engine in the “Todai
robot” project).

Independently and contemporaneously, there has been a lot of practical
progress in solving the SAT problem, i.e., checking the satisfiability of logi-
cal problems over the Boolean domain. The SAT problem is known to be NP-
complete [27]. Nevertheless, the Satisfiability Checking [8] community has devel-
oped SAT solvers which can successfully handle inputs with millions of Boolean
variables. Among other industrial applications, these tools are now at the heart
of many techniques for verification and security of computer systems.

Driven by this success, big efforts were made to enrich propositional SAT-
solving with solver modules for different theories. Highly interesting techniques
were implemented in SAT-modulo-theories (SMT) solvers [6, 42] for checking
easier theories, but the development for quantifier-free non-linear real and integer
arithmetic14 is still in its infancy.

Figure 1 shows a non-exhaustive history of tool developments in these two
areas. It illustrates nicely the historically deeper roots of computer algebra sys-
tems, but also the high intensity of research in both areas. The resulting tools
are successfully applied in several academic and industrial areas, however, the
current state is still not satisfactory, as described in [51]:

“Despite substantial advances in verification technology, complexity is-
sues with classical decision procedures are still a major obstacle for for-
mal verification of real-world applications, e.g., in automotive and avionic
industries.”

14 It is usual in the SMT community to refer to these constraints as arithmetic. But, as
they involve quantities as yet unknown, manipulating them is algebra. Hence both
words occur, with essentially the same meaning, throughout this document.



1960 1970 1980 1990 2000 2010 2020

CAS

SAT

SMT

S
c
h
o
o
n
s
c
h
i
p

M
A
T
H
L
A
B

R
e
d
u
c
e
A
l
t
r
a
n

S
c
r
a
t
c
h
p
a
d
/
A
x
i
o
m

M
a
c
s
y
m
a

S
M
P

m
u
M
A
T
H

M
a
p
l
e

M
a
t
h
c
a
d
S
A
C
G
A
P

C
o
C
o
A
M
a
t
h
H
a
n
d
b
o
o
k
M
a
t
h
o
m
a
t
i
c

M
a
t
h
e
m
a
t
i
c
a
D
e
r
i
v
e
F
O
R
M

K
A
S
H
/
K
A
N
T
P
A
R
I
/
G
P

M
a
g
m
a
F
e
r
m
a
t
E
r
a
b
l
e
M
a
c
a
u
l
a
y
2

S
i
n
g
u
l
a
r
S
y
m
b
o
l
i
c
C
+
+

M
a
x
i
m
a

X
c
a
s
/
G
i
a
c

Y
a
c
a
s

S
A
G
E
S
M
a
t
h
S
t
u
d
i
o

C
a
d
a
b
r
a
S
y
m
P
y
O
p
e
n
A
x
i
o
m

M
A
T
L
A
B
M
u
P
A
D

W
o
l
f
r
a
m
A
l
p
h
a
T
I
-
N
s
p
i
r
e
C
A
S

M
a
t
h
i
c
s
S
y
m
b
o
l
i
s
m
F
x
S
o
l
v
e
r

C
a
l
c
i
n
a
t
o
r
S
y
M
A
T
M
a
t
h
e
m
a
g
i
x

W
a
l
k
S
A
T
S
A
T
O

S
i
m
p
l
i
f
y
S
V
C

G
R
A
S
P
C
h
a
f
f
B
C
S
A
T

M
i
n
i
S
A
T
B
e
r
k
m
i
n
z
C
h
a
f
f
S
i
e
g
e

I
C
S
U
c
l
i
d
M
a
t
h
S
A
T
B
a
r
c
e
l
o
g
i
c

H
y
p
e
r
S
a
t
R
S
a
t
S
a
t
4
j

Y
i
c
e
s
C
V
C
H
y
S
A
T
/
i
S
A
T
D
P
T

Z
3
A
l
t
-
E
r
g
o
B
e
a
v
e
r
A
B
s
o
l
v
e
r

B
o
o
l
e
c
t
o
r
P
i
c
o
S
A
T
S
p
e
a
r

M
i
n
i
S
m
t
S
T
P
v
e
r
i
T
O
p
e
n
C
o
g

A
r
g
o
S
a
t
O
p
e
n
S
M
T
S
a
t
E
E
n
S
W
O
R
D

G
l
u
c
o
s
e
C
r
y
p
t
o
M
i
n
i
S
a
t
S
O
N
O
L
A
R

L
i
n
g
e
l
i
n
g
U
B
C
S
A
T
S
M
T
I
n
t
e
r
p
o
l

S
M
T
-
R
A
T
S
M
C
H
R
U
C
L
I
D
C
l
a
s
p

F
a
s
t
S
A
T
S
o
l
v
e
r
r
a
S
A
T

Fig. 1. History of some computer algebra systems and SAT/SMT solvers (not exhaus-
tive; years approximate first release as far as known and as positioning allowed) [2]

Both communities address similar problems and share the challenge to improve
their solutions to achieve applicability on complex large-scale applications. How-
ever, the Symbolic Computation community and the Satisfiability Checking com-
munity are largely in their own silos and traditionally do not interact much with
each other.

To connect these communities, we successfully applied for a European Hori-
zon 2020 Coordination and Support Action, with an envisaged project start in
July 2016. The overall aim of this project is to create a new research community
bridging the gap between Satisfiability Checking and Symbolic Computation,
whose members will ultimately be well informed about both fields, and thus
able to combine the knowledge and techniques of both fields to develop new re-
search and to resolve problems (both academic and industrial) currently beyond
the scope of either individual field. We call the new community SC

2, as it will
join the communities of Satisfiability Checking and Symbolic Computation.

The contributions of this paper are twofold: Firstly, we discuss the potentials
of closer connection and more intensive exchange between the two communities,
and list a number of challenges that are currently out of reach but could be
tackled by a unified SC2 community (Section 3). Secondly, we discuss what is
needed to trigger and support these developments, and describe the actions of
our project to satisfy these needs (Section 4).

2 Background

Before describing our project, we give a short description of the state-of-the-art
in Satisfiability Checking and Symbolic Computation. Parts of this section are
taken from [2].



2.1 Symbolic Computation and Computer Algebra Systems

Computer Algebra, the use of computers to do algebra rather than simply arith-
metic, is almost as old as computing itself, with the first PhD theses [41, 50]
dating back to 1953. This initial work consisted of programs to do one thing,
but the focus soon moved on to ‘systems’, capable of doing a variety of tasks.
One early such system was Collins’ SAC [24], written in Fortran. Many of the
early systems were written in LISP, largely because of its support for recursion,
garbage collection and large integers. The group at M.I.T. developed Macsyma [45]
in the 1960s. about the same time, Hearn developed Reduce [38], and shortly af-
ter a group at IBM Yorktown Heights produced SCRATCHPAD, then AXIOM [39], a
system that attempted to match the generality of Mathematics with some kind
of generic programming, to allow algorithms to be programmed in the generality
in which they are conventionally stated, e.g., polynomials over a ring.

Symbolic Computation was initially seen as part of Artificial Intelligence,
with major triumphs such as [54] being “A Heuristic Program that Solves Sym-
bolic Integration Problems in Freshman Calculus”, firmly in the AI camp. By
the end of the 1960s, this approach to integration had been replaced by an algo-
rithm [46], which had the great advantage that, when backed up with a suitable
completeness theorem [52] it could prove unintegrability: “there is no formula
made up of exponentials, logarithms and algebraic functions which differentiates
to e

−x
2

”, in other words “e−x
2

is unintegrable”.
The 1960s and 70s also saw great advances in other areas. We had much more

efficient algorithms to replace naive use of Euclid’s algorithm for greatest com-
mon divisor computation (and hence the simplification of fractions), far better
algorithms than the search-based methods for polynomial factorisation, and so
on. All this meant that Symbolic Computation firmly moved into the camps of
algorithmics and complexity theory, and the dominant question became “what
is the worst-case complexity of this algorithm”.

Gröbner bases. One great success of this period was the method of Gröbner
bases [20]. This allows effective, and in many cases efficient, solution of many
problems of polynomials over algebraically-closed fields (typically the complex
numbers, though applications over finite fields and in cryptography abound).
This notion paved the way for the discovery of numerous effective methods for
polynomial ideals; many applications in other areas of Mathematics quickly fol-
lowed. Buchberger’s algorithm for computing a Gröbner basis is a prime example
of the huge gulf that can separate an abstract algorithm from a usably efficient
implementation. Over the fifty years since its initial publication, research into
the algorithm’s behaviour has produced several significant improvements: the
modern refined version is typically thousands of times faster than the original.
The search for further improvements continues today.

The remarkable computational utility of Gröbner bases prompted the devel-
opment of a number of distinct, independent implementations of refined versions
of Buchberger’s algorithm. The main commercial general-purpose computer al-
gebra systems (including MAGMA [12], Maple [43], Mathematica [58]) can all compute
Gröbner bases; researchers needing the flexibility and ability to experiment with



new algorithms also use computer algebra systems such as CoCoA/CoCoALib [1],
Macaulay/Macaulay2 [37] and Singular [32] and Reduce [38] which are freely down-
loadable from their respective websites.

Cylindrical algebraic decomposition. Another great success of the 1970s was the
development of cylindrical algebraic decomposition (CAD) in [25]. This replaced
the non-elementary complexity (no finite tower of exponentials bounds the com-
plexity) of Tarski’s method for real algebraic geometry, by a doubly exponential
method. A CAD is a decomposition of Rn into cells arranged cylindrically (mean-
ing their projections are equal or disjoint) and described by semi-algebraic sets.
For a detailed description of modern CAD, see [15].

Hong created a C version of both the SAC library and the comprehensive CAD
code, which is now open-source and freely available as SACLIB and QEPCAD-B [17].
Another example is the Redlog package [33] of the computer algebra system
Reduce, which offers an optimised combination of the cylindrical algebraic de-
composition with virtual substitution (see below) and Gröbner basis methods.

Virtual substitution. To mention a last algorithm, virtual substitution [57] fo-
cuses on non-linear real arithmetic formulas where the degree of the quantified
variables is not too large. Although the method can be generalised to arbitrary
degrees, current implementations are typically limited to input, where the total
degree of the quantified variables does not exceed 2. In practice, this limitation is
somewhat softened by employing powerful heuristics like systematic degree shifts
or polynomial factorisation. One key idea is to eliminate existential quantifiers
in favour of finite disjunctions plugging in test terms that are derived from the
considered formula.

These methods and their numerous refinements belong to the usual tool box
of state-of-the-art computer algebra systems, and enable them to tackle hard
arithmetic problems.

2.2 Satisfiability Checking

In the 1960s, another line of research on Satisfiability Checking [8] for proposi-
tional logic started its career. The first idea used resolution for quantifier elim-
ination [31], and had serious problems with the steeply increasing requirements
on computational and memory resources with the increase of the problem size.
Another research line [30] suggested a combination of enumeration and Boolean
constraint propagation (BCP). A major improvement was achieved in the 1990s
by combining the two approaches, leading to conflict-driven clause-learning and
non-chronological backtracking [44]. Later on, this impressive progress was con-
tinued by novel efficient implementation techniques (e.g., sophisticated decision
heuristics, two-watched-literal scheme, restarts, cache performance, etc.), result-
ing in numerous powerful SAT solvers.

Driven by this success, big efforts were made to enrich propositional SAT-
solving with solver modules for different existentially quantified theories. Highly
interesting techniques were implemented in SAT-modulo-theories (SMT) solvers



SAT solver

input formula in CNF

theory constraint set
(partial) SAT or

UNSAT + explanation

theory solver(s)

SAT or
UNSAT

solution or

unsatisfiable

Boolean abstraction

(partial) solution

Fig. 2. The functioning of SMT solvers

for checking, e.g., equality logic with uninterpreted functions, array theory, bit-
vector arithmetic and quantifier-free linear real and integer arithmetic, but the
development for quantifier-free non-linear real and integer arithmetic is still in
its infancy. For further reading, see, e.g., [6, 42].

Modern SMT solvers typically combine a SAT solver with one or more the-
ory solvers as illustrated in Figure 2. First the input formula is transformed into
conjunctive normal form (CNF), a conjunction of disjunctions (clauses); this
transformation can be done in linear time and space using Tseitin’s transforma-
tion on the cost of additional variables. Next, the resulting CNF is abstracted to
a pure Boolean propositional logic formula by replacing each theory constraint
by a fresh Boolean proposition. Intuitively, the truth value of each fresh proposi-
tion defines whether the theory constraint, which it substitutes, holds. The SAT
solver tries to find solutions for this propositional abstraction and during solving
it consults the theory solver(s) to check the consistency of the theory constraints
that should hold according to the current values of the abstraction variables.

On the one hand, theory solvers only need to check conjunctions (sets) of the-
ory constraints, instead of arbitrary Boolean combinations. On the other hand,
theory solvers should have the following properties for being SMT-compliant :

– They should work incrementally, i.e., after they determine the consistency
of a constraint set, they should be able to take delivery of some additional
constraints and re-check the extended set, thereby making use of results from
the previous check.

– In case of unsatisfiability, they should be able to return an explanation for in-
consistency, e.g., by a preferably small inconsistent subset of the constraints.

– They should support backtracking, i.e., the removal of previously added con-
straints.

Optimally, theory solvers should also be able to provide a satisfying solution, if
the problem is satisfiable, and a proof of unsatisfiability for the explanation, if
the problem is unsatisfiable.

A great advantage of the SMT technology is that it can employ decision
procedures not only in isolation, but also in combination. For example, solving



non-linear arithmetic formulas can often be speeded up by first checking linear
abstractions or linear problem parts using more efficient decision procedures,
before applying heavier procedures. Additionally, theories can also be combined
already in the input language of SMT solvers. For example, deductive program
verification techniques generate verification conditions, which might refer to ar-
rays, bit-vectors as well as integers; in such cases, dedicated SMT solvers can
apply several decision procedures for different theories in combination.

When combining decision procedures, incomplete but efficient procedures are
also valuable, if they guarantee termination but not necessarily return a conclu-
sive answer. Such incomplete methods are frequently applied in SMT solving, a
typical example being interval constraint propagation, based on interval arith-
metic. Some solvers combine such incomplete methods with complete decision
procedures, in order to guarantee the solution of the problem, while increasing
efficiency. Other solvers even sacrifice completeness and might return a “don’t
know” answer, but still they are able to solve certain extremely large problems,
which are out of reach for complete methods, very fast. Furthermore, incomplete
procedures are the only way to support problems from undecidable theories, like
formulas containing exponential or trigonometric functions.

SAT and SMT solvers are tuned for efficiency. Combining complete and in-
complete decision procedures, making use of efficient heuristics, learning not only
propositional facts but also (Boolean abstractions of) theory lemmas at the SAT
level allow modern SMT solvers to solve relevant large-size problems with tens
of thousands of variables, which could not be solved before by single decision
procedures in isolation. For some example applications see, e.g., [5].

Examples for solvers that are able to cope with linear arithmetic problems
(either in a complete or in an incomplete manner) are Alt-Ergo [26], CVC4 [4],
iSAT3 [36, 53], MathSAT [22], OpenSMT2 [19], SMT-RAT [28], veriT [13], Yices2 [34],
and Z3 [48]. A further interesting SMT-approach for linear integer arithmetic is
proposed in [16].

Much less activity can be observed for SMT solvers for non-linear arithmetic.
A few SMT tools embedded some (complete as well as incomplete) decision pro-
cedures. Such a solver is iSAT3, which uses interval constraint propagation. The
SMT solver MiniSmt [59] tries to reduce non-linear real arithmetic problems to
linear real arithmetic and can solve only satisfiable instances this way. We are
aware of only two SMT solvers that are complete for non-linear real arithmetic:
Firstly, the prominent Z3 solver developed at Microsoft Research, which uses an
elegant SMT-adaptation of the cylindrical algebraic decomposition method [40].
Secondly, SMT-RAT [28], using solver modules for simplex, the cylindrical alge-
braic decomposition, the virtual substitution method, Gröbner bases, interval
constraint propagation, branch and bound, and their strategic combination [47].

Even fewer SMT solvers are available for non-linear integer arithmetic, which
is undecidable in general. A linearisation approach was proposed in [11]. The
SMT solving spin-off of AProVE [23] uses bit-blasting. To our knowledge, Z3

implements a combination of linearisation and bit-blasting. iSAT3 uses inter-
val constraint propagation, whereas Alt-Ergo combines the idea of [10] with an



axiom-based version of interval constraint propagation. SMT-RAT can tackle this
theory using a generalised branch-and-bound technique.

The increasing variety of the theories considered by SMT solvers created
an urgent need for a common input language. The SMT-LIB initiative [7] de-
fined a standard input language for SMT solvers with a first release in 2004,
and provides a large and still increasing number of benchmarks, systematically
collected for all supported theories. SMT-LIB also enabled the start of SMT
competitions ; the first one took place in 2005 with 12 participating solvers in 7
divisions (theories, theory combinations, or fragments thereof) on 1360 bench-
marks, which increased in 2014 to 20 solvers competing in 32 divisions on 67426
benchmarks. The SMT-LIB standard and the competitions not only intensified
the SMT research activities, but also gave visibility and acceptance for SMT
solving in computer science and beyond. Once a problem is formulated in the
SMT-LIB language, the user can employ any SMT solver to solve the problem.

3 Some Scientific Challenges and Opportunities

On the one hand, SMT solving has its strength in efficient techniques for explor-
ing Boolean structures, learning, combining solving techniques, and developing
dedicated heuristics, but its current focus lies on easier theories and it makes use
of Symbolic Computation results only in a rather naive way. There are fast SMT
solvers available for the satisfiability checking of linear real and integer arith-
metic problems, but just a few can handle non-linear arithmetic. On the other
hand, Symbolic Computation is strong in providing powerful procedures for sets
(conjunctions) of arithmetic constraints, but it does not exploit the achievements
in SMT solving for efficiently handling logical fragments, using heuristics and
learning to speed-up the search for satisfying solutions.

The Satisfiability Checking community would definitely profit from further
exploiting Symbolic Computation achievements and adapting and extending
them to comply with the requirements on embedding in the SMT context. How-
ever, it is a highly challenging task, as it requires a deep understanding of com-
plex mathematical problems, whose embedding in SMT solving is not trivial.

Symmetrically, Symbolic Computation could profit from exploiting success-
ful SMT ideas, but it requires expertise in efficient solver technologies and their
implementation, like dedicated data structures, sophisticated heuristics, effective
learning techniques, and approaches for incrementality and explanation genera-
tion in theory solving modules.

In this section we describe some ideas of how algorithms and tools from both
communities could be made more powerful by exploiting scientific exchange and
technology transfer.

3.1 Symbolic Computation Techniques for Satisfiability Checking

Many practical decision procedures, designed by the Symbolic Computation
community, are implemented in computer algebra systems (e.g., linear real and



integer arithmetic, non-linear real arithmetic, linear programming, quantified
formulas, Gröbner and involutive bases). To use them in a Satisfiability Check-
ing context, some scientific and engineering issues need solutions, notably to
find new ways of incremental solving, explaining unsatisfiability and generating
lemmas.

Whereas for linear real arithmetic useful procedures have been adapted to
satisfy the requirements for SMT embedding, many opportunities remain to be
explored for non-linear arithmetic. For example, there are (to the best of our
knowledge) just two SMT solvers, Z3 and SMT-RAT, which make use of the CAD
method, but in a different way: Z3 uses a very elegant solution to explore the state
space by a close integration of theory decisions and theory propagation in the
Boolean SAT search, and constructs CAD only partially to explain conflicts in
the above search (more precisely, to compute a semi-algebraic description of CAD
cells that do not satisfy a given sign condition). In contrast, SMT-RAT implements
an incremental version of the CAD method, which works hand-in-hand with
the search at the logical level. For this latter approach, the power of heuristics
(variable and polynomial ordering for incremental projection, choice and order
of sample points for lifting) and the generation of lemmas (most importantly
the computation of explanations for unsatisfiability) is still far from being fully
exploited.

There is still great potential for improvements not only for the SMT embed-
ding of the CAD method, but also other non-linear arithmetic decision proce-
dures like virtual substitution or Gröbner bases, and their strategic combination
with each other and further light-weight methods such as interval constraint
propagation.

Another important aspect is the Symbolic Computation community’s ex-
pertise in simplification and preprocessing. The complexity of the problems this
community handles is often extremely high, and no practical procedure would ex-
ist without significant techniques to prepare the input problems. Such techniques
do exist for Satisfiability Checking, but they rather focus on easier theories. A
transfer of the savoir-faire in simplification and preprocessing for non-linear real
and integer arithmetic would certainly be highly profitable.

3.2 Satisfiability Checking Techniques for Symbolic Computation

A key ingredient in the success of the Satisfiability Checking tools is the use of
learning and non-chronological backtracking techniques to speed up the search
through tree-shaped search structures. Traditionally (and in the majority of
cases) CAD proceeds through a two stage process: first, projecting the prob-
lem through lower dimensions; then lifting: incrementally building a solution in
increasing dimensions. An alternative approach using triangular decomposition
was introduced in [21] where first the complex domain is cylindrically decom-
posed and then refined to a CAD of the real domain, where all data is in a
tree-shaped structure.

Other techniques are certainly amenable for learning with the non-chrono-
logical backtracking approach. For instance, first prototypes integrating CDCL-



style learning techniques with virtual substitution for linear quantifier elimina-
tion have been successfully created and studied. Integration of learning tech-
niques with the computation of comprehensive Gröbner bases [56] should also
be investigated.

Incrementality, which played an important role in the success of Satisfia-
bility Checking, may also be used to make Symbolic Computation techniques
more efficient. The alternative CAD construction method described above is
also incremental in nature [14] and so may offer one option here. An incremen-
tal CAD-based decision procedure for solving polymial constraint systems was
proposed in [55]. There exist algorithms for computing Gröbner bases which ex-
ploit known mathematical facts about the ideal generated by the basis like its
Hilbert function or some syzygies. Traditionally, this has been seen as a way
to speed up computations. However, these approaches can naturally be adapted
into incremental algorithms.

A central aspect of Satisfiability Modulo Theories is the combination frame-
works for theories and decision procedures. Combining theories in Symbolic Com-
putation (combined real/floating point theories, interval constraint propagation
with other arithmetic theories) might also bring a number of advantages and
possibilities, for instance, more expressive languages, or efficiency due to hier-
archical reasoning. While combination of theories in Symbolic Computation are
typically very specific and ad hoc, the SMT community systematically uses the
generic Nelson–Oppen framework [49] for disjoint theories. Such a framework
can of course not be used as it is, but it might be an inspiration for a modular
approach in Symbolic Computation.

3.3 Standard Languages and Benchmarks

The initiation and maintenance of a common problem specification language
standard SMT-LIB [7] and of competitions form an important part of the Sat-
isfiability Checking community effort. Besides providing a stimulating event for
tool developers to exhibit their systems, the competitions are also a vehicle for
publishing practical progress. Competition results are advertised, and consulted
by users to pick the best tools and techniques to solve problems.

The Symbolic Computation community does not have a similar tradition, and
indeed, to quote one major system developer: “it is very hard to get any practical
improvements published — the reviewers will often say this is not hard science”.
Although it is not good to only focus on a small library of benchmarks and have
the competition as sole goal, competitions do have a tremendously positive effect
on tools and techniques, as witnessed in the Satisfiability Checking community,
especially if the competition challenges are concrete industrial challenges. Such
driving forces could be also established in Symbolic Computation.

Though in Satisfiability Checking the standard input language allowed to
provide large benchmark sets to the community, benchmarks for non-linear arith-
metic theories are still rare, and harder to describe without ambiguity. Therefore,
also the Satisfiability Checking community would profit from a common standard
with an increased number of non-linear arithmetic benchmarks.



4 Project Actions

The solution of challenging problems, as mentioned in the previous section, could
be within reach, when supported by a stronger collaboration between both SC2

research areas, creating an infrastructure for dialogue and knowledge transfer.
However, the research areas of Satisfiability Checking and Symbolic Computa-
tion are still quite disconnected, as reflected in their communication platforms
and support structures. Symbolic Computation has its own conferences (ACA,
CASC, ISSAC, etc.), several dedicated journals (e.g., AAECC, JSC, MSC), and
the SIGSAM forum. Similarly, Satisfiability Checking is supported by its own
conferences (CADE, IJCAR, SMT, etc.) and journals (e.g., JAR), the SatLive
forum to keep up-to-date with research, SMT standards, and SAT- and SMT-
solver competitions.

The main aims of our project are to create communication platforms and
propose standards to enable the interaction between the two communities, and
to use these platforms to initiate discussions and cooperation and to identify
potentials, challenges and obstacles for future research and practical applications.
In the following we shortly describe planned actions of our SC2 project to achieve
these goals.

Communication platforms To bridge the SC2 communities, we will initiate plat-
forms to support the interaction of the currently disjoint groups. We organised a
Dagstuhl Seminar Symbolic Computation and Satisfiability Checking15 15-20th
November, 2015, which already led to numerous interesting discussions and in-
teractions. At CASC 2016, we will organise a topical session devoted to topics
from the cross-community SC2 area. Furthermore, we will establish a workshop
series in the area of SC2, covering the interests of both communities, and having
its first edition affiliated with SYNASC 2016. These workshops will serve as plat-
forms for scientific exchange, discussion and cooperation within and between the
currently disjoint communities. To support and attract young new community
members, we will organise a dedicated summer school aimed at interested young
researchers from SC2 areas, with courses specifically tailored to their needs.

Research roadmap The above platforms will initiate cross-community interac-
tions, and help to clearly identify unused potentials. We aim at initiating discus-
sions on what the communities can learn from each other, what are the common
challenges which they can solve together, what Satisfiability Checking could learn
from Symbolic Computation achievements, and which Satisfiability Checking re-
sults could be adapted to improve Symbolic Computation solutions.

Our long-term objective is to create a research roadmap of potentials and
challenges, both to the two traditional subject silos, but also challenges that
only the new joined SC2 community can address. This roadmap should identify,
within the problems currently faced in the industry, the particular points that
can be expected to be solved by the SC2 community in the short and middle
term, and will provide recommendations for spin-off projects.

15 http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=15471

http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=15471


Standards, benchmarks, competitions We aim to create a standard problem spec-
ification language capable of representing common problems of the SC2 commu-
nity. We plan on extending the SMT-LIB language, which is already mature and
fully accepted among the SMT (Satisfiability Checking) community, to handle
features needed for the Symbolic Computation community. This will be done in
a modular way, with a particular focus on extensibility for new features.

Agreeing on a common language, and being able to share challenging prob-
lems is an essential aspect for building a dynamic community. This will foster fur-
ther discussions and uncover problems that can be solved by the SC2 community
altogether, set clear challenges on which various approaches can be evaluated,
classify the approaches according to their strength and weaknesses on the various
kinds of problems. Mixed approaches will naturally emerge, to tackle problems
exhibiting several orthogonal difficulties. The standard could also serve as a
communication protocol for platforms mixing tools, to build meta-tools to solve
large and difficult problems out of reach of current techniques often specialised
to just one kind of job.

How to become an associate? This project cannot reach its aims by involving just
a small number of core project members. To be able to cover sufficiently wide
research and application areas and to take into account their needs and interests,
there are currently 37 SC2 associates from both research communities as well
as from industry. Our associates will be regularly informed about the project
activities and they will be invited to take part in the corresponding events.

The SC2 Coordination and Support Action will be an optimal platform for
industrial and academic partners and associates to form smaller working groups
and initiate specific projects. If you would like to participate in the project as
an associate, please contact the Project Coordinator James Davenport16.

5 Conclusions and Future Work

In this paper we gave a short description of the aims and actions of our upcoming
EU Coordination and Support Action SC2.

The SC2 project will maintain a website (http://www.sc-square.org) mak-
ing readily accessible all the public information of the project (e.g., contact
information, details of past and forthcoming SC2 workshops and other similar
events).

Acknowledgements

We thank the anonymous reviewers for their comments. We are grateful for
support by the H2020-FETOPEN-2016-2017-CSA project SC2 (712689) and the
ANR project ANR-13-IS02-0001-01 SMArT. Earlier work in this area was also
supported by the EPSRC grant EP/J003247/1.

16 Email contact: J.H.Davenport@bath.ac.uk

http://www.sc-square.org


References

1. Abbott, J., Bigatti, A.M., Lagorio, G.: CoCoA-5: A system for doing computations
in commutative algebra. http://cocoa.dima.unige.it

2. Ábrahám, E.: Building bridges between symbolic computation and satisfiability
checking. In: Proceedings ISSAC 2015. pp. 1–6. ACM (2015)

3. Arai, N.H., Matsuzaki, T., Iwane, H., Anai, H.: Mathematics by machine. In: Pro-
ceedings ISSAC 2014. pp. 1–8. ACM (2014)

4. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., D. Jovanović, T.K., Reynolds,
A., Tinelli, C.: CVC4. In: Proceedings CAV 2011. LNCS, vol. 6806, pp. 171–177.
Springer (2011)

5. Barrett, C., Kroening, D., Melham, T.: Problem solving for the 21st century: Effi-
cient solvers for satisfiability modulo theories. Tech. Rep. 3, London Mathematical
Society and Smith Institute for Industrial Mathematics and System Engineering
(2014), http://www.cs.nyu.edu/~barrett/pubs/BKM14.pdf, knowledge Transfer
Report

6. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications,
vol. 185, chap. 26, pp. 825–885. IOS Press (2009)

7. Barrett, C., Stump, A., Tinelli, C.: The satisfiability modulo theories library (SMT-

LIB). www.SMT-LIB.org (2010)

8. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satis-
fiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press
(2009)

9. Bixby, R.E.: Computational progress in linear and mixed integer programming.
Presentation at ICIAM 2015 (2015)

10. Bobot, F., Conchon, S., Contejean, E., Mahboubi, A., Mebsout, A., Melquiond, G.:
A simplex-based extension of Fourier-Motzkin for solving linear integer arithmetic.
In: Proceedings IJCAR 2012. LNCS, vol. 7364, pp. 67–81. Springer (2012)

11. Borralleras, C., Lucas, S., Navarro-Marset, R., Rodriguez-Carbonell, E., Rubio,
A.: Solving non-linear polynomial arithmetic via SAT modulo linear arithmetic.
In: Proceedings CADE-22, LNCS, vol. 5663, pp. 294–305. Springer (2009)

12. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system.
I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997),
http://dx.doi.org/10.1006/jsco.1996.0125, computational algebra and num-
ber theory (London, 1993)

13. Bouton, T., Caminha, D., de Oliveira, B., Déharbe, D., Fontaine, P.: veriT: An
open, trustable and efficient SMT-solver. In: Proceedings CADE-22. LNCS, vol.
5663, pp. 151–156. Springer (2009)

14. Bradford, R.J., Chen, C., Davenport, J.H., England, M., Moreno Maza, M., Wilson,
D.J.: Truth table invariant cylindrical algebraic decomposition by regular chains.
In: Proceedings CASC 2014. LNCS, vol. 8660, pp. 44–58. Springer (2014)

15. Bradford, R., Davenport, J., England, M., McCallum, S., Wilson, D.: Truth Table
Invariant Cylindrical Algebraic Decomposition. J. Symbolic Computation 76, 1–35
(2016)

16. Bromberger, M., Sturm, T., Weidenbach, C.: Linear integer arithmetic revisited.
In: Proceedings CADE-25. LNCS, vol. 9195, pp. 623–637. Springer (2015)

17. Brown, C.W.: QEPCAD B: A program for computing with semi-algebraic sets using
CADs. ACM SIGSAM Bulletin 37(4), 97–108 (2003)

http://cocoa.dima.unige.it
http://www.cs.nyu.edu/~barrett/pubs/BKM14.pdf
www.SMT-LIB.org
http://dx.doi.org/10.1006/jsco.1996.0125


18. Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylin-
drical algebraic decomposition. In: Proceedings ISSAC 2007. pp. 54–60. ACM
(2007)

19. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT2 solver. In:
Proceedings TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer (2010)

20. Buchberger, B.: Ein Algorithmus zum Auffinden des basiselemente des Restklassen-
ringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, University of
Innsbruck (1965), english translation: J. Symbolic Computation, 41:475–511, 2006

21. Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic
decomposition via triangular decomposition. In: Proceedings ISSAC 2009. pp. 95–
102. ACM (2009)

22. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 smt solver.
In: Proceedings TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer (2013)

23. Codish, M., Fekete, Y., Fuhs, C., Giesl, J., Waldmann, J.: Exotic semi-ring con-
straints. In: Proceedings SMT 2013. EPiC Series, vol. 20, pp. 88–97. EasyChair
(2013)

24. Collins, G.E.: The SAC-1 system: An introduction and survey. In: Proceedings
SYMSAC 1971. pp. 144–152. ACM (1971)

25. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Automata Theory and Formal Languages. LNCS, vol. 33, pp.
134–183. Springer (1975)

26. Conchon, S., Iguernelala, M., Mebsout, A.: A collaborative framework for non-
linear integer arithmetic reasoning in Alt-Ergo. In: Proceedings SYNASC 2013.
pp. 161–168. IEEE (2013)

27. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings STOC
1971. pp. 151–158. ACM (1971), http://doi.acm.org/10.1145/800157.805047

28. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: An open
source C++ toolbox for strategic and parallel SMT solving. In: Proc. SAT 2015.
LNCS, vol. 9340, pp. 360–368. Springer (2015)

29. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential.
J. Symbolic Computation 5, 29–35 (1988)

30. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5(7), 394–397 (1962)

31. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7(3), 201–215 (1960)

32. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular

4-0-2 — A computer algebra system for polynomial computations.
http://www.singular.uni-kl.de (2015)

33. Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM
SIGSAM Bulletin 31(2), 2–9 (1997)

34. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In:
Proc. CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer (2006)

35. Eraşcu, M., Hong, H.: Synthesis of optimal numerical algorithms using real quan-
tifier elimination (Case study: Square root computation). In: Proceedings ISSAC
2014. pp. 162–169. ACM (2014)

36. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving
of large non-linear arithmetic constraint systems with complex Boolean struc-
ture. Journal on Satisfiability, Boolean Modeling and Computation 1(3-4), 209–236
(2007)

37. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in alge-
braic geometry. http://www.math.uiuc.edu/Macaulay2/

http://doi.acm.org/10.1145/800157.805047
http://www.singular.uni-kl.de
http://www.math.uiuc.edu/Macaulay2/


38. Hearn, A.C.: REDUCE: The first forty years. In: Proceedings A3L. pp. 19–24. Books
on Demand GmbH (2005)

39. Jenks, R.D., Sutor, R.S.: AXIOM: The Scientific Computation System. Springer
(1992)

40. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Proceedings IJCAR
2012. LNAI, vol. 7364, pp. 339–354. Springer (2012)

41. Kahrimanian, H.G.: Analytic Differentiation by a Digital Computer. Master’s the-
sis, Temple University Philadelphia (1953)

42. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View.
Springer (2008)

43. Maple, http://www.maplesoft.com/
44. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional

satisfiability. IEEE Trans. Computers 48, 506–521 (1999)
45. Martin, W.A., Fateman, R.J.: The Macsyma system. In: Proceedings SYMSAC

1971. pp. 59–75. ACM (1971)
46. Moses, J.: Symbolic Integration. Ph.D. thesis, M.I.T. & MAC TR-47 (1967)
47. de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In: Auto-

mated Reasoning and Mathematics, pp. 15–44. Springer (2013)
48. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings TACAS

2008. LNCS, vol. 4963, pp. 337–340. Springer (2008)
49. Nelson, G., Oppen, D.C.: Simplifications by cooperating decision procedures. ACM

Transactions on Programming Languages and Systems 1(2), 245–257 (1979)
50. Nolan, J.: Analytic Differentiation on a Digital Computer. Master’s thesis, M.I.T.

(1953)
51. Platzer, A., Quesel, J.D., Rümmer, P.: Real world verification. In: Proceedings

CADE-22. pp. 485–501. ACM (2009)
52. Risch, R.H.: The problem of integration in finite terms. Transactions of the Amer-

ican Mathematical Society 139, 167–189 (1969)
53. Scheibler, K., Kupferschmid, S., Becker, B.: Recent improvements in the SMT

solver iSAT. In: Proceedings MBMV 2013. pp. 231–241. Institut für Angewandte
Mikroelektronik und Datentechnik, Fakultät für Informatik und Elektrotechnik,
Universität Rostock (2013)

54. Slagle, J.: A Heuristic Program that Solves Symbolic Integration Problems in
Freshman Calculus. Ph.D. thesis, Harvard University (1961)

55. Strzeboński, A.: Solving polynomial systems over semialgebraic sets represented
by cylindrical algebraic formulas. In: Proceedings ISSAC’12. pp. 335–342. ACM
(2012)

56. Weispfenning, V.: Comprehensive Gröbner bases. J. Symbolic Computation 14(1),
1–29 (1992)

57. Weispfenning, V.: Quantifier elimination for real algebra – The quadratic case and
beyond. Applicable Algebra in Engineering, Communication and Computing 8(2),
85–101 (1997)

58. Wolfram Research, Inc.: Mathematica, version 10.4. Wolfram Research, Inc.,
Champaign, Illinois (2016)

59. Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational arithmetic. In:
Proceedings LPAR 2010. LNAI, vol. 6355, pp. 481–500. Springer (2010)

http://www.maplesoft.com/

	SC2: Satisfiability Checking meets Symbolic Computation (Project Paper)

