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Figure 1: Orbits of co-passing trapped par-

ticles with energy of 1 keV (red) and 100 keV

(white). The background is the module of the

clockwise rotating components of the wave

electric field. These orbits are evaluated with

the guiding-center solver of the TORIC code.

Several full-wave codes have been interfaced
with Fokker-Planck (FP) solvers to model con-
sistently propagation and absorption of radio-
frequency (RF) waves in the ion-cyclotron (IC)
range of frequencies. In many studies, the solu-
tion of either the surface-averaged or the zero-orbit-
width averaged FP equations can be considered ad-
equate to describe the back-reaction of ICRF heat-
ing on the wave propagation and absorption. This,
however, is not the case for those problems where
the fate of very energetic ions produced with ICRF
waves matters the most, e.g. drive of MHD activ-
ity. Because of their large radial excursions, these
ions can explore large portions of the plasma col-
umn, figure 1, as well as experience large Doppler
shifts in the resonance with waves. To properly de-
scribe the interaction of energetic particles with RF
waves, one has to solve the orbit-averaged FP equa-
tion, where the ICRF contribution enters as an orbit-
averaged quasilinear diffusion operator (QDO).
In the following, after a sketch of the derivation of QDO added in the TORIC-SSFPQL pack-
age [1], an estimate of the heating rate derived by such an operator is compared with the equiv-
alent quantity calculated by SSFPQL, which assumes zero-orbit with approximation.

Orbit-averaged quasilinear operator
The large time-scale separation between the wave period (Tω = 2π/ω , with ω the angular

wave frequencies) and the characteristic thermal equilibration times justifies splitting the dis-
tribution function in a slow, f0, and a fast, f1, components, the latter evolving in the short Tω

time-scale. The pertinent quasilinear coupled equations for f0 and f1 are

∂ f0

∂ t
+vvv ·∇xxx f0 +aaa0 ·∇vvv f0 = ∇vvv ·ΓΓΓc( f0)−∇vvv · 〈aaa1 f1〉ω

∂ f1

∂ t
+vvv ·∇xxx f1 +aaa0 ·∇vvv f1 =−aaa1 ·∇vvv f0

(1)

43rd EPS Conference on Plasma Physics P1.045



where ΓΓΓc is the collisional flux in velocity, 〈· · · 〉ω stands for the time average over a wave
period Tω , and aaa is the acceleration due to the Lorentz force, split in its contributions from the
confining em fields, aaa0, and from the RF fields, aaa1. By integrating the second equation along
the unperturbed orbits, one obtains the formal solution f1 to plug in the last term of the first
equation, which is the QLO describing the wave-particle interaction in the time evolution of f0.
To perform the orbit average, a convenient coordinate system is built with a set of constants of
the unperturbed motion, III, completed with a set of angles θθθ [2]. The QLO can be written as
Q( f0) = J −1∂Ii

(
J Qi j∂I j f0

)
with J the Jacobian of the coordinate systems and

Qi j
w =

1
2

Re

∑
κ1,2

∑
n

∑
m1
m2

e−ikkk1·rrr ∇vvvIi ·aaa∗1,ω,kkk1

∫ t

−∞

ei[kkk2·rrr′−ω(t ′−t)]
∇vvv′I

j ·aaa′1,ω,kkk2
dt ′

 (2)

Here the chosen set of invariants of the unperturbed motion is III = (µ,ε,Pϕ), with µ the mag-
netic momentum, ε the particle energy, and Pϕ the toroidal canonical momentum, whereas the
angles are θθθ = (φv,ϑ ,ϕ), with φv and ϕ the gyro– and toroidal angles, respectively, and ϑ the
poloidal angle associated with the bouncing motion. In (2) the spectral ansatzt of the wave-
fields is assumed (κ , m, n are respectively the radial, poloidal and toroidal components of the
wavevectors) and the axisymmetry is used to remove one of the sum over n. In (θθθ ,III) coordinates
the orbit average is simply the average over the angles θθθ , and the equation for the orbit-averaged
distribution function, f̄0(III) (the bar over the symbols stands for the orbit-average), is

∂t f̄0 =
1

J̄

∂

∂ Ii

[
J̄

(
F̄ i

cl f̄0 + D̄i j
cl

∂ f̄0

∂ I j

)]
+

1
J̄

∂

∂ Ii

[
J̄ Q̄i j

w
∂ f̄0

∂ I j

]
(3)

where the collisional flux is written in terms of its friction and diffusion components, F̄̄F̄Fcl and
D̄̄D̄Dcl respectively. The θθθ–average of the convective terms in (3) is zero because of the Liouville
theorem, and of ∂J /∂ t, İII = 0. In deriving (3), the contribution dependent on the difference(

f0(θθθ ,III)− f̄0(III)
)

has been neglected by assuming that for times long enough f0 approaches f̄0.
After some algebra the expression of Q̄i j

w added to TORIC can be stylized as

J̄ Q̄i j
w =

1
2

Re

{
∑
κ1,2

∑
n

m1,2

∞

∑
p=0

∑
τ res

p,kkk2

(
eikkk1·RRRg |Tres| ∆i

p,kkk1

)∗
τ res

p,kkk2

(
eikkk2·RRRg |Tres|∆ j

p,kkk2

)
τ res

p,kkk2

}
(4)

where: RRRg is the guiding-center position, p is the IC harmonic index, ∆i
p,kkk depends on the wave

fields and contains the usual Bessel functions of argument k⊥v⊥/Ωc [3], and Tres is the reso-
nance kernel. Because of the highly-oscillatory nature of the exponential in (2), there are finite
contributions only at times when its phase is stationary, τ res

p,kkk2
, which dependent only on kkk2 of

the solution of the Vlasov equation. In matrix form, Eq. (4) can be written as Q̄QQ = AAA†AAA, which
implies that Q̄QQ is definite non–negative. This property is fulfilled in the implementation of (4)
in TORIC. The form of the resonance weight |Tres| is the key issue, both conceptually and
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technically, in deriving (4): It is analytically known in the asymptotic limit of decorrelated (sta-
tionary phase approximation) and strongly correlated (Airy functions) passages through near
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Figure 2: Catto-Myra function for differ-

ent values of the decorrelation parameter η .

Black dashed line shows the stationary-phase

approximation whereas the blue dashed line

the Airy function.

consecutive resonances. An approximated analyti-
cal transition between these two asymptotic solu-
tions is viable when accounting for the decorrela-
tion of the wave-particle phase, as done by Catto
and Myra [4]. Their function C (x,η) is shown
in figure 2 for different values of the decorrela-
tion parameter η , and it has been extended [5] as
|Tres(τ)|2 = 2

√
π C (g(τ)) with

g(τ) =


−|χ̈p,kkk(τ)|2 , for χ̈p,kkk(τ) 6= 0 ,∣∣∣∣∣ χ̇p,kkk(τ)(...

χ p,kkk(τ)/2
)1/3

∣∣∣∣∣ , for χ̈p,kkk(τ) = 0 ,

where: χ̇ = k‖v‖+ pΩc+vvvD ·kkk−ω , (vvvD the particle
drift velocity), τsp are the decorrelated resonances,
χ̇(τsp) = 0, and τtg are points between two merging
resonances.

Discussion
In the case of energetic ions the IC resonances can be substantially displaced with respect to

the resonance layer ω ≈ Ωc (fig. 1). This has an impact on the amplitude of the wave-particle
interaction, since the wave fields can considerably vary, especially close to the ion-ion and IC
fundamental resonances. Additionally, the travel time of the particles changes along the orbit
and thus also the resonance time. To account properly for these effects, the particle orbits have
to be calculated and the resonance positions with the Fourier modes of wave fields have to
be identified [6]. To numerical evaluate (4), the wave fields of TORIC are directly used. Fig-
ure 3.left shows an example of Qεε normalized to ε2 as function of Λeq = µBeq/ε , with Beq

the B value at the starting obit point on the midplane. Since ∆ε is proportional to v⊥ ∝ Λ
1/2
eq ,

Qεε increases proportionally with Λeq. However, at the transition between passing and trapped
particles (Λeq ≈ 0.8), Qεε drops, since the turning points of the orbits, where the particle stay
longer, do not necessarily coincide with the resonance points. For ions with higher Λeq (about
0.9) the turning points are close to the IC resonance and Qεε reaches its maximum. Addition-
ally, a trapped ion can have a maximum number of four resonances with the same wave mode,
which reduces to two for passing particles. This topological change of the wave-particle inter-
action also contributes to higher Qεε values for trapped resonating ions.
As preliminary check of the quasilinear operator, the quasilinear heating rate is considered

PRF(ψ) =
1

∆V

∫
ε

1
J̄

∂

∂ Ii

(
J̄ Q̄i j

w
∂ f̄0

∂ I j

)
J̄ dIII =

ni(ψ)

Ti(ψ)

∫
εmax

0
dε

∫ 1

0
dΛeq J̄ Q̄εε

w
e−ε/Ti

fn
(5)
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Figure 3: (left) Qεε/ε2 as function of Λeq for three values of the particle energy and at ψ = 0.6. (right)
Profiles of the absorbed power by the minority H (fundamental) and by the majority D (first harmonic)
calculated with (5) (triangles, squares and stars) are compared with SSFPQL results (bullets).

where: Pϕ ≈ ψ is assumed for comparison with SSFPQL; ni(ψ) and Ti(ψ) are the plasma den-
sity and temperature of the resonating ion species, and fN is the normalization constant of
the Maxwellian in these coordinates. The last equality amounts to approximating f̄0 with the
Maxwellian in the absence of the solution of the quasilinear equation for f0. Figure 3.right
shows the profiles of the absorbed power for three different energy cuts, εmax, in (5). Already
at εmax equal to three times the local thermal energy Ti (stars) the profiles converge to the final
ones (squares). Thus, at least for the profiles of the absorbed power the thermal bulk plays the
main role in ICRF heating simulations. Because of the completely different models, the com-
parison with the absorption profiles calculated with SSFPQL can only be very qualitative. First,
in figure 3.right (5) predicts broader profiles on the outer part of the plasma column. This is
only partially due to the finite orbit-width effects, since it holds also for moderate energies,
εmax = 3Ti. In the region between the magnetic axis and the IC resonance, ω = Ωc (at ψ ≈ 0.2
in this case), the profiles predicted by (5) are narrower. Finally, the power redistribution be-
tween hydrogen (minority, resonating at the fundamental) and deuterium (majority, resonating
at the first harmonic) is different. These discrepancies are likely due to the different description
of the wave-particle interaction in SSFPQL and in (5), more accurate in the latter, and of the
use of the Maxwellian in (5), a too rough approximation of the FP solution. Nevertheless, the
order-of-magnitude agreement is a positive first test of QLO added to the TORIC code.
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