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Abstract

We present a method for evaluating electrostatic and polarization energies of a localized

charge, charge transfer state, or exciton embedded in a neutral molecular environment. The

approach extends the Ewald summation technique to polarization effects, rigorously accounts

for the long-range nature of the charge-quadrupole interactions, and addresses aperiodic em-

bedding of the charged molecular cluster and its polarization cloud in a periodic environ-

ment. We illustrate the method by evaluating the density of states and ionization energies

in thin films and heterostructures of organic semiconductors. By accounting for long-range

mesoscale fields, we obtain the ionization energies in both crystalline and mesoscopically

amorphous systems with high accuracy.
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1 Introduction

Knowledge of the energy landscape for charge and energy transport is key to the optimization

of organic optoelectronic devices,1 understanding of photosynthesis in biological systems,2

molecular catalysis,3 and chemical sensors.4 It is, however, still a challenge in computational

materials science to predict these landscapes and to establish their connection to device

characteristics.5–10 One of the major issues here is the limited system sizes used in today’s

simulations. They are frequently insufficient to sample the tail of the densities of states8,11–13

or long-wavelength spatial correlations of the energy landscape.14,15 The need to go beyond

a nanometer length scale is also given by the fact that in ordered molecular systems the

interaction of a charge with the molecular surrounding is long-range. For charge-quadrupole

interactions, for instance, the corresponding sum is only conditionally convergent in 3D16–20

and converges extraordinarily slow in 2D-periodic systems, such as thin organic films.

In illustration of this, Fig. 1a shows the electrostatic contribution to the energies of a

neutral molecule, its cation and anion in a molecular crystal of the solar-cell donor compound

D5M.21 The dependence on the size of the molecular cluster, dc, reflects the electrostatic

energy convergence in 3D- and 2D-periodic systems. Fig. 1a may give the false impression

that energy levels are converged for a cluster size of 8 nm, when, in fact, the interaction

sum is only conditionally converged. It corresponds to spherical shell-by-shell growth of the

cluster and will differ for other (cylindrical, cuboidal, etc.) cluster shapes. Fig. 1b shows

how these energies change in a crystalline thin film. For charges embedded in a 20 nm-thin

film (Fig. 1b), convergence is absolute but is not achieved even for cluster sizes larger than

100 nm. Finally, in Fig. 1c the electrostatic contribution is shown for a charge transfer (CT)

state at a donor-acceptor (D5M-C60) interface comprised of two thin films of D5M and the

fullerene C60. The electrostatic contribution to the energy of CT states converges faster,

whereas the individual contributions of the CT-hole and CT-electron still exhibit the same

slow thin-film convergence behavior.

As long-range crystalline and liquid-crystalline ordering characterizes many organic ma-
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Figure 1: Variation of electrostatic energies W (1) with the cluster size dc for a bulk (a)
and thin-film (b,c) setup. Only static atomic multipoles up to quadrupoles are accounted
for. In (a) and (b), black, red, and blue lines denote trends for neutral (no), hole (h+)
and electron (e−) states, localized on a donor (D, here: D5M) or acceptor (A, here: C60)
molecule, respectively. In (b), z0 and z1 refer to a molecular ion positioned at the center
and surface of the film, respectively. In (c), the black line denotes the convergence for an
interfacial charge transfer state. Energies W (1) for the infinite systems are shown on the
very right of each plot, where for the bulk setup a spherical shape factor has been used to
remove the conditional convergence, which corresponds to the spherical shell-by-shell growth
of the molecular cluster of size dc. The schematics on the right-hand side indicate the system
under study including cartoons of the two molecules, D5M and fullerene, with a repeat unit
colored in black, and periodicity indicated by dashed arrows.
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terials,22,23 an account of long-range effects becomes indispensable in heterogeneous envi-

ronments, in particular at interfaces. Such structures are at the heart of many functional

devices, e.g., planar heterojunction solar cells, field effect transistors, and organic light-

emitting diodes. Typical film thicknesses employed in these devices are on the order of tens

of nanometers, whereas surface areas exceed square micrometers. Hence, the molecular ar-

rangement in the out-of-plane dimension can be simulated to scale, whereas the in-plane

dimensions have to be modeled effectively, through periodic boundary conditions.

Following up on applications to organic interfaces16,17 and mixtures,24 in this work we

focus on the technical implementation, further verification, and complementary illustrations

of the method designed to evaluate ionization energies (IEs) and electron affinities (EAs)

of molecules embedded in such a periodic molecular environment. In what follows, we will

hence focus on molecular ions embedded in a neutral environment; the method is, however,

applicable to any type of embedded molecular excitation, including charge transfer and

excited states.

Addressing both electrostatic and polarization contributions, the approach adapts and

extends the Ewald summation technique25,26 in three ways. First, it incorporates induction,

which is not originally part of the formalism, but can be added.27 Second, it addresses the

long-range nature of the charge-quadrupole interaction. Third, it adapts the Ewald method

to “broken” periodicities that result when embedding the charged molecular cluster and its

polarization cloud in an otherwise periodic system. We illustrate that a long-range treatment

is crucial for the description not only of crystalline systems, but also of energy correlations

and level alignment in mesoscopically amorphous materials.

2 General formalism

In this section, we outline the implementation of our approach. To make simulations of large,

atomistically-resolved systems computationally feasible, we use polarizable force fields based
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Figure 2: Computational workflow. (a) Computation of the polarization state of the peri-
odic ground-state system. The simulation box B, colored in gray, incorporates the molecular
cluster in a neutral state, X(n). (b) Calculation of background fields acting on the polar-
ization cloud (foreground) P (s) centered around the charged cluster X(s). (c) Self-consistent
polarization within P (s) and evaluation of the self-energy of P (s). (d) Evaluation of the
interaction energy between the foreground P (s) and the polarized background B̃∗.

on distributed atomic properties.28–31 The basics of this concept are recapitulated in the

next section. Readers familiar with the perturbative treatment of electrostatic interactions

and polarization energies can move on directly to Section 2.2.
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2.1 Polarization Energy and Work

In weakly interacting molecular assemblies, key corrections to energy levels of molecular ions

result from the electrostatic and polarization interaction with the environment. Both interac-

tions lead to energy contributions on the order of 1 eV and can be treated perturbatively.32

The electrostatic and polarization contributions correspond to the first- and second-order

corrections W
(1)
s and W

(2)
s , respectively, where the subscript s denotes the state (hole, elec-

tron, neutral) of the molecule. The energy correction ∆s to IEs (s = h) and EAs (s = e)

due to the environment then reads

∆s = ∆(1)
s +∆(2)

s , (1)

where ∆
(i)
s = W

(i)
s −W

(i)
n ; n references the neutral ground state. The IE of a molecule, for

example, follows as IE = IE0 +∆h: here, IE0 denotes the gas-phase ionization energy, to be

calculated on a quantum-mechanical level. For electron, excitonic or charge-transfer states,

analogous expressions hold.

The perturbative correction to the molecular site energy, Ws = W
(1)
s +W

(2)
s , is calculated

in a classical expansion of the molecular field and field response in terms of distributed mul-

tipoles28 and polarizabilities,33 respectively, positioned at (typically) atomic expansion sites.

Ws then follows from a variational principle, which replaces Poisson’s equation ∇(ε∇φ) ∼ ρ

in this microscopic, particle-based picture:

δWs

δ∆Q
a(s)
lm

= 0. (2)

Its self-consistent solution consists of the set of multipolar (here: dipolar) moments ∆Q
a(s)
lm

induced at the (atomic) expansion sites, a, with local polarizabilities αa
lm, in response to the

permanent multipolar moments Q
a(s)
lm that approximate the molecular, unperturbed charge

densities. The set ∆Q
a(s)
lm constitutes the polarization state of the system and, together with
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Q
a(s)
lm , determines W

(1)
s and W

(2)
s , and finally ∆s. We note that W

(2)
s , different from ∆

(2)
s ,

only takes negative values, as is characteristic of a second-order perturbative term.

The self-interaction energy Ws of the molecular system is normally decomposed into

external and internal contributions, the latter reflecting the positive polarization work32

Ws = Wext

[

D(s);D(s)
]

+Wint

[

D(s)
]

, (3)

Wext

[

D(s);D(s)
]

=
1

2

∑

M(s)

∑

M ′(s) 6=M(s)

(

Q
a(s)
t +∆Q

a(s)
t

)

T aa′

tu

(

Qa′(s)
u +∆Qa′(s)

u

)

, (4)

Wint

[

D(s)
]

=
1

2

∑

M

∆Q
a(s)
t

(

α−1
)ab(s)

tu
∆Qb(s)

u . (5)

Here, D(s) is a discrete, multipolar charge density – it denotes the entire set of static and

induced multipoles in the system; the notation Wext

[

D(s);D(s)
]

emphasizes that the sum-

mation is performed over all pairs of molecules.

Following Stone’s notation,32 Qa
t and Qa′

u are multipole moments in spherical-tensor rep-

resentation, with angular and magnetic quantum numbers contracted into a single index.

T aa′

tu are tensors that mediate the interaction between multipole moments Qa
t and Qa′

u of

atoms a and a′.34 For both atomic indices (a, b ∈ M and a′ ∈ M ′) as well as tensorial

components (t and u), Einstein sum conventions are in place.

For computational efficiency, we truncate the expansion of the molecular charge density

(distributed multipole analysis28) after rank l = 2, such that atomic quadrupoles are still

accounted for. Also, we employ distributed polarizabilities in a local-dipole approximation

(αab
tu → αa

t 6= 0 if t ∈ {1x, 1y, 1z}) as developed by Thole,30,35 hence disregarding charge-

flow effects.29 In organic solids with their spatially rapidly fluctuating fields, charge flow is

expected to play only a minor role. A local-dipole scheme is therefore sufficient to capture

polarization effects. In order to avoid an unphysical overpolarization to which atomic-dipole

schemes are susceptible,30 the Thole model requires damping of induced-induced interactions

at short separations. The interaction tensors T aa′

tu in Eq. 4 are hence modified such that terms

with a distance scaling of R−ν are multiplied by a damping function Λ2ν+1 listed in Section S3
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of the Supporting Information. Furthermore, due to the larger polarizabilities of conjugated

molecules in comparison to biological compounds, the set of Thole polarizabilities35 is scaled

iteratively in order to match the volume of the polarizability ellipsoid (∼ 1/Π3
i=1

√
α̃i, where

α̃i is the i-th eigenvalue of the molecular polarizability tensor) calculated here using density

functional theory.

2.2 Aperiodic-Periodic Decomposition

In the following, we detail how Eq. 2 is solved for an aperiodic (i.e., not periodically repeated)

charged molecule embedded in a periodic, neutral, polarizable environment and how the

associated perturbative contributions ∆
(1)
s and ∆

(2)
s are evaluated with an infinite interaction

range applied to all particles.

Since a fully self-consistent solution of Eq. 2 for the entire system (incorporating all

periodic images as well as a single charged molecule) is difficult to achieve even in principle,

we first introduce a cutoff for the polarization of the environment by the excess charge. This

cutoff controls up to where the introduction of this charge modifies the polarization state of

the environment. The assumption of such a finite “polarization cloud” is readily justified:

the charge – induced-dipole energy contribution has a 1/r4 decay and is hence absolutely

convergent. The polarization cloud then has to be chosen only large enough to prevent

discontinuities in the fields across its boundary.

To deal with the broken periodicity, we spatially partition the multipolar charge density

D(s) onto several subsets. Once again, the superscript s denotes the state of the embedded

molecule; e.g., s = n would correspond to the neutral state. Now let us denote by B the set

of molecules in the simulation box, with all molecules in their neutral charge configuration.

The entire ground-state system B∗ then consists of B and its periodic replicas. Charging

of the embedded molecule, X(s), modifies this charge density by polarizing the surrounding

molecules. We correspondingly denote the set of molecules in the polarization cloud by P (s).

We will refer to the rest of the system, B̃∗ = B∗ \ P (n), as the background. The system
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partitioning is illustrated in Fig. 2.

Based on Eq. 3, the energy correction Ws then reads

Ws = Wext[P (s);P (s)] +Wext[P (s); B̃∗] +Wext[B̃∗; B̃∗] +Wint[P (s)] +Wint[B̃∗]. (6)

Here, Wext denotes the intermolecular field interaction energy, and Wint the intramolecular

induction work, as defined in Eqs. 4,5. The polarization cloud (Fig. 2c) is chosen large

enough to screen the excitation from B̃∗, whose polarization state is thus assumed unaffected.

Therefore no state index s is used for the contributions Wext[B̃∗; B̃∗] and Wint[B̃∗], which will

in fact cancel when taking the difference ∆
(i)
s ≡ W

(i)
s −W

(i)
n and hence need not be calculated.

The surviving terms from Eq. 6 read as follows:

Wext[P (s);P (s)] =
1

2

∑

P

∑

P ′ 6=P

(

Q
p(s)
t +∆Q

p(s)
t

)

T pp′

tu

(

Qp′(s)
u +∆Qp′(s)

u

)

, (7)

Wext[P (s); B̃∗] =
∑

P

∑

B̃∗

(

Q
p(s)
t +∆Q

p(s)
t

)

T pb
tu

(

Qb(n)
u +∆Qb(n)

u

)

, (8)

Wint[P (s)] =
1

2

∑

P

∆Q
p(s)
t

(

α−1
)a(s)

t
∆Q

p(s)
t . (9)

Here, p(s) denotes an atom of a molecule P (s) in a polarization cloud P (s), s is the state of

the molecule (neutral, anion, cation), and b enumerates atoms in the polarized background

B̃∗. In these expressions, induced moments have to be calculated self-consistently on the

basis of Eq. 2, yielding the linear system of equations27,32

∆Q
p(s)
t =−

∑

B̃∗

α
p(s)
t T pb

tu

(

Qb(n)
u +∆Qb(n)

u

)

−
∑

P

α
p(s)
t T pp′

tu ∆Qp′(s)
u . (10)

Note that in Eqs. 7 and 9, Wext[P (s);P (s)] and Wint[P (s)] only count interactions within P (s):

direct evaluation is therefore possible at reasonable computational expense. Wext[P (s); B̃∗]

(Eq. 8), by contrast, comprises the interaction of P (s) with the infinite, but semiperiodic set

B̃∗. In order to use the Ewald summation technique, designed for periodic systems, we add
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the foreground density P (n) in its neutral charge and polarization state to B̃∗, thus allowing

for the transformation into reciprocal space, and subsequently correct for this addition in

real space. taking spatial derivatives with regard to the coordinates of the source and target

atomic positions. Wext[P (s); B̃∗] is then obtained as the sum over five contributions (the

derivation is sketched in Sections S8 and S9 of the Supporting Information),

Wext[P (s); B̃∗] = Wk[P (s);B] +Wr[P (s); B̃∗]−Wsi[P (s);P (n)]−Wc[P (s);P (n)] +W∗[P (s);B],

(11)

The first four terms on the right-hand side are:

Wk[P (s);B] = 1

4πε0

4π

V

∞
∑

~k 6=0

S
(

~k; [P (s)]
)

S ∗
(

~k; [B]
)

A(k), (12)

Wr[P (s); B̃∗] =
1

4πε0

∑

B̃∗

∑

P(s)

4
∑

ν=0

T pb
ν Λpb

2ν+1Bν(R
pb
L ), (13)

Wsi[P (s);P (n)] =
1

4πε0

∑

P

(

2β√
π
qp(s)qp(n) +

4β3

3
√
π
~µp(s) · ~µp(n) +

16β5

5
√
π
θ̃p(s) : θ̃p(n)

)

, (14)

Wc[P (s);P (n)] =
1

4πε0

∑

P (s)

∑

P (n)6=P (s)

4
∑

ν=0

T pp′

ν Cν(R
pp′

0 ). (15)

The first three contributions in Eq. 11 (Eqs. 12-14) are the standard Ewald terms for the

reciprocal- and real-space interaction, and self-interaction correction, respectively. Their

interaction kernels take into account higher-order permanent and induced moments36,37 and,

in the case of Wr[P (s); B̃∗], incorporate short-range damping functions Λ2ν+1 as discussed

above.

For the real- and reciprocal-space terms, the anisotropic interaction kernels S and Tν

(the former is the structure factor of the multipolar density) capture the orientation de-

pendence of the interaction between two sets of atomic multipoles in the respective space;

they are listed in Section S1 of the Supporting Information. The associated isotropic in-

teraction kernels A(k) and Bν(R) (see Section S2 of the Supproting Information) yield the
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distance dependence. Finally, the real-space interaction is damped by the damping func-

tion Λ2ν+1 prescribed by Bν(R), which scales as R−(2ν+1) for sufficiently small distances

(see Section S3 of the Supporting Information for details). In the above equations, the set

of atom-centered multipoles incorporates the atomic charge q, dipole ~µ and quadrupole

θ̃, now in their Cartesian representation. Note that the quadrupole is here defined as

θαβ =
∑

a q
a
[

1
2
raαr

a
β − 1

6
δαβ(r

a)2
]

, which differs from the conventional definition by a factor

1
3
. Also note that the sum

∑

B̃∗ is in practice implemented as a double sum over image-box

vectors ~L and the periodic density B∗, with molecules participating in the polarization cloud

P (s) and P (n) being excluded.

The fourth term in Eq. 11, Wc[P (s);P (n)], denotes an aperiodic subtraction which corrects

for the overlap between P (s) and P (n) (see Section S9 of the Supporting Information for

details). Here, the anisotropic kernel is identical to Tν from Eq. 13. The isotropic kernel Cν ,

however, differs from Bν (see Section S2 of the Supporting Information) in that it involves

derivatives of the long-ranged erf(βr)/r rather than the short-ranged erfc(βr)/r part of the

interaction. The P (n) = P (s) terms have already been accounted for in the self-interaction

term, Eq. 14.

The fifth term in Eq. 11, W∗[P (s);B], is a shape (k = 0) contribution that tackles the

conditionality of the interaction sum. An analogous conditionality arises in overall neutral

systems with a net dipole moment of the periodically repeated charge density B,20 as is

often encountered in molecular systems. As a result, the convergence of the interaction sum

depends on the (macroscopic) summation shape. Here, we treat molecular solids, where

a second conditionality arises from the net charge that resides in P (s) and interacts with

a net-quadrupolar background. Shape terms for the case of a macroscopic cube and slab

summation shape are derived as (see Section S8 of the Supporting Information for details)

W cube
∗ [P (s);B] = − 1

4πε0

4π

3V

(

Q
P(s)
0 Tr[Θ̃B(n)] +Q

B(n)
0 Tr[Θ̃P(s)]− ~MP(s) · ~MB(n)

)

, (16)

W slab
∗ [P (s);B] = − 1

4πε0

4π

V

(

Q
P(s)
0 ΘB(n)

zz +Q
B(n)
0 ΘP(s)

zz −MP(s)
z MB(n)

z

)

, (17)
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where Eq. 16 implies summation over cubic/spherical, and Eq. 17 over infinitely thin slab-

shaped shells. The net multipolar moments of the densities P (s) and B that feature in these

expressions are defined as

Q
P(s)
0 =

∑

P

qp(s), (18)

~MP(s) =
∑

P

(

qp(s)~rp + ~µp(s)
)

, (19)

Θ̃P(s) =
∑

P

(

1

2
qp(s)~rp ⊗ ~rp + ~µp(s) ⊗ ~rp + θ̃p(s)

)

.

Analogous expressions are used for QB
0 , ~MB and Θ̃B.

Equation 11 is the key result of the method: with the cube/sphere shape correction,

Eq. 16, it gives energies of charged clusters in a 3D-periodic lattice with all three periodic

directions treated identically in the summation. In order to mimic a 2D-infinite slab (e.g.

for calculating IE and EA of thin films), the slab shape correction, Eq. 17, shall be used.

2.3 Computational procedure

Combining our results for energy, field and polarization calculations, Fig. 2 summarizes

the procedure to solve Eq. 2 and compute Ws for a molecular system in a state s. First

(Fig. 2a), the polarization state of the neutral system is computed according to Eq. 10

and Eq. S17 in the Supporting Information. This step usually needs to be carried out only

once for each coordinate configuration. Second (Fig. 2b), fields generated by the semiperiodic

background across the polarization cloud are calculated, taking into account both permanent

and induced moments. Third (Fig. 2c), the polarization cloud is polarized self-consistently in

the fields of the semiperiodic background. Fourth (Fig. 2d), the interaction-energy between

the semiperiodic background and the polarization cloud, as well as within the polarization

cloud, are evaluated using Eqs. 7, 9 and 11.

The computational cost of the above procedure is mostly due to the self-consistent eval-

12



uation of induced dipoles of the polarization cloud (step 3). The cost of this step scales as

r6pc with the radius rpc of the cloud. Typically, rpc = 4nm proves to be sufficient to converge

level profiles, except for a homogeneous dielectric stabilization of the material beyond rpc.

Finally, the long-range stabilization is recovered in an ad-hoc fashion:38 To this end, we

consider the polarization energy of a charge localized in a non-polarizable spherical cavity

with radius rpc, embedded in a dielectric of dielectric constant ε1 in the half-space z > 0, in

the vicinity of an interface with a second dielectric layer of dielectric constant ε2 in z < 0

(as frequently encountered in organic electronic devices):

∆(ε)
s (z > rpc) = − 1

8πε0

q2

rpc

ε1 − 1

ε1

[

1 +
rpc
2z

ε2 − ε1
(ε1 − 1)(ε1 + ε2)

]

. (20)

This expression holds for excitations with a net-charge q as leading moment. Higher order

moments, as they would apply to net-neutral excitations, in particular charge transfer states,

could be readily treated on the same grounds.38 In practice, the contribution from higher-

order moments is, however, negligible – different from charges, where, e.g., ∆(ε) evaluates to

-0.11 eV for a hole or electron embedded in an environment of ε1 = ε2 = 3 and rpc = 4nm.

3 Validation and applications

In this section, we first validate electrostatic energies obtained with our method against the

existing 2D-Ewald approach by initially excluding all polarization contributions. We then

briefly discuss published applications of the method, with benchmarks based on experimen-

tally measured quantities: IEs of thin crystalline films,16 energies of charge transfer states

at donor-acceptor interfaces,17 and density of states of mixtures of molecular crystals.24 Fi-

nally, we apply our method to amorphous mesophases, as encountered in organic solar cells

or light-emitting diodes, and show that residual ordering in a small simulation box com-

bined with the cut-off based approaches can lead to false predictions of molecular energies

in amorphous thin films.
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3.1 2D Ewald vs. 3D-periodic plus the slab shape-term

For the case of a molecular film sandwiched between two vacuum layers, periodically repeated

in all three dimensions, the thin film shape correction is inversely proportional to the volume

of the simulation cell. Hence, by increasing its out-of-plane dimension, while keeping the

slab thickness fixed, one can eventually recover the exact result for a 2D-periodic system

even without applying a shape term39,40 – at the cost, however, of a significantly denser

k-vector spacing in reciprocal space. Another option is to use a 2D-Ewald sum41,42 with the

underlying formulae listed in Section S6 of the Supporting Information. The comparison

of the 2D-Ewald versus 3D-periodic with the slab shape-term descriptions is presented in

Section S7 of the Supporting Information. The comparison serves as a validation of the

approach, at least for neutral non-polarizable systems with partial charges (the 2D-Ewald

formalism has so far been formulated only for electrostatic sums with partial charges, thus

excluding atomic polarizabilities and higher-rank multipoles).

The proposed 3D-periodic description has, however, several benefits as compared to the

2D-Ewald method. First, it is more efficient, since the reciprocal-space sum conveniently fac-

torizes with respect to the two multipolar densities P (s) and B. Second, it is more flexible: it

enables the simulation of both thin-film and bulk conditions within the same framework and,

on the implementation side, is capable of treating higher-rank multipoles and polarization

effects.

3.2 Ionization energies of crystalline films

The proposed technique is ideally suited for the evaluation of ionization energies (IEs) of

thin organic films, routinely performed experimentally using ultraviolet photoelectron spec-

troscopy (UPS). To benchmark the accuracy of the method, the ionization energies of five

different materials (see Fig. 3a) in face-on, long-edge-on and short-edge-on orientations in

thin films were calculated as described in Ref.,16 by adding the thin-film shape contribution

to the energy of the periodic 3D-system. The resulting IEs agree remarkably well with the

14
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Figure 3: (a) Chemical structures of pentacene (PEN), sexithiophene (6T), zinc phthalo-
cyanine (ZNPC), the merocyanine dye EL86,43 and the acceptor-substituted oligothiophene
D5M,21 shown together with the eigenvectors of the quadrupole tensor (in atomic units).
(b) Electrostatic (∆(1), light green), polarization (∆(2), dark green) and cube shape (∆cube,
gray) contributions to electron and hole levels computed from experimental unit cells. The
small black bars indicate the total solid-state contribution, ∆cube. Note the different energy
scale for D5M. (c) Correlation of electrostatic (∆(1)) and polarization (∆(2)) contributions
to electron (∆e) and hole (∆h) site energies for thin-film levels calculated for differently ori-
ented unit cells under application of the respective shape contribution. The symbol shape
indicates the material (6T, . . . , EL86), fill style the configuration (face-on, edge-on, tip-on).
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experimentally measured energy levels:16 in fact, the accuracy of the proposed method allows

to deduce molecular orientation from a single IE measurement.

To illustrate the importance of different contributions to the ionization energy, Fig. 3b

shows the electrostatic and polarization contributions ∆(1) and ∆(2) for both electrons and

holes, as well as the shape contribution ∆cube computed from Eq. 16. Note that the latter

includes contributions from both electrostatics and polarization. First, it can be seen that

the first-order correction ∆(1) varies significantly among compounds, as does ∆cube. ∆(2) is

reasonably constant across different materials, ranging between −0.9 eV and −1.0 eV.

Fig. 3b seems to indicate that there are specific packing modes and molecular layouts,

which together energetically favor either holes or electrons. In fact, apart from ∆cube, these

exact same results could have also been extracted from a cutoff-based description, which –

as seen in Fig. 1a – tends to correspond to the cubic/spherical limit implied by Eq. 16. Such

an approach has been used in the past and indeed led to the conclusion that some packing

modes (e.g., herringbone vs. brickwork) will lead to lower bulk hole energies than others.6

A bulk description is, however, not appropriate when simulating devices. Instead, a thin-

film description is needed, where IEs depend also on molecular orientation. For illustration,

Fig. 3c correlates electron and hole contributions ∆(1), ∆(2), ∆cube, as well as the solid state

contribution ∆slab obtained from the same unit cells as simulated in Fig. 3b, but with a

slab shape term (Eq. 17) applied along the three unit-cell vectors. This procedure mimics

different orientations (face-on, edge-on, tip-on) in a thin film, indicated by the fill style of

the symbols, next to the symbol shape, which distinguishes between the five compounds.

As becomes clear from a comparison of ∆(1) (light-green symbols), general conclusions that

link packing modes to electrostatic and polarization contributions are now impossible to

formulate without at the same accounting for molecular orientation. Specifically, orientations

with Q20 > 0 tend to produce a larger electrostatic stabilization of holes, as predicted by

Eq. 17: For D5M, Q20 > 0 is associated with a face-on, for PEN, 6T and ZNPC with a

tip-on orientation. Generally, the effect of orientation is sufficiently strong to produce both
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negative and positive ∆(1)’s for the same carrier type.

3.3 Charge transfer states at donor-acceptor interfaces

Another practical application of our embeddig approach is the evaluation of energies of

charge transfer (CT) states at the donor-acceptor (DA) interfaces of organic solar cells.17

Here, the long-range charge quadrupole interactions result in an additional contribution,

which either stabilizes or destabilizes the charge transfer state, depending on the orientation

and ordering of molecular quadrupoles at the DA interface. In fact, this additional electro-

static potential can lead to a practically barrierless splitting of charge transfer states, which

otherwise are strongly bound by the Coulomb attraction. Understanding the link between

the photovoltaic gap and charge splitting and detrapping is of course crucial for the design

of efficient photovoltaic cells.17

3.4 Density of states of mixtures

The proposed method is also suitable for evaluating the density of states of organic semi-

conductors. In particular, one can show that the long-range electrostatic effects can be

exploited to tune the density of states of an organic semiconductor continuously, despite the

fact that charges are spatially localized.24 Such “bandstructure engineering”, as confirmed

by UPS spectroscopy, opens up new opportunities for the design of organic solar cells: the

open-circuit voltage of organic solar cells can be continuously tuned by blending different

absorber materials.24

3.5 Amorphous Systems

In this section, we will consider amorphous semiconductors used in organic light-emitting

diodes, where disordered materials are preferred due to their processibility and fine miscibil-

ity in host-guest systems. Studying amorphous semiconductors in the context of long-range
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Figure 4: (a) Densities of ionization energies and electron affinities in Alq3 computed with
a cutoff (red dashed-dotted line), and with long-range embedding in the cubic (blue dashed
line) or isotropic limit (black solid line). The latter yields much better agreement with ion-
ization energies and electron affinities extracted from photoelectron spectroscopy44,45 (hori-
zontal dashed lines). Note that photoelectron spectroscopy probes the tail of the densities
of states. (b) Spatial correlation function evaluated with the computational procedure indi-
cated by the line style as described in (a). In the cutoff description, correlations are truncated
at the cutoff and in the case of long-range embedding at half the box length, indicative of a
finite-size effect.
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interactions may appear paradoxical, since we have already identified (see Eqs. 16 and 17)

that uncompensated multipolar moments are responsible for linking the energetics of micro-

scopic states to mesoscopic order. In amorphous semiconductors, however, these moments

should by definition tend to zero on large scales. Still, the question remains on what scale

multipolar moments start to decay to give way to an electrostatically isotropic continuum -

and how this reflects in the energy landscape of these materials.

The atomistic configurations of 4096 molecules of Alq3
10 were prepared via molecular

dynamics simulations with tailored force fields adapted from OPLS-AA.46 The starting con-

figurations were first randomized at high temperatures and then quenched to 300K, with

subsequent equilibration over a time period of several nanoseconds. The computed DOS,

that is the hystogram of solid state IEs and EAs of all molecules, is shown in Fig. 4a. For

both IEs and EAs, we employed three different computational procedures: a cutoff-based

description (dashed blue lines) and the long-range embedding protocol from Sec. 2 with ei-

ther a cubic shape term (dotted-dashed red lines) or no shape term at all (solid black lines).

The latter should be thought of as an isotropic limit, which assumes all multipolar moments

to average out on a mesoscopic scale.

First, we note that the cutoff-based description and long-range description in the cubic

limit match closely. This is not surprising in that both frameworks are virtually identical

with respect to their long-range behavior. In particular, a spherical cutoff always implicitly

includes long-range contributions tackled by the shape term from Eq. 16, as also illustrated

by the convergence scan from Fig. 1b. The agreement between these two approaches therefore

serves as a mere consistency check. More striking is, however, the 1 eV difference between the

DOS obtained in the cubic vs. isotropic limit – proving that this system, though structurally

amorphous, features a conditionality in the interaction sum which is picked up by both the

cutoff and cubic limit. This observation implies a challenge for simulations, as it is at

this stage impossible to pinpoint the origin of the mesoscopic moments, as they can be

due to subtle preferential ordering present also in the real system or to finite-size-induced
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fluctuations, or both. If, for example, preferential ordering really plays a role, then how large

do system sizes have to be in order to not truncate structural correlation functions before

convergence (at least in a thin-film sense) is achieved? On the other hand, if finite-size effects

are exclusively responsible for the observed differences, then the isotropic limit should be a

more appropriate description. Indeed, this limit appears to agree better with energy levels

extracted experimentally from the DOS onset,44,45 as indicated by the dashed horizontal

lines.

In addition to level positioning and alignment, we furthermore consider the spatial cor-

relation function C(R) of the energy landscape, see Fig. 4b. Correlations of this landscape

have been shown to result in the characteristic Poole-Frenkel behavior of the mobility in

many organic semiconductors. Fig. 4b, however, illustrates that atomistic simulations tend

to truncate this correlation function in a cutoff-based description for pair separations larger

than the cutoff rc (here: 3 nm). Even in a long-range description, the finite system size forces

correlations to zero at approximately half the box length, with the cubic limit resulting in

stronger correlations. In amorphous semiconductors, calculating the DOS and spatial cor-

relations thereof may hence be more involved than initially anticipated: In particular, large

system sizes (to be tackled with advanced simulation protocols) will be required in order

to disentangle finite-size artifacts from ordering effects. This challenge has a direct link to

compound screening for organic light emitting diodes, where tuning of level alignment is

crucial in order to guarantee device functionality and bypass degradation mechanisms.47

4 Conclusions

The long-range polarized embedding approach presented in this work targets the quantitative

evaluation of the energy landscape of charge carriers, charge transfer, and excited states in

molecular systems. Implemented in the VOTCA package,10 it can be readily parametrized

from first principles, while accounting for both polarization and electrostatic effects. In
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particular, it successfully copes with the slowly-convergent charge-quadrupole interaction

encountered in many molecular materials.

Using this approach, we illustrated the effect of molecular orientation and order on energy

level profiles in thin crystalline films of organic semiconductors. We showed how orientational

effects supersede packing effects, investigating how out-of-plane quadrupolar moments can

cause an electrostatic stabilization or destabilization of charge carriers, irrespective of the

packing motif. Our study of amorphous materials revealed that long-range effects persist

even in structurally disordered systems, as either a finite-size induced simulation artifact or

a result of residual structural correlations, or both.
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S1 Anisotropic Kernels

Throughout the Supporting Information, we use the following definitions: ~Rab
L = ~ra − ~rb + ~L

denotes the ~L- (image-box-vector-) shifted particle-particle interaction vector. The outer

products of real- and reciprocal-space vectors are abbreviated via R = ~R⊗ ~R and K = ~k⊗~k,

respectively. The dyadic product between matrices M and N is written as M : N . Finally,

the atomic quadrupole is defined as θ̃αβ =
∑

a q
a(1

2
raαr

a
β − 1

6
δαβ(r

a)2), which differs from the

conventional definition by a factor 1
3
, but avoids prefactors in the interaction kernels.

In real space, the T pb
ν symbols from Eq. 13 describe the orientation dependence of the

interaction between polar sites p and b with charge q, dipole ~µ and quadrupole θ̃ (in Cartesian

representation, see the definition above). They read

T pb
0 = qpqb, (S1)

T pb
1 = ~µp · ~µb + (qp~µb − qb~µp) · ~Rpb, (S2)

T pb
2 = 2Θ̃p : Θ̃b + (qpΘ̃b + qbΘ̃p) : Rpb − (~µp · ~Rpb)(~µb · ~Rpb)− (S3)

− 2(~µb ⊗ ~Rpb) : Θ̃p + 2(~µp ⊗ ~Rpb) : Θ̃b,

T pb
3 = −4(Θ̃p · ~Rpb)(Θ̃b · ~Rpb)− (~µp · ~Rpb)(Q̃b : Rpb) + (~µb · ~Rpb)(Q̃p : Rpb), (S4)

T pb
4 = (Q̃p : Rpb)(Q̃b : Rpb). (S5)
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The k-space anisotropy is absorbed in the structure factors S of the multipole density,

featuring in Eq. 12:

S (~k; [P (s)]) =
∑

P

(

qp + i~µp · ~k − Θ̃p : K
)

exp
(

i~k · ~rp
)

. (S6)

Note that the dipole moment ~µ in the above expressions for T pb
ν and S also incorporates

the induced moment ∆~µ. If an energy splitting in terms of electrostatic and polarization

contributions is desired, the T pb
ν symbols, as well as S have be decomposed accordingly.

S2 Isotropic Kernels

The distance dependence of the interaction in Eqs. 12, 13, 15 is described by the isotropic

kernels A(k), Bν(R) and Cν(R), respectively, next to powers of k and R that already appear

in the scalar contractions of S and T pb
ν above:

A(k) = k−2 exp

(

− k2

4β2

)

, (S7)

B0(R) = R−1erfc(βR), (S8)

Bν(R) = R−2

[

(2ν − 1)Bν−1(R) +
2νβ2ν−1

√
π

exp(−β2R2)

]

, (S9)

C0(R) = R−1erf(βR), (S10)

Cν(R) = R−2

[

(2ν − 1)Cν−1(R)− 2νβ2ν−1

√
π

exp(−β2R2)

]

. (S11)

S3 Thole Damping Kernels

The Thole model damps induced-induced interactions at short distances. For faster conver-

gence, damping of induced-permanent interactions – though not mandatory – may also be

advised. With the polarizability α̃ (here written more generally as a tensor quantity), an

2



effective interaction distance is defined as

upb(R) =

(

α̃p : α̃b

3

)−1/6

R. (S12)

With an exponential smearing function ∼ exp(−γu3) as used in the AMOEBA force field,27

where γ = 0.39, the damping functions Λ2ν+1 are

Λ3(R) = 1− exp
[

−γupb(R)3
]

, (S13)

Λ5(R) = 1−
[

1 + γupb(R)3
]

exp
[

−γupb(R)3
]

, (S14)

Λ7(R) = 1−
[

1 + γupb(R)3 +
3

5
γ2upb(R)6

]

exp
[

−γupb(R)3
]

, (S15)

Λ9(R) = 1−
[

1 + γupb(R)3 +
18

35
γ2upb(R)6 +

9

35
γ3upb(R)9

]

exp
[

−γupb(R)3
]

. (S16)

As higher orders of the damped interaction tensors are obtained from derivatives of tensors

of lower order, the damping functions can be applied such that interaction terms that scale

as
Rα···Rβ

Rn (with α, β ∈ {x, y, z}) are damped by Λn; or, put simpler, terms of power −n in

the isotropic distance R are damped by Λn. For the real-space interaction from Eq. 13, the

damping is hence prescribed by the isotropic kernel Bν , which scales as R−(2ν+1) for R ≪ 1/β.

For the Cν , no damping is required as long as the convergence parameter β is sufficiently

small (1/β & nm), since we are then dealing with a purely long-ranged compensation term.

Special care has to be taken for the interaction tensors T from Eq. 7, where different

summands appearing in T have to be multiplied by a different Λ2ν+1 according to the rule

above.
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S4 Field Calculation

For the evaluation of electric fields, a decomposition analogous to Eq. 11 holds:

~E(~rp, [B̃∗]) = ~Er(~rp, [B̃∗]) + ~Ek(~rp, [B∗])− ~Esi(~rp, [P (n)])− ~Ec(~rp, [P (n)]) + ~E∗
s (~rp, [B∗])

(S17)

The individual terms correspond to the real-space ( ~Er) and reciprocal-space contribution

( ~Ek), self-interaction correction ( ~E ′
c), aperiodic subtraction ( ~Ec) and shape contribution

( ~Es), respectively:

~Er(~rp, [B̃∗]) = − 1

4πε0

∑

B̃∗

3
∑

ν=1

~T pb
ν Λpb

2ν+1Bν(R
pb
L ), (S18)

~Ek(~rp, [B∗]) = − 1

4πε0

4π

V

∞
∑

~k 6=0

i~k exp(i~k · ~rp)A(k)S ∗(~k; [B∗]), (S19)

~Ec(~rp, [P (n)]) = − 1

4πε0

′
∑

P (n)

3
∑

ν=1

~T pb
ν Λpb

2ν+1Bν(R
pb
L ), ~Esi(~rp, [P (n)]) = − 1

4πε0

4α3

3
√
π
~µp. (S20)

The vector symbols ~T pb
ν again absorb the orientation dependence of the interaction,

~T pb
1 = −qb ~R

pb + ~µb, (S21)

~T pb
2 = 2Θ̃b · ~Rpb − (~µb · ~Rpb)~Rpb, (S22)

~T pb
3 = −(Θ̃b : R)~Rpb. (S23)

The conditionality in the field calculation is removed through application of the appropriate

shape term,

~Es(~rp, [B∗]) = − 1

4πε0

4π

3V
~MB(n), (S24)

~Es(~rp, [B∗]) = − 1

4πε0

4π

V
MB(n)

z êz, (S25)

4



where the former expression corresponds to a cubic limit, the latter to a thin-film limit with

vanishing thickness.

S5 Reciprocal-Space Convergence

In order to detect potential reciprocal space resonances, k-vectors are sorted according to

the rating functions

g3(~k) =
S (kxêx)S (kyêy)S (kz êz)

(

〈S (k′
xêx)〉x〈S (k′

yêy)〉y〈S (k′
z êz)〉z

)2/3
A(k),

g2(~k) =
S (kiêi)S (kj êj)

(

〈S (k′
iêi)〉i〈S (k′

j êj)〉j
)2/3

A(k).

Here, g3 is the rating function used for off-axis k-vectors with three non-zero components, g2

is the rating function for in-plane k-vectors with two non-zero components. The ratings are

hence constructed from structure factors S (kiêi) evaluated along the system axes êx, êy and

êz. The convergence criterion for off-axis and in-plane k-vectors is established as the root-

mean square contribution of k-shells to fields and energies associated with the polarization

cloud P (s).

S6 Potentials for 2D-Periodic Embedding

For the 2D-periodic description employed in Fig. S1, the potential is calculated according to

the standard Ewald-type decomposition41,42

φ(~rp, [B̃∗]) = φr(~rp, [B̃∗]) + φk(~rp, [B∗])− φc(~rp, [P (n)]) (S26)

Shape contributions are explicitly included in the (k = 0)-term of φk(~rp, [B∗]), where charge-

quadrupole contributions are exempt, as these prove absolutely convergent in 2D-periodic
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systems. The individual contributions to Eq. S26 read

φr(~rp, [B̃∗]) =
1

4πε0

∑

B̃∗

qb(n)erfc
(

βRpb
L

)

Rpb
L

,

φk(~rp, [B∗]) =
1

4πε0

′
∑

~k 6=~0

∑

B

2πqb(n)

|~La × ~Lb|
cos

(

~k · ~Rpb
)

[

e−k(zp−zb)erfc

(

k

2β
− β(zp − zb)

)

+

+e+k(zp−zb)erfc

(

k

2β
+ β(zp − zb)

)]

−

− 1

4πε0

∑

B

2πqb(n)

|~La × ~Lb|

[

e−β2(za−zb)
2

√
πβ

+ (za − zb)erf (β(za − zb))

]

, (S27)

φc(~rp, [P (n)]) =
1

4πε0

∑

P

qp(n)erf
(

βRpb
L

)

Rpb
l

. (S28)

~La, ~Lb are the simulation-cell vectors in the periodic plane. Note that self-interaction terms

with Rpb
L = 0 in φc(~rp, [P (n)]) are calculated using the limit erf(βRpb

L )/Rpb
L → 2β/

√
π as

Rpb
L → 0.

Note that the standard Ewald decomposition is typically performed for the self-interaction

energy of a discrete point-charge cloud. The expressions in real and reciprocal space then

build on a double sum over point charges, which count all pairs twice. Hence, a factor 1/2

is normally added in the formulae in order to avoid this double-counting. Here, however,

we consider the potential generated by the periodic background density. This should not be

multiplied by a factor 1/2, and accordingly differs from the expressions given for the energy

by, e.g., Crozier et al.41
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S7 2D- versus 3D-periodic description of thin films
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Figure S1: 2D- versus 3D-periodic description of thin films. Electrostatic energy level
profile ∆(1)(z) across a D5M (a) and 6T (b) 10 nm thin film for holes (red) and electrons
(blue), once computed in a 2D-periodic (lines), and once in a 3D-periodic framework under
application of the appropriate thin-film shape term from Eq. 17 (symbols). Dashed blue
and red lines mark the contribution from this shape term, addition of which leads to perfect
agreement between the 2D- and 3D-periodic description, already for a finite vacuum buffer
of twice the thin-film thickness d = 20 nm, achieved by scaling the unit-cell dimension along
the z-direction in the 3D-periodic framework.

Fig. S1 shows that the slab limit from Eq. 17 is indeed suited to mimic a 2D-periodic

setup, with periodicity along the thin-film normal (aligned with the z-axis) effectively re-

moved. To this end, we compare electrostatic level profiles ∆(1)(z) across a C60:D5M and

C60:6T interface, obtained once with the 3D-periodic framework detailed above and once with

the 2D-periodic description. The results for both approaches (indicated via dots and lines,

respectively) coincide already for small z-axis box vectors (as required in the 3D-periodic

framework) of three times the film thickness, if the shape contribution is taken into account.
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Note that these level profiles still exclude polarization effects, to be included by solving Eq. 2

as outlined in the section below.

S8 Shape factors

We will start from Eq. 3.12 of Smith,20 which implies that the electrostatic potential for a

system with zero-rank multipoles (charges) can be written as

φ
(0)
k=0 (~r, [B∗]) = − 1

4πε0

∑

B

qb(n)J (~r − ~rb, P ), (S29)

where J is a shape factor defined via

J (~r, P ) =
2

π2V

∫ ∞

−∞

d3v
(~r · ~v)2
|~v|2

∫

P

d3ρe2i~ρ·~r. (S30)

P defines the “primitive” summation shape (cube, sphere, cylinder, . . . ), whose surface is

given by P (~r) = 0.

The shape factor can be readily evaluated for cube/sphere and slab structures:

Jsphere(~r, P ) =
2π

3V
|~r|2, (S31)

Jslab(~r, P ) =
2π

V
z2. (S32)

The generalization of Eq. S29 to higher-rank multipoles is achieved by substituting the charge

scalar qb(n) by the operator Mb(n)
~r = qb(n) − ~µb(n) · ~∇+ θb(n) :

(

~∇⊗ ~∇
)

, which performs the

expansion up to the atomic quadrupole. The corresponding potential and shape contribution

to the system energy are

φk=0 (~r) = − 1

4πε0

∑

B

Mb(n)
~r J (~r − ~rb, P ), (S33)
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W∗

[

P (s);B
]

= − 1

4πε0

∑

B

∑

P

Ma(s)
~r φk=0 (~r) |~ra , (S34)

which after some algebra results in Eqs. 16,17 of the main text.

S9 Aperiodic correction

Following the idea of Ewald, we split the electrostatic potential onto short- and long-range

contributions,

φ(0)
(

~rp; [B̃∗]
)

=
1

4πε0

∑

B̃∗

qb(n)
{

erfc(β|~rp − ~rb|)
~rp − ~rb

+
erf(β|~rp − ~rb|)

~rp − ~rb

}

. (S35)

The first interaction term in the curly brackets is short-ranged, and hence efficiently summed

up in real space, which eventually results in Wr[P (s); B̃∗] in Eq. 11. We now add and

subtract the neutral foreground P (n) to the sum over the second, long-ranged, interaction

term:
∑

B̃∗ =
∑

B̃∗∪P(n) −
∑

P(n) . The sum over B̃∗ ∪ P (n) ≡ B∗ results in the contribu-

tions Wk[P (s);B] and W∗[P (s);B], whereas the sum over P (n) gives rise to Wsi[P (s);P (n)] and

Wc[P (s);P (n)].

Specifically, for zero-rank multipoles (charges)

W
(0)
si,c =

∑

P(s)

qp(s)φ
(0)
si,c

(

~rp; [B̃∗]
)

= − 1

4πε0

∑

P

∑

P ′

qp(s)qp
′(n) erf(β|~rp − ~rp′ |)

|~rp − ~rp′ |
= W

(0)
si +W (0)

c ,

where

W
(0)
si =

1

4πε0

∑

P

qp(s)qp(n) lim
r→0

erf(βr)

r
,

W (0)
c =

1

4πε0

∑

P

∑

P ′

(1− δpp′)q
p(s)qp

′(n) erf(β|~rp − ~rp′ |)
|~rp − ~rp′ |

.

Generalization of these expressions to higher multipoles (up to quadrupoles) is possible

9



via the substitution

qb(n) → qb(n) − ~µb(n) · ~∇+ θb(n) :
(

~∇⊗ ~∇
)

, (S36)

qp(s) → qp(s) + ~µp(s) · ~∇+ θp(s) :
(

~∇⊗ ~∇
)

, (S37)

which finally results in Eqs. 14, 15 of the main text.

S10 Parameters of the polarizable force-field

Below, we list the set of atomic multipoles and polarizabilities used in the examples from

the Validation section of the main text. The listing is structured according to compounds

(ZnPc, D5M, 6T, EL86, PEN) and charge states (neutral, cation, anion). Each section

defines the polarizable force field for the corresponding compound and charge state via a

verbatim representation of the input file used by the VOTCA::CTP code.10

The file format largely resembles the format used by A. Stone in his GDMA code28 and

is structured as follows: The first two lines are comment lines, followed by a line which

indicates the units of the atomic coordinates (Å in this example):

! Comment line 1

! Comment line 2

Units angstrom

After this header section, the atomic parameters are listed atom by atom. For a single atom,

the associated entry reads, for example,

N +0.0002240 +9.8202378 +3.7242187 Rank 2

-0.2150281

-0.4548875 -0.0000536 +0.3131389

+0.4246758 +0.0000774 -0.4983059 -0.1450614 -0.0000414

P +2.1668289 +0.0000000 +0.0000000 +2.1668289 +0.0000000 +2.1668289

10



The first line of this section starts with the atomic element (here: N = nitrogen), followed by

the atomic x-, y-, and z-coordinate in the appropriate units declared previously. The “Rank”

keyword defines the rank up to which the multipolar expansion for this atom is performed

(here: l = 2, i.e., up to quadrupoles).

The subsequent lines are one-by-one devoted to the 2l+1 multipole components of rank l

in spherical-tensor notation and in ascending order of l, starting from the atomic charge Q00

in the first line (here: -0.2150281), then the atomic dipole Q1z, Q1x, Q1y in the second line

(here: -0.4548875 -0.0000536 +0.3131389), finally the atomic quadrupole Q20, Q21c, Q21s,

Q22c, Q22s (here: +0.4246758 +0.0000774 -0.4983059 -0.1450614 -0.0000414). Note that in

the dipole line, the z-component is listed first. All multipole components are in atomic units.

Multipole moments of rank l hence have to be multiplied by e · al0, where e is the positive

elementary charge, and a0 the Bohr radius.

The final line in the atom section, prefaced by “P”, defines the atomic polarizability

tensor α̃ in upper-diagonal form, i.e., in the order αxx, αxy, αxz, αyy, αyz, αzz. The units

used for the polarizabilities are Å3. Note that in this work we used only isotropic atomic

polarizabilities, obtained by iterative isotropic scaling of the Thole atomic polarizabilities,35

such that the self-consistently calculated classical polarizability tensor matches the molecular

tensor in terms of polarizable volume, as measured by the volume of the polarizability ellipsoid

∼ 1/Π3
i=1

√
α̃i. Here, α̃i is the i-th eigenvalue of the polarizability tensor. In this procedure,

the polarizability of atoms in non-conjugated moieties of the molecules – such as side chains

– are not scaled, in accordance with the original parametrization of the Thole model. The

reference polarizability tensor was calculated from density functional theory via B3LYP/6-

311+g(d,p).
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