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5Université Pierre et Marie Curie, Cellule Pasteur, Institut Pasteur, Paris 75015, France
6Molecular Genetics of RNA Viruses Unit, Institut Pasteur, Paris 75015, France
7Dendritic Cell Immunobiology Unit, Institut Pasteur, Paris 75015, France
8Center for Vaccinology, Ghent University and University Hospital, Ghent 9000, Belgium
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SUMMARY

Humans differ in the outcome that follows expo-
sure to life-threatening pathogens, yet the extent of
population differences in immune responses and
their genetic and evolutionary determinants remain
undefined. Here, we characterized, using RNA
sequencing, the transcriptional response of primary
monocytes from Africans and Europeans to bacterial
and viral stimuli—ligands activating Toll-like receptor
pathways (TLR1/2, TLR4, and TLR7/8) and influenza
virus—and mapped expression quantitative trait
loci (eQTLs). We identify numerous cis-eQTLs that
contribute to the marked differences in immune re-
sponses detected within and between populations
and a strong trans-eQTL hotspot at TLR1 that de-
creases expression of pro-inflammatory genes in
Europeans only. We find that immune-responsive
regulatory variants are enriched in population-spe-
cific signals of natural selection and show that
admixture with Neandertals introduced regulatory
variants into European genomes, affecting preferen-
tially responses to viral challenges. Together, our
study uncovers evolutionarily important determi-
nants of differences in host immune responsiveness
between human populations.

INTRODUCTION

The immune response to stress is a highly complex phenotype.

Inappropriate immune activity can increase susceptibility to in-
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fectious, inflammatory, and autoimmune diseases, the clinical

manifestations of which vary considerably between individuals

and populations (Brinkworth and Barreiro, 2014; Casanova

et al., 2013). The contribution of host genetic factors in explaining

such heterogeneity is increasingly documented by genome-wide

association studies (GWASs), which have identified variants,

often located in non-coding regions, associated with disease

risk (Parkes et al., 2013; Schaub et al., 2012). However, it re-

mains unknown how these variants functionally impact immune

responses across populations.

Genetic variants exerting regulatory effects on gene expres-

sion, known as expression quantitative trait loci (eQTLs), have

proven to be of significant biomedical interest (Montgomery

and Dermitzakis, 2011), as they help to establish links between

intermediate phenotypes and organismal traits, such as immu-

nity to infection (Fairfax and Knight, 2014). While eQTL studies

have mostly focused on steady-state expression measurements

(Lappalainen et al., 2013; Montgomery et al., 2010; Pickrell et al.,

2010; Spielman et al., 2007; Stranger et al., 2012), recent work

has characterized response eQTLs in human cells exposed to

various immune or infectious challenges (Barreiro et al., 2012;

Çalısxkan et al., 2015; Fairfax et al., 2014; Lee et al., 2014). How-

ever, the extent and genetic determinants of inter-population

transcriptional differences upon immune stimulation remain

largely unexplored, yet this is critical to increase knowledge on

the varying susceptibility to immune disorders observed at the

population level.

Understanding how natural selection has shaped genome

variability represents a powerful approach to identify genes

that have played a major role in host survival, complementing

immunological as well as clinical and epidemiological genetic

studies (Casanova et al., 2013; Quintana-Murci et al., 2007).

Indeed, microorganisms are among the strongest selective
ber 20, 2016 ª 2016 The Author(s). Published by Elsevier Inc. 643
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pressures encountered by humans, and multiple host genes

and variants associated with immune functions and diseases

are reported to evolve adaptively (Fumagalli and Sironi, 2014;

Karlsson et al., 2014; Quintana-Murci and Clark, 2013). Further-

more, there is growing evidence that regulatory variants play a

major role in population adaptation and contribute to the diver-

sity of complex phenotypes (Fraser, 2013; Pickrell, 2014;

Schaub et al., 2012).

Besides the occurrence of new advantageous mutations,

functional variants can be introduced in human populations

through interbreeding with now-extinct lineages (Vattathil and

Akey, 2015). Recent data showed that 1%–6% of the genome

of modern Eurasians derives from Neandertals or Denisovans

(Prüfer et al., 2014; Reich et al., 2010; Sankararaman et al.,

2014; Vernot and Akey, 2014). Furthermore, humans appear

to have acquired genetic diversity from archaic hominins at

several immune genes, such as HLA, TLR1, or the OAS cluster

(Abi-Rached et al., 2011; Dannemann et al., 2016; Deschamps

et al., 2016; Mendez et al., 2013). Despite these findings,

the impact of selection and archaic admixture on driving

population differences in immune responses remains to be

investigated.

Here, we determined the degree of immune response varia-

tion, and of its genetic and evolutionary sources, within and be-

tween human populations. We used RNA sequencing (RNA-seq)

to characterize the responses of primary monocytes, from indi-

viduals of European and African descent, to various Toll-like re-

ceptor (TLR) ligands and influenza A virus, and we mapped

eQTLs. We found that marked differences in immune responses

exist between populations due to the contribution of cis- and

trans-acting regulatory variants.We also show that natural selec-

tion has contributed to the observed population differences of

immune responses and establish that admixture with Neander-

tals introduced regulatory variants affecting responsiveness to

immune stimuli into European genomes.

RESULTS

An Experimental and Computational Approach to
Understand Immune Response Variation
Population variation in immune responses was characterized in

primary monocytes, as a model of an innate immune cell type,

from 200 healthy individuals of self-reported African and

European ancestry (100 individuals of each population) (see

STAR Methods; Figure S1). Cells were exposed, for 6 hr, to li-

gands activating TLR4 (bacterial lipopolysaccharide [LPS]) and

TLR1/2 (Pam3CSK4, a synthetic triacylated lipopeptide), respon-

sible principally for sensing bacterial components, TLR7/8

(R848, an imidazoquinoline compound), responsible predomi-

nantly for sensing viral nucleic acids, and to a human seasonal

influenza A virus (IAV). RNA-seq data were collected from unsti-

mulated and stimulated monocytes, yielding a final dataset of

970 transcriptional profiles with �34 million single-end reads

per sample. High-density genome-wide genotyping and whole-

exome sequencing data were generated for all individuals and

used to characterize their genetic ancestry, map eQTLs, explore

patterns of allele-specific expression (ASE), and perform popula-

tion and evolutionary genetic analyses.
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Context-Specific Transcriptional Signatures of
Monocyte Activation
To assess the transcriptional responses of CD14+ monocytes,

we first processed and normalized the RNA-seq data and ac-

counted for potential batch effects and confounding factors

that could impact gene expression variation (Figures S2 and

S3; see STAR Methods). We obtained a final set of 12,578 ex-

pressed genes, 6,752 of which were differentially expressed

upon stimulation in at least one condition (jlog2(fold change

[FC])j > 1) at a false discovery rate (FDR) < 0.05 (Table S1A). Us-

ing adjusted expression data, principal component (PC) analysis

revealed that PC1 and PC2, accounting for 65% of total varia-

tion, corresponded primarily to IAV infection and TLR activation,

respectively (Figure 1A).

We next used weighted correlation network analysis (WGCNA)

(Langfelder and Horvath, 2008) to define modules of genes

that showed similar behaviors (up-/downregulation) upon im-

mune stimulation and identified ten modules, each comprising

257–4,070 genes (Figures 1B and S4). The gene modules

upregulated upon stimulation (modules 1–4) were enriched

in diverse Gene Ontology (GO) functions related to host de-

fense, including an inflammatory response restricted to TLR

activation and a global antiviral response exacerbated upon

IAV infection (Figure 1C; Table S1B). The gene modules down-

regulated (modules 5–9), or containing similarly expressed

genes across conditions (module 10), were enriched in func-

tions such as RNA processing and translational termination

(Table S1B).

Using the transcription factor affinity prediction (TRAP)

method (Thomas-Chollier et al., 2011), we found that the

annotated promoter regions of the genes within each module

were enriched in binding motifs for specific transcription factors,

such as nuclear factor kB (NF-kB), IRF1, andGATA2 (Table S1C).

These analyses show that cellular context is the major determi-

nant of transcriptional variability and provide a genome-wide

view of common and specific responses of CD14+ monocytes

to activation by TLR ligands and IAV infection.

Transcriptional Responses to ImmuneStimulationDiffer
between Populations
We investigated how Africans and Europeans differ in tran-

scriptional responses to immune stimulation. The estimated ge-

netic ancestry of individuals accurately reflected self-reported

ethnicity, indicating negligible levels of admixture between the

two groups (Figures S5A and S5B). We searched for genes

that show population differences in expression (popDEGs;

FDR < 0.05) and further considered the magnitude of such

differences by setting different thresholds of fold change be-

tween populations (FCpop). We identified 5,501 popDEGs with

a jlog2(FCpop)j > 0.2 in at least one condition, a figure that drop-

ped to 821 and 70 when increasing themagnitude of fold change

(jlog2(FCpop)j > 0.5 and > 1, respectively; Table S1D). Among

genes displaying the largest population differences (Table 1),

we observed the scavenger receptor MARCO, involved in early

inflammatory responses to influenza (Areschoug and Gordon,

2009); the chemokine receptor CX3CR1, mediating skin wound

healing (Ishida et al., 2008); and, more generally, several inter-

feron-stimulated genes.



Figure 1. Transcriptional Response of Primary Monocytes to TLR Activation and Influenza A Virus Infection

(A) PC analysis of adjusted RNA-sequencing expression profiles in the five conditions tested in Africans (AFB) and Europeans (EUB).

(B) Weighted correlation network analysis. Relative size of the modules (left), expression patterns of genes in modules that are upregulated after stimulation (1–4)

with boxplots representing relative expression based on PC1 (middle), and most associated transcription factor binding motifs in genes within modules (right).

(C) Most significant GO biological process enrichments of genes in modules 1–4.

See also Figure S4 and Table S1.
We next searched for genes presenting population differ-

ences in their response to treatment, relative to non-stimulated

cells (popDRGs). We found 3,841 popDRGs (FDR < 0.05, 70%

of popDEGs), the majority of which were treatment specific

(2,687 popDRGs; Table S1E). popDRGs displaying stronger

responses in Africans were enriched in GO functions from

metabolic processes to defense responses, while popDRGs

responding more strongly in Europeans were essentially

restricted to defense functions in the TLR conditions and en-

riched in translational processes upon IAV infection (Table

S1F). popDRGs showing the greatest population differences

(jlog2(FCpop)j > 1) were enriched in cytokines and chemokines

(Fisher’s exact test, odds ratio [OR] = 36.7, p < 10�8), including

IL12B and CSF3, responding more strongly to Pam3CSK4 in

Africans, and CCL8, CCL13, CCL15, CCL23 and CXCL10, be-

ing more responsive to LPS in Europeans (Table 1). These

results indicate that while population transcriptional differ-

ences of moderate effect are widespread, strong differences

predominantly affect antiviral and inflammation-related genes

that differ markedly in responsiveness between Africans and

Europeans.
Detecting Local Immune-Responsive Regulatory
Variation
We next mapped eQTLs by testing for associations between

10,278,745 SNPs (the set of genotyped and imputed SNPs pre-

senting a minor allele frequency [MAF] > 0.05) and gene expres-

sion phenotypes. We first mapped local, likely cis-acting eQTLs

within 1 Mb of each gene in Africans and Europeans separately.

We used an additive linear model (Shabalin, 2012) that included

the first two PCs of the genetic data (Figures S5C and S5D) to ac-

count for possible population substructure. Considering only

eQTLs having an effect size of jbeQTLj > 0.2 at a FDR of 5%,

we found 2,665 genes with an eQTL in at least one condition (Fig-

ure S6A; Table S2A). Of these, 917 genes presented a response

eQTL (reQTL), an eQTL with a significantly larger effect size after

treatment than at the basal state (DjbeQTLj > 0 and p < 10�3, Fig-

ure 2A). Consistent with data for other cell types or stimuli (Fair-

fax et al., 2014; Lee et al., 2014); most reQTLs were treatment

specific (62%, 570 genes), indicating strong context specificity

of the genetic regulation of immune responses.

To investigate the functional features of (r)eQTLs, we used the

predicted regulatory elements of CD14+ monocytes (Zerbino
Cell 167, 643–656, October 20, 2016 645



Table 1. GenesDisplaying theHighest Degree ofDifferential Expression orDifferential Immune-InducedResponses betweenAfricans

and Europeans

Condition Africans Europeans

Resting cells (NS) CCL3L1, CCL3L3, CX3CR1, LPL, TMEM14C,

TREML4, VNN1

HTRA3, MARCO, MT1X, PADI4, RP11-105C19.1, RP11-

645C24.5, S100P, TMEM176A, TMEM176B, USP32P1

TLR4 (LPS) AC131056.3, CEP128, LPL, RP11-1143G9.4,

RP11-7F17.7, TREML3P, TREML4, VNN1

AC004988.1, APOBEC3A, BATF2, CCL13, CCL15, CCL23,

CCL8, CMPK2, CXCL10, DHX58, DNAAF1, ETV7, GBP4,

HERC5, IFIT1, IFIT2, IFIT3, MARCO, NCOA7, PLXNA3,

RP11-105C19.1, RP11-645C24.5, RSAD2, SIGLEC1,

TMEM176A, TMEM176B, TNFSF10, U1, USP18, USP32P1

TLR1/2 (Pam3CSK4) AC131056.3, C2CD4B, CCL3L1, CCL3L3, CEP128,

CPXM1, CSF3, GBA3, IL12B, IRG1, LPL, NKX3-1,

SLC25A37, SNORD3B-1, SUCNR1, TREML4, VNN1

CCL15, HMOX1, IFIT1, IFIT2, IFIT3, PLXNA3, RP11-

105C19.1, RP11-645C24.5, RSAD2, TMEM176A,

TMEM176B, U1, USP32P1

TLR7/8 (R848) AC131056.3, LPL, RP11-7F17.7, SUCNR1,

TREML3P, TREML4

PAM, PLXNA3, RP11-105C19.1, RP11-128M1.1, RP11-

645C24.5, TMEM176A, TMEM176B, U1

Influenza A virus (IAV) CCL3L1, CCL3L3, CTSC, HS3ST3B1, IL6, LGALS17A,

NUPR1, RP11-1143G9.4, SLC25A37, TREML4

J01415.23, MARCO, MDGA1, PADI4, PAM, RASD2,

RP11-105C19.1, RP11-105C19.2, RP11-645C24.5,

S100P, SNHG5, TMEM176A, TMEM176B, U1

The genes listed are divided according to the population where they present the highest expression. All genes reported are differentially expressed

between populations in the various cellular conditions (popDEGs, jlog2(FCpop)j > 1), while those presented as underlined are further characterized

by their stronger population differences in response to treatment, with respect to the non-stimulated condition (popDRGs). Underlined genes in the

non-stimulated (NS) condition correspond to those that are differentially expressed between populations only in that condition. Genes presenting a

jlog2(FCpop)j > 1 at FDR of 5% are presented.
et al., 2015) and identified a strong enrichment in such elements,

particularly in promoter sequences (OR > 10.4, p < 10�16; Fig-

ure S6B). Furthermore, we observed strong enrichments of basal

eQTLs and reQTLs in binding sites for several transcription fac-

tors (TFs), including KDM5A and THAP1 at the basal state, TBP

and STAT3 after TLR activation, and STAT2, HMGN3, and IRF1

following R848 and IAV treatments (Figure 2B), highlighting me-

diators of cellular responses to immune activation.

Uncovering the Genetic Basis of Population Differences
in Immune Response
We subsequently investigated the contribution of genetic vari-

ants to population differences in immune responses. We found

that popDRGs were enriched in reQTLs in all conditions (OR >

2.6, p < 10�14), an enrichment that increased with the magnitude

of the population fold change in gene expression (jlog2FCpopj;
Figure 2C). This suggests that differences in transcriptional re-

sponses between populations are, at least partially, under ge-

netic control. To test this hypothesis, we evaluated the fraction

of population transcriptional differences that can be explained

by genetics (see STAR Methods). We found that (r)eQTLs ac-

count on average for �50% of such expression differences

and for up to 70% when focusing on (r)eQTLs of strong effect

size (i.e., fifth quintile; Figure 2D). Furthermore, reQTLs associ-

ated with popDRGs showed a stronger degree of population dif-

ferentiation (mean difference in derived allele frequency jDDAFj =
0.24 for popDRGs versus 0.16 for non-popDRGs, p < 2.2 3

10�16), suggesting that differences in transcriptional responses

are mainly accounted for by population variation in allele fre-

quency of reQTLs. An example is provided by NCF2, which is

downregulated specifically in Africans upon TLR activation,

due to the higher DAF of reQTL rs2274065, with respect to Euro-

peans (DAFAFB = 0.50 versus DAFEUB = 0.07) (Figure 2E).
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We next searched for population-specific (r)eQTLs, i.e., SNPs

present at similar population frequencies (MAF > 0.05) but having

a regulatory effect in one population only. We found 16 eQTLs

presenting significant differences in effect size between popula-

tions (pinteraction < 0.001), 5 of which were reQTLs (Table S2B).

For example, rs1051712 was associated with decreased

ST3GAL6 expression upon R848 stimulation in Europeans only

(Figure 2F). Our analyses suggest that while population-specific

gene regulation can occur, population differences in immune re-

sponses are mostly the result of regulatory variants presenting

different allele frequencies between Africans and Europeans.

Allele-Specific Expression Reveals cis-Regulatory
Effects on the Immune Response
To provide amore accurate evaluation of cis effects affecting im-

mune response variation, we mapped allele-specific expression

QTLs (aseQTLs) (Figures S6C and S6D). aseQTL mapping is

constrained by not only the availability of heterozygotes and

read depth but also by effect size, which strongly impacts the po-

wer of detection (Figure S6E). To ensure sufficient power, we

focused on the 233 genes with large-effect eQTLs (jbeQTLj >
0.5) that could be tested and found 200 with an aseQTL (86%),

including 160 assessed with high confidence (paseQTL < 10�3)

(Figure S6F; Table S2C). Similarly, among the 42 reQTL genes

that could be tested, we detected 33 (78%) with a stimulus-

induced allele-specific response QTL (asrQTL), including 20 as-

sessed with high confidence (Figures 3A and S6G; Table S2D).

Among these, we found the TLR-induced NCF2 and PCID2

and the IAV-induced ARL5B (Figure 3B), which regulates the

RIG-I-like receptor MDA5 (Kitai et al., 2015).

We next assessed the contribution of common regulatory var-

iants (MAF > 0.05) to ASE at the individual level. Out of 5,889

genes for which ASE could be tested, we identified 1,942 genes



Figure 2. Genetic Determinants of Population Differences in Immune Response
(A) Number of genes harboring reQTLs in single conditions or combinations of stimulations (***p < 0.001, significance of overlap between stimulation conditions).

(B) Enrichment of (r)eQTLs in transcription factor (TF) binding sites. The five TFs presenting the strongest enrichments are shown for basal state eQTLs

and reQTLs in different sets of stimulated conditions. Dots show the estimated odds ratio for the presence of binding sites of the TFs under consideration among

(r)eQTLs, and horizontal lines show the 95% confidence interval of the odds ratio.

(C) Proportion (in percentage) of popDRGs harboring a local reQTL. Within each condition, popDRGs of different strengths (light color, jlog2FCpopj > 0.2; dark

color, jlog2FCpopj > 0.5), as well as the proportion of reQTLs expected at the genome-wide level (in gray), are represented (***p < 0.001, significance of

enrichment).

(legend continued on next page)
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Figure 3. Allele-Specific Expression upon Immune Stimulation

(A) Strongest allele-specific response QTLs (asrQTLs) for each stimulation condition and population.

(B) asrQTL of ARL5B. Individual allelic ratios, in non-stimulated and IAV-infected conditions, are grouped by reQTL rs2130531 genotype and phase with exonic

variants, with color-coding for population (dark and light colors for Africans and Europeans, respectively). Vertical bars show the 95%binomial confidence interval

of the allelic ratio.

(C) Distribution of allelic ratios across genes harboring aseQTLs. Ratios are grouped by eQTL genotype (HMZ, homozygous; HTZ, heterozygous) for basal state or

stimulated conditions.

(D) Percentage of ASE events observed for different categories of rare exonic variants. Vertical bars indicate 95% confidence intervals for the estimated per-

centage (***p < 0.001).

See also Figure S6 and Table S2.
with at least one ASE event (jlog2(Nalternative/Nreference)j > 0.2,

FDR < 0.05), yielding an average of�188 ASE events per individ-

ual (Table S2E). Of these, 275 genes presented evidence of

allele-specific responses (i.e., significant differences in ASE

before and after stimulation), suggesting G 3 E interactions

(Table S2F). Focusing on the 160 aseQTLs detected at the pop-

ulation level, we consistently observed stronger allelic imbalance

in heterozygous individuals, �70% of whom displayed ASE in

both the presence and absence of stimulation (p < 2.2 3
(D) Fraction of population differences attributable to (r)eQTLs among popDEGs

quintiles. Dark color bars indicate the fraction of jlog2FCpopj of popDRGs attributab

that is not explained by reQTLs. For the non-stimulated (NS) condition, the fracti

(E) TLR-induced reQTL at NCF2 in both Africans and Europeans (left), and mean

(F) European-specific reQTL at ST3GAL6 induced by R848 (left), and mean popu

See also Figure S6 and Table S2.
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10�16; Figure 3C). Our results indicate that, upon immune stimu-

lation, a large fraction of ASE events can be accounted for by

common regulatory variants, as shown for steady-state expres-

sion (Battle et al., 2014; Martin et al., 2014; Montgomery et al.,

2011).

Finally, we evaluated whether rare coding variants, presenting

a frequency %1% and characterized through whole-exome

sequencing, impact ASE upon immune stimulation. A significant

increase in ASE was observed in individuals carrying rare
and popDRGs. (r)eQTLs are sorted by increasing effect size and divided into

le to reQTLs for each stimulation, and the light color bars represent the fraction

on of jlog2FCpopj of popDEGs attributable to eQTLs is reported.

population expression of NCF2 (right).

lation expression of ST3GAL6 (right).



missense variants in stimulated conditions (OR = 1.34, p < 5.03

10�8; Figure 3D). Notably, nonsense variants contributed to the

strong increase in ASE in both basal and stimulated states

(OR = 6.8, p < 5.93 10�6 andOR= 10.6, p < 2.03 10�31, respec-

tively). This is consistent with a role of rare coding variants in the

generation of allelic imbalance inmonocytes, particularly prema-

ture stop variants, possibly through nonsense-mediated decay,

as reported for other cell types and tissues (Kukurba et al.,

2014; Lappalainen et al., 2013; MacArthur et al., 2012).

Besides the contribution of common regulatory variants and

rare coding mutations, our results identified a fraction of ASE

events that are not explained by nearby eQTLs (i.e.,�17%of ho-

mozygotes display ASE). This suggests the occurrence of sec-

ondary mechanisms regulating ASE, including undetected

eQTLs of small effect size or epigenetic effects.

Trans Regulation Affects the Population Differentiation
of Immune Responses
To detect master regulators underlying population differences in

immune responses, we mapped trans-eQTLs, i.e., SNPs regu-

lating gene networks over long distances. Our genome-wide

mapping across stimulations, correcting for multiple testing,

resolved a total of 42 trans-eQTLs regulating 165 genes at an

FDR of 5% (p < 2.7 3 10�12; Figure 4A; Table S3A). Of these,

62% (103 genes) were trans-regulated in one condition only,

highlighting the high degree of context specificity. We assessed

the contribution of trans regulation to population differences in

immune responses, and found that trans-regulated genes,

upon TLR4 and TLR1/2 treatments, were strongly enriched in

popDRGs (OR > 10.3, p < 1.6 3 10�16; Figure 4B).

To decrease the multiple testing burden of detecting trans-

associations, we further interrogated the 42 trans-eQTLs on a

single SNP basis (see STAR Methods). This enabled the detec-

tion of 794 trans-regulated genes (p < 4.4 3 10�6, Bonferroni-

corrected p < 0.05), the large majority of which (98%) were

associated to a single trans-eQTL. Furthermore, we observed

that only two loci, IFNB1 and TLR1, account for 88%of these as-

sociations (Figure 4A; Table S3A). The IFNB1 locus, previously

reported upon LPS treatment for 24 hr in Europeans (Fairfax

et al., 2014), was the strongest trans-regulatory hotspot. We

found that this locus controlled, in both populations, a TLR4-

and TLR1/2-mediated antiviral gene network (Table S3B), corre-

sponding mostly to genes belonging to module 2 (96% of

overlap). Genes in this network were enriched in popDRGs

(OR > 9.2, p < 10�38), owing to population differences in IFNB1

response. Local IFNB1 regulatory variants had similar population

frequencies (maximum jDDAFj = 0.1) and explained only up to

9% of the differences in IFNB1 response. Thus, the population

differences observed for IFNB1 trans-regulated genes are not

due to variation in the cis regulation of IFNB1 itself but instead

are due to yet-unidentified genetic and non-genetic factors.

A TLR1 Master Regulator Modulates the Inflammatory
Response in Europeans
We identified a Pam3CSK4-induced gene network that is trans-

regulated by the TLR1 missense variant rs5743618 (I602S).

This European-specific trans-eQTL (DAFEUB = 0.71, DAFAFB =

0.01) was also associated with the expression of one of the
largest networks (432 genes, Bonferroni-corrected p < 0.05; Fig-

ures 4A, 4C, and 4D). Genes downregulated by the rs5743618-

derived variant were enriched in genes belonging to module 1

(67% of genes) and module 4 (18% of genes) (OR > 11.5,

p < 2.5 3 10�19; Figure 1B). These genes were preferentially

involved in responses to bacterial infection (OR = 6.3, p =

6.53 10�9; Table S3C) and included regulators of inflammation,

such as CCL5, IL10, IL12B, and PTGS2 (Figure 4D). Among

upregulated genes, signaling-related functions were overrep-

resented and included BID, IKBKE, and PAK1, involved in

TNFR1 signaling (Figure 4D). Remarkably, TLR1 trans-associ-

ated genes displayed strong enrichment in popDRGs (OR =

8.6, p < 10�28), and, contrary to IFNB1, such population tran-

scriptional differences were largely explained by genetics (i.e.,

the rs5743618 variant; Figure 4E).

We then investigated the effects of this trans-regulatory variant

on the inflammatory response, as we previously showed its func-

tional impact on NF-kB activity (Barreiro et al., 2009), and

assessed the correlation of rs5743618 genotypes with the

expression of the 81 inflammatory response genes of module 1

(Figures 1B and 1C; Table S1B). The derived C allele (602S)

was associated with a significant overall decrease in the expres-

sion of inflammatory response genes (p = 1.23 10�13; Figure 4F).

These results reveal major population differences in TLR1/2-

mediated responses, which are largely explained by a Euro-

pean-specific TLR1 trans-regulatory hotspot that contributes

significantly to differences in the strength of the inflammatory

response between Africans and Europeans.

Natural Selection Targeted Immune-Responsive
Regulatory Variation
We next assessed how natural selection, as opposed to genetic

drift, has contributed to differences in immune responses be-

tween populations. We computed two metrics—FST, based on

the degree of population differentiation (Holsinger and Weir,

2009), and iHS, based on haplotype homozygosity (Voight

et al., 2006)—to detect signals of old and recent events of posi-

tive selection, respectively. After matching for MAF and linkage

disequilibrium (LD) patterns, we found that basal eQTLs and

reQTLs were enriched in stronger values of FST (p < 0.005 for

eQTLs and p < 1 3 10�4 for reQTLs, respectively) and iHS

(p < 0.002 and p < 1 3 10�4, respectively), relative to genome-

wide expectations, in Africans and Europeans (Figure 5A). Signif-

icant enrichments in selection signals were also obtained using a

composite selection score (CSS) combining FST and iHS, which

detects signals of recent, strong positive selection, and the

XP-CLR method, which uses allele frequency differentiation at

linked loci to detect selective sweeps (Chen et al., 2010). Among

reQTLs, the strongest enrichments were observed for the IAV

condition in both Africans (iHS p = 0.04, XP-CLR p < 10�4) and

Europeans (FST p < 10�4, CSS p = 0.002) (Table S4A). This sup-

ports a history of positive selection targeting immune-responsive

regulatory variants, particularly those involved in responses to

viral infection.

To highlight specific (r)eQTL candidates that may have partic-

ipated in population adaptation at different timescales, we

considered loci presenting extreme values of FST or iHS at the

genome-wide level (>99th percentile; Tables S4B and S4C).
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Figure 4. Identification of Master Regulatory Loci of Immune Responses

(A) Genome-wide distribution of trans-eQTLs. For each locus, the number of associated genes identified at a genome-wide FDR of 5% or using an SNP-based

Bonferroni correction is represented by black and gray bars, respectively.

(B) Enrichment of popDRGs in genes regulated by trans-eQTLs.Within each condition of stimulation, popDRGs of different strengths (light color, jlog2FCpopj> 0.2;

dark color, jlog2FCpopj > 0.5) are represented (*p < 0.05, ***p < 0.001).

(C) Fine mapping of the Pam3CSK4-induced trans-eQTL at TLR1. The significance of SNP associations with the expression patterns (PC1) of the 432 trans-

regulated genes is shown for basal and Pam3CSK4 conditions (gray and green dots, respectively). Only the gene overlapping the strongest trans-eQTL signal is

represented.

(D) TLR1 trans-associated genes at pBonferroni < 0.05. The size of the circles reflects the proportion of the variance of gene expression explained by rs5743618, and

colors indicate the direction of the change in expression associated with the derived allele. Only the 100 most significant genes are shown.

(E) Fraction of population differences in gene expression (jlog2FCpopj) attributable to rs5743618 among popDRGs regulated by the TLR1 locus (in dark green).

Only the tail distribution of popDRGswith the largest population differences is represented. Genes involved in theGObiological process ‘‘response tomolecule of

bacterial origin’’ are reported.

(F) Impact of the derived allele of TLR1 rs5743618 (C allele) on the expression patterns (PC1) of the 81 inflammatory genes from module 1.

See also Table S3.
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Figure 5. Natural Selection Driving Population Differences of Immune Response

(A) Distribution of neutrality statistics among local (r)eQTLs. For each locus, the maximum FST or jiHSj across all SNPs in high LD (r2 > 0.8) is considered, focusing

on selection signals targeting the derived allele. The genome-wide distribution of these statistics (after pruning for LD, to avoid overweighting long haplotypes)

is provided as a reference (all). Significance was assessed by resampling random SNPs from the genome, matched for MAF and LD (*p < 0.05, **p < 0.01,

***p < 0.001). Top: Africans. Bottom: Europeans.

(B) Fine mapping of the selection signal detected at theCCR1 reQTL in Africans. Top: SNP associations with CCR1 expression (-log10(peQTL)) are represented for

the basal (gray) and Pam3CSK4 (green) conditions. SNPs located in the CCR1 reQTL peak region are in high LD (r2 > 0.8) with the reQTL peak-SNP. Middle and

bottom: FST and jiHSj values for SNPs with a DAFR 0.2, respectively. For each SNP, the size of the dots is proportional to the association withCCR1 expression,

with blue and red indicating selection on derived and ancestral alleles, respectively. The blue line represents the recombination rate at the locus. Only the gene for

which the eQTL was detected is represented.

See also Table S4.
Among these, we conservatively retained (r)eQTLs that were

located in genomic regions presenting a significant enrichment

in selection signals anddeviated fromneutral expectationsbased

on validated demographic scenarios (see STAR Methods).

Among local eQTLs, thestrongest signaldetectedbyFST involved

an eQTL associated with stronger expression of themethyltrans-

ferase genePCMTD1 in Europeans (FST= 0.8, iHS=�3),while the

strongest signal of iHS involved a reQTL associated with a

reduced expression of CCR1 following TLR1/2 activation in

Africans (iHS = �4; FST = 0.4) (Figure 5B). With respect to trans-

eQTLs, the master regulatory SNP rs5743618 at TLR1 also pre-

sented a strong signal of local adaptation in Europeans (FST =

0.7, iHS = �1.5, pempirical-FST = 0.002, psim-FST = 0.007).

Together, our results provide genome-wide support for the

important role of regulatory variants affecting basal gene

expression and responses to immune stimuli in driving human

adaptation. This, together with the enrichments in genes

showing differential expression between populations (OR =

2.1, p = 1.1 3 10�11) among (r)eQTLs with selection signatures

(Tables S4B and S4C), emphasizes the contribution of natural

selection to the differences in immune responses observed be-

tween human populations.
Neandertal Contribution to Transcriptional Responses
to Immune Challenges
We investigated the impact of admixture between Neandertals

and theancestorsof Europeansongenome-wideexpressionpro-

files (see STAR Methods). We first defined a set of 197,959 vari-

ants as of putative Neandertal ancestry (archaic SNPs [aSNPs])

if the Neandertal allele was present in Europeans and absent in

Africans and located in genomic regions with a high probability

of Neandertal ancestry (Sankararaman et al., 2014).We identified

a total of 52 loci harboring at least one aSNP overlapping a local

eQTL (archaic eQTL). Interestingly, relative to genome-wide ex-

pectations, an enrichment in aSNPs was observed for basal

eQTLs (p < 0.003) and reQTLs in R848 and IAV conditions

(p < 0.014 and p < 10�3, respectively; Figure 6A). To identify

archaic eQTLs with high-confidence, we next focused on those

located in haplotypes longer than expected under a scenario of

incomplete lineage sorting (Figure S7A). Among the 19 eQTLs

presenting strong evidence of Neandertal origin (Table S5), 9 cor-

responded to R848- and IAV-induced reQTLs, implicating genes

encoding Ras GTPases such as RAB3IP and RAPGEF3.

Some of these (r)eQTLs carry archaic alleles that are at

appreciable frequencies in Europeans, suggestive of adaptive
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Figure 6. Neandertal Introgression of Immune Regulatory Variants in Europeans

(A) Enrichment of (r)eQTLs in archaic SNPs. The observed number of archaic eQTLs is presented for each condition (colored dots) in Europeans with respect to

the expected distribution of archaic eQTLs under the assumption of independence (gray bars) (see STAR Methods) (*p < 0.05, **p < 0.01, ***p < 0.001).

(B) Fine mapping of the archaic reQTL at PNMA1 in Europeans. SNP associations with PNMA1 expression (�log10(peQTL)) for the basal (gray) and stimulated (in

colors) conditions (top). European individuals, and their corresponding archaic and modern haplotypes at the PNMA1 locus, are sorted by increasing levels of

PNMA1 expression. Red dots represent archaic SNPs, and red lines represent the largest consecutive stretch of archaic alleles associated with PNMA1

expression (middle). Frequency distribution of archaic SNPs at the locus is shown (bottom). Only the gene for which the eQTL was observed is represented.

See also Figure S7 and Table S5.
introgression. To test this hypothesis, we reasoned that an

archaic allele that introgressed into Europeans and East Asians

and was advantageous in one population only should present

today unusually high levels of genetic differentiation, relative to

genome-wide expectations (Vernot and Akey, 2014). When

comparing FST between Europeans and East Asians at archaic

(r)eQTLs against the genome-wide distribution of aSNPs (Table

S5), we identified a haplotype that regulates the response of

PNMA1 to R848 and IAV as a significant genomic outlier

(FST = 0.28; pemp = 0.01; Figures 6B and S7B–S7E). This archaic

haplotype is present at very high frequency in Europeans

(33.5%), while it is absent in East Asians (Figure S7B). Using

simulations that make conservative assumptions about the

past frequency spectrum of archaic alleles (see STAR Methods),

we found that the high frequency of the PNMA1 haplotype in

Europeans is not compatible with neutral expectations (psim <

0.05; Table S5), providing support to the adaptive nature of

this introgression event.

Collectively, these results indicate that regulatory variants

affecting steady-state gene expression and transcriptional

responsiveness to immune challenges, particularly those that

are viral related, were preferentially introduced into European ge-

nomes via admixture with Neandertals, of which some may have

conferred a selective advantage to modern populations.

DISCUSSION

Recent studies have offered proof of concept that eQTL map-

ping detects key genetic variants relevant to immunity and infec-

tion (Fairfax and Knight, 2014). Here, using RNA-seq data, we

characterized, at an unprecedented level of resolution, the tran-
652 Cell 167, 643–656, October 20, 2016
scriptional response of primary monocytes to inflammatory and

infectious cues. We defined the respective contributions of nat-

ural selection and archaic admixture to differences in immune

response regulation between populations. In doing so, we iden-

tify regulatory variants andmolecular phenotypes that have been

important to human survival and that are of biomedical interest

for the understanding of genetic susceptibility to immune-related

diseases.

Our analyses uncovered extensive variation, globally of mod-

erate effect, in transcriptional responses to immune challenges

between individuals of African and European descent, with the

strongest differences being observed for genes with antiviral

and inflammatory-related functions. These genes are enriched

in associations with cis- and trans-eQTLs, and regulatory vari-

ants presenting different allele frequencies between populations

account for a large fraction of the population differences in im-

mune responses observed. Highlighting one pertinent example,

we identify a reQTL (rs2274065), whose cis-action was sup-

ported by our analyses of ASE, leading to TLR-mediated NCF2

downregulation in Africans, where this variant is present at

high frequency (�50%). That this mutation has been associated

with systemic lupus erythematosus (Jacob et al., 2007) suggests

that lower levels of NCF2 expression may contribute to the

higher prevalence and severity of this disease in Africans (Fer-

nández et al., 2007). This example illustrates the value of

mapping response eQTLs across populations to uncover mech-

anisms that might explain ethnic disparities in the clinical mani-

festation of immune disorders.

This study also establishes that natural selection has contrib-

uted to the differences in immune responses observed between

populations by providing genome-wide support that regulatory



variants associated with different responsiveness to immune

challenges have been targeted by positive selection. In doing

so, we identify multiple regulatory variants showing signatures

of population local adaptation. For example, selection appears

to have increased the frequency of the African-specific reQTL

rs7426702 (39%), leading to stronger CCR1 downregulation

following TLR1/2 activation. Interestingly, the inhibition of

CCR1 limits leukocyte recruitment and prevents inflammatory

responses in experimental settings (Gladue et al., 2006). Our

results thus suggest that CCR1 downregulation has conferred

a selective advantage in Africans, likely to favor diminished

inflammation.

Further support for this concept is provided by the strong se-

lection signature detected for the European trans-eQTL at TLR1,

spanning a region shown to have evolved adaptively (Barreiro

et al., 2009; Deschamps et al., 2016; Mathieson et al., 2015;

Pickrell et al., 2009). The TLR1 variant is a strong trans-regulatory

hotspot associated with a gene network presentingmarked pop-

ulation differences in the response to immune activation.We also

found that the advantageous rs5743618 allele, which impairs

NF-kB activity (Barreiro et al., 2009), is associated with a global

decreased expression of inflammatory response genes, consis-

tent with an attenuated TLR1-mediated signaling beneficial to

Europeans. Together, our findings highlight the evolutionary

tradeoff between activating efficient responses to sense micro-

organisms, both pathogenic and commensal, while avoiding

aberrant, deleterious inflammation.

Genetic variation transmitted through admixture with Nean-

dertals can also represent a source of functional, potentially

advantageous variants (Vattathil and Akey, 2015). Relative to

genome-wide expectations, we show that genetic segments in-

trogressed from Neandertals have preferentially introduced reg-

ulatory variants into European genomes, affecting steady-state

expression and responses to TLR7/8 stimulation and IAV.

Furthermore, we report several loci presenting strong evidence

of archaic ancestry that exert a regulatory effect in cis. Among

these, we find the IAV-induced reQTL of PNMA1, which en-

codes a protein that physically interacts with the IAV protein

PB2 and stimulates interferon production (Shapira et al.,

2009). That the PNMA1 haplotype presents a frequency in

Europeans that is not compatible with neutral evolution,

together with its strong levels of population differentiation be-

tween modern Europeans and East Asians, supports its contri-

bution to European adaptation and provides a case of adaptive

introgression. The functional roles of the introgressed regulatory

variants require further investigation, but our results clearly

establish that archaic admixture, whether adaptive or not, has

increased the diversity of the immune repertoire of contempo-

rary Europeans.

Collectively, our analyses provide a comprehensive view of the

impact of population genetic differences on transcriptional re-

sponses to innate immunity activation and highlight evolution-

arily important determinants of host immune responsiveness.

The regulatory variants identified here constitute a useful

resource for evaluating the role of such variants in the molecular

and cellular mechanisms underlying host immunity to infection

and susceptibility to disease, both at the individual and popula-

tion levels.
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IMPUTE v.2 (Howie et al., 2009) http://mathgen.stats.ox.ac.uk/impute/impute_v2.1.0.html
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WASP (van de Geijn et al., 2015) https://github.com/bmvdgeijn/WASP
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the corresponding author Lluis Quintana-

Murci (quintana@pasteur.fr).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We recruited 100 healthy, male donors of self-reported European descent (EUB) and 100 of self-reported African descent (AFB), all

living in Belgium, at the Center for Vaccinology (CEVAC) of Ghent University Hospital (Ghent, Belgium). Samples were collected after

written informed consent had been obtained, and the study was approved by the local ethics committee (Ethics Committee of the

Ghent University), the Ethics Board of Institut Pasteur (EVOIMMUNOPOP-281297) and the relevant French authorities (CPP, CCITRS

and CNIL). Inclusion was restricted to donors between 19 and 50 years of age, nominally healthy at the time of sample collection.

A case report form was obtained for all donors, including information on vital sign measurements, medication, medical history

and travel. No overrepresentation of any particular disease was observed relative to official report statistics published by the World

Health Organization or in epidemiological studies. Serological testing was performed for all donors at the CEVAC, and those with

serological signs of past or ongoing infection with human immunodeficiency virus (HIV), hepatitis B virus (HBV) or hepatitis C virus

(HCV) were excluded.

METHOD DETAILS

PBMC Isolation
For each participant, we collected 300ml of whole blood into anticoagulant EDTA-blood collection tubes and peripheral bloodmono-

nuclear cells (PBMCs) were isolated on Ficoll-Paque density gradients. PBMCs were frozen in 90% fetal calf serum (FCS) and 10%

dimethyl sulfoxide, at a density of 503 106 PBMCs/ml and transported in dry shipper fromCEVAC to Institut Pasteur. Vials were then

cryopreserved in liquid nitrogen until use.

Monocyte Separation
For each donor, 300 3 106 PBMCs were thawed, washed twice and resuspended in pre-warmed RPMI-1640 Glutamax medium,

supplemented with 10% FCS and penicillin/streptomycin (complete medium). Monocytes were then positively selected with mag-

netic CD14 microbeads, according to the manufacturer’s instructions. The number of monocytes was determined with a Kova

Glasstic Slide 10 with a grid in the presence of trypan blue. For each donor, 30 3 106 monocytes were split between five 25 cm2

non-treated flasks (i.e. one flask per condition and five conditions per donor), each containing 63 106 monocytes in 9 ml of complete

medium. Monocytes were allowed to rest for one hour at 37�C under 5% CO2 before stimulation.

Monocyte Purity and Cell Death Assessment
Purity and cell death of the isolatedmonocyteswere assessed for all donors on a fraction of 105 CD14+monocytes stained, according

to the manufacturer’s instructions, with fluorescent APC-conjugated anti-CD14 antibodies and propidium iodide, respectively. Sam-

ples were then analyzed on a MACSQuant Analyzer 10 benchtop flow cytometer (Miltenyi Biotec) and using FlowJo vX.0.6 software.

The mean values obtained for all samples were 96.8% for monocyte purity and 2.1% for initial cell death rates.

TLR Stimulation and Influenza A Virus Assays
Monocytes were exposed to five different conditions for 6 hr, in order to capture transcriptional signatures from both an early

response and the beginning of a late response, i.e., an ‘‘intermediate response’’ (Huang et al., 2001). The choice of this time point
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was also based on a pilot study on the kinetics of gene expression of several key inflammatory and antiviral response genes (IL1A,

IL23A, IL6, IL8, TNF, IRF1 and STAT2) upon immune activation. Our results showed that 6 hr of stimulation was the best time point to

capture simultaneously expression signals from early, intermediate and late response genes, with respect to other time points at 2, 4,

8 and 24 hr (data not shown). Onemonocyte flask was left untreated as a baseline control, while the others were each exposed to one

of four different immune stimuli. These stimuli included synthetic ligands specifically activating three Toll-like receptor (TLR) signaling

pathways: 1 ng/ml ultrapure LPS from E. coli, 0.2 mg/ml synthetic triacylated lipoprotein Pam3CSK4, and 0.3 mg/ml imidazoquinoline

compound R848.Monocytes were also infectedwith strain A/USSR/90/1977(H1N1) of the human seasonal influenza A virus (IAV) at a

MOI = 1, and IAV particles were produced as previously described (Pothlichet et al., 2013). After stimulation, cells were collected by

centrifugation, lysed in a guanidinium thiocyanate solution provided in the Nucleospin miRNA kit, according to the manufacturer’s

instructions, and stored at �80�C until RNA extraction. Cellular assays were performed per batch of 30 samples from 6 individuals,

including 3 Africans and 3 Europeans, across all 5 conditions.

RNA Extraction
Total RNA was extracted with the Nucleospin miRNA kit from Macherey Nagel, including the enzymatic digestion of genomic DNA.

Extractions were performed in batches of 30 samples (i.e. 5 conditions for 3 Africans and 3 Europeans), and RNA quality and quantity

were assessed with a Nanodrop spectrometer and the Agilent Bioanalyzer RNA 6000 nano kit. We generated a final set of 978 sam-

ples from the 200 donors fulfilling the quality and quantity criteria (RIN > 7, quantity > 2.5 mg) for high-throughput RNA-sequencing,

including 200, 188, 197, 193 and 200 samples for the non-simulated, LPS, Pam3CSK4, R848 and IAV conditions, respectively.

RNA Sequencing
RNAwas obtained from 978 of the 1000 samples, and was sequenced on an Illumina HiSeq2000. The quality and quantity of all sam-

ples was reassessed before sequencing. Samples were then randomized before library preparation in order to obtain a balanced

number of samples across ethnicity and cellular conditions per sequencing batch/lane/machine/index. Standard reagents were

used for transcriptome sequencing: TruSeq RNA Sample Prep Kit v2 for mRNA library construction, TruSeq SR Cluster Kit v3-HS

for cluster generation and TruSeq SBS kit v3-HS for sequencing. We pooled six samples per lane to generate outputs of around

30 million 101-bp single-end reads per sample (ranging from 27.7 to 94.8 million reads, mean 34.4) (Figure S2A).

DNA Extraction
Genomic DNA was extracted from the CD14-negative cell fraction (i.e. non-monocyte cells) by a standard phenol/chloroform proto-

col followed by ethanol precipitation. The DNA was quantified by Nanodrop spectrometry and with the Quant-iT PicoGreen dsDNA

Assay Kit.

SNP Genotyping and Whole-Exome Sequencing
The 200 subjects studied were genotyped for a total of 4,301,332 SNPs on the Illumina HumanOmni5-Quad BeadChips. Whole-

exome sequencing was carried out for the same individuals with the Nextera Rapid Capture Expanded Exome kit, on the Illumina

HiSeq 2000 platform, with 100-bp paired-end reads. This kit delivers 62 Mb of genomic content per individual, including exons, un-

translated regions (UTR), and microRNAs.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-Sequencing Analysis
Reads were assessed for multiple quality metrics, including number of reads, nucleotide distribution and sequencing quality, and the

last base of all readswas trimmed due to a fall in sequencing quality. RNA reads were thenmapped onto the humanGRCh37 genome

with TopHat (Kim et al., 2013), resulting in the successful mapping of 89.9% of reads per sample on average (minimum 67.3%;

maximum 93.7%). We used the RSeQC package to assess the alignment of reads with various genomic features, GC content,

and gene body coverage (Figures S2B–S2E). Samples with uneven gene body coverage were found to be more likely to be outliers.

We used gene body coverage regularity as an indicator of library quality, removing eight samples due to irregular gene body

coverage. The remaining 970 samples were used for subsequent analyses and consisted of 200 non-stimulated (EUB: 100, AFB:

100), 184 LPS (EUB: 96, AFB: 88), 196 Pam3CSK4 (EUB: 100, AFB: 96), 191 R848 (EUB: 98, AFB: 93), and 199 IAV samples (EUB:

99, AFB: 100).

Cufflinks/CuffDiff (v2.0.2) (Trapnell et al., 2012) was used to quantify expression levels in FPKM (fragments per kilobase of tran-

script per million mapped reads) for each annotated transcript of the genome in Ensembl (v.70), and FPKM values for which Cufflinks

returned FAIL status (< 0.5% of quantified transcripts) were set to missing values. Gene expression data were filtered to remove

genes with low levels of expression (mean FPKM < 1 in all conditions) and their quality was checked by principal component analysis

(PCA). PCA captured differences between conditions and populations on the first two axes, but we tested for additional causes of

technical variability, by fitting, for each gene, a mixed model of gene expression as a function of condition, population, and technical

covariates, including total RNA concentration, RIN, percentage of high-quality bases (Q30), mean GC content, library concentration,

50/30 coverage bias (measured as the mean difference in coverage between the 50 and 30 ends of the gene) as continuous covariates,
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and date of experiment, library preparation batch, sequencing batch, sequencer used, sequencing index, and sequencing lane as

putative batch effects. Putative batch effects were modeled as random effects to prevent the loss of degrees of freedom, whereas

all other covariates (condition, population and continuous covariates) were included as fixed effects, giving the following model for

gene i and sample j:

Log2ð1+FPKMijÞ= a+ bcond + bpop +
X

c

bcCovariatec +
X

k

bbatch
k;j + εij
where a is the intercept, bcond and bpop are the fixed effect of the co
ndition and population on sample j, bc are the fixed effect of contin-

uous covariates on sample j, the bbatchk;j are the random effects of batch covariate k, on sample j, and εij are the residuals.

The proportions of genes affected by each factor are reported in Figure S2F for various levels of explained variance. We observed

that GC content, 50/30 bias, date of the experiment and library batch were among the strongest confounding factors, and accordingly

corrected the data for these factors before analysis, following the pipeline detailed in Figure S3. First, we adjusted the data for GC

content and 50/30 bias using linear models. Then, we imputed missing values by K-nearest neighbor imputation, and adjusted for

experiment date and library batch by sequentially running ComBat (Johnson et al., 2007) for each batch effect, with condition and

population as covariates. Batch-corrected gene expression levels, in FPKM,were then recalculated from the adjusted transcript level

estimates. Refitting our linear mixed model confirmed that correction was satisfactory for most of the technical covariates

(Figure S2F).

Assessment of Technical and Biological Variability
The reproducibility of our RNA-Seq experiments was assessed by performing technical and biological replicates on seven indepen-

dent donors (4 AFB and 3 EUB) across the five experimental conditions.We showed that (i) the coefficients of variation of geneswithin

technical replicates were consistently, and significantly, smaller in magnitude and less variable than those within biological replicates

(Wilcoxon Rank-Sum Test, p < 10�16; Figure S2G), and (ii) technical replicates exhibit higher correlation coefficients (r) between sam-

ples with respect to the distribution of r values calculated from pairwise comparisons between biological replicates (Figure S2H).

Modules of Correlated Genes
Modules of genes presenting correlated expression patterns, extracted from log-transformed FPKM data, were defined by weighted

correlation network analysis (WGCNA) (Langfelder and Horvath, 2008). In our setting of immune response activation, this analysis

detects modules of correlated genes that can reflect either shared regulation by common transcription factors, or regulation by in-

dependent transcription factors with similar patterns of activation upon stimulation. Tukey’s biweight correlation was used as amea-

sure of gene relatedness to reduce the influence of outliers, and correlations were measured across all 970 samples. The scale-free

topology of the networks was assessed for various values of the b shrinkage parameter, according to WGCNA user manual, and the

default value of b = 6 appeared to give a satisfactory fit to scale-free topology. Signed clustering of genes (grouping only positively

correlated genes) was used to simplify the interpretation of the extracted modules. We also found that varying the level of shrinkage

(b = 5 or 6) or the depth of the clustering (deepsplit parameter set to 3 or 4) had only a mild impact on the number of clusters or the

enrichments obtained, confirming the robustness of these analyses.

For each module, we used PASTAA (Roider et al., 2009) to identify transcription factor binding site motifs overrepresented within

the annotated proximal promoters of the genes within each module. We first defined the proximal promoter region for each gene as

the region extending 200 bp on either side of the transcription start site (TSS) of themost abundant transcript on the basis of Cufflinks

FPKM estimates. We then used the transcription factor affinity prediction (TRAP) method (Thomas-Chollier et al., 2011) to measure

the binding affinities of each transcription factor present in the Jaspar core vertebrate database (Mathelier et al., 2014) with the prox-

imal promoters of the 12,578 expressed genes, and these affinities were then used as the input for PASTAA enrichment analysis. We

reported only enrichments significant at a false discovery rate (FDR) of 0.05 with a fold-change (i.e. observed/expected) greater than

1.2. For each module, we represent the transcription factor binding sites with the highest value for the lower limit of the odds ratio

confidence interval.

Differential Expression Analysis
Differential expression was assessed directly from log-transformed FPKM, using t tests for each condition. FDR was then calculated

jointly for all conditions, with the R package fdrtool, and genes differentially expressed between populations (popDEGs) were defined

as genes presenting an absolute log2 fold change between populations –
��log2 FCpop

�� – greater than 0.2 and at FDR < 0.05. We then

calculated the fold-change in expression after stimulation relative to the basal state, and used t tests to determine whether there was

a differential response. Population differential response genes (popDRGs) were then defined as popDEGs for which there was a dif-

ferential response between populations under stimulated conditions, at FDR < 0.05 (i.e. the transcriptional response to treatment,

relative to the basal state, differed between populations), resulting in a larger difference in expression after stimulation.
���log2 FC

stimulated
pop

��� >
���log2 FC

basal
pop

���
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Gene Ontology Enrichment Analysis
All Gene Ontology (GO) enrichment analyses were performed with GOSeq package (Ashburner et al., 2000), using the default set-

tings, with the 12,578 expressed genes as the background set. Only enrichments significant at FDR of 0.05 and with a fold-change

(i.e. observed/expected) greater than 1.2 are reported.

SNP Genotyping Data Analysis
Using PLINK v1.9 (Chang et al., 2015), we removed SNPs that: (i) were typed with probes mapping to several genomic locations

(N = 12,440), (ii) presented a poor genotype clustering (GenTrain score < 0.35; N = 809), (iii) had the same chromosomal position

as another SNP in dbSNP b138 (N = 6,968), (iv) were not reported in dbSNP b138 (N = 5,311), (v) presented a call rate < 95%

(N = 79,310), (vi) were monomorphic in our sample (N = 652,385), (vii) were located on the sex chromosomes (N = 50,994), and

(viii) presented a Hardy-Weinberg p < 10�3 in AFB or EUB populations (N = 4,007). After quality-control filtering, we retained a total

of 3,489,108 SNPs. The SNP call rate for the 200 individuals was 99.8% on average, ranging from 98.89% to 99.99%. No evidence

was found for 2nd-degree cryptic relatedness (kinship coefficient > 0.07) in KING (Manichaikul et al., 2010), or for sex mismatch, for

any of the individuals. Two AFB individuals presented an excess of heterozygosity (< ± 3SD from the population average), as a result

of their moderate levels of non-African ancestry, as estimated using ADMIXTURE.

Whole-Exome Data Analysis
Read-pairs were processed according to the GATK Best Practice recommendations. Read-pairs were first mapped onto the human

GRCh37 genome with BWA v.0.7.7 (Li and Durbin, 2009), and reads duplicating the start position of another read were marked as

duplicates with Picard Tools v.1.94 (http://broadinstitute.github.io/picard). We used GATK v.3.2.2 (DePristo et al., 2011) for base

quality score recalibration (‘‘BaseRecalibrator’’), insertion/deletion realignment (‘‘IndelRealigner’’), and SNP and insertion/deletion

discovery for each sample (‘‘Haplotype Caller’’). Individual variant files were combined with ‘‘GenotypeGVCFs’’ and filtered with

‘‘VariantQualityScoreRecalibration.’’ Individual coverage was 52.32 3 on average, ranging from 33.84 to 100.59 3, and individual

breadth of coverage at 5 3 was 92.42%, ranging from 83.5% to 95.0%. We removed those of the 540,990 SNPs obtained that:

(i) were triallelic (N = 11,925), (ii) presented a call rate < 95% (N = 44,716), (iii) were located on the sex chromosomes (N = 8,369),

and (iv) presented a Hardy-Weinberg p < 10�3 in AFB or EUB populations (N = 4,510). The application of these quality-control filters

resulted in the retention of 471,740 SNPs.

Imputation of Genome-wide SNP and Exome Data
Before merging the Omni5 and exome datasets, we first checked genotype concordance for 169,406 SNPs common to the two plat-

forms. We flipped alleles for 8,025 SNPs with incompatible allelic states, and removed 119 SNPs with alleles that remained incom-

patible after allele flipping. The total concordance rate was 99.66%. The concordance rates for each of the 200 individuals exceeded

99%, confirming an absence of errors during DNA sample processing. Of the 8,155 SNPswith discordance rates > 1%, 296were due

to C/G or A/T SNPs, and high genotype concordance between the two DNA typing technologies was restored by allele flipping. The

remaining 7,881 SNPs were removed. The entire Omni5 and exome datasets (3,489,108 and 471,740 SNPs, respectively) were then

merged, yielding a final concordance rate of 99.93%, for a total of 3,782,260 SNPs.

Before imputation, we phased the data with SHAPEIT2 (Delaneau et al., 2013), using 500 conditioning haplotypes, 50 MCMC it-

erations, 10 burn-in and 10 pruning iterations. SNPs and allelic states were then aligned with the 1,000 Genomes Project imputation

reference panel (Phase 1 v3.2010/11/23). We removed 8,705 SNPs with identical positions in our data and in the reference panel but

incompatible alleles, even after allele flipping, and 4,137 SNPs with C/G or A/T alleles. Genotype imputation was performed with

IMPUTE v.2 (Howie et al., 2009), considering 1-Mb windows and a buffer region of 1 Mb.

Of the 38,098,530 SNPs obtained after imputation, we removed SNPs that: (i) presented an information metric below 0.8

(N = 18,085,215), (ii) had a duplicate (N = 59,914), (iii) presented a call rate < 90% (N = 329,910), and (iv) were monomorphic

(N = 4,053). The final imputed dataset included 19,619,457 SNPs.

To evaluate imputation accuracy, we estimated correlation coefficients R2 between true genotypes (i.e., obtained by Illumina array

genotyping or exome sequencing) and imputed genotypes for the same SNPs (i.e., obtained by artificially removing genotyped SNPs

from the data before imputation and then imputing them). In very good agreement with recent studies (Auton et al., 2015), the average

correlation coefficient was 95.6% across all genotyped SNPs with information metric > 0.8 (93.6% for SNPs with MAF < 0.10 and

97.7% for SNPswithMAF > 0.10). This shows that our stringent quality filters ensure that only accurately imputed SNPs are analyzed.

Populations Genetic Structure
Two methods were used to infer the genetic structure of our population set of 100 African-descent and 100 European-descent

Belgians (AFB and EUB, respectively). Because both methods assume linkage equilibrium among SNPs, we pruned the datasets

for SNPs in linkage disequilibrium (LD), using PLINK v1.9 (Chang et al., 2015). Specifically, we removed SNPs in 50-SNP windows

that present LD r2 > 0.5 (‘‘–indep-pairwise 1000 10 0.5’’ option). The first model-based approach, ADMIXTURE (Alexander et al.,

2009), estimates the proportions of each individual’s genome originating from K ancestral populations, K being specified a priori.

This analysis was performed on 229,320 independent SNPs and 789 individuals from 22 populations, including EUB and AFB,

together with a selection of representative populations from sub-Saharan Africa, North Africa, the Near East and Europe (Altshuler
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et al., 2010; Behar et al., 2010; Patin et al., 2014). Wemade K vary from 2 to 10. To obtain themost supported results and test for their

stability, all ADMIXTURE analyses were run five times with different random seeds, for each K value. We kept results providing the

lowest cross-validation error (CV) among iterations. The second model-free approach is the principal component analysis (PCA) im-

plemented in EIGENSTRAT (Patterson et al., 2006). We used this approach to describe the local genetic sub-structure of AFB and

EUB separately. The analysis for AFB was performed on 341,593 independent SNPs and 511 individuals from 7 western and central

African populations, while the analysis for EUB was performed on 182,572 independent SNPs and 220 individuals from 13 European

populations (Altshuler et al., 2010; Behar et al., 2010; Patin et al., 2014).

eQTL Mapping
For expression quantitative trait loci (eQTL) mapping, only variants with a minor allele frequency (MAF)R 0.05 in the population stud-

ied were retained in the analysis, resulting in a set of 10,278,745 SNPs (i.e., corresponding to the merged genotyping and imputed

SNP dataset; 8,913,090 SNPs in Africans and 6,178,808 SNPs in Europeans,). We mapped eQTLs with the MatrixEQTL R package

(Shabalin, 2012). PC1 and PC2 of the genotype matrix were included in the model to account for possible population stratification.

The inclusion of additional PC in the model (up to PC6) was tested and showed highly consistent results (i.e., correlation of -log10
p-values of eQTL > 0.95). For each gene, SNPs were considered ‘‘local,’’ likely cis-acting, if they were located less than 1Mb

away from the gene transcription start or end site. They were otherwise considered to be trans-acting. eQTLmapping was performed

separately for each population and condition, and false-positives due to outliers were prevented by discarding, from the analysis,

eQTL associations that did not pass a p-value threshold of 10�3 for local eQTLs, and 10�5 for trans-eQTLs in Kruskal-Wallis rank

tests.

For both cis- and trans-eQTLs, FDRwas computed bymapping eQTLs on 100 datasets with genotypes permutedwithin each pop-

ulation. We then kept, after each permutation, the most significant p-value per gene, across all conditions and populations. Finally,

we computed the false discovery rate associated with each p-value threshold in cis or in trans, and subsequently selected the

p-value threshold that provided a 5% FDR, leading to p = 7.67 3 10�7 and p = 2.7 3 10�12 for cis- and trans-eQTLs, respectively.

For local eQTLs, we report only the SNP at which the strongest association was observed (i.e., eQTL peak-SNP).Whenmultiple SNPs

in perfect LD fell within the peak, only one SNP is reported. eQTLs for which the eQTL peak-SNP had an allelic effect size (jbeQTLj)
below 0.2 were discarded from further analysis. We next mapped fold-changes between the basal and stimulated states using

MatrixEQTL, and defined response eQTLs (reQTLs) as stimulated eQTLs associated to a significant difference in response to stim-

ulation (p < 10�3,
��bstimeQTL

�� >
��bbasaleQTL

�� ). For trans-eQTLs, we reported, within each 1Mbwindow, the SNP for whichwe observed both the

largest number of trans-associated genes and strongest p-value of association. Furthermore, for each trans-eQTL that passed

genome-wide significance at p = 2.7 3 10�12 (FDR of 5%), we performed a SNP-based analysis to identify genes regulated in trans

by the eQTL at a Bonferroni p < 0.05, correcting for the 12,578 genes tested within the condition where the eQTL was found.

Population Differences Attributable to Genetics
To estimate the fraction of population differences in gene expression that can be attributed to genetic variants, we used a two-step

strategy. First, we consider the set of all SNPs in LD (r2 > 0.5) with the eQTL peak-SNP, in the population where the eQTL was discov-

ered and fine map the eQTL signal by fitting across populations the following linear model:

expressionj =a+ b:SNPj +g:Popj + εj
where SNPj is the genotype of the individual j for the variant under
 study, Popj is a binary variable indicating the population origin (0 for

Europeans and 1 for Africans), and εj is a random, normally distributed residual. In this model, a is the intercept, b reflects the effect of

the derived allele of the SNP on gene expression, and g estimates the fold change in expression between populations observed for

individuals with identical genotype (i.e. gene expression differences that are not explained by genetics). We next focused on the SNP

showing the strongest association p-value with gene expression across populations, and estimated the difference in population

expression that is attributable to the SNP as:

FCSNP =FCpop � g
0

with g’ representing g set to ensure that the ratio of FC /FC
SNP pop is between 0 and 1, i.e. g’ = 0, if the sign of g differs from that of

FCpop; g’ = FCpop, if jgj > jFCpopj; and g’ = g otherwise. The percentage of population differences in expression that is attributable

to genetics is then given by the ratio FCSNP/FCpop.

Defining Population-Specific eQTLs
We aimed at distinguishing population specific eQTLs (i.e., SNPs present at similar frequencies in both populations but having an

effect on gene expression in one population only) from eQTLs detected in one population only due to population differences in allelic

frequencies. To do so, we first focused on the 1,109 genes associated with an eQTL (including 363 genes associated with a reQTL)

where all SNPs in LD (r2 > 0.5) with the eQTL peak-SNP were present at frequency > 5% in both populations. We then tested these

eQTLs for replication at a relaxed threshold of p < 0.05 across all SNPs at the locus, to decrease the false negative rate, and focused

on the 127 genes for which the eQTL was not replicated (including 28 genes with a reQTL).
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Finally, we considered as population-specific, eQTLs whose effect size was significantly different between populations. To do so,

we fit, for each SNP at the locus (r2 > 0.5 with the eQTL peak-SNP), the following linear model:

expressionj = a+ b:SNPj +g:Popj + d:SNPj � Popj + εj
where SNPj is the genotype of the individual j for the variant under
 study, Popj is a binary variable indicating the population origin (0 for

Europeans and 1 for Africans), and εj is a random, normally distributed residual. In this model, b reflects the effect of the derived allele

of the SNPon gene expression, g estimates the fold change in expression between populations observed for individuals with identical

genotype, and d captures the differences in eQTL effect size between populations. Such a model allows to test for a difference in

eQTL effect size between populations by testing the null hypothesis, d = 0 (interaction test).

To be conservative and to account for the uncertainty in detecting the causal variant at the eQTL, we considered an eQTL as pop-

ulation specific if all SNPs in LD (r2 > 0.5) with the eQTL peak-SNP presented a significant interaction p-value.

PinteractionðlocusÞ= Max
snp ˛ locus

PinteractionðsnpÞ:

We then considered eQTLs (or reQTLs) as being population specific when the interaction p-value at the locus was lower than 10�3

(corresponding to FDR < 0.01), leading to a final set of 16 population-specific eQTLs (including 5 reQTLs).

Regulatory Elements and Transcription Factor Binding Sites
Regulatory features were extracted from Ensembl Regulatory Build v80 (Zerbino et al., 2015), which contains regulatory element pre-

dictions based on open chromatin regions and histone marks from ENCODE and the Roadmap Epigenomics datasets (Ernst and

Kellis, 2015; Kundaje et al., 2015). SNPs overlapping a regulatory element were then classified into four categories: promoter, pro-

moter flanking, enhancer, and CTCF binding sites. Similarly, ENCODE uniformly processed transcription factor binding site (TFBS)

clusters (V3) (Ernst and Kellis, 2015) were downloaded fromUCSC, and their overlap with the physical position of all SNPs was deter-

mined. We then used Fisher’s exact test to assess the eQTL enrichment of specific TFBS or regulatory elements, considering the

peak-SNP at each locus, or a randomly selected SNP if multiple SNPs in perfect LD were found. All SNPs with a MAFR 0.05 located

less than 1Mb away from an expressed gene were used to constitute the background set. In each condition (or combination of con-

ditions), only the TFBS with the highest values for the lower limit of the odds ratio confidence intervals are reported.

Quantification of Allelic Imbalance
For the quantification of allele-specific imbalance, we focused on exonic SNPs genotyped as heterozygous in our exome data,

excluding SNPs with discordant genotypes in the Omni5 data. We used BWA mem (v.0.7.7) (Li and Durbin, 2009) to remap RNA-

seq reads onto the hg19 genome for all 970 samples, and extracted all reads aligned with a genetic variant. We reduced mapping

bias, by usingWASP (van de Geijn et al., 2015) to exclude reads overlapping with known variants (based on dbSNP138) likely to alter

the readmapping location. Briefly, for each read overlapping one ormore dbSNP variants,WASP creates alternative reads consisting

of all possible combinations of reads given these SNPs. It then remaps the alternative reads to the genome, and keeps the original

read only if all alternative versions of the read map to the same position. Finally, SAMtools mpileup (Li, 2011), with option -d 10000,

was used to count the number of reads mapping to each allele at heterozygous loci. The allelic ratio (AR) was defined for each site as

the proportion of minor alleles among all reads, and the allelic imbalance (AI) was defined as the absolute deviation from a balanced

ratio of 0.5 (i.e. AI = jAR-0.5j).

aseQTL and asrQTL Mapping
We mapped allele-specific expression QTLs (aseQTLs), by estimating the allelic ratio on the subset of eQTL-genes with sufficient

expression coverage at heterozygous exonic SNPs (N R 10 reads) in at least five individuals of each eQTL genotype (heterozy-

gous/homozygous). We extracted the phase information between the strongest local eQTL and the exonic SNP, and tested the cor-

relation between the AR and the phased eQTL genotypes (coded 0 for homozygous, and ± 1 for heterozygotes with variants in phase

or in the opposite phase), in a gene-, condition- and population-specific manner. Each exonic SNP was considered as an indepen-

dent observation. Similarly, allele-specific response QTLs (asrQTLs) were mapped by assessing the correlation between the phased

reQTL genotypes and the change in AR at the exonic site after stimulation. The power to detect aseQTLs was computed for various

eQTL effect sizes jbj, number of observations n and number of reads per exonic SNP N. We assumed the same number of obser-

vations for heterozygous and homozygous genotypes at the eQTL, and equal coverage across all exonic SNPs. Power was then

computed for a standard t-test assuming a mean allelic ratio Nalternative/Nreference of 0.5 in homozygous individuals and 2b/(1+ 2b)

in heterozygous individuals. Residual variance was set to 0.25/N to match that of a binomial distribution with parameters (0.5, N).

ASE Analysis at the Individual Level
To ensure sufficient power when exploring ASE within single individuals, we considered a higher coverage of heterozygous exonic

SNPs (N R 30 reads), and used a binomial test to evaluate allelic imbalance. We also excluded sites at which one allele accounted

for less than 2% of the reads or less than 3 reads in total, as such sites might be subject to genotyping errors or systematic

mapping biases. The FDR was first calculated across all SNPs, individuals and conditions, using fdrtool, and ASE was defined as
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the combination of significance at FDR = 0.05 and an absolute log2 fold change of expression between alleles of more than 0.2

(jlog2(Nalt/Nref)j > 0.2). For each significant ASE event in stimulated conditions, we checked for differences in allelic imbalance relative

to the non-stimulated condition, and defined allele-specific response as the subset of ASE displaying significantly higher allelic imbal-

ance (p < 10�3, Fisher’s exact test) after stimulation with respect to the basal state. Finally, we used simulations to evaluate FDR

among the set of genes with at least one ASE/ASR event. We generated 1,000 null datasets, by randomly reassigning reads to

the alternative and reference allele with equal probability, and estimated the number of genes with at least one significant ASE or

ASR event at each p-value threshold. We then computed FDR as the ratio of the average number of genes with ASE in our resampling

to the observed number of genes with ASE at the same p-value threshold.

ASE Enrichment in Rare Coding Variants
For each exonic SNP for which we quantified ASE, we used Variant Effect Predictor (VEP) (McLaren et al., 2010) with Ensembl v.70

Transcript Annotation to identify the set of transcripts overlapping the variant, and Cufflinks FPKM to identify the most strongly ex-

pressed overlapping transcript in the individual/condition concerned. VEP annotation was then used to classify variants, according to

the most abundant transcript, as synonymous (synonymous_variant/ non_coding exon_variant), missense (missense_variant) or

nonsense (stop_gained, stop_lost, initiator_codon_variant). Enrichment in rare coding variants was then assessed using Fisher’s

exact test comparing each category with synonymous variants.

Natural Selection Analysis: Neutrality Statistics
We used two metrics, FST and iHS, which detect signals of population-specific positive selection, i.e., mutations that provided a

selective advantage to a specific human population. FST measures population differentiation by comparing the variance of allele fre-

quencies within and between populations (Holsinger and Weir, 2009), as local positive selection tends to increase allele frequency

differences between populations. As FST is a population pairwise comparison, we derived a directional FST, equal in absolute value to

the pairwise FST but with a positive sign if the derived allele was more frequent in the population studied, and a negative sign other-

wise. This enables to distinguish selection events that likely occurred in Africans from those that likely occurred in Europeans. The

integrated haplotype score (iHS) measures the degree of extended haplotype homozygosity of the putatively selected allele over that

of the putatively neutral allele (Voight et al., 2006), as the long-range associations of the selected mutation with neighboring SNPs are

not disrupted by recombination.

Furthermore, we used a composite selection score (CSS) allowing to capture signals of recent, strong selective events, by

combining FST and iHS. The CSSwas designed to identify variants with both a higher derived allele frequency in one population (pos-

itive value of directional FST), and a longer haplotype length around the derived allele of the variant in that population (characterized by

a negative iHS value). It was computed for all variants with derived allele frequency 0.2 % DAF % 0.95 from genome-wide ranks of

both directional FST ðRFstÞ and iHS ðRiHSÞ; attributing the highest rank to positive values of FST and negative values of iHS, respec-

tively. We defined the CSS as following:

CSS=
rank

�
RFst:RiHS

�

Nobs
with Nobs being the total number of variants with 0.2% DAF% 0.9
5 in the population studied. CSS ranges from 0 to 1, and increases

with the strength of positive selection targeting the derived allele.

Finally, we used the cross-population composite likelihood ratio score, XP-CLR, a region-basedmetric detecting extended regions

where the allele frequencies of multiple contiguous markers are distorted from the prediction under neutrality (Chen et al., 2010). XP-

CLR detects classical selective sweeps as well as selection events on pre-existing alleles (standing variation). XP-CLR was scored

every 2,000 bp, using windows of 0.2 cM and downsampling to 200 SNPs per window.

Enrichment Tests for Natural Selection Signals
Tomap selection signals at haplotypes containing eQTLs, we determined, for each statistic (iHS, FST, or CSS), the strongest signal of

selection on derived alleles of all SNPs in high LD (r2 > 0.8) with the eQTL peak-SNP. To assess significance, we then compared, for

each population and condition, the mean of these values across all eQTLs/reQTLs, with the expected distribution obtained from re-

sampling 10,000 sets of randomSNPsmatched forMAF (using bins of MAF of 0.05) and the number of SNPs in LD (r2 > 0.8, using bins

of 0-2, 3-5, 6-10, 11-20, 21-50, and > 50 SNPs in LD). Similarly, for XP-CLR, we compared the mean of XP-CLR scores at eQTLs/

reQTLs (considering the region that contains the eQTL peak-SNP), to the expected distribution obtained from resampling 10,000

sets of random SNPs matched for MAF and LD patterns.

Detection of Candidate eQTLs under Selection
To identify candidate eQTLs under selection, we used an outlier approach where we computed the top 1% values of FST and iHS at

the genome-wide level, focusing on signals consistent with selection on derived alleles, within each population separately. To sup-

port the adaptive nature of candidate eQTLs, we computed neutral p values for each statistic using simulations based on validated

demographic models of Africans and Europeans (Grossman et al., 2013). Furthermore, we tested for local enrichment of outliers
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(top 1% signals) within a 100kb-window around each eQTL (50kb on each side), similarly to previous work (Grossman et al., 2013;

Voight et al., 2006). The proportion of outliers of FST or iHS (1% threshold) was computed from SNPs with DAFR 0.2 in a 100kb win-

dow around each putatively selected locus. Significance was assessed from a beta binomial distribution fitted, in each population

separately, to the observed genome-wide distribution of the proportion of outliers, to account for variations in the number of

SNPs at each locus.

Archaic eQTLs and Enrichment Analyses
We determined the level of Neandertal ancestry of the detected eQTLs, by first defining an ‘‘archaic eQTL’’ as an eQTL for which

regulatory variants were introduced into European genomes by introgression from archaic hominins. We identified such eQTLs using

the complete genome sequence of Neandertal from Altai (Prüfer et al., 2014). Briefly, the 1000 Genomes phase 3 variants (Auton

et al., 2015) were considered as of putative archaic origin (archaic SNPs, or aSNPs) if the Neandertal allele was present in at least

one non-African individual and absent from the Yoruba population. According to this definition, 230,779 aSNPs were detected in

the 100 European individuals analyzed here. We rendered the analysis more conservative, by further restricting the definition of

aSNPs to those in regions of the modern human genome for which Neandertal ancestry has been predicted with a high degree of

confidence (marginal probability of Neandertal ancestryR 0.9 and a genetic lengthR 0.02cM) (Sankararaman et al., 2014). This re-

sulted in a final set of 197,959 aSNPs, of which 77,823 presented a MAF > 0.05. More than 96% of these aSNPs had an archaic allele

frequency below 1% in our African samples (who are slightly differentiated from the Yoruba of 1000 Genomes phase 3), consistent

with a strong enrichment in true archaic variants. To account for LD between aSNPs and characterize haplotypes that were inherited

from Neandertal, we used PLINK (Chang et al., 2015) to extract a set of 924,362 genome-wide SNPs tagging all European variants at

an r2 > 0.8. Among these, 9,677 tagged all aSNPs in Europeans and are referred to here as ‘‘archaic tagging SNPs.’’ They were not

necessarily aSNPs themselves, reflecting the fact that haplotypes inherited from Neandertals can harbor a mixture of different var-

iants (i.e. variants that appeared in the Neandertal lineage, and ancient variants pre-existing in both lineages before admixture, but for

which one allele is carried almost exclusively by Neandertal haplotypes in modern Europeans).

We explored the effect of introgression from Neandertals on the immune repertoire of Europeans, by counting, for each condition,

the number of eQTLs overlapped by at least one archaic tagging SNP (or for which the archaic tagging SNP overlapped the reQTL

in stimulated conditions), referred to here as archaic eQTLs. We then compared the number of archaic eQTLs detected with the

number of SNPs expected to overlap the eQTL, when resampling SNPs tagging non-archaic haplotypes, at random from genic re-

gions (< 1Mb from a gene). We resampled 1,000 sets of 9,677 tagSNPs with the same allele frequency spectrum as the 9,677 archaic

tagging SNPs found in Europeans, and determined their overlap with (r)eQTLs, to assess the significance of our observations.

We finally report only the archaic (r)eQTLs for which at least 2 aSNPs were found to be in high LD with the eQTL peak-SNP, and

(ii) the haplotype containing the largest number of archaic alleles within the eQTL was sufficiently long for the formal exclusion of

incomplete lineage sorting.

The presence of aSNPs in present-day humans can be explained either by introgression or by incomplete lineage sorting (ILS). ILS

occurs when an ancestral variant predating the split between humans and Neandertals is retained in both lineages, but lost from a

specific human population (i.e. the African population; Figure S7A). Given the time since introgression (47,000-65,000 years ago), the

haplotypes containing alleles resulting from ILS would be expected to be shorter than those containing an aSNP introgressed from

Neandertals. We distinguished between these two scenarios by first defining the core archaic haplotype for each eQTL as the haplo-

type within the eQTL carrying the longest stretch of archaic alleles, and then determining whether its size exceeded the expected

length of haplotypes assuming an ILS model. We used the approach described by (Huerta-Sánchez et al., 2014) and the most con-

servative parameters for the age of Altai Neandertal and Denisovan bones reported by (Dannemann et al., 2016). We used the mean

recombination rate calculated for a region composed of the core archaic haplotype in a region of 1Mb surrounding the haplotypes

(500 kb on either side of the eQTL) in the 1000GenomesCEU individuals (phase 1). p valueswere adjusted formultiple testing with the

Benjamini-Hochberg procedure.

Adaptive Introgression at Archaic eQTLs
To test if archaic eQTLs result from adaptive introgression, we used both empirical and simulation-based approaches. The empirical

approach tests if archaic alleles at eQTLs are more frequent in Europeans than expected, by comparing their levels of genetic dif-

ferentiation between European and East Asian populations with respect to the genome-wide distribution of aSNPs, similarly to a

recent study (Vernot and Akey, 2014). The rationale is that an archaic allele that introgressed into Europeans and East Asians

�40,000-50,000 years ago and was advantageous in one population only should present today unusually high levels of genetic dif-

ferentiation, relative to genome-wide expectations. We thus computed the genome-wide distribution of FST between European and

East Asian populations at archaic SNPs, using the 1000 Genomes Project phase 3 (Auton et al., 2015), and estimated the empirical p

value for candidate archaic eQTL SNPs by dividing their rank by the total number of archaic SNPs.

We next tested if the high frequency of archaic alleles at candidate (r)eQTLs is compatible with a neutral model of evolution, using

simulations. Importantly, while a detailed demographic model of Neandertals is not specifically required for such simulations, we

need an estimated site frequency spectrum (SFS) of Neandertal alleles in Europeans at the time of their introgression, which is un-

known. We thus used three different approximated SFS that rely on different assumptions, detailed below. In each case, the simu-

lation-based p value for candidate archaic eQTL SNPs was obtained by comparing observed frequencies to the neutral simulated
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SFS in the current generation. Although each of the simulations used present different limitations related to the SFS of archaic alleles

at the time of introgression, they can collectively provide information about the expected fate of introgressed alleles under simple

scenarios.

The first approximated SFS of Neandertal alleles in present-day European populations, called here ‘‘Sankararaman SFS,’’ was

retrieved from a previous study (Sankararaman et al., 2014). This SFS was obtained assuming that archaic alleles in Europeans

40,000 YA (i) evolve under neutrality, and (ii) could not have a frequency larger than 4%. For the second approximated SFS, called

here ‘‘Fixed-in-Neandertal SFS,’’ we relaxed the assumption that archaic ancestral frequencies were lower than 4% and used

100,000 forward simulations based on the Wright-Fisher model to simulate frequency changes of archaic alleles in Europeans since

Neandertal introgression, 1,440-2,200 generations ago (Vernot and Akey, 2015). We used the best-fit demographic model of Tennes-

sen and colleagues (Tennessen et al., 2012) to model changes in the effective population size of Europeans (i.e., from an ancestralNe

of 1,032, two successive exponential growths with rate 0.31% and 1.95% occur 920 and 205 generations ago, respectively). We

assumed here that (i) archaic alleles evolve under neutrality, and (ii) Neandertal alleles that segregate today in Europeans were

most likely fixed in Neandertals at the time they were introgressed. This second assumption is conservative, as we neglect all

rare Neandertal alleles that had a higher probability to be lost by genetic drift. We modeled the SFS of archaic alleles in Europeans

40,000 YA by a Gaussian distribution with average 5% (i.e., the estimated Neandertal ancestry in European ancient DNAs from this

period; (Fu et al., 2016)) and 1% standard deviation. For the third approximated SFS, called here ‘‘ancient DNA-based SFS,’’ we

sought to circumvent the uncertainty inherent to the estimation of past Neandertal allele frequencies, by retrieving them from

maximum likelihood estimates in ancient DNAs of European hunter-gatherers, early farmers and steppe herders (Mathieson et al.,

2015). We computed the SFS of Neandertal alleles in European populations�8,000 YA based on the 5,900 SNPs that were detected

in EUB as aSNPs and that were covered in the Mathieson’s study, to approximate the SFS of archaic alleles �320 generations ago.

For convenience, we fitted to this observed SFS a beta distribution (a = 1.21, b = 10.23). We then used 100,000 forward simulations

under the same Wright-Fisher model with two exponential growths, to simulate the fate of neutral alleles during the last 320

generations. This simulation analysis only tests if archaic alleles at candidate eQTLs have been under positive selection in the last

8,000 years.

DATA AND SOFTWARE AVAILABILITY

Data Resources
Genome-wide SNP genotyping, whole exome sequencing and RNA-sequencing data generated in this study have been deposited in

the European Genome-phenome Archive (EGA) under accession code EGA: EGAS00001001895.
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Supplemental Figures

Figure S1. Overview of the Experimental Setting, Related to STAR Methods

The transcriptional response of primary monocytes from 200 healthy donors of European and African descent to various immune stimulations was dissected to

pinpoint molecular phenotypes differing between populations and under genetic control.



Figure S2. Processing of RNA-Sequencing Data, Related to STAR Methods

(A) Read counts across the 970 RNA samples (in millions of reads). (B) Alignment of reads with various genomic features. Reads aligning with splice junctions are

counted as many times as the number of genomic features they overlap. TSS: transcription start site, UTR: untranslated region, CDS: coding sequence, TES:

transcription end site, up: upstream, down: downstream. (C) Distribution of GC content across samples. (D) Correlations between gene expression and global GC

content. The expression of a large proportion of high-GC content genes was positively correlated with GC content (3rd quartile of GC content, in red), whereas the

expression of low-GC content genes tended to be negatively correlated to GC content (1st quartile of GC content, in blue). The correlation distribution for total

genes is shown in gray. Expectations were calculated by permutation (black). (E) Illustration of the effect of global GC content on gene expression. UFM1 (GC

content: 33.9%) expression is plotted for all RNA samples, ordered by global GC content, for each condition and population. (F) Effect of various technical

batches and confounding factors on gene expression. The proportion of genes whose expression levels are associated, for different levels of significance, with

each factor is presented before and after correction of the data (up and bottom panels, respectively). The association of each gene with each cofactor was

assessed by determining the proportion of the variance of gene expression explained by the cofactor under consideration, after adjustment for all other cofactors.

(G) Boxplots of coefficient of variation (CV) in technical and biological replicates across conditions. CV distributions of technical replicates are smaller in

magnitude and less variable compared to distributions of pairwise biological replicates (Wilcoxon Rank-Sum Test, ***p < 0.001). (H) Boxplots of correlation

coefficient (r) between technical and biological replicates. r calculated between technical replicates (red circles) are significant outliers to the r distributions of

pairwise biological replicates (boxplots).



Figure S3. Overview of the Pipeline Used for RNA-Seq Data Pre-processing, Related to STAR Methods

We filtered out samples with irregular gene body coverage and used Cufflinks/CuffDiff to estimate transcript level FPKM.We removed all transcripts for which the

total gene FPKMwas less than 1 in all conditions.We then log-transformed the data and performed adjustments for GC content, 30/50 bias, date of experiment and

library preparation batch. We carried out kNN imputation before ComBat, to handle missing values. Batch covariates were treated sequentially, as ComBat can

only handle one batch variable at a time. The corrected FPKM values were then transformed back to the normal scale and forced to positive values to calculate

gene-level FPKM. Gene expression was considered on the log scale for all subsequent analyses.



Figure S4. Weighted Correlation Network Analysis, Related to Figure 1
The relative expression of each gene module is based on the first principal component for the expression of genes present in the corresponding module.



Figure S5. Genetic Structure of the Population Samples, Related to STAR Methods

(A) Genetic ancestry of African-descent Belgians (AFB) and European-descent Belgians (AFB), estimated by ADMIXTURE. Each vertical line represents an in-

dividual genome, which is partitioned into K different genetic clusters. This analysis was performed on 229,320 independent SNPs and 789 individuals from 22

populations, including EUB and AFB, together with a selection of representative populations from sub-Saharan Africa, North Africa, the Near East and Europe

(Behar et al., 2010; Patin et al., 2014). We made K vary from 2 to 10, and ran five iterations with different random seeds for each K value. The run with the lowest

cross-validation error rate for each K value is shown for K = 2 to 5. (B) Cross-validation (CV) error rates of ADMIXTURE results for 5 different iterations and K prior

values. Minimum CV values for each K are in red. CV values start increasing at K = 6. (C) Local genetic sub-structure in the AFB population sample, estimated by

principal component analysis (PCA). This analysis was performed on 341,593 independent SNPs and 511 individuals from 7 western and central African pop-

ulations (Patin et al., 2014). (D) Local genetic sub-structure in the EUB population, estimated by PCA. This analysis was performed on 182,572 independent SNPs

and 220 individuals from 13 European populations (Behar et al., 2010). (C-D) PC1 and PC2 are shown, together with the proportion of variance explained.



Figure S6. eQTL and aseQTL Mapping, Related to Figures 2 and 3

(A) Number of genes associatedwith an eQTL across conditions. (B) Enrichment of (r)eQTLs in regulatory elements. CD14+ cell regulatory elements from Ensembl

Regulatory Build were considered for the analysis. Significance was assessed relative to the genome-wide distribution of SNPs overlapping regulatory elements

within 1Mb of the gene transcription start site. *p < 0.05, **p < 0.01, ***p < 0.001. (C) General rationale of allele-specific eQTL mapping. We identified eQTLs

leading to allelic imbalance (i.e., aseQTLs) by determining the ratio of reads from the two alleles of a heterozygous exonic SNP, according to their phase with the

genotypes of the regulatory SNP that affects a transcription factor binding site. (D) Allele-specific expression in the context of cell stimulation. The aseQTL is

detectable only after stimulation (TLR/IAV) by the presence of a transcription factor that is not expressed at the basal state (NS). (E) Power to detect aseQTLs as a

function of eQTL effect size, number of observations and number of reads per exonic SNP. (F-G) Effect of regulatory variants on allele-specific expression, with (F)

distribution of aseQTLs among local eQTLs and (G) distribution of asrQTLs among local reQTLs.



Figure S7. Introgression of Regulatory Variants from Neandertals, Related to Figure 6

(A) Models of incomplete lineage sorting and introgression from Neandertals. Incomplete lineage sorting (ILS) scenario (left panel). An ancient variant predating

the split between humans andNeandertals was retained in both lineages, but lost from the African population. Haplotypes carrying this ancient allele in Europeans

are expected to be short because the time window allowed multiple recombination events to occur. Scenario of introgression from Neandertals (right panel). An

archaic allele from Neandertals has been introgressed in Europeans and haplotypes containing this allele are expected to be longer than those resulting from ILS,

due to the more recent occurrence of the admixture event. (B) Frequency of the archaic haplotype of PNMA1, tagged by SNP rs12436322, in different world-wide

populations. Pie size is proportional to the number of individuals. The non-archaic allele is reported in violet (1000 Genomes data) and in dark blue (Simons

Genome Diversity Project Dataset), and the archaic allele is presented in orange. (C) SNP associations, [-log10(peQTL)], with PNMA1 expression in Africans and

Europeans are shown (upper panel). Archaic haplotypes at the PNMA1 locus in Europeans (lower panel) are ordered by increasing levels of PNMA1 expression,

and archaic SNPs are represented in red for each haplotype. Red lines indicate the core archaic haplotype, defined as the haplotype within the eQTL carrying the

largest number of archaic alleles. The eQTL identified in Europeans spans a region of 102 kb surrounding the gene, and overlaps an eQTL present in Africans. (D)

Dissection of the PNMA1 core haplotype. Haplotypes at the PNMA1 locus are represented by horizontal lines showing, for SNPs with a MAF R 5% in either

population, the ancestral allele in white and the derived allele in color. The black horizontal line separates European haplotypes (top) from African haplotypes

(bottom). Within each population, SNPs associated with PNMA1 expression are highlighted in blue for those specific to the Neandertal lineage (i.e. archaic SNPs)

and in red for the others. In total, 12 archaic alleles at the locus tag the archaic core haplotype associated with an upregulation of PNMA1 expression, either in the

basal condition or in response to R848 and IAV. This haplotype is longer than expected under the ILS scenario, suggesting that introgression occurred in Eu-

ropeans through admixture with Neandertals. This archaic haplotype, tagged by the aSNP rs12436322, has re-introduced the ancestral allele of rs6574138 in

Europeans (i.e. all individuals not carrying the archaic haplotypes have the derived allele), which is also present in Africans and associated with PNMA1

expression. SNP rs6574138 overlaps with ENCODE binding sites, consistent with its putative functional role in the regulation of PNMA1 expression in both

Europeans and Africans. (E) Inferred history of the ancestral and derived alleles at rs6574138 in modern human populations, up to their most recent common

ancestor. Our data suggest that rs6574138 predates the split betweenNeandertals andmodern humans and that the derived allele of this variant was fixed in early

Europeans. The ancestral allele of rs6574138 was then reintroduced in Europeans by introgression of the Neandertal haplotype tagged by rs12436322, and is

responsible for the variability in PNMA1 expression in the contemporary European population.
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