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Abstract

Input quantities for the numerical simulation of fusion plasmas
involve field quantities which are hampered by noise. In order to com-
pare data from experiment to model results, or to have an estimation
of the fluctuation margin of a model prediction, a quantification of
the uncertainties is necessary. Within a discrete projection framework
we employ a spectral expansion to represent the random process re-
sponsible for the noise. Since Gaussian distributed noise is assumed
Hermite polynomials are chosen for the orthonormal basis system. The
coefficients are calculated from collocation points defined by Gaussian
quadrature in a non-intrusive approach. An instructive example of ab-
sorption in media serves for the validation of the procedure. Finally
the method is applied to the Vlasov-Poisson model describing elec-
trostatic plasmas, which will be influenced by an uncertain external
field.

Keywords: Polynomial chaos, spectral expansion, discrete projection,
uncertainty quantification, Vlasov-Poisson model
PACS: 02.50.-r, 52.65.-y

1 Introduction

Fusion plasmas contain a macroscopic number of particles (about 1021) with
temperatures in the order of several million Kelvin in the plasma core. To-
gether with electromagnetic fields exposed from the outside and induced by
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the plasma itself the emerging processes show highly complex non linear be-
havior. Both the experimental implementation of parameter settings and
measured data from diagnostics suffer from noise and lead to input quan-
tities and data bases with uncertainties. If calculations are based on such
input there is interest in quantifying the effect of the uncertainties on the
model response.

Comprising the ongoing effects on the theoretical side plasma models are
sets of coupled differential or partial differential equations. In most cases
no analytical solution is possible and one depends on numerical approaches
which end up with approximate solutions to problems for which we do not
know the exact answer. Depending on the level for the numerical descrip-
tion of the plasma the model results suffer from simplifications, limitations
to certain regimes, or the insufficient number of particles when trying to
simulate a macroscopic state from (microscopic) kinetic equations of motion.
Again this raises the question for the confidence of the computational predic-
tions, especially when switching on/off model components to study plasma
phenomena.

In view of the addressed peculiarities above it comes with no surprise that
classical error propagation misses this task entirely when time dependence
enters the stage. Moreover, when model results shall be compared with
experimental data we have to deal with different sources of uncertainties
either of epistemic (lack of knowledge, basically no variability) or aleatoric
(noise, basically exact) origin. While being strictly obedient to orthodox
statistics it is not possible to cope with the latter [Jaynes(2003)]. No such
problems arise in Bayesian probability theory which deals with uncertainties
of different origin or character in assigning a probability density function to
all kinds of uncertain quantities [Najm(2009)].

Based on the Bayesian framework we employ a spectral expansion to
quantify the propagation of uncertainty through the model. First intro-
duced by Wiener in the context of Hermite basis functions [Wiener(1938)]
it was termed ’polynomial chaos expansion’ at his time. Nowadays the no-
tion of ’chaos’ has shifted and in our context the use of the term ’spectral
expansion’ is more appropriate. The spectral approach seems expedient as
for most cases high-dimensional parameter spaces are sufficiently smooth
to facilitate the calculation of the coefficients needed to determine the mo-
ments for the quantity of interest. It is embedded in the Galerkin framework,
which projects weighted residuals onto a finite-dimensional space spanned by
appropriate basis functions [Smith(2014)]. Once successfully achieved, the
spectral representation is capable of quantifying the uncertainty for any time
in model space. However, this procedure requires to solve the (differential)
model equations for all of the spectral coefficients, which usually necessitates
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Model (t)ξ (t) R

Figure 1: Random variable ξ is input to a time-dependent model with output
R.

to change the model solving part of a numerical program completely and
therefore is termed intrusive. Non-intrusive, but approximate is stochastic

collocation which calculates the sought-for coefficients from a discrete set of
collocation points in the space of the random variable. For the matters of
this paper we assume mutually independent normally distributed random
variables for which Hermite polynomials are the adjunctive set of orthonor-
mal basis functions. Additionally, we assume the model not to change the
functional properties of the probability distribution of the input quantity.
If we approximate the emerging integrals for the coefficients by Gaussian
quadrature we end up by discrete projection which identifies the collocation
points with those of the quadrature.

Fig. 1 depicts the problem we want to tackle in a simplified scheme. A
model input parameter is hampered by generally time-dependent noise de-
scribed by random variable ξ. The model either propagates over time or
responses directly with result R which uncertainty distribution we would
like to know. Since our approach is non-intrusive we are forced to think
of the model as a black box. In the following we present our implementa-
tion for two examples. The first is used to validate the procedure with an
analytically fully accessible model of absorption in media. The second ex-
ample sets up a reference case for tackling plasma physics models with the
non-trivial Vlasov-Poisson system as an example for a nonlinear partial dif-
ferential model equation. Altogether this paper presents a rough sketch of
the analysis for uncertainty quantification only. An elaborated view may be
found in, e.g. [Smith(2014), Mâıtre and Knio(2010)].

2 Sampling approach

In order to have a calibration standard to compare with the results of the
discrete projection procedure we employ random sampling of the model re-
sponse. For each realization of the random variable {ξ1, ..., ξN} there exists a
model response Ri = R(ξi) constituting the sample solution set {R1, ..., RN}
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from which moments can be computed. The expected mean is

〈R〉 = 1

N

N
∑

i=1

R(ξi) , (1)

and its variance reads

var(R) = 〈R2〉 − 〈R〉2 . (2)

Even the full uncertainty distribution may be established with help of a
histogram if the sample solution set is sufficiently large (N >∼ 1000). Though
this procedure is straightforward and automatically contains the full model
answer with all correlations, it has the vital drawback of a comparatively low
convergence rate. If the computation time of a single model output is not
in the order of seconds or becomes more sophisticated with a higher number
of variables (curse of dimension), the mere accumulation of sample point
densities to infer the complete distribution is futile. In this respect more
promising are spectral approaches which will be discussed next.

3 Uncertain initial value problem

Recall the situation of Fig. 1: a single parameter hampered by Gaussian
noise represented by random variable ξ is input to a model. Setting the
parameter constant throughout model propagation defines the scalar initial
value problem. The model (i.e. the (system of) differential equations) is not
harmful to the character of the random variable which shall mean that the
functional properties of the stochastic process are kept the same. So the
result will itself be hampered by noise of Gaussian character. To quantify
the uncertainty of the result we seek the appropriate function g(ξ), such that
R will have the required distribution of the model response

R = g(ξ) . (3)

As for all random variables with finite variance it is possible to find an infinite
expansion

g(ξ) =
∞
∑

k=0

akψk(ξ) ≈
P
∑

k=0

akψk(ξ) , (4)

which we limit to order P since the contributions of higher orders become
numerically insignificant. The coefficients are given by

ak =
〈g(ξ), ψk(ξ)〉
〈ψk(ξ), ψk(ξ)〉

, with 〈g(ξ), ψ(ξ)〉 =
∫

g(ξ)ψ(ξ)p(ξ)dξ .(5)
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We assume Gaussian character for the random variable, so the density p(ξ)
is distributed according to the normal (probability) distribution

p(ξ) =
1√
2π

exp

{

−ξ
2

2

}

. (6)

The adjunctive set of orthonormal basis functions for the distribution Eq.
(6) is given by the so-called probabilist Hermite functions which we employ
in this paper up to forth order

ψ0(ξ) = 1 , ψ1(ξ) = ξ , ψ2(ξ) = ξ2 − 1 ,

ψ3(ξ) = ξ3 − 3ξ , ψ4(ξ) = ξ4 − 6ξ2 + 3 . (7)

The normalization constants are readily

〈ψk, ψk〉 =

∫

ψk(ξ)ψk(ξ)p(ξ)dξ = k! . (8)

Due to the Gaussian nature of the probability function omnipresent in the
integrals above, it is beneficial to use Gauss-Hermite quadrature for the eval-
uation

〈g(ξ), ψ(ξ)〉 G.H.
=

L
∑

l=1

g(ξl)ψ(ξl)wl , (9)

where the weights wl and the abscissas ξl are for instance provided by Nu-
merical Recipes [Press et al.(2007)].

Eventually, by exploiting the properties of the orthogonal Hermite poly-
nomials the expectation value for the model outcome is

〈R〉 = a0 , (10)

and its variance

var(R) = 〈R2〉 − 〈R〉2 =
P
∑

k=1

a2k〈ψk, ψk〉 =
P
∑

k=1

a2kk! . (11)

To avoid numerical errors the order L of the Hermite polynomials used for the
calculation of the coefficients in Eq. (5), i.e. Gauss-Hermite quadrature of Eq.
(9), should be at least one higher than the order P of the Hermite polynomials
used for the calculation of the model response in Eq. (4), L=P+1.
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4 Parameter uncertain throughout model prop-

agation

Above we examined the case of a model starting with an uncertain parameter
which does not vary throughout time propagation. In this section we consider
the model parameter uncertain at every of N time steps thereby establishing
a random field of N variables. The mutual independence of the field variables
implies that we can compile the model response from a tensor product of the
univariate polynomials of the previous section. However, already for a decent
number of time steps the dimension of the random field gets rapidly too large
to be treatable and has to be reduced. Since the time step has to be chosen
small enough to cover the model evolution correctly a correlation of the model
responses within a few time slices is to be expected. The impact of a random
variable at a certain time slice will persist in the model response for some
more time slices, but then gets blurred by the influences of more and more
random variables on the consecutive time slices. We mimic this circumstance
by introducing a correlation length λ via a covariance matrix

Cij = exp

{

−1

2

(ti − tj)
2

λ2

}

, (12)

and let a Karhunen-Loève expansion reduce the N random representations
of R to M ≪ N informative ones.

After performing a singular value decompositionC = U∆V
T the orthog-

onal matrix U consists of N eigenvectors um with corresponding eigenvalues
∆m (see Fig. 2). Only those M eigenvectors are chosen which correspond
to eigenvalues above a certain level (e.g. 5% of maximum eigenvalue). They
constitute the new random variable ξKL in a Karhunen-Loève expansion:

ξKL =
M
∑

m=1

ξm
√

∆mum . (13)

While we expect the model responses to be correlated the random variables
of adjacent time slices are not. Therefore the assumption of mutual indepen-
dence is still valid and we can construct the multidimensional basis functions
as a tensor product of univariate Hermite polynomials. Analogously to Eq.
5 the coefficients for the reduced M -dimensional random field read

ak =
1

k!

∫

...

∫

dξ1...dξMg(ξ1, ..., ξM )ψk(ξ1, ..., ξM )p(ξ1, ..., ξM ) . (14)

Gauss-Hermite quadrature is employed again

ak =
1

k!

L
∑

l1=1

...

L
∑

lM=1

g(ξl1 , ..., ξlM )ψk(ξl1 , ..., ξlM )wl1 · ... · wlM , (15)
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Figure 2: Left: eigenvalues of the covariance matrix for different settings of
the correlation length λ (lines are guide to the eye). Right: corresponding
eigenvectors with eigenvalues above 5% of maximum eigenvalue for the case
of λ=1.

and inserted in Eq. (10) and Eq. (11) to describe the model response.
The number of terms Nint entering in Eq. (15) increases extensively with

the number of eigenvalues and polynomial order:

Nint =
(M + P )!

M !P !
. (16)

Note, that for an efficient computing of Eq. (15) one has to deal with two
independent index fields: one for the model response g(ξj1 , ..., ξjM ) and one
for the Gauss-Hermite quadrature. However, these index fields increase to
an enormous extent with the number of variables and polynomial order, so
that in the end one is left behind solely with parallelization of the computer
runs to narrow running time.

5 Absorption in media

For introductory reasons and to validate our implementation we start with a
theoretically fully accessible problem. The ordinary differential equation for
the absorption of light with intensity I0 in media reads

dI

dt
= αI (17)

or in discrete form

Ii+1 − Ii = αIi∆t . (18)
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Figure 3: Absorption: light of intensity I0 gets absorbed with coefficient α
by passing through media. The higher the absorption coefficient, the lower
the intensity of the light at a certain depth x. If the coefficient shows an
uncertainty distribution the intensity will be distributed in the same way.

Let us think of an uncertain absorption coefficient α = α0 + ξσα with ξ ∼
N (0, 1) (see Fig. 3). The analytic random solution is

I(x, ξ) = I0e
−αx = I0e

−(α0+σαξ)x , (19)

with which we can compute exact mean

〈I(x)〉 =
∫

I(x, ξ)
1√
2π

e−
1

2
ξ2dξ = I0e

−α0xe
1

2
σ2
αx

2

(20)

and variance 1

var(I(x)) = 〈I(x)2〉 − 〈I(x)〉2 = e−2α0xI20

(

e2σ
2
αx

2 − eσ
2
αx

2

)

. (21)

Here we deal with a somewhat artificial problem: both quantities in Eq.
(20) and (21) may increase exponentially with large x because the random
variable is not limited to ensure the absorption coefficient to be positive.
Even very rare realizations of the negative α will at some x overwhelm the
huge number of ”sober” solutions and drive the integral sum to infinity. On
the physics side it is clear that negative absorption coefficients do not exist
and in the analysis it is clear how to deal with this: one would simply restrict
the α to be positive or choose a different PDF to draw from. But for our
introductory approach it is a perfect example to study the properties of the
uncertainty quantification.

The results are depicted in Fig. 4. As mentioned above the rare events
with negative α will be responsible for the exponential growth at large depths

1There is a misprint in the book of R. Smith [Smith(2014)] which we correct for the
plus sign in the exponent of the second exponential term.
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x. For the sampling approach it takes more than 107 runs to unveil this
behaviour with our choice of model parameters, i.e. I0=10, α0=1 and within
a depth of x=12 (left panel of Fig. 4). Similarly we have to get to 16th order in
Hermite polynomials to see the same effect in the uncertainty quantification.
While for simple sampling it depends somewhat on the (arbitrary) choice
of the random seed until negative values for α come up, the situation here
is more deterministic. For reasons of numerical accuracy the order for the
Gaussian-Hermite quadrature should be at least one higher than that of the
polynomials. Since the values of the quadrature points spread with the size
of the order to both sides of the real axis it takes this high order to get a
such negative quadrature point which then produces the exponential growth
in the result (right panel of Fig. 4).

6 Vlasov-Poisson system

Eventually, we examine the Vlasov-Poisson system, a kinetic plasma model
which characterizes the particles of mass m and charge q in the plasma by
a distribution function f(x,v, t) in phase space. It is based on the assump-
tion that in a small volume element dxdydz all plasma particles with the
same energy react in the same way to the electromagnetic forces present at
this point in space. For the collisionless case the Vlasov equation describes
the evolution of charged particles in an electromagnetic field E(x, t) with a
neutralizing background

∂f

∂t
+ v · ∂f

∂x
+

q

m
(E + v ×B) · ∂f

∂v
= 0 . (22)

We are interested in the self-consistent electromagnetic field resulting from
external fields applied to the system and the internal distribution of the par-
ticles. It can be inferred by coupling Maxwell’s equations with sources that
are the charge densities and current calculated from the particles, (electric
and magnetic fields shall be constant with respect to time) with the charge
density ρ and current J expressed by the distribution functions

ρ(x, t) = q

∫

f(x,v, t)dv , J(x, t) = q

∫

f(x,v, t)vdv . (23)

Furthermore, we assume either the magnetic fieldB or its contribution in the
Lorentz force v×B to be negligible compared to the electric field E. Finally
we state the Poisson equation (relation between electric field and potential
φ)

−∆φ = 1− ρ(t,x) = 1−
∫

f(t,x,v)dv , E = −∇φ , (24)
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Figure 4: Absorption: light of intensity I0=10 enters media with uncertain
absorption coefficient initially guessed to be α0=1. The line through the
points is the exact solution, accompanying lines show the 2σ region of the
analytic random solution Eq. (21). System runs with drawings of the ab-
sorption constant α around 1 with σα = 0.25 give the errorbars. Left panel:
sampling approach. Top: 106 runs are not sufficient to show the increase
of the σ region at the end of the interval. Obviously more runs are needed
to explore the parameter space to a larger extent. Bottom: 107 runs re-
produce the spread nicely. Indeed these are a lot of runs! Right panel:
uncertainty quantification with α varied at the start and then kept constant
throughout model propagation. Top: expansion with 8 Hermite polynomi-
als. Bottom: expansion with 16 Hermite polynomials. Only a higher order in
Hermite polynomials/Gaussian-Hermite quadrature is capable of reproduc-
ing the spread.
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Figure 5: Electric field at the 32 sites obtained from the Vlasov-Poisson
model: (a) initial condition; (b) uncertain initial value problem; (c) multiple
random variables.
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to complete the model equations. Since E depends on f the Vlasov-Poisson
system is non linear. The numerical solution is obtained by the semi-Lagrangian
method [Sonnendrücker et al.(1999)] which employs a phase space mesh in
x and v. The specificity of this method is that it uses the characteristics of
the scalar hyperbolic equation, along with an interpolation method (mostly
cubic spline) to update the unknown from one time step to the next.

Consider a one-dimensional Vlasov-Poisson system of 32 sites evenly spread
over 4π in space with periodic boundary conditions. Its distribution function
is initialized according to a sin-function with a period of 4π in phase space.
Beginning at t=0 the system starts to propagate in time with step ∆t=0.01,
while being exposed to an uncertain external electric field E0

ext = 0.5 with
standard deviation of 10% (σEext

= 0.05) and ξ drawn from N (0, 1):

Eext = E0
ext + ξσEext

. (25)

In Fig. 5(a) one can see the electric field resulting from the initial conditions.
It reproduces the sin-function of the distribution function, but shows already
a spread due to the uncertainty of its value. Notice the overall elevation of
0.5 due to the external field.

First we study the univariate case of the uncertain initial value problem
and let the external electric field, same at all sites, vary at the system start,
but kept constant throughout system propagation. Fig. 5(b) depicts the
result at t=4.2s. While the exact solution is shown by a line, the shading
represents the uncertainty distribution derived from the sampling of 1000
system runs. This compares excellent with the result of the uncertainty
quantification. given by plus signs with errorbars. We want to point out the
fluctuating behaviour of the errorbars, especially with respect to the initial
condition. In contrast to the increase around x=11 the errorbars around x=5
even decreased. This behaviour, which is not possible to reproduce following
the error propagation law, can be pushed to the non-linear character of the
Vlasov-Poisson system.

Finally, we consider the external electric field (still kept the same at all
sites) to be uncertain at every time slice which results in a field of random
variables. However, with a time step of 0.01s required for stable propagation
and a choice of λ = 1 validated by screening over various settings, at t=4.2s
its dimension would reach N=420 – far too large to deal with (according
to Eq. (16) Nint=424!/420!/4!=1327668126 model calculations for 4th order
Hermite polynomials). Therefore we follow the treatment above and employ
the Karhunen-Loève expansion from Eq. (13) to reduce the number of random
variables. A cutoff below 5% of the maximum eigenvector results in four
remaining eigenvectors, which still means 1296 system runs. Fig. 5(c) shows
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again an excellent agreement with the simple sampling approach and thereby
validates our implementation of uncertainty quantification.

7 Summary

In a discrete projection framework we let a spectral expansion quantify the
propagation of uncertainty through a model. As demonstrated for the un-
certain initial value problem already the univariate case shows fluctuating
behaviour of the uncertainty which is beyond the scope of the error prop-
agation law. For the multivariate case we employed the Karhunen-Loève
expansion to reduce the number of random variables to a numerically treat-
able size. The resemblance with analytic and sampling results validates our
procedure.
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