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Abstract  

The dynamics of particulate processes can be described by population balance equations 

which are governed by the phenomena of growth, nucleation, aggregation and breakage. 

Estimating the kinetics of the latter phenomena is a major challenge particularly for particle 

aggregation because first principle models are rarely available and the kernel estimation from 

measured population density data constitutes an ill-conditioned problem. In this work we 

demonstrate the estimation of aggregation kernels from experimental data using an inverse 

problem approach. This approach is based on the approximation of the aggregation kernel by 

use of Laurent polynomials. We show that the aggregation kernel can be well estimated from 

in silico data and that the estimation results are robust against substantial measurement noise. 

The method is demonstrated for three different aggregation kernels. Good agreement between 

true and estimated kernels was found in all investigated cases. 
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1. Introduction 
 

The phenomenon of aggregation is seen in a variety of different chemical production 

processes such as droplet coalescence, cell flocculation, granulation and crystal 

agglomeration. In an aggregation process, two particles with volumes v and u collide and 

form a new stable particle with the volume v + u. The kinetics of such an aggregation process 

is governed by the aggregation kernel, which is, in the univariate case, a symmetric and 

nonnegative function that depends on particle volumes v and u and on further process 

conditions, like fluid dynamics or concentrations, which can be time-dependent. The 

aggregation kernel is typically modeled as a product of a collision kernel and an aggregation 

efficiency (Hounslow et al., 2001; Ochsenbein et al., 2015). Here, the collision kernel is 

typically assumed to be dependent on the sizes of the aggregating particles as well as on the 

fluid dynamics of the system. The aggregation efficiency can be interpreted as the probability 

that a particle collision leads to a stable aggregate. For instance, in crystallization processes 

solid bridges have to be formed between two colliding primary crystals so that a stable crystal 

agglomerate is formed (Hounslow et al., 2001; Ochsenbein et al., 2015). This process depends 

on the particle inertias, and thus on the particle sizes, as well as on process conditions such as 



the supersaturation of the solution surrounding the aggregating particles which can be time-

dependent.  

Once a suitable model for the aggregation process is formulated, the aggregation kernel can 

be determined by fitting unknown model parameters to the measured transient evolution of 

the particle size distribution. Examples of this procedure can for instance be found in the field 

of crystallization (Lindenberg et al., 2008), precipitation (Bramley et al., 1996) or granulation 

(Peglow et al., 2006; Braumann and Kraft, 2010; Braumann et al., 2011). 

If no a priori knowledge of the structure of the aggregation kernel is known, the aggregation 

kernel can also be obtained from experimental data by the inverse problem approach. An 

inverse problem arises, when the solution to a partial differential equation, i.e. the population 

balance equation, is known, i.e. from measurements, while functions governing this solution, 

in the here discussed case the aggregation kinetics, are unknown (Ramkrishna, 2000). The 

inverse problem approach to population balance systems requires the observation of the 

dynamic evolution of the number density evolution, but it does not (necessarily) require any 

a-priori knowledge about the underlying structure of the kinetic expression to be determined. 

However, the solution of an inverse problem often results in an ill-conditioned problem 

(Chakraborty et al., 2015).Mahoney et al. (2002) for instance have demonstrated the solution 

of inverse problems to determine growth and nucleation rates in a precipitation process from 

simulated measurements. The estimation of aggregation kernels was demonstrated by Wright 

and Ramkrishna (1992), based on the assumption of self-similarity. The latter approach was 

subsequently used by other groups for determining kernels for stem cell aggregation (Rostami 

et al., 2015) and sludge flocculation (Torfs et al., 2012). The self-similarity of the particle size 

distribution depends on the aggregation kernel as well as on the initial conditions and may not 

be achieved under conditions where aggregation and growth occur simultaneously, as for 

instance reported by Bramley et al. (1997). Therefore, Chakrabortyet al. (2015) have 

suggested the estimation of the aggregation kernel by use of the method of weighted residuals. 

This method results in an ill-conditioned system of linear equations which can be solved using 

regularization techniques. 

The present work aims at complementing the approach of Chakraborty et al. (2015) by 

proposing a kernel estimation scheme based on polynomial approximation which, besides the 

kernel symmetry, does not rely on any assumption about the structure of the aggregation 

kernel or the transient evolution of the particle size distribution. The remainder of this article 

is structured as follows. In Section 2, the approach for the kernel estimation is presented 

together with the results obtained from datasets without measurement noise. The estimation 

performance in the presence of measurement noise is presented and discussed in Section 3, 

where also a statistical analysis of the kernel estimates is presented, to determine the adequate 

number of terms in the polynomials. Finally, Section 4 concludes the article and gives an 

outlook on further improvements, challenges and extensions to the multivariate case of the 

proposed kernel estimation procedure. 

 

2. Kernel estimation by polynomial approximation  
 

The evolution of a particle distribution during an aggregation process can be described by a 

population balance equation (PBE) 
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with the initial condition: 

  )(0, 0 vftvf  . (2) 



In both equations, f stands for the number density distribution, and v for the particle volume. 

The first integral term of the right hand side of Eq. (1) represents the birth of particles with 

volume v, which results from the aggregation of two particles with volumes u and v-u, 

respectively. The second integral term, typically referred to as death term, describes the 

aggregation of two particles with volumes v and u which are forming a new particle having 

the volume v+u. Hence, this process leads to the disappearance of particles from the size class 

v and acts as a sink term. For solving the population balance equation, the volume coordinate 

is discretized on an equidistant grid ranging from v1 = 1 to vNC = NC. In this notation, the value 

of v1 corresponds to the minimal size of a primary particle, whereas NC denotes the total 

number of considered size classes which is set to NC = 50 in this work. By integrating Eq. (1) 

w.r.t. the size domain, a set of differential equations for the total number of particles in the 

volume class vi is obtained: 
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(3) 

The initial condition that was used throughout this work is given by: 

   iv vtN
i

 2.0exp0  . (4) 

The dynamics of the aggregation process described by Eq. (3) are governed by the 

aggregation kernel k, which is assumed to be independent of time. The aim of this work is the 

estimation of this kernel. For developing and assessing the estimation procedure described 

below, we use three different kernel functions which are given in Table 1 and shown in Figure 

1. These kernels are chosen to represent qualitatively different curvatures and dependencies 

on the particle sizes v and u. They include two kernels derived theoretically from Brownian 

motion and from the kinetic theory (Aldous 1999) and also an empirical kernel describing 

particle aggregation in a granulation process (Peglow 2006). 

Figure 1: Example aggregation kernels used in this study: left: Brownian kernel; middle: 

kinetic kernel; right: granulation kernel. 

 

The datasets that are used for the kernel estimation are simulated with these three kernels. 

Solutions of Eq. (3) are obtained at Nt = 50 linearly spaced time instances between 0 and 1. 

The numerical solution of the PBE is exemplarily shown in Figure 2 for the kinetic kernel. 

 

Table 1: Example kernels used in this work 

Kernel Expression 

Brownian kernel (Aldous 1999)     31313131  ,   uvuvuvk  

kinetic kernel (Aldous 1999)         232123131,


 uvvuuvuvk  

granulation kernel (Peglow 2006)       062.00.7105
 ,


 vuuvuvk  

 



Figure 2: Evolution of the number density distribution for the kinetic kernel; left: without 

noise; right: with white Gaussian noise and a standard deviation of 10%. 

 

In view of the complexity of Eq. (3) it is clear, that the direct estimation of all kernel function 

values at every combination of particle volumes v and u is not feasible, as the number of 

unknown variables scales quadratically with the number of size classes NC considered. Hence, 

the kernel must be approximated by a suitable set of basis functions. In this work, Laurent 

polynomials are chosen for representing the kernel functions: 
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Eq. (5) constitutes a separable approximation of the aggregation kernel, and hence, the source 

term of Eq. (3) can be evaluated efficiently through fast Fourier transformation (Hackbusch 

2006, Le Borne 2015) which becomes significant for larger number of size classes NC). 

Imposing symmetry on the approximated aggregation kernel and ordering the individual terms 

in an increasing order, the polynomial kernel approximation using rank R = 2, which is used 

throughout this work, is given by: 

Eq. (5) constitutes a separable approximation of the aggregation kernel, and hence, the source 

term of Eq. (3) can be evaluated efficiently through fast Fourier transformation (Hackbusch 

2006; Le Borne et al., 2015) which becomes significant for larger number of size classes NC. 

Imposing symmetry on the approximated aggregation kernel and ordering the individual terms 

in an increasing order, the polynomial kernel approximation using rank R = 2, which is used 

throughout this work, is given by: 
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(6) 

Here, the parameters p1 to p15 are the unknown coefficients of the kernel which have to be 

determined from the observed evolution of the particle size distribution. Due to the fact, that 

the right hand side of the differential Eq. (3) is linear with respect to the aggregation kernel, 

which in turn is linear w.r.t. the unknown coefficients p1 to p15, a linear regression problem 

can be formulated for estimating these coefficients, that minimizes the deviations between the 

measured derivatives dNv,i,meas /dt and simulated values of the derivatives dNv,i,est /dt for all size 

classes and observation times. By collecting all unknown coefficients p1 to p15in the parameter 

vector p, this linear regression problem can be formulated as follows: 
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Although this problem can be solved analytically, it requires the derivatives dNv,i,meas /dt and 

may suffer from an ill-conditioned estimation problem (Chakraborty et al., 2015). For these 

reasons, instead of solving the optimization problem directly, we apply an iterative 

optimization procedure in which the number of optimized parameters is successively 

increased by one and the optimal values of the previous iteration are used for initialization. 

Further-more, we scale the derivatives dNv,i/dt of all size classes by the observed maximal 

particle number in each class, in order to account for the different orders of magnitude of the 

particle numbers, see Figs 2 and 5. Thereby, the sensitivity of the objective function w.r.t. the 

kernel function values at combinations of large particle sizes v and u is increased 

significantly: 
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In this approach, the derivatives dNv,i,meas /dt have to be known and thus must be determined 

from the observed particle number evolution Nv,i(t), which is a challenging task in the 

presence of measurement noise as discussed in Section 3. As an alternative objective function, 

the sum of squares of the differences between measured and simulated number densities 

Nv,i,meas and  Nv,i,est  is minimized: 
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Again, the measured and simulated values of Nv,i(t), are scaled by the maximum particle 

numbers which are observed in the size class vi to increase the sensitivity of the objective 

function w.r.t. the kernel function values at combinations of large particle sizes v and u. 

Clearly, the estimated number density evolutions Nv,i,est (t,p) can be obtained by integrating 

Eq. (3) for a given aggregation kernel which is parameterized by p. However, this 

significantly increases the computational cost of this approach, since a system of ordinary 

differential equations (Eq. (3)) has to be solved during every evaluation of the objective 

function Eq. (9). In this work, both optimization problems are implemented in Matlab 2010b, 

and solved numerically by the Marquardt-Levenberg algorithm provided by the routine 

lsqnonlin of the optimization toolbox (version 5.1). 

Figure 3: Comparison between the true kernel functions (green) and kernel functions 

estimated from perfect synthetic data (red); left: Brownian kernel; middle: kinetic kernel; 

right: granulation kernel. 
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Figure 4: Estimation error from perfect synthetic data; left: Brownian kernel; middle: kinetic 

kernel; right: granulation kernel.  

 

The estimates of the three test kernel functions that are obtained by the presented approach are 

shown in Fig. 3 together with the true kernel functions. As both objectives, Eq. (8) and Eq. 

(9), result in almost identical kernel estimates, only the results of Eq. (8) are shown. As can be 

seen, the Brownian aggregation kernel and the granulation kernel can be reconstructed almost 

exactly. Only for the kinetic kernel some larger differences between true and estimated kernel 

functions are visible. For a quantitative analysis of the estimation performance, the relative 

estimation error 
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rel 100
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kk
E
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(10) 

is shown in Fig. 4 for all three test kernels. It can be seen, that the estimation error is below 

1% for the Brownian kernel and below 2% for the kinetic and granulation kernel in a wide 

range of particle size combinations. Only for size combinations that represent the 

agglomeration of small and large sized particles some larger deviations are visible which is 

particularly true for the kinetic kernel, where the estimation error reaches values of up to 60%, 

see also Fig. 3. This indicates that the sensitivity of the objective functions w.r.t. the kernel 

function values at these size combinations is comparably low. This phenomenon is discussed 

in the next section, where the influence of the measurement noise on the performance of the 

estimation scheme is addressed. 

 
3. Kernel estimation in the presence on measurement noise 
 

The estimation of aggregation kernels from perfect datasets constitutes a rather idealized case. 

In reality, the measurements of the number density evolution will be affected by measurement 

noise. In particular, the derivatives of the number density with respect to time will generally 

be unknown, which prohibits the direct application of the objective function Eq. (8) for the 

kernel estimation. For assessing the applicability and performance of the proposed estimation 

scheme, we simulate the dynamic evolution of the number density for all three test kernels 

and add white Gaussian noise with a standard deviation of 10 percent of the actual simulated 

values to the datasets. The resulting number density evolutions are exemplarily shown in Figs. 

2 and 5 for the kinetic kernel and the Brownian kernel, respectively. 

Of course, a direct estimation of the derivatives dNv,i/dt from such datasets by finite 

differences is not possible. An approach for the estimation of derivatives of the solution of Eq. 

(3) is for example given by Vikhansky and Kraft (2004). In this work, however, we estimate 

the derivatives based on smoothed measurements Nv,i, which enables the estimation of the 

derivatives based on the smoothened curves. For this purpose, an extended Kalman filter 

(Brown and Hwang, 1995) is applied, which exploits the knowledge, that the true number 



density evolution should satisfy Eq. (3). Furthermore, the Kalman filter uses the estimates of 

the aggregation kernel which are already available after the first iteration. The resulting 

filtered number density evolution is shown in Fig. 5 together with the measurements and the 

original noise-free number density evolution. As can be seen, the Kalman filter allows for an 

almost exact reconstruction of the original true dataset for all size classes, and results in 

excellent smoothness of the estimates. This allows the direct estimation of the derivatives 

dNv,i/dt via finite differences. To this end, we choose the following second order method 

(Ahnert and Abel,2007): 
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The resulting estimates for the derivatives are depicted in the right part of Fig. 5. As can be 

seen, the estimated derivatives match the true values reasonably well, despite some deviation 

at early simulation time steps and small oscillations during the aggregation process. Clearly, 

the application of an additional filtering step on the estimated derivatives might lead to an 

even better estimation quality, especially at later simulation time steps. This approach is, 

however, not further pursued in this work. Instead, the filtered values Nv,i and dNv,i/dt that are 

obtained from the kernel estimates from the previous iteration are used directly for the kernel 

estimation. Since no kernel estimate is available at the first iteration, the measurements 

Nv,i,meas are smoothed by a 7
th

 order polynomial, and the derivatives are obtained from these 

polynomials. 

Figure 5: Application of a Kalman filter to noisy data simulated with the brownian kernel; 

left: true, noisy and filtered evolution of three selected size classes; right: true and estimated 

derivatives of the same size classes. 

 

The application of a full second order Laurent polynomial (Eq.(6)) for the estimation of the 

aggregation kernels necessitates the determination of 15 parameters in total. While these 

parameters can be determined well from perfect datasets (see Figs. 3 and 4), the estimation of 

these parameters from noisy datasets will most likely result in overfitting of the measurement 

data, and hence lead to rather poor estimation results. This effect is shown in Fig. 6, where the 

relative root-mean-square error 
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is plotted against the number of parameters used for the estimation of the Brownian 

aggregation kernel. The relative error decreases initially to reach a minimum when the first 

five parameters are used for kernel estimation. Afterwards, the relative error increases 
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together with the standard deviation of the estimation error with an increase of the number of 

estimated parameters. 

Figure 6: Dependence of the relative root-mean-square error, RMSErel, on the number of 

parameters used for the estimation of the brownian aggregation kernel. The error bars 

represent the standard deviations obtained from five different random datasets. 

 

Figure 7: 95% confidence intervals of the individual parameter estimates for all polynomial 

sizes considered. Data were simulated with the brownian aggregation kernel, and five 

independent measurement sets were used to derive the confidence intervals. 

 

Since the true aggregation kernel is unknown, such analysis can of course not be used to 

determine the number of parameters which are necessary to estimate the aggregation kernel. 

Instead, five independent measurement sets are used for each test kernel to obtain five sets of 

independently estimated parameters. Due to the iterative estimation procedure described 

above, these parameter sets contain parameter estimates for all polynomial sizes containing 1–

15 parameters. By this procedure, confidence intervals for the individual parameter values are 

obtained from the repeated estimations for every polynomial size. The results of this analysis 

are shown for the example of the Brownian aggregation kernel in Fig. 7 for a significance 

level of 95%. As can be seen, the confidence intervals for essentially all parameters are 

increasing at increasing number of estimated parameters, which can be attributed to parameter 

correlation. In fact, with all 15 parameters estimated, only the first parameters (top left) 
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significantly deviate from zero. For determining an adequate polynomial basis, we use the 

polynomial with the maximal number of parameters, at which the estimate of the last 

parameter significantly deviates from zero. For the kernel example shown in Fig. 7, this is the 

case for a polynomial with five parameters, see first error bar in the top right subfigure, which 

corresponds well with the analysis of the relative root-mean-square error shown in Fig. 6. In 

principle, this significance analysis can be even extended to account for the fact that the order 

of the terms in Eq. (6) can be changed which would result in a combinatorial problem, and is 

– for the sake of simplicity – not considered in this work. After determining the number of 

parameters, the aggregation kernel is estimated on the basis of all five individual 

measurement sets. 

Figure 8: Comparison between the true kernel functions (green) and kernel functions 

estimated from noisy measurement data using Eq. (9) (red); left: Brownian kernel; middle: 

kinetic kernel; right: granulation kernel. 

 

Figure 9: Estimation error from noisy measurement data using Eq. (9); left: Brownian kernel; 

middle: kinetic kernel; right: granulation kernel. 

 

The final estimates for the three test kernels which are resulting from the application of 

objective function of Eq. (9) are shown in Fig. 8 together with the true aggregation kernels. 

The corresponding estimation errors of Eq. (10) are depicted in Fig. 9. The results of the 

application of Eq. (8) as objective function are shown in Figs. 10 and 11 respectively. In case 

of the Brownian kernel, a polynomial with five parameters is used for the final kernel 

estimation for both objective functions. As can be seen, the kernel is estimated reasonably 

well, exhibiting a characteristic plateau at high values of u and v, were the estimation error is 

in the range of 1–2%. However, the kernel function values that describe the interactions 

between small and large sized particles are overestimated by both approaches, resulting in 

rather high estimation errors. Again, this indicates a rather low sensitivity of the objectives to 

kernel function values in this area, as it was already observable in the estimation from perfect 

datasets, particularly for the kinetic kernel and partially for the granulation kernel (see Figs. 3 

and 4).The low sensitivity is due to the low probability of small and large sized particles 
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coexisting, and hence aggregating, at the same time. This is a direct consequence of the initial 

conditions chosen for simulation as well as of the aggregation process itself. A higher 

sensitivity in this region of the kernel function can be obtained either by using an optimized 

initial condition or by addition of a second particle population during the aggregation process. 

Both approaches would increase the probability of the coexistence of small and large size 

particles, but are not further elaborated in the present study. 

The estimation performance of the proposed scheme is some-what lower for the kinetic kernel 

than for the Brownian kernel. Although the general concave shape of the kernel function can 

be restored with both approaches, systematic deviations in the range of 10% to 70% between 

true and estimated kernel functions are visible for various size combinations. Both estimated 

kernel functions have a rather similar shape, which indicates, that the polynomial with five 

parameters that is chosen in both cases might not be flexible enough to reproduce the true 

kernel function with sufficient accuracy. Polynomials of higher order are, however, dropped 

by the above described test. 

The estimated granulation kernel, obtained by Eq. (9), almost exactly matches the true kernel 

for almost all considered size combinations, while the application of Eq. (8) leads to some 

slight deviations which can, however, still be considered as acceptable, as the estimation error 

does not exceed 10–20%. The reason for this behavior is the different number of parameters 

used for the kernel estimations. While four parameters were found to be significant incase of 

Eq. (9), only the first three parameters were used for the kernel estimation by Eq. (8), which 

explains the observed deviations between the estimates in Figs. 8 and 10. 

Figure 10: Comparison between the true kernel functions (green) and kernel functions 

estimated from noisy measurement data using Eq. (7) (red); left: brownian kernel; middle: 

kinetic kernel; right: granulation kernel. 

 

Figure 11: Estimation error from noisy measurement data using Eq. (7); left: brownian kernel; 

middle: kinetic kernel; right: granulation kernel. 

 

 

 



4. Conclusions and Outlook 
 

In this work, we demonstrated a method for the estimation of aggregation kernels based on 

observations of the evolution of the particle size distribution over time. Due to the polynomial 

approximation of the kernel, no a priori knowledge about the nature of this kernel is required, 

and hence, this method might be applicable in a wide range of aggregation processes. 

However, this method requires that the true aggregation kernel can be well approximated with 

the chosen polynomial expression. The example of the kinetic kernel demonstrates that the 

quality of approximation is in fact dependent on the shape of the original aggregation kernel. 

To improve the estimation quality in such cases, further polynomial approximations can be 

considered that for example account for fractional exponents in the volume domain, like 1/3 

or 2/3, correlating to the particle length and surface area, which are frequently found in 

theoretical kernel expressions. 

The obtained results demonstrate the applicability of the pro-posed scheme also in the 

presence of substantial measurement noise. A careful statistical analysis is required to identify 

a suitable polynomial expression. This analysis requires the availability of either repeated 

experiments or measurements with a high temporal resolution to facilitate independent sets of 

parameter estimates. In this respect, some further investigations might be beneficial to give 

some guidelines about the minimal amount of data required for reliable kernel estimation to 

reduce the experimental effort. Alternatively, approaches for the simultaneous estimation of 

the parameters and their confidence intervals as for example proposed by Braumann and Kraft 

(2010) and Braumann et al. (2011) or Kastner et al. (2013) can be beneficial for the statistical 

analysis. As the parameter confidence intervals and possible correlations between these 

parameters are known from this procedure, an adequate polynomial expression could be 

identified from such an approach. The knowledge of the parameter confidence intervals might 

also be exploited for the optimal design of the experiments, as for instance demonstrated by 

Mosbach et al. (2012). 

The obtained results indicate that the sensitivity of the objective functions on the kernel 

function values decreases at combinations of large and small sized particle aggregations. This 

gives rise to further improvements of the methods, like the choice of initial conditions as well 

the investigation of optimized seeding strategies. In particular the latter strategy appears to be 

a promising candidate, if also growth, and hence an additional mechanism for size 

enlargement, has to be considered. Due to particle growth, a situation might arise, in which 

particles with a small size have already grown to larger sizes while particles with large sizes 

had no time to form yet. Hence, a reliable estimation of aggregation frequencies is in this case 

not possible for these size combinations. The addition of a second seed population at an 

appropriate time will, however, resolve this problem, as the simultaneous presence of large – 

and small sized particles can be ensured by this approach. 

The methods presented in this work are exemplified on the case of univariate particle size 

distributions. Nevertheless, an extension of the methods to a multivariate particle size 

distribution is possible. For this purpose, the formulation of the Laurent polynomials (Eq. (5)) 

has to be extended to account for the additional property coordinates. Provided that the source 

and sink terms are linearly dependent on the multivariate kernel function, both approaches of 

Eqs. (8) and (9) can be applied, since the kernel approximation will retain a linear dependence 

on the coefficients of the polynomial. The extension of the methods to a multivariate case 

does however require the availability of online measurements of the evolution of the particle 

size distribution in the multivariate property space. This information might in practice be hard 

to acquire. Additionally, the extension of the polynomial approach will lead to a significant 

increase in the number of unknown parameters which have to be estimated, which in turn will 

give rise to a significant increase in the computational costs of the presented methods. 



This work is exclusively focused on the estimation of aggregation kernels which are 

independent of time. This assumption might, however, not necessarily be fulfilled as process 

conditions, which are influencing the aggregation kinetics, might change over time. In this 

case, a suitable extension of the polynomial approach has to be found which is able to capture 

the time dependence of the kernel explicitly or implicitly. 
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