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We have studied the collective motion of polar active particles confined to ellipsoidal surfaces. The
geometric constraints lead to the formation of vortices that encircle surface points of constant cur-
vature (umbilics). We have found that collective motion patterns are particularly rich on ellipsoids,
with four umbilics where vortices tend to be located near pairs of umbilical points to minimize their
interaction energy. Our results provide a new perspective on the migration of living cells, which
most likely use the information provided from the curved substrate geometry to guide their collective
motion.

Introduction - Active particles are known to sponta-
neously form complex dynamic patterns at length scales
ranging from the molecular [1], to the cellular [2, 3] up to
macroscopic patterns seen in flocking birds [4], schooling
fish [5] or humans in crowded environments [6, 7]. The
key feature of these active systems is the constant energy
input on each individual unit, which renders the system
completely out of equilibrium. Collective phenomena in
such active systems have been successfully described us-
ing so-called self-propelled particle models [8] that are
limited to close neighbour interactions only [9]. In un-
constrained 2D and 3D systems these models display self-
organised pattern formation and phase transitions resem-
bling experimental observations [9]. The behaviour of ac-
tive particles confined to a surface has been mainly stud-
ied on planar surfaces of zero gaussian curvature. It is
known however, that the presence of intrinsic surface cur-
vature frustrates local order giving rise to novel physics
[10], as has been shown for 2D fluids confined to curved
surfaces [11]. As a consequence of the Poincar-Hopf the-
orem, for instance, it is not possible to have continuous
fluid flow on the entire surface of a sphere, which requires
the presence of two +1 defects (vortices) [12]. The effect
of non-zero gaussian curvature on self-propelled particles
remains poorly understood, with only a few recent exam-
ples studying the effect of spherical constraints [13, 14].
In living systems, cells are influenced by surface curva-
ture as demonstrated by cell movements in the develop-
ing corneal epithelium leading to vortex patterns [15] or
by the coordinated collective migration of cells during
embryonic development [16]. The emergent behaviour of
moving cells is not only the result of intercellular inter-
actions, but is crucially influenced by geometrical con-
straints on the cell movement [2, 17, 18]. The aim of
the current work is a systematic investigation of the im-
pact of non-constant gaussian curvature constraints on
the collective behaviour of self-propelled particles. Our
restriction of the geometry of the surfaces to ellipsoids
allows an analysis of how geometrical cues (represented
by the umbilical points of the surface, Fig. 1c) effectively
interact with defects in the director-field (e.g., vortices).
The strong coupling between vortex position and umbili-
cal points demonstrates the importance of surface geom-

etry on the emergence of patterns in active systems. This
work could have significant implications in understanding
collective phenomena in biology and physics especially in
the context of growing tissues, where cell movements are
constrained to constantly changing surfaces.
Methods - We use a Vicsek type model [8] of N spher-

ical active particles of radius σ confined to the surface
of an ellipsoid with principle axes x, y, z. Particles are
self-propelled (moving with a scalar self-propulsion term
v0) and are polarized (being oriented towards the direc-
tion n). Particle interactions occur via a short ranged
linear force potential consisting of short ranged repulsive
forces F rep and attractive forces Fadh from neighboring
particles scaled by the mobility parameter µ. The over-
damped equations of motion for particle i are described
by:

dri(t)

dt
= v0ni(t) + µ

N∑
j=1

F(ri, rj) (1)

where ri is the position of particle i and F(ri, rj) is
the short ranged linear force potential (Fig. 1b) given by
[2]

F(ri, rj) = ei,j


Frep

dij−Req

Req
, if dij < Req

Fadh
dij−Req

R0−Req
, if Req ≤ dij ≤ R0

0, if R0 < dij

(2)

where ei,j = (ri − rj)/|ri − rj |, di,j = |ri − rj |, Frep

and Fadh are the values of the maximum repulsive and
attractive forces at dij = 0 and di,j = R0 respectively. In
the presence of neighboring particles, the particle direc-
tion n and direction of motion ṙ usually deviate and the
particle direction n realigns with the velocity ṙ according
to:

dni(t)

dt
= −ri × ṙi

τ‖ṙi‖
× ni + ξ (3)

where τ is the relaxation time and ξ is angular noise
described by a delta correlated gaussian white noise term
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FIG. 1. Active particles confined to the surface of an el-
lipsoid. a) Particle motion on a triangulated curved surface
is performed in two steps: first an unconstrained motion in
tangential plane (1, 2) followed by a projection onto the sur-

face (3). ~N1, ~n1,~̇r1 are the surface normal-vector, particle
orientation-vector, and velocity-vector at point p before the
projection. b) Particles interact via a finite short-ranged re-
pulsive/attractive linear force potential within a cut-off dis-
tance R0 = 2.4σ. c) Example of an ellipsoid with principal
axis x = 4; y = 2.5; z = 1 resulting in aspect ratios x/z = 4
and x/y = 1.6; blue and orange lines are exemplary lines
of maximum and minimum principle curvatures, respectively.
Points of constant normal curvature are called umbilics (or
umbilical points, highlighted as red spheres). d) Director-
field (black arrows) and vortex order parameter (VOP; color-
coded) on the ellipsoidal surface shown in c) after 15800 time
steps; red dots indicate positions of umbilics.

with zero mean, 〈ξ(t)ξ(t′)〉 = ηδ(t, t′). Particle mo-
tion on the curved surface is performed by an uncon-
strained motion in tangential plane followed by a pro-
jection onto the surface (Fig. 1a). To be able to use
our model on arbitrary surfaces, surfaces are approx-
imated with triangulated meshes generated via a cus-
tom mesh relaxation algorithm in Rhino/Grasshopper
Rhino/Grasshopper [19, 20].

To test the influence of varying gaussian curvature on
pattern formation of self-propelled particles, we have per-
formed particle simulations on two classes of ellipsoidal
surfaces: (i) spheroidal and (ii) non-spheroidal. General
ellipsoidal surfaces (shown in Fig. 1c) are characterised
by their three principal axis x, y, z and have non-constant
gaussian curvature. Spheroidal ellipsoids are either pro-
late (x/z = y/z > 1) or oblate (x/z = y/z < 1). How-
ever, there are points on the surface which are sphere-like,
i.e., where any direction is a principal direction, which
are called umbilical points or umbilics. In contrast to the
surface of a sphere, where every point is an umbilic, ellip-
soidal surfaces have a finite number of umbilical points:
having either 2 (spheroids) or 4 (non-spheroidal ellip-
soids) (Fig. 1c). Simulations were performed on ellip-
soids of varying aspect ratios (see Fig. 3) and all surfaces
were scaled such that the surface area is always the same.
Units of length, time and mass are defined in the model

FIG. 2. Evolution of the vortex order parameter (VOP)
on a prolate (a) and oblate spheroid (b) with aspect ratios
x/z = 0.25 and x/z = 4 respectively. Vortices are quickly
formed near umbilical points (red dots) where they maintain
a constant geodesic distance (VDU) between vortex center
(color-coded) and umbilics (c, d) with a significantly smaller
separation distance on prolate spheroids compared to oblate
spheroids. The distance from the vortex position (center of
mass of V OPs > 0.7) to the umbilic (VDU) stabilizes almost
instantaneously on the prolate spheroid (c) whereas it takes
considerably longer on the oblate spheroid (d).

by specifying R0 = 1, the relaxation time τ = 1, and the
mobility parameter =1. The model included N = 828
particles at a fixed particle radius σ = 5/12 and packing
fraction ϕ = 1 (defined as the ratio of the cross-sectional
area of the particles to the total surface area of a reference
sphere with radius RSP = 6, ϕ = Nπσ2/4πR2

SP ). The
interaction parameters between the particles were based
on those used in [3] Frep = 10, Fadh = 0.75, Req = 56
and η = 2(10−3). Values of the self-propelled velocities
range from v0 = 0.1 to v0 = 0.5 and are chosen such that
v0 � µFrep, therefore, the study is in the regime of low
noise and low energy and particles interact virtually as
hard spheres. The mesh size was chosen to be inversely
proportional to the local gaussian curvature and much
smaller than the particle radius resulting in typical num-
bers of surface triangles of 10 times the particle number.
Particles are initially randomly distributed on the sur-
face with random overlaps and random orientations. All
simulations have been performed in Matlab R2015b by
solving the overdamped differential equations of motion
(1) and (3) using a fixed time step of ∆t = 0.01τ for a
total of 2.5(104τ) time steps.

The directed motion of active particles and the spheri-
cal topology of the ellipsoid usually lead to the formation
of two vortices (Fig. 1d, second vortex at the back of the
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ellipsoid). The position of the vortices on the surface was
determined by adapting the 2D vortex order parameter
(VOP) recently introduced by [21], defined by

V OP =
1

1− 2/π


∑
i

|ṙi · ti|∑
j

‖ṙj‖
− 2

π

 (4)

where ṙ i is the velocity of particle i, ti is the azimuthal
unit vector to the tangent plane; V OP = 1 for purely
azimuthal orientation and V OP = 0 for pure radial
orientations. The VOP has been evaluated at each
vertex point of the triangulated surface including the
first 3 shells of particle neighbours. The position of the
vortex was then defined as the local center of mass of
the calculated VOPs, for values above 0.7. We have
then evaluated the geodesic distance of the vortex center
between two vortices and with respect to the umbilical
points (VDU).

Results - In order to investigate the influence of the
umbilical points on the dynamics of these defects, we
have performed simulations on (i) spheroidal and (ii) non-
spheroidal ellipsoids. On spheroids the system of active
particles showed a two-phase dynamic behaviour: on a
short time scale (t < 1000) two vortices form at opposite
sides of the spheroid. This is followed by a transition
period on a longer time scale (Fig. 2c, d), in which these
two vortices rotate around the surface normal at the um-
bilical points forming a stable motion pattern (movies 1
and 2). The snapshots of Figure 2 show the formation
of a vortex (yellow region) close to an umbilical point
(marked as red dots) on prolate (Fig. 2a) - and oblate-
spheroids (Fig. 2b) at three consecutive time-points. Af-
ter their formation, vortices maintain an almost constant
VDU with a significantly smaller separation distance on
prolate (Fig. 2c, movie 1) compared to oblate spheroids
(Fig. 2d, movie 2). By systematically changing the as-
pect ratio of the spheroid (Fig. 3a), we found that for
prolate spheroids the VDU is smallest for large aspect
ratios and decreases as spheroids become more elongated
(low x/z). The same trend with aspect ratio can be ob-
served for oblate spheroids however with higher VDUs
when compared to prolate spheroids of similar aspect ra-
tios.
The particles distant from the poles of the spheroids and
their umbilical points perform a collective motion which
can be best described as band formation: in an attempt
to align their velocities to reduce the systems energy they
move along geodesic paths (movies 1 and 2). Depending
on contingencies in the initial conditions of the simula-
tion, this band structure can split into several sub-bands
with opposite (i.e. counter-rotating) movement direc-
tions. These sub-bands were found to be stable over the
whole time of the simulation (movie 3).

Two new dynamical features are observed in the collec-
tive motion on non-spheroidal ellipsoids. The first new
feature is caused by the presence of four umbilical points,
which causes a dynamic exchange of the two vortices be-
tween pairs of umbilical points that have a large geodesic
distance. For low velocities (v0 = 0.1) vortices encircle
pairs of umbilical points resulting in oscillating values
of the VDU for both vortices (Fig. 4a, b, d, e, movie
4). Here, each vortex has the largest separation distance
from the other vortex when both are in the vicinity of um-
bilical points (Fig. 4c). At higher velocities (v0 = 0.5)
the vortices become confined to regions of high gaussian
curvature between umbilics and the direction of the bulk
particle motion becomes aligned with principle curvature
directions (movie 5). The pairs of umbilical points that
a vortex encircles can be exchanged during a simulation,
however this exchange is coupled to the motion of the
other vortex, as both vortices tend to maximise their sep-
aration distance.
The second new feature offered by non-spheroidal ellip-
soids was detected for flat prolate-like ellipsoids (x/y > 3;
x/z < 1). In this case no stable vortices are formed (de-
picted by triangles in Fig. 3b). The formation of band-
like collective motion is supressed on these surfaces due
to the highly curved edge which inhibits particle motion
between the upper and lower surfaces of the flattened el-
lipsoids, thus constraining particle motion to either the
upper or the lower surface (movie 6). In addition, for
extremely flat prolate-like ellipsoids (x/y > 5; x/z < 1),
the particles perform a collective oscillatory movement
between the poles of the surface.

Discussion - This work identified umbilical points on
ellipsoidal surfaces as crucial geometric features to inter-
pret collective motion patterns on closed surfaces. Um-
bilical points define special regions on a surface that have
high geodesic separation and provide information about
the local variation in curvature. We have shown that vor-
tex motion is connected to these umbilics, where normal
curvature is constant. To explain the observed motion
patterns, we need to consider interactions between de-
fects (e.g., vortices) in the director field, interactions be-
tween these defects and geometric features of the surface,
as well as dynamic effects from bulk particle motion. It
is known that vortices repel each other with an inter-
action energy depending linearly on separation distance
[11, 22]. On surfaces with non-constant gaussian cur-
vature, each vortex experiences an additional geometric
potential determined by the local gaussian curvature [23].
In this case, the vortex interactions can be described by
an effective free energy [24], that takes into account the
broken translational invariance due to the intrinsic curva-
ture. This energy essentially describes the deviation from
perfect alignment in the vector-field and implies that the
energy of the system is minimised when the particle align-
ment is globally maximised. These concepts help us to
understand the vortex dynamics around umbilics in the
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FIG. 3. Mean distance of vortex center to umbilical points
〈V DU〉 for a) spheroids of different aspect ratios and veloc-
ities, and b) triaxial-ellipsoids of different aspect ratios at a
constant particle velocity v0 = 0.1. The 〈V DU〉 shown in
a) increases with the aspect ratio of the spheroids. 〈V DU〉
obtains significantly smaller values (even for small aspect ra-
tios) on prolate spheroids compared to oblate spheroids. On
triaxial ellipsoids the mean VDU is also correlated with the
aspect ratio with zones of stabilized-vortices and regions that
are vortex free (depicted as triangles). Each data point was
averaged over 10 independent simulation runs.

simple cases of prolate and oblate spheroids (Fig. 3a).
On prolate spheroids the location of umbilics coincide
with regions of high gaussian curvature (and geometric
potential), causing vortices to be pushed towards umbil-
ics, since it increases the global alignment of the director
field. This approach of the vortex towards a point of high
gaussian curvature at the same time reduces the local
alignment of the vortex vector field, causing an avoidance
of the umbilics. Vortex dynamics thus arises from a bal-
ance between these opposing factors. With increasing as-
pect ratio (x/z � 1) the contribution of the global align-
ment becomes predominant leading to decreasing VDUs
(Fig. 3a). Using the same reasoning, on oblate spheroids
we would expect that the high gaussian curvature rim
will be avoided by vortices, while at the same time the
higher global alignment that can be achieved in the flat-
ter region will be obtained when the vortex approaches
the rim. The alignment of particles moving parallel to
the rim, however, is increased when the vortex is located
at the umbilic point. This alignment becomes further in-
creased at higher particle velocities, leading to decreas-
ing VDUs (Fig. 3a). The dependence of VDU distance
on aspect ratio, and a quantitative understanding of the
orbital frequency of vortex motion around the umbilic,
however cannot be explained using this energetic argu-

FIG. 4. Vortex dynamics on a triaxial ellipsoid with axis ra-
tios x/z = 2, x/y = 1.14 and v0 = 0.1. Figure a) and b) show
the geodesic distance to the umbilic point (VDU) for vortices
1 and 2 (blue and red curves) as a function of time measured
from two different umbilical points (U1, U3). The circles in-
dicate the maximum distance of the vortices at t = 2(104) (a)
and t = 2.24(104) time-steps (b), which are peak values of the
vortex to vortex distance shown in c). Images depicted in d)
and e) are the corresponding mapped values of the vortex or-
der parameter and director-fields. On triaxial-ellipsoids with
pairs of close umbilical points the vortices encircle the two
closest umbilics whereas they switch positions when umbilics
are further apart. All cases lead to stable oscillations in the
distance like the one shown in (a) and (b). The distance be-
tween the vortices is maximized close to the umbilical points
and switches between the two symmetric configurations (c).

ment. Additional insight can be gained by a simple ap-
proximation of spheroids as capped cylinders [23], where
the vortex interaction energy, E is proportional to H/R,
where R is the radius and H is the height of the capped
cylinder. This simple approximation immediately implies
that the interaction energy is lower on oblate spheroids
compared to prolate spheroids and explains why the VDU
in Fig. 2 is larger on oblate spheroids. The geometric po-
tential of the umbilics decreases with decreasing aspect
ratio and hence the vortices are less constrained, which
is reflected by the increasing VDU in Fig 3a.
The further loss of symmetry on triaxial ellipsoids adds
some additional complexity to the interactions between
vortices and surface geometry. The two pairs of sym-
metric umbilical points still define a low energy config-
uration of the system since they define the positions of
maximum separation distance for the vortices (Fig. 4c).
The energy in the vector-field decreases with increasing
velocity due to increasing alignment and causes vortices
to be further attracted to high gaussian curvature re-
gions between the umbilics (movie 5). In the case of flat
(x/y > 3 and x/z < 1) triaxial ellipsoids no vortices
were observed (triangles in Fig. 3b). This is because
the energy stored in the vector-field can only partly be
minimised by rotational motion, which leads to motion
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patterns that quickly change orientations at the poles. In
contrast, on oblate spheroids of high aspect ratio, parti-
cles are still able to form vortices since they align with
the sharp edge of the ellipsoid.

Conclusion - In summary, we have explored how ge-
ometry effects the collective behaviour of active particles
confined to move on a curved surface. The non-linear
coupling between non-constant gaussian curvature and
defect-defect interactions gives rise to a variety of
motion patterns that can be partially interpreted by
theories of vortex-geometry interactions. The richness of
physics observed in our study can be expected to further
increase if one of the following constraints is released:
(i) a reduction of the packing fraction leaving more
space for the particles, (ii) a softer interaction between
the particles allowing large particle overlaps and (iii)
surfaces with gradients of positive and negative gaussian
curvature that have isolated or odd numbers of umbilical
points, i.e. handles. Our results suggest that gaussian
curvature may also be responsible for the emergence of
complex patterns in a variety of active systems, such as
collective cell behaviour during morphogenesis.
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