
Refining multi-model projections of temperature extremes by
evaluation against land-atmosphere coupling diagnostics
Sebastian Sippel1,2, Jakob Zscheischler2, Miguel D. Mahecha1, Rene Orth2, Markus Reichstein1,
Martha Vogel2, and Sonia I. Seneviratne2

1Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany.
2Institute for Atmospheric and Climate Science, ETH Zürich, 8075 Zürich, Switzerland.

Correspondence to: Sebastian Sippel (ssippel@bgc-jena.mpg.de)

Abstract. The Earth’s land surface and the atmosphere are strongly interlinked through the exchange of energy and matter

(e.g. water and carbon). This coupled behaviour causes various land-atmosphere feedbacks and an insufficient understanding

of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface

in exacerbating summer heat waves in mid-latitude regions has been identified empirically for high-impact heatwaves, but

individual climate models differ widely in their respective representation of land-atmosphere coupling. Here, we combine an5

ensemble of observations-based and simulated temperature (T) and evapotranspiration (ET) datasets and investigate coinci-

dences of T anomalies with ET anomalies as a proxy for land-atmosphere interactions during periods of anomalously warm

temperatures. We demonstrate that a relatively large fraction of state-of-the-art climate models from the Coupled Model In-

tercomparison Project (CMIP5) archive produces systematically too frequent coincidences of high T anomalies with negative

ET anomalies in mid-latitude regions during the warm season and in several tropical regions year-round. Further, we show10

that these coincidences (high T, low ET), as diagnosed by the land-coupling coincidence metrics, are closely related to the

variability and extremes of simulated temperatures across a multi-model ensemble. Thus, our approach offers a physically con-

sistent, diagnostic-based avenue to evaluate these ensembles, and subsequently reduce model biases in simulated and predicted

extreme temperatures. Following this idea, we derive a land-coupling constraint based on the spread of 54 combinations of

T-ET benchmarking datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour15

that is compatible with these observations-based benchmark estimates. The constrained multi-model projections exhibit lower

temperature extremes in regions where models show substantial spread in T-ET coupling, and in addition, biases in the climate

model ensemble are consistently reduced.

1 Introduction

The exchange of matter and energy between the land surface and the atmosphere is a crucial feature of the Earth’s climate20

(Bonan, 2015). On one hand, the atmosphere exerts a key influence on land surface processes such as vegetation growth by

supplying light, water and carbon dioxide (Köppen, 1900). On the other hand, the land surface feeds back to the atmosphere,

for example through the partitioning of energy into latent and sensible heat fluxes, or by modifying land surface properties, thus
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implying a direct link to near-surface climate (Koster et al., 2004; Seneviratne et al., 2010b). Conceptually, coupling between

the atmosphere and the land surface is often classified into two qualitatively different regimes, a so-called "energy-limited" and

"water-limited" regime (Seneviratne et al., 2010b): In the wet (energy-limited) regime, the land surface is largely controlled by

the atmosphere through radiation (see conceptual Fig. 1a,b), implying a positive association between near-surface temperature

(T) and evapotranspiration (ET). In contrast, in a dry, water-limited state, the land controls near-surface climate through a5

lack of soil moisture, and a corresponding reduction in evapotranspiration and latent cooling (see conceptual Fig. 1a,b) with

a negative association between T and ET. Therefore, the state of the land surface and land-atmosphere feedbacks modulate

and amplify climatic extreme events such as heat waves in mid-latitude regions (Seneviratne et al., 2006; Fischer et al., 2007;

Hirschi et al., 2011; Whan et al., 2015; Hauser et al., 2016). An understanding of these feedbacks might yield improved seasonal

predictability of extremes (Quesada et al., 2012), and could help to constrain and better predict model-simulated present and10

future climate variability in these regions (Seneviratne et al., 2006; Lorenz et al., 2012; Dirmeyer et al., 2013; Seneviratne

et al., 2013; van den Hurk et al., 2016; Davin et al., 2016).

However, at present large uncertainties and methodological inconsistencies prevail in both understanding and quantification

of land-atmosphere coupling at various spatial and temporal scales, which relate to

i. scarcity of accurate observational products of soil moisture or evapotranspiration at large spatiotemporal scales and15

relatively short observational periods (Mueller and Seneviratne, 2014),

ii. the metrics and variables used to quantify land-atmosphere coupling differ widely in the variables they address (Senevi-

ratne et al., 2010b), and in emphasizing either the whole distribution (Dirmeyer, 2011; Lorenz et al., 2012; Miralles et al.,

2012), or the tails of relevant variables (Zscheischler et al., 2015).

As a consequence, uncertainties and methodological inconsistencies contribute to a greatly diverging representation of land-20

atmosphere coupling in state-of-the art climate models (Koster et al., 2004; Boé and Terray, 2008, see also Fig. 1a,b for

a simple conceptual example), and further contribute to uncertainties related to projected increases in summer temperature

variability in the 21st century in mid-latitude regions (Seneviratne et al., 2006; Dirmeyer et al., 2013). In this context, it has been

noted that accurate simulations of temperature variability and extremes require a realistic representation of land-atmosphere

interactions (Seneviratne et al., 2006; Fischer et al., 2012; Bellprat et al., 2013). In other words, biases in temperature variability25

and extremes might in part stem from an unrealistic representation of land-atmosphere interactions (Fischer et al., 2012;

Lorenz et al., 2012; Davin et al., 2016), likely leading to temperature-dependent biases in multi-model ensembles (Boberg and

Christensen, 2012; Bellprat et al., 2013).

A model evaluation focus on interpretable land-atmosphere coupling diagnostics might serve as a complementary strategy

to traditional model validation and testing (Seneviratne et al., 2010a; Santanello et al., 2010; Mueller et al., 2011b; Mueller and30

Seneviratne, 2014). Hence, this approach is intended towards testing and understanding the spread and physical consistency

in simulated relationships in state-of-the-art multi-model ensembles (e.g. the Coupled Model Intercomparison Project, CMIP5

Taylor et al., 2012) against available observations-based datasets. For example, in the context of land-atmosphere coupling,

earlier studies used bivariate correlation- or regression-based metrics to test and evaluate coupling behaviour (Hirschi et al.,
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2011; Lorenz et al., 2012). Conceptually, the notion of "diagnostic-based model evaluation" as discussed here is consistent

with so-called "pattern-oriented model evaluation" (Grimm and Railsback, 2012; Reichstein et al., 2011) - the latter being

applied in the context of evaluating simulated and observed patterns at multiple scales in a data-driven way (e.g. in the context

of ecosystem carbon turnover times, Carvalhais et al., 2014).

In the context of extracting credible and relevant information from large (multi-)model ensembles, weighting or selecting5

models based on relevant, observations-based constraints has become increasingly popular recently (Tebaldi and Knutti, 2007;

Knutti, 2010), as a priori model ensembles might be seen as a somewhat arbitrary collection of model runs (or "ensembles

of opportunity"). For example, empirical criteria have been used to constrain carbon cycle projections (Cox et al., 2013;

Wenzel et al., 2014; Mystakidis et al., 2016), to select models for event attribution analyses (Perkins et al., 2007; King et al.,

2016; Otto et al., 2015), in the context of refining precipitation projections (Orth et al., 2016) or to resample large initial-10

condition ensembles to alleviate biases without distorting the multivariate structure of climate model output (Sippel et al.,

2016b). However, care is needed in that these practices might not necessarily translate into improved future climate projections

or reduced uncertainties. That is because the selection of relevant metrics is clearly not trivial and subjective, and because good

model performance w.r.t. any given metric does not translate directly into (more) reliable projections (Knutti, 2008).

Hence, the starting point for the present analysis, -in the sense of being necessary, but not sufficient to assure reliability of15

future climate projections-, is that physically motivated, observations-based diagnostics might offer

1. a link to identify and interpret relevant processes across multiple models (i.e., model evaluation), and

2. to reduce biases by focusing the interpretation of multi-model ensembles on models that are "right for the right reasons".

Most notably climate impacts, including extremes, typically depend on the multivariate structure of climate variables,

where simple univariate statistical bias correction methods are prone to failure (Ehret et al., 2012; Cannon, 2016).20

In this study, we first evaluate land-atmosphere coupling in state-of-the-art global climate models from the CMIP5 archive

and a large ensemble of observations-based ET datasets (Mueller et al., 2013) that has been compiled to address the afore-

mentioned uncertainties in land-atmosphere coupling. In our analyses a land-atmosphere coupling metric that is based on

coincidences of temperature and evapotranspiration anomalies is applied. The idea behind a coincidence metric as opposed to

a traditional univariate evaluation of model simulated ET fluxes or temperature is that it is insensitive to biases in the simulated25

means or variances, and thus focusses only on an abstract property of the data, namely the bivariate dependence structure of T

and ET. Secondly, we derive a model constraint based on the physically motivated land-coupling diagnostic and the ensemble

of benchmarking datasets in order to explore the implications of a reduced ensemble but with land-atmosphere coupling that is

within the range of the benchmarking datasets.
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2 Data & Methods

2.1 Datasets for T-ET coupling analysis and model evaluation

Global temperature and evapotranspiration datasets

In order to evaluate T-ET coupling in global climate models, an ensemble of 18 gridded evapotranspiration estimates, taken

from the LandFlux-EVAL multi-data set synthesis project (Mueller et al., 2013), are combined with three different observations-5

based and reanalysis-driven temperature datasets, yielding in total 54 T-ET combinations (see Table 1). T-ET coincidence rates

are calculated from each of those 54 combinations to evaluate and constrain the multi-model ensemble of global climate

models (Section 3). The ensemble of ET reference datasets has been generated by combining a wide range of different ET

estimates, based on five diagnostic (observations-based) products, five land surface models driven by observations and four

reanalysis products (Mueller et al., 2013). The three temperature datasets are based on one observational product (the Climate10

Research Unit dataset, (Harris et al., 2014)) and two reanalysis products (The ERA-Interim reanalysis, (Dee et al., 2011), and

the National Center of Environmental Prediction (NCEP) reanalysis (Kalnay et al., 1996), see Table 1). As fewer temperature

than evapotranspiration datasets are used for the present study, we have tested that the spread between individual tempera-

ture datasets is substantially smaller than the differences between individual ET products. Therefore, the 54 T-ET coincidence

datasets (denoted as "T-ET coupling benchmarks" in the remainder of the paper) represent a relatively large spread of plausi-15

ble T-ET coupling estimates, but it should be emphasized that the datasets are not independent realizations. Thus, we use the

spread of this observations-based ensemble of T-ET datasets as a measure of uncertainty, but we do not interpret the probability

distribution of dataset combinations.

For the analysis of historical and future simulations of the monthly maximum value of daily maximum temperatures (TXx)

in Section 3.2 we use ERA-Interim (Dee et al., 2011) as a reference dataset.20

Multi-model ensemble simulations

The Climate Model Intercomparison Project (CMIP5) has been designed to allow for multi-model comparison and evaluation

studies (Taylor et al., 2012). Although large model spread, biases and uncertainties remain in the ensemble projections (Knutti

and Sedláček, 2013), for example with respect to extremes (Sillmann et al., 2013a), the water (Mueller et al., 2011b; Mueller

and Seneviratne, 2014), and land carbon cycle (Anav et al., 2013), the archive of standardized scenario-driven model experi-25

ments provides one of the main avenues to study climate variability and change (e.g. (Stocker et al., 2013)), including present

and future climate extremes (Sillmann et al., 2013b; Seneviratne et al., 2016). We use one ensemble member from 37 individual

models or model variants (Table S1). We have tested that individual ensemble members from the same model tend to show

a comparably small spread in V AC-coupling, indicating that the large spread across models likely arises from differences in

model structure.30
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Data processing and analysis

All datasets were remapped to a common 2.5◦x2.5◦ spatial resolution for analysis and before computing T-ET coincidences.

For model evaluation (Section 3.1), all computations and analyses are performed on a monthly temporal resolution and are

restricted to the time period 1989-2005 due to data availability constraints of the ET reference datasets (Mueller et al., 2013).

Thus, the reference period for model evaluation corresponds to the last 17 years of the "historical" scenario in CMIP5 mod-5

els. T-ET coincidences are computed based on monthly deseasonalized and linearly detrended time series of T and ET, and

coincidence rates are calculated separately for each individual season. Only land pixels outside of desert regions following

the Köppen-Geiger climate classification are considered (Kottek et al., 2006). The model evaluation is conducted based on all

individual pixels, and additionally on area-averages for so-called IPCC-SREX regions (IPCC, 2012).

2.2 Diagnostic-based model evaluation using T-ET coupling10

The T-ET link and the Vegetation-Atmosphere Coupling (VAC) Index

An adequate characterization of the coupling between soil moisture and temperature is key to model evaluation using observations-

based datasets, and the latter is often diagnosed by correlation-based metrics such as for example the Pearson correlation be-

tween T and ET, ρ(T,ET ) (Seneviratne et al., 2006; Lorenz et al., 2012). Here, we aim to exploit the T-ET coupling by using

a natural extension of ρ(T,ET ) that focusses on the tails of T-ET dependedencies. Deseasonalized and detrended time series of15

ET (xET
i ) and T (xT

i , with i and N denoting the time step and time series length, respectively), are partitioned into five distinct

classes of Vegetation-Atmosphere Coupling (VAC) following (Zscheischler et al., 2015), resulting in a time series of discrete

events xV AC
i :

xV AC
i =





a, if xT
i < thT

lower and xET
i < thET

lower,

b, if xT
i > thT

upper and xET
i > thET

upper,

c, if xT
i > thT

upper and xET
i < thET

lower,

d, if xT
i < thT

lower and xET
i > thET

upper,

0 otherwise.

Event thresholds thlower and thupper might be chosen relative to the variability of each time series by fixing the probability20

p to exceed or fall below a threshold through the choice of an appropriate quantile:

Pr[X > thupper] = Pr[X ≤ thlower] = p (1)

Taking time series length restrictions into account, we choose the 30th and 70th percentile as lower and upper thresholds in all

time series (i.e. such that Pr[X ≤ thlower] = Pr[X > thupper] = 0.3). Here, we focus on coincidences of warm temperature

anomalies ("T-events": xT
i > thT

upper) with anomalies in ET ("ET-events", i.e. either xET
i > thET

upper for V ACb or xET
i <25

thET
lower for V ACc), i.e. we derive coincidence rates rV ACb

by counting the number of V ACb-events (see Quiroga et al., 2002;
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Donges et al., 2016, for earlier formulations of event coincidence analysis):

rV ACb
=

1
N0

N∑

i=1

1[V ACb](x
V AC
i )

Here, 1A(x) is the indicator function, defined as 1A(x) = 1 if xεA and 1A(x) = 0 otherwise. N0 acts as a normalization

constant and is chosen in our study such that 0≤ rV ACb
≤ 1, i.e. we normalize with the total number of "T-events", N0 =

∑N
i=1 1[xT >thT

upper](xT
i ). In other words, if all (none) of the "T-events" in the time series would coincide with "ET-events"5

(defined for V ACb), then the average coincidence rates would be given by rV ACb
= 1 (rV ACb

= 0). For independent time

series, i.e. no coupling, rV ACb
would approximate the occurrence rate of "ET-events" in the time series (defined for V ACb)

that is governed by the chosen threshold, i.e. rV ACb
=

1
N

∑N
i=1 1[xET

i >thET
upper](xET

i ). Coincidence rates rV ACc follow equiv-

alently by replacing V ACb with V ACc and in the definition of "ET-events" in the previous description. We compute rV ACb

and rV ACc
for all seasons but with an emphasis on the warmest periods of the year. Fig. 1 shows a simple example of monthly10

time series of T and ET simulated from two CMIP5 models for the same location (area-averaged over Central Europe, CEU),

and occurrences of V ACb and V ACc are highlighted. Please note that event coincidence analyses are frequently applied in the

context of ecosystem science (e.g. Rammig et al., 2014; Siegmund et al., 2016).

In comparison to more traditional coupling metrics, such as e.g. ρ(T,ET ), V ACa−d might be expected to yield similar

results on very long time scales, whereas on shorter time scales the V ACa−d index might pick up non-linearities in the tails15

(e.g. during warm temperature anomalies). We note that on the monthly time scale (as used in the present study), distinct non-

linearities are detected in models and observations in summer T-ET coupling e.g. in Central Europe, where a larger number of

V ACc events occurs than that would be inferred from a correlation-based metric ρ(T,ET ) (Fig. S1). However, ρ(T,ET ) yields

qualitatively similar results. In addition to the main text, the model evaluation is presented for a 90th percentile threshold, and

for ρ(T,ET ) to demonstrate robustness to the chosen methodological approach (cf. Fig. S2).20

A constraint on T-ET coupling in multi-model ensembles

In general, a constraint links an observations-based diagnostic with a key model output variable across multiple models (Cox

et al., 2013), and thus can be used to reduce model uncertainties and spread. Here, we derive a T-ET coupling constraint

as the uncertainty range from the 54 combinations of T-ET benchmarking datasets. A Gaussian kernel with reliable data-

based bandwidth selection (Sheather and Jones, 1991) is fitted over all 54 1989-2005 coincidence rates (rV ACc) for each25

meteorological season and pixel (and each SREX region average). Throughout this paper, the 5th to 95th percentile range of

the fitted Gaussian kernels is taken as the plausible range of observations, and the reduced (constrained) ensemble of CMIP5

simulations is obtained by retaining only those CMIP5 models that simulate T-ET coincidences that fall within the range of

observational uncertainty.
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3 Results and Discussion

In this section, we first evaluate land-coupling in CMIP5 models explicitly against an observations-based ensemble of T-ET

combinations and explore the link to temperature variability and extremes (Section 3.1). All model evaluation results are

presented globally and exemplarily for Central Europe (CEU) as a region where global models and observations differ widely.

Subsequently, we constrain the ensemble of CMIP5 models using each model’s land-coupling as diagnosed through the V ACc5

index and discuss implications for biases in simulated present-day temperature extremes and warming projections (Section

3.2).

3.1 Evaluation of land-atmosphere coupling in CMIP5 models and the link to temperature variability and extremes

Evaluation of T-ET coupling in CMIP5 models.

Models and observations-based datasets show a relatively large spread in their representation of T-ET coupling, as expressed10

exemplarily in Central Europe through both rV ACb
and rV ACc

across various seasons (Fig. 2, top) or diagnosed through more

traditional coupling metrics such as ρ(T,ET ) (Appendix B). Individual models indicate pronounced qualitative differences in

the warm season, where some models point to energy-limited, whereas others point to predominantly water-limited conditions

(Fig. 2, top, and Fig. 1, for an illustrative example). Observations-based T-ET datasets agree qualitatively, i.e. indicating energy-

limited to neutral conditions in the Central European example, thus implying an overestimation of water-limited regimes in15

Central Europe in roughly 50% of CMIP5 models (Fig. 2).

This pattern holds across most regions of the globe, as many CMIP5 models consistently overestimate occurrences of V ACc

regimes (and correspondingly underestimate V ACb occurrences) in the warm season of the year (Fig. 2, see Fig. S2 for a

definition of the warm season in each pixel). In mid-latitude and several tropical regions (e.g. Central North America, Central

Europe, the Amazon, India, parts of Africa), more than 25% and up to 50% of CMIP5 models lie outside the observational20

range. These discrepancies hold also if metrics that emphasize the whole distribution (ρ(T,ET )) or more extreme parts of the

tail (VAC based on a 90th percentile threshold) are used for model evaluation (Figs. S3-S5). Moreover, the spread between the

individual models’ representation of land-atmosphere coupling strongly exceeds the spread in observational datasets, although

different diagnostic, reanalyses and land surface model datasets are included in the observations-based ensemble (Fig. 2).

Furthermore, the models’ land-atmosphere coupling, as diagnosed here through the VAC-index, is a highly model-inherent25

feature, as different model variants or ensemble members from the same model generally tend to lie relatively close to each

other (Figs. S6-S7). However, model-specific signatures of model output are not unusual, as diagnosed before e.g. for spatial

patterns of temperature and precipitation (Knutti et al., 2013) or the statistical information content in carbon fluxes (Sippel

et al., 2016a). Furthermore, present-day land-atmosphere coupling is strongly related to future land-atmosphere coupling in

the individual models (Fig. S6). A detailled overview of V ACc coupling in individual models and ensemble members relative30

to the benchmark datasets for Central Europe and Central North America is presented in Fig. S6-S7. Despite regionally pro-

nounced qualitative discrepancies, it should be noted that on a global scale, the distribution of water-limited and energy-limited

patterns in models and observations agrees qualitatively (Fig. S8). Likewise, the findings of climatologically too pronounced
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water-limited regimes in individual models w.r.t. observations does not exclude the possibility of strong water limitations dur-

ing extreme events in the real world (Miralles et al., 2012; Whan et al., 2015) or possible future changes of the coupling

strength. Further, we note that observations-based benchmark datasets also show systematic (albeit smaller) differences in

the representation of land-atmosphere coupling: Diagnostic datasets indicate more frequent energy-limited regimes (see e.g.

Fig. 2), and thus differ consistently to generally drier land surface models and reanalysis products, consistent with earlier5

findings (Santanello et al., 2015).

T-ET coincidences and the link to temperature variability and extremes.

The representation of T-ET coupling as diagnosed through the VAC index largely determines the variability of temperatures at

monthly and inter-annual time scales across the CMIP5 multi-model ensemble in Central Europe (Fig. 3a) and in most regions

of the globe except in some subarctic climates (Fig. 3b). Therefore, this relationship is indicative for the strong influence of10

land-atmosphere coupling on surface climate. This is consistent with previous findings in Europe in models with and without

land-atmosphere interactions (Seneviratne et al., 2006; Fischer and Schär, 2009; Fischer et al., 2012). An important result is that

models that produce V ACc indices within the range of benchmark datasets also produce a realistic near surface temperature

variability, whereas models that fall too frequently in water-limited regimes also overestimate summer temperature variability

(Fig. 3a). Moreover, in mid-latitude and tropical regions, the state of the land surface is strongly associated with the mean and15

variability of temperature extremes at the daily time scale in the warmest season (TXx, Fig. 3c,d). The link between between

the representation of land-atmosphere coupling and simulated temperature extremes and variability in global climate models is

consistent with earlier studies, which has been demonstrated for Europe in individual models (Seneviratne et al., 2006; Lorenz

et al., 2012; Davin et al., 2016) and in ensembles of regional models (Fischer et al., 2012; Bellprat et al., 2013). Therefore,

the relationship between T-ET coincidence rates and temperature extremes might offer an avenue to derive an explicit land-20

atmosphere coupling constraint" (the likely root cause for biases) to alleviate biases in temperature variability and extremes in

the multi-model CMIP5 ensemble.

3.2 Analysis of constrained multi-model ensemble and implications for future climate projections

A constraint on land-atmosphere coupling in the CMIP5 ensemble.

The constrained ensemble resembles the observational datasets in land-atmosphere coupling (Fig. 4a-b, Appendix S9-S11 for25

details), and a corresponding improvement in the representation of temperature extremes at the daily time scale would be

expected due to the intimate link between land-atmosphere coupling and temperature variability and extremes (see previous

Section).

Coupling-sensitive regions are prone to warm season biases in climate models (Christensen and Boberg, 2012; Bellprat et al.,

2013). In the present analysis, high biases in temperature extremes are indeed prevalent in the original (unconstrained) CMIP530

ensemble in these regions (Fig. 4). For example, the ensemble mean warm season TXx is overestimated by up to 5◦C, and

higher biases are detected in the 90th percentile of TXx in Central North America, Central Europe or the Amazon (relative to
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ERA-Interim, see Fig. 4). In a CMIP5 ensemble constrained by the land-atmosphere coupling metric V ACc, the representation

of temperature extremes is substantially improved in regions prone to coupling-induced biases (Fig. 4). The ensemble mean

of present-day temperature extremes in other regions remains unchanged. Moreover, projected future temperature extremes

are reduced in the constrained ensemble (Fig. 5), similarly to present-day reductions in regions prone to present-day biases in

land-atmosphere coupling. Hence, this result reinforces that coupling-related biases are model-inherent features, i.e. models5

that simulate too many V ACc-occurrences today (and associated high biases in extreme temperatures) are very likely to do so

in the future.

Our results imply that an accurate representation of land surface processes is crucially relevant for a correct simulation of

temperature extremes, and more generally for simulated near-surface climate variability. Land-atmosphere coupling is thus an

important source of bias in state-of-the-art global climate model simulations. By using an observations-based land-atmosphere10

coupling diagnostic to constrain the multi-model CMIP5 ensemble, we have shown that biases in extremes in the large ensemble

can be alleviated to a certain degree. As bias correction methodologies that take the physical causes for biases into account

are still widely lacking (Ehret et al., 2012; Bellprat et al., 2013), the identification of models with a physically plausible

representation of near-surface climate and land-atmosphere interactions at the regional scale might be crucial to extract accurate

and relevant information about climate extremes in the context of climatic changes in the 21st century (Mitchell et al., 2016b;15

Schleussner et al., 2016; Seneviratne et al., 2016). For example, model selection for event attribution studies or a quantification

of changes in univariate climate extremes is often based on a statistical performance criterion (Perkins et al., 2007; King et al.,

2016; Otto et al., 2015). Our results indicate that these procedures could be further refined through incorporating observations-

based diagnostics or constraints in order to analyse model simulations that are indeed "right for the right reasons" (at least given

physics-guided and observations-based relationships). Moreover, the impacts of climate and its extremes e.g. on human health20

or ecosystems (Mitchell et al., 2016a; Frank et al., 2015) are often inherently related to multiple climate variables (Ehret et al.,

2012; Leonard et al., 2014). Therefore, simple constraints as motivated for instance in the present study might complement

more conventional bias correction procedures (e.g. Hempel et al., 2013) to derive physically consistent estimates of climate

impacts. This approach appears promising, because biases within climate models (i.e. in different variables) and across climate

model ensembles are often correlated (e.g. Knutti, 2010; Mueller and Seneviratne, 2014; Sippel et al., 2016b). Fig. S12 indicates25

that V ACc occurrences across the CMIP5 ensemble are negatively associated with precipitation and evapotranspiration in the

warm season in mid-latitude regions - both crucial variables in the water cycle that show pronounced summer low biases in

CMIP5 models (Mueller and Seneviratne, 2014). Therefore, a constrained model ensemble with improved land-atmosphere

coupling, a likely root cause of biases (Lorenz et al., 2012), might not only improve temperature extremes and variability, but

additionally might reduce biases in associated variables such as evapotranspiration or rainfall.30

Is there a link between present-day land-atmosphere coupling and warming projections?

We investigate whether the representation of land-atmosphere coupling in climate models affects the magnitude of 21st century

warming (e.g. Fischer et al., 2012; Stegehuis et al., 2013). We first note that regions sensitive to land-atmosphere coupling in the

CMIP5 model ensemble also show relatively strong warming in daily-scale temperature extremes (TXx), for example Central
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America or South and Central Europe (Fig. 6, top). More importantly, however, models that produce frequent V ACc occur-

rences (water-limited regimes) tend to be associated with larger rates of warming in TXx, although it should be emphasized

that this relationship is not simple or linear (middle panel in Fig. 6, Fig. S13, e.g. Fischer et al. (2012)). Conversely, this pattern

reverses in boreal regions, where strongly energy-limited models (i.e. very few V ACc occurrences) tend to produce larger

warming. However, in boreal regions this apparent relationship likely stems from a spurious correlation with the individual5

models’ background warming (i.e., warming in annual averages), as the correlation in fact disappears if the background warm-

ing is subtracted from summer warming (Fig. S13). In contrast, in mid-latitude regions warm season warming that exceeds

annual average warming remains confined to the warm season (Fig. S13). A multi-model projection constrained by a plausible

representation of land-atmosphere coupling reduces future TXx estimates in coupling-sensitive regions such as Central Europe

and Central North America by up to 1.5◦C. These results are consistent with earlier studies that used an ensemble of regional10

models over Europe that used the standard deviation of temperatures as a constraint (Fischer et al., 2012).
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4 Conclusions

In the present study, we have evaluated land-atmosphere coupling in state-of-the-art climate models with an ensemble of obser-

vations using a diagnostic based on coincidences of large temperature and evapotranspiration anomalies. While observations

and models broadly agree on spatial patterns of land-atmosphere coupling, our results reveal that models differ widely in5

coupling-sensitive regions in the mid-latitudes and the tropics. Several models exhibit systematically too frequent coincidences

of high temperature anomalies with negative ET anomalies (water-limited regimes) in mid-latitude regions in the warm season,

and in several tropical regions year-round. Across the multi-model ensemble, we found a strong association of land-atmosphere

coupling with simulated temperature variability and extremes. The spread between models largely explains differences in simu-

lated monthly temperature variability and daily extremes. We applied a land-atmosphere coupling constraint to the multi-model10

ensemble, which reduces biases in temperature variability and extremes in present-day simulations in a physically consistent

manner, and leads to reduced variability and lower extreme temperatures in future projections. In conclusion, we selected mod-

els with a physically plausible representation of land surface processes (and near-surface climate) using observations-based

constraints that are guided by physical considerations. This approach complements more traditional bias correction approaches

and offers new avenues to obtain improved estimates of future climate impacts.
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Figure 1. Conceptual figure of contrasting warm season temperature-evapotranspiration (T-ET) coupling in global climate models. (a, b)

T-ET coupling in (a) dry & transitional regions and (b) wet regions, where soil moisture-temperature interactions play contrasting roles.

(c-f) Contrasting T-ET coupling behaviour in a coupling-sensitive mid-latitude region in summer (Central Europe, spatial average, JJA,

1989-2005) in two different CMIP5 models (left, predominantly wet regime: NorESM1-M; right, predominantly dry regime: ACCESS1-3),

illustrated as time series (c-d) and in the T-ET plane (e-f). Red lines in (c-f) indicate thupper for T and ET , blue lines indicate thT
lower (70th

and 30th percentile in each individual time series, respectively).
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Figure 2. Evaluation of T-ET coupling in global climate models. (a, b) VACb (a) and VACc coupling in the CMIP5 climate model ensemble

and observations-based benchmarking datasets in Central Europe (CEU, 1989-2005, area-average) with systematic warm season differences.

Randomness indicates the 5th to 95th percentile range obtained by randomly permutating both time series with respect to the other (N = 100

times) to obtain independent data. (c) Difference in the VACc median of the CMIP5 ensemble and benchmarking datasets. (d) Fraction of

CMIP5 models that are inside the 5th-95th percentile spread of the benchmarking datasets. (e, f) Range of VACc-occurrences (5th to 95th

percentile range) in CMIP5 models (e) and in the ensemble of observations (f).
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Figure 3. (a, b) Relationship between model-specific T-ET coupling (expressed through VACc) and model simulated variability of monthly

temperature anomalies (JJA) in Central Europe (a), and globally (b). (c, d) Relationship betweeen VACc-coupling and mean (c) and standard

deviation (d) of simulated monthly maximum value of daily maximum temperature (TXx) in summer (JJA).

20

Earth Syst. Dynam. Discuss., doi:10.5194/esd-2016-48, 2016
Manuscript under review for journal Earth Syst. Dynam.
Published: 27 October 2016
c© Author(s) 2016. CC-BY 3.0 License.



a)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

ET standardized anomalies (1989−2005)

Te
m

pe
ra

tu
re

, s
ta

nd
ar

di
ze

d 
an

om
al

ie
s 

(1
98

9−
20

05
)

RBenchmark = 0.46
RCMIP5−orig. = 0.08
RCMIP5−constr. = 0.48

VACbBenchmark = 54.9%
VACbCMIP5−orig. = 35%
VACbCMIP5−constr. = 53.3%

VACcBenchmark = 14.8%
VACcCMIP5−orig. = 28%
VACcCMIP5−constr. = 13.4%

CEU 90th percentile contour line
50th percentile contour line

b)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

ET standardized anomalies (1989−2005)
Te

m
pe

ra
tu

re
, s

ta
nd

ar
di

ze
d 

an
om

al
ie

s 
(1

98
9−

20
05

)

RBenchmark = 0.03
RCMIP5−orig. = −0.34
RCMIP5−constr. = 0.02

VACbBenchmark = 30.4%
VACbCMIP5−orig. = 17%
VACbCMIP5−constr. = 30.3%

VACcBenchmark = 31.3%
VACcCMIP5−orig. = 48%
VACcCMIP5−constr. = 30.3%

CNA 90th percentile contour line
50th percentile contour line

c)

−9 −5 −1 3 5 7 9
txx−mean bias, warm seas. [°C], 1981−2010

d)

−9 −5 −1 3 5 7 9
Absolute reduction in txx−mean [°C] (warm seas., 1981−2010)

e)

−9 −5 −1 3 5 7 9
txx−90th perc. bias, warm seas. [°C], 1981−2010

f)

−9 −5 −1 3 5 7 9
Absolute reduction in txx−90th perc. [°C] (warm seas., 1981−2010)

Figure 4. (a-b) Contour lines of bivariate kernel density estimates of T-ET relationship in the benchmarking datasets, the original and

constraint CMIP5 ensemble for (a) Central Europe, and (b) Central North America (1989-2005, area-average). (c, e) Biases in warm season

(c) TXx mean, and (e) 90th percentile of TXx in the original CMIP5 ensemble, and (d, f) reduction in biases in (d) TXx mean, and (f) 90th

percentile TXx through the application of the land-coupling constraint.
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Figure 5. Application of land coupling constraint to CMIP5 ensemble. (a, b) Ensemble prediction of original and constrained multi-model

ensemble for future absolute TXx (a) and range of TXx anomalies relative to global mean temperature anomalies (b), following Seneviratne

et al (2016). Envelopes indicate 5th to 95th percentile. (c, d) Global maps of present-day and future changes in the simulated TXx 90th

percentile in the VACc-constrained CMIP5 ensemble.
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Figure 6. (a, b) Projected warming in warm season (a) mean temperature, and (b) TXx across the CMIP5 ensemble (RCP8.5 scenario, 2071-

2100 relative to 1981-2010). (c, d) Correlation between VACc in the warm season and the projected warming in (c) mean temperature, and

(d) TXx. (e, f) Relative change in (e) mean warming and (f) TXx warming due to the application of the land-atmosphere coupling constraint.
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Table 1. Datasets used for model evaluation

Name of dataset Variable Type / Group Provider & Reference

LandFlux-EVALa ET Ensemble Median Mueller et al. (2013)

LandFlux-EVALa ET Median of Reanalyses Mueller et al. (2013)

LandFlux-EVALa ET Median of LSMs Mueller et al. (2013)

LandFlux-EVALa ET Median of Diagnostic datasets Mueller et al. (2013)

PRUNIa,b ET Diagnostic Sheffield et al (2006)

MPIBGCa,b ET Diagnostic Jung et al. (2011)

CSIROa,b ET Diagnostic Zhang et al. (2010)

GLEAMa,b, V. 1A ET Diagnostic Miralles et al. (2011a, b)

AWBa,b ET Diagnostic Mueller et al. (2011a)

EI-ORCHIDEEa,b ET LSM Krinner et al. (2005)

CRU-ORCHIDEEa,b ET LSM Krinner et al. (2005)

VICa,b ET LSM Sheffield and Wood (2007)

NOAH-PFa,b ET LSM

MERRA-LANDa,b ET LSM Reichle et al. (2011)

ERA-Interima,b ET Reanalysis Dee et al. (2011)

CFSRa,b ET Reanalysis Saha et al. (2010)

JRA-25a,b ET Reanalysis Onogi et al. (2007)

MERRAa,b ET Reanalysis Bosilovich (2008)

CRU-TS3.2a T Observations Harris et al. (2014)

ERA-Interim reanalysisa T Reanalysis Dee et al. (2011)

NCEP/DOE reanalysis 2a T Reanalysis Kalnay et al. (1996)
a All T-ET combinations of marked datasets have been used to derive the ET-T constraint.
b Original individual datasets that contributed to the LandFlux-EVAL synthesis project (Mueller et al., 2013).
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