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Abstract

Many particulate processes in process and bioprocess engineering can be de-

scribed with multi-dimensional population balances. Approximate moment meth-

ods are frequently used for their solution. In the present paper a new approach is

presented, which is particular efficient when the number of internal coordinates

is high. It combines the direct quadrature method of moments with monomial

cubatures. With the new method the computational effort increases only poly-

nomially, in the simplest case even only linearly with the number of internal

coordinates, compared to an exponential increase for the well known Gausssian

cubatures. The technique is evaluated for a five dimensional benchmark problem

describing virus replication in continuous cell cultures. Furthermore, the algo-

rithm is applied to analyze influenza virus replication in genetically modified

cell lines.
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1. Introduction 1

Particulate systems are found in a broad field of process engineering applica- 2

tions in which single particles or individuals differ from each other with respect 3

to certain characteristic properties. Examples from chemical processes include 4

agglomeration [1], granulation [2, 3], crystallization [4–6] and coating processes 5

[7]. Further examples for particulate processes are found in bioprocess engineer- 6

ing applications where multi-cellular systems are involved, e.g. cultivation of 7

yeast [8–10], biopolymer production in microorganisms [11, 12] and vaccine pro- 8

duction processes [13, 14]. As in the aforementioned examples, nonuniformity 9

of cells with respect to physical properties, like size and shape, but also with 10

respect to intracellular composition is observed. Besides nonuniformity in the 11

process conditions, unsynchronized cell cycles, age distributions [15], stochastic 12

effects on the gene expression level and bistable behaviour on the single cell level 13

[16–18] play a major role in the formation of these variances. 14

Focus within this contribution is on virus replication in multi-cellular systems 15

which is used for industrial vaccine production processes [13]. The principle 16

process scheme is the following: a cell culture within a bioreactor is inoculated 17

with a low quantity of virus by means of a typical low multiplicity of infection 18

(MOI). The MOI describes the ratio of seed virus to uninfected cells. The seed 19

virions infect the uninfected cells and start to replicate using cellular resources. 20

Synthesized virus is released from the cells to the surrounding medium and 21

can infect still uninfected cells. Thereby, the infection spreads within the cell 22

culture resulting in increasing virus concentration in the medium. The harvested 23

virus is later used for vaccine production. As for other multi-cellular processes 24

cell-to-cell variability has been revealed by flow cytometric analysis [13, 14]. 25

Mathematical models using population balances (see e.g. [19–22]) contribute to 26

a better understanding of the underlying mechanisms and provide a sound basis 27

for the design of suitable process intensification and process control schemes. 28

In general, two alternative modeling strategies can be followed for the formu- 29

lation of suitable population balance equations (PBEs). The top down modeling 30
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approach relies on measurements of the cell-to-cell variability by means of a few 31

specific markers which can be measured with sophisticated techniques, e.g. flow 32

cytometry. These are modeled directly and unstructured population balance 33

models are obtained which represent low dimensional integro partial differential 34

equations. Here, global mechanistic kinetics are used to describe the most impor- 35

tant cellular processes. These have to be determined from the experimental data 36

by solving an inverse problem. In our previous work [14, 23] a one-dimensional 37

PBE for influenza A virus replication in MDCK cell cultures was derived and 38

adapted to flow cytometric measurements of intracellular viral nucleoprotein 39

content. 40

However, interpretation, predictive capacity and accuracy of top down mod- 41

els is limited. Alternatively, a bottom up modeling strategy can be pursued 42

which is based on a detailed description of the single cell kinetics. For influenza 43

vaccine replication such a detailed description features a large number of viral 44

compounds [24]. To account for heterogeneity with respect to the cellular prop- 45

erties, the single particle description is transformed to a structured population 46

balance model. As each particle property translates into an internal coordinate, 47

high dimensional integro partial differential equations are obtained. 48

Analytic solutions for these PBEs are only found for special cases requiring 49

the application of numerical solution algorithms e.g. discretization based meth- 50

ods like finite volume [25] or finite element methods [26, 27]. Though sophisti- 51

cated extensions have been developed (see e.g. [28–31]), application is usually 52

limited to low dimensional PBEs with a maximum of three internal coordinates 53

due to increasing computational effort. Alternatively, moment methods can be 54

employed. The basic idea is to track the dynamics of integral quantities of the 55

distribution, so called moments. They are closely related to important proper- 56

ties like mean and variance with respect to the internal coordinates. Usually, 57

those are much easier to interpret than the full number density distributions 58

for most process engineering problems. Furthermore, the number density dis- 59

tribution may be reconstructed from an infinite or even a finite number of its 60

moments [32]. The dynamic moment equations can be derived from the PBE 61
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(see for example [19]) but computation within a closed set of moment equations 62

is only possible for a restricted class of problems. 63

For most cases, an approximate closure has to be found, e.g. by using the 64

quadrature method of moments (QMOM) where closure is obtained by approxi- 65

mating higher order moments by a weighted sum of abscissas [33]. The QMOM 66

has been applied to a large number of examples from chemical and thermal pro- 67

cess engineering (e.g. [31, 34]). Sophisticated extensions for multidimensional 68

PBEs were developed (see e.g. [35–38]). However, due to numerical issues result- 69

ing from the underlying solution of generally nonlinear equation systems appli- 70

cations to problems with more than two internal coordinates are rarely found. 71

Alternatively, the direct quadrature method of moments (DQMOM) [39, 40] 72

can be employed. In contrast to QMOM it involves the underlying solution of a 73

system of linear equations. 74

Besides, computation of the dynamics, the choice of the initial weights and 75

abscissas is of crucial importance. In general, a large number of abscissas is at- 76

tended by an increased approximation. Yet the numerical effort increases and 77

thus a good balance between the two has to be found. In contrast to one- 78

dimensional systems, where Gaussian quadratures offer both, an excellent ac- 79

curacy and limited computational expenses, the task is much more complicated 80

for multi-dimensional PBEs. 81

In this contribution we will present an efficient moment approximation tech- 82

nique for multi-dimensional PBEs. The method is based on the DQMOM in 83

combination with monomial cubature rules for the choice of the initial abscissas 84

and weights. These represent a good trade off between numerical effort and ap- 85

proximation accuracy. At first, an analytical solution for the dynamics of weights 86

and abscissas will be derived which is equivalent to our recently presented tech- 87

nique [41]. Application will be demonstrated for virus replication in cell cultures 88

using a generic model formulation. The accuracy of the presented approach is 89

evaluated and compared to other approaches for the choice of initial weights and 90

abscissas. Furthermore, application is shown for the analysis of the impact of 91

host cell heterogeneity on influenza virus replication using genetically modified 92
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cell lines. 93

Though focus of this work is on application to bioprocesses, the general 94

algorithm is also suitable for multi-dimensional population balance systems as 95

found e.g. when characterizing the dynamics of shape evolution in crystallization 96

processes [4, 5]. It will be discussed how the algorithm can be further extended 97

to describe systems in which cell division plays an important role. 98

2. Population balance modeling 99

Population balance modeling [21] offers a suitable framework to account for 100

the variances in a non-uniform cell ensemble. Neglecting spatial heterogeneity, 101

the dynamics of the corresponding cell number density distribution n(t,x) is 102

characterized by the general population balance equation [21, 42] 103

∂n(t,x)

∂t
+∇{G(t,x, c) n(t,x)} = −D(t,x, c)n(t,x) + P (t,x, c) . (1)

Therein, x represents the vector internal coordinates, e.g. cellular composition, 104

which changes according to the intracellular kinetics G. The right hand side 105

represents sinks and sources resulting from cell death/withdrawal D and other 106

kinetic processes P like infection in the present paper. Furthermore, the in- 107

tracellular dynamics generally depend on a set of extracellular species c, e.g. 108

substrates in the medium. Their dynamics are given by 109

dc

dt
= Dc (cin − c) +Pc(c,F) (2)

where Dc characterizes the medium exchange and Pc the integral coupling of 110

the continuous phase to the cell population 111

F =

∫

X

f(x) n(t,x) dx . (3)

3. Approximate moment dynamics 112

In many cases, certain integral quantities of the cell number density distribu- 113

tion are used to characterize the multi-cellular system. These so called moments 114
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are defined as 115

ml1,...,lN
d
=

∫

X

xl1
1 . . . x

lN
d

Nd
n(t,x)dx , (4)

and are directly related to important properties of the overall cell number density 116

distribution, like the overall number of particles and mean with respect to an 117

arbitrary particle property xk. The corresponding dynamic moment equations 118

are derived from combination of (1) and (4) 119

d

dt
ml1,...,ld = −

Nd∑

k=1

∫

X

xl1
1 . . . x

lN
d

Nd

∂

∂xk

{gk n}d x (5)

+

∫

X

xl1
1 . . . x

lN
d

Nd
(P −D n) dx .

However, a closed set of equations for the moment dynamics can only be found 120

for special classes of G, D and P . Applying the DQMOM [39], it is assumed 121

that n(t, x) can be represented by a weighted sum of Nα delta functions. Hence, 122

integral quantities can be approximated by 123

∫

X

f(x)n(t,x) dx ≈
Nα∑

α=1

f(xα(t)) wα(t) =

Nα∑

α=1

fαwα (6)

with wα being the weights and xα the abscissas. Instead of tracking the mo- 124

ment dynamics focus is on the temporal evolution of the weights and weighted 125

abscissas 126

dwα

dt
= aα ,

d wα xα

dt
= bα . (7)

These are derived as follows. At first, the approximation (6) is combined with 127

(5) and (7), which yields 128

Nα∑

α=1

{(
1−

Nd∑

k=1

lk

)
xl1
1,α . . . x

lN
d

Nd,α
aα +




l1 b1,α
...

lNd
bNd,α




T

·




xl1−1
1,α xl2

2,α . . . x
lN

d

Nd,α

...

xl1
1,αx

l2
2,α . . . x

lN
d
−1

Nd,α









= Sl
x . (8)
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Here, Sl
x contains the right hand side of (5) and can also be approximated 129

using (6). The previous equation is evaluated for (Nd + 1)Nα distinct moments 130

resulting in a linear system 131

A ·


a

b


 = Sl

x (9)

which is then solved for the unknown right hand side expressions of (7). 132

Note, that the choice of the moments for the construction of the linear system 133

is of crucial importance for the overall performance of the moment approxima- 134

tion. Moments related to important quantities such as the zeroth order moment 135

(overall number of particles) and the first order moments (related to mean val- 136

ues) should always be included. The remaining moments have to be chosen with 137

care as some choices may lead to a poor approximation performance or even to 138

singular matrices [40]. Furthermore, A resembles a van der Monde matrix and 139

can become ill conditioned easily, in particular for a large number of abscissas 140

and if two or more abscissas are close to each other in the state space, respec- 141

tively. To overcome these problems different methods have been suggested, like 142

the application of fractal moments [43]. Alternatively, numerical problems can 143

be circumvented employing an analytical solution of (9). 144

In case of P = 0 such an analytical solution can be derived without even 145

using the matrix formulation (9) [44]. For zeroth order moment (8) is simplified 146

to 147

Nα∑

α=1

aα = −
Nα∑

α=1

wαDα (10)

and by comparing the coefficients the weight dynamics are given as 148

dwα

dt
= −wαDα . (11)

In a similar procedure, (8) can be used for arbitrary first order moments 149

Nα∑

α=1

bk,α =

Nα∑

α=1

wα(gk,α − xk,αDα) , k = 1, . . . , Nd (12)
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to derive the dynamics of the weighted abscissas 150

dwαxk,α

dt
= bk,α = wα(gk,α − xk,αDα) , k = 1, . . . , Nd . (13)

Combination of the last two relations yields 151

dxα

dt
= Gα . (14)

which also means that the abscissas move along the characteristic curves of 152

(1) and the DQMOM reduces to a method of characteristics for P = 0. For 153

introduction to characteristics we refer to [45]. It has to be mentioned, that even 154

if these relations are derived from zeroth and first order moments, conservation 155

of higher (and fractal) order moments is also guaranteed by means of fulfilling 156

(8) for arbitrary l. For the two dimensional case this shown in the Appendix. In 157

[41] the same results for the dynamics of abscissas and weights (denoted scaling 158

factors) have been obtained based on a scaled PBE. 159

4. Efficient choice of abscissas and weights 160

In the previous section the dynamics of abscissas and weights were derived. 161

However, so far no word was lost about the initial values for the corresponding 162

ODEs (11) and (14). In the DQMOM context initial abscissas and weights are 163

chosen based on moments (or more general integral quantities) of the initial 164

number density distribution. 165

ml1,...,lN
d
(t = 0) =

∫

X

xl1
1 · · ·xlN

d

Nd
n(t = 0,x) dx ,

≈
Nα∑

α=1

wα(t = 0)xl1
1,α(t = 0) · · ·xlN

d

α,Nd
(t = 0) . (15)

The choice of initial weights and abscissas represents an important factor in the 166

performance of the overall moment approximation algorithm. For the following 167

explanations it is assumed that the initial distribution is normalized 168

∫

X

n(t = 0,x) dx =

∫

X

n0(x) dx = 1 . (16)
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In general, a larger number of abcissas Nα comes along with an increased ap- 169

proximation accuracy but also with an increased computational effort as the 170

number of ODEs for a DQMOM approximation of the moments increases. In 171

standard literature on numerical integration (see e.g. [46, 47]) a large number of 172

cubature formulas is found which can be roughly classified into random based 173

and deterministic rules, where the latter contain product rules and non product 174

rules. The abscissas and weights are only computed once at the beginning of the 175

overall algorithm. Thus, computational effort of this step is negligible compared 176

to the numerical effort for the solution of the weight and abscissa dynamics. 177

When applying random based rules, abscissas are determined by random 178

sampling of the integration region. The corresponding numerical integration 179

method is also known as Monte Carlo integration [46]. Its popularity is based on 180

the straightforward generation of abscissas and it is commonly used to generate 181

reference solutions. However, in general a large number of samples is necessary 182

and thus overall computational effort is unreasonable large. 183

Product rules are multi-dimensional extensions of one-dimensional quadra- 184

ture rules. In the one-dimensional case, Gaussian quadrature rules which are 185

based on orthogonal polynomials can be applied to come up with appropriate 186

sets of abscissas and weights, e.g. if the initial distribution corresponds to a 187

Gaussian distribution, the Gauss Hermite rule may be applied [46]. These for- 188

mulas can be extended to multi-dimensional problems by using tensor products 189

of one-dimensional weight and abscissa sets. In consequence, those rules suffer 190

badly from the curse of dimensionality, as the sizes of the weight and abscissa 191

sets generally increase exponentially with the number of dimensions. This is a 192

major disadvantage for high dimensional applications. 193

Alternatively, the set of abscissas is generated directly in the full property 194

state space instead of tensoring using non product formulas. Their basic idea 195

is to exploit special properties of n0(t,x) to come up with abscissa and weight 196

sets that scale polynomially, in the best case even linearly with Nd. A derivation 197

based on generator functions can be found in [48]. Those rules are also denoted 198

as monomial cubature rules. 199
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One of the most renowned formulas are sigma point formulas as introduced 200

by Julier and Uhlmann (see e.g. [49, 50]). They are commonly applied for the un- 201

scented Kalman filter for state and parameter estimation. For a Nd dimensional 202

Gaussian distribution N (µ,Σ) the abscissas and weights can be determined by 203

x0 = µ

xi = µ+
√
λ+Nd

√
Σi

xNd+i = µ−
√
λ+Nd

√
Σi

w0 = λ
λ+Nd

wi =
1

2(λ+Nd)

wNd+i =
1

2(λ+Nd)

(17)

where the tuning parameter λ is given by 204

λ = α̃2(κ−Nd) +Nd (18)

and controls the spread of the abscissas in the state space and
√
Σi is the i-th 205

column of the covariance matrix square root. Here, κ and α̃ are additional tuning 206

parameters [50]. The size of the abscissa set scales linearly with dimension, which 207

is a crucial advantage in particular for high dimensional applications. To improve 208

the accuracy higher order non product rules have been suggested, e.g. in [51], 209

which do scale polynomially with dimension. 210

If the assumption of an Gaussian initial distribution is not justified, the sigma 211

point approach has to be modified. For some types of the initial distribution 212

special transformation formulas exist. For example if n0 corresponds to a one- 213

dimensional logarithmic normal distribution L(µL, σL) the transformed set can 214

be computed as follows [52] 215

1. sigma points xi are computed for N (0, 1) according to (17) 216

2. the transformed sigma point set is then given by 217

xi,L = exp (µL + σLk
xi) , i = 1, . . . , Nα (19)

3. the set of weights is not changed within the transformation procedure and 218

is given by (17). 219

Further examples for those transformation formulas include γ- and t-Student 220

distributions [52]. 221
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Yet, no general transformations exists if n0 is multi modal. To improve this 222

situation a two step procedure is advantageous, which was applied in [53] to 223

approximate uncertainties of biological models. At first, n0 is approximated by 224

a weighted sum of Gaussian distributions 225

n0(x) ≈
NGMD∑

k=1

wGMD
k N (µk,Σk) . (20)

This approximation is also termed Gaussian mixed density (GMD) in some 226

references. Afterwards, abscissas and weights are determined for each Gaussian 227

applying the standard sigma point formula. For the overall approximation of 228

the integrals the general formula (6) has to be adapted 229

∫

X

f(x)n0(x)dx ≈
NGMD∑

k=1

wGMD
k

Nα∑

α=1

wk,αf(xk,α) . (21)

The overall number of weights and abscissas is now given by NGMDNα. For 230

more complex distributions (e.g. multi modal on a logarithmic scale) the previ- 231

ously mentioned approaches can be combined to come up with more accurate 232

approximations. 233

In the following, the different approaches will be evaluated for a generic 234

benchmark problem describing virus replication in a multi-cellular system. Fur- 235

thermore, the technique will be applied to a high dimensional model which 236

characterizes the spread of influenza A virus in a cell culture. 237

5. Application to a simple model of virus replication in cell cultures 238

5.1. Model formulation 239

The presented model is adapted from [54] and comprises the key elements of 240

a viral replication process within a host cell. The general replication mechanism 241

is depicted in Fig. 1. Virus particles bind to the surface of uninfected cells. After 242

a virus particle has passed the cell membrane, the virus genome is uncoated and 243

thus a certain amount of viral genetic information [gen] is injected to the cell. 244

From this, a viral genomic template [tem] is produced. It delivers the blueprints 245
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gen tem str

Virus Release

Infec on

v1 v2

Figure 1: Scheme of the assumed intracellular mechanisms for viral replication (gen: viral

genome, tem: viral genome template , str: viral structural protein, v1 & v2: enzymes)

for the replication of further viral genomic template and viral structural protein 246

[str]. It is assumed, that the corresponding production rates are catalyzed by 247

intracellular enzymes [v1] and [v2]. It has to be mentioned that in addition to the 248

original model proposed by Haseltine and coworkers [54, 55] a degradation of the 249

virus genome template and the structural protein is modeled. Virus progeny is 250

formed by binding of structural protein and viral genome. In a final step mature 251

virus is released from the cell. Balancing of the species yields the following 252

dynamics on the single cell level described by the following coupled system of 253

ODEs 254

ẋ =
d

dt




[tem]

[gen]

[str]

[v1]

[v2]




= h =




k1 [v1] [gen]− k6 [tem]

k3 [tem]− k1 [v1] [gen]− k5 [gen] [str] − k7 [gen]

k2 [tem] [v2]− k4 [str] − k5 [gen] [str]

fv1

fv2




(22)
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where fv1 and fv2 are the enzyme degradation and production rates. By this 255

means the analysis of host cell resource limitations on the process can be facil- 256

itated, see [56]. To transform the description to the macroscopic scale within 257

the framework of population balance modeling, the single cell states directly 258

translate into internal coordinates of a corresponding PBE. The dynamics of 259

the number density distribution of infected cells is thus given by 260

∂ic(t,x)

∂t
= −∇x {h(x) ic(t,x)}︸ ︷︷ ︸

intracellular reactions

+ kinf Uc(t) V (t) I(x)︸ ︷︷ ︸
infection

− kcd,ic(x)ic(t,x)︸ ︷︷ ︸
cell death

.

(23)

Here, it is assumed, that infected cells are “produced” by binding of free virus 261

particles V to uninfected cells Uc. At this point cell-to-cell variability for newly 262

infected cells is taken into account by distributing infected cells into the space 263

of internal properties according to a normal distribution 264

I(x) = N (µ,Σ) (24)

with mean µ and covariance Σ. At this point, it has to be mentioned that the 265

special case when the population becomes stochastic due to a low number of 266

virus particles or uninfected cells as described in [57] is not considered in the 267

present publication. It is thereby assumed, that stochastic fluctuations of the 268

expected number of newly infected cells kinf Uc(t) V (t) are neglected. 269

In result of the infection, cells undergo apoptosis and lysis. These cellular 270

processes are summarized as “cell death” and are represented by a cell death 271

coefficient kcd,ic(x). Its functional dependency on the vector of internal coor- 272

dinates is motivated by the common assumption, that apoptosis and lysis are 273

commonly induced by specific viral proteins. 274

In contrast to infected cells, uninfected cells Uc are not differentiated with re- 275

spect to their intracellular composition. In result, their dynamics is represented 276

by the following ODE 277

dUc(t)

dt
= −kinf Uc(t)V (t) + kgro,Uc

Uc(t)− kcd,Uc
Uc(t) . (25)
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Table 1: Parameter values for adapted Haseltine model (22) - (27)

Parameter Value Parameter Value

k1 3.13 10−4 #−1tu−1 kinf 1 10−8 [Vol]2

cells virions tu

k2 25.00 10−0 #−1tu−1 kcd,ic 5 10−3 tu−1

k3 7.00 10−1 tu−1 kcd,Uc
1.5 10−3 tu−1

k4 2.00 10−0 tu−1 kgro,Uc
1 10−3 tu−1

k5 7.50 10−6 #−1tu−1 kdeg,V 9 10−1 tu−1

k6 1.00 10−1 tu−1

k7 1.40 10−1 tu−1

Therein, kgro Uc(t) and kcd,Uc
Uc(t) characterize the growth and cell death rates 278

of the uninfected cells, respectively. 279

At the end of a successful replication, virus particles are released from the in- 280

fected cells to the medium with individual rates. These depend on the particular 281

intracellular state of each cell and is given by 282

rrel(x) = k5 [gen] [str] . (26)

according to the single cell dynamics. 283

In addition to the dynamics of the cell species, the dynamics of the virus 284

particles in the medium has to be taken into account. For this ideal mixing is 285

assumed. The overall dynamics of active virus particles are thus determined by 286

the following ordinary differential equation 287

dV (t)

dt
=

∫

X

rrel (x) ic(t,x) dx− kinf Uc(t) V (t)− kdeg,V V (t) (27)

where the rate coefficient kdeg characterizes the degradation and inactivation of 288

free virus particles. The integral term on the right hand side represents the virus 289

release of all individual cells. The simulation results shown in the following are 290

based on the set of parameter values given in Table 1. Therein, tu represents 291

time units. 292
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5.2. Implementation details 293

All cubatures are directly derived from the initial distribution of the infected 294

cells N (µ,Σ) to obtain the initial abscissas and weights. For the subsequent 295

benchmark, five different cubatures have been implemented as representatives 296

of the above mentioned cubature groups: mean approximation (ME, Nα,ME = 297

1), sigma point formula (SP, Nα,SP = 11), higher order non product formula 298

(HONP, Nα,HONP = 51), Gaussian mixed density approach (GMD, Nα,GMD = 299

110) and Gaussian product formula (GA, Nα,GA = 243) which are all evaluated 300

against an Monte Carlo integration (MC, Nα,MC = 104). A detailed description 301

of rules and comments on the numerical effort in terms of size of the overall 302

ODE system which has to be solved is given in the supplemetary information. 303

5.3. Single infection cycle 304

At first, a single infection cycle scenario is considered. Here, it is assumed 305

that all cells are infected initially and no free virus is present in the medium at 306

the beginning of the process. Thus, the initial conditions are given by 307

V (t = 0) = 0
virions

[Vol]
, Uc(t = 0) = 0

cells

[Vol]
,

Ic(t = 0) = Ic,0
cells

[Vol]
. (28)

Thereby, any observed cellular heterogeneity would be an effect of initial cell-to- 308

cell variability while heterogeneity resulting from the delayed infection process 309

is negligible. For this reason, a similar experimental setup is often used to de- 310

termine single cell parameters. 311

Vice versa, this setup is also very useful to analyze the performance of the 312

presented moment approximation algorithm. As the infection process is negligi- 313

ble, the dynamics of the corresponding infected cell number density distribution 314

is now given by 315

∂ic(t,x)

∂t
= −∇x {h(x) ic(t,x)} − kcd,ic(x)ic(t,x) (29)

with initial condition following from the above representations 316

ic(t,x) = I(x) = Ic,0 N (µ, Σ) , (30)
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where 317

µ = [1, 10, 1, 80, 40]T , Σ = 0.05 diag
(
µ2
)
. (31)

Furthermore, the dynamics of the free virions in the medium is defined by (27). 318

For the given setup, the initial number of infected cells is normalized to Ic,0 = 319

1. Thus, in the following, all values can be viewed as normalized quantities. Now, 320

arbitrary integral quantities of the infected cell number density with respect to 321

the internal coordinates can be approximated by (6) 322

∫

X

f(x) ic(t,x) dx ≈
Nα∑

α=1

wα(t) f(xα(t)) . (32)

In accordance to the derivation presented previously, the dynamics of the weights 323

and abscissas are given by 324

ẋα(t) =
d

dt




[tem]α

[gen]α

[str]α

[v1]α

[v2]α




= h(xα) (33)

and 325

ẇα(t) = kcd,ic(xα) wα(t) . (34)

The technique presented in the previous section can be applied directly to 326

approximate integral quantities from the number density distribution includ- 327

ing virus release rate (26) and moments with respect to the intracellular states. 328

Within this setup the performance of different cubature formulas will be ana- 329

lyzed. A random based cubature rule with NMC = 104 is used as a reference 330

solution. As the abscissas move along the characteristic curves of the PBE, this 331

corresponds to a Monte-Carlo evaluation of the full solution achieved with the 332

method of characteristics (see also [41, 58]). 333

In a first scenario, it is assumed, that the cell death does not depend on the in- 334

tracellular composition. An example for this setup can be found when analyzing 335
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Figure 2: Comparison of the virus release rate integral and the overall number of infected cells

for different cubatures

the effects of physical or chemical stimuli on the cell, like medium temperature, 336

radiation or pH-level which effect all cells in the same manner. Furthermore, the 337

enzyme levels remain constant in course of the infection process. In consequence, 338

the corresponding rate coefficients are given by 339

kcd,ic(x) = kcd,ic , fv1 = fv2 = 0 . (35)

In Fig. 2(a) the temporal change of the virus release rate is depicted for all 340

previously introduced abscissa formulas. It can be seen that most formulas reach 341

a good approximation accuracy with the GMD approach slightly outperforming 342

the other approaches. In contrast, an approximation which uses only one abscissa 343

located at the mean of the initial distribution exhibits an significant error. In 344

Fig. 2(b) the approximations of the zeroth order moment of ic(t,x) (i.e. the 345

overall number of infected cells) 346

Ic(t) = m0(t) =

∫

X

ic(t,x)dx (36)

is depicted. It can be seen, that all cubature formulas yield an similar accuracy. 347

In contrast, different approximation accuracies are observed for the approxima- 348
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Figure 3: First and second order pure moments of the distribution for different cubatures

tion of the first and second order pure moments 349

m1,xk
(t) =

∫

X

xk ic(t,x) dx

m2,xk
(t) =

∫

X

x2
k ic(t,x) dx (37)

which can be seen in Fig. 3. Similar to the approximation of the overall virus 350

release integral, good accuracy is obtained for all approaches except the ME for- 351

mula (highlighted with a blue curve) for the approximation of the first moments. 352

However, the GMD approach (cyan) outperforms the other formulas with a max- 353

imum relative error around 1%. The maximum errors of the HONP, SP and GA 354

approaches are of similar values. In contrast, the SP approach exhibits larger 355

errors than the other approaches (apart from the ME approach). In particular, 356

this can be seen for the second order moment with respect to [tem] where the 357

maximum relative error is around 10%. Again, the GMD approach outperforms 358

the other ones. 359

In the second scenario, it is assumed that each cell is characterized by an 360
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Figure 4: Overall virus release rate integral and overall number of infected cells for different

cubatures

individual cell death rate depending on the intracellular composition 361

kcd,ic(x) = kcd,icrrel(x) , fv1 = fv2 = 0 . (38)

This means, that cells which are characterized by an increased intracellular 362

amount of viral compounds [gen] and [str] have a lower survival probability 363

than cells that are characterized by a low amount of these. Examples for such 364

behavior are found for example for apoptosis induction [18, 59]. Apoptosis is 365

one form of programmed cell death and is for example induced as a reaction to 366

environmental stress or the viral infection. 367

Approximations of the integral virus release for the different approaches 368

can be seen in Fig. 4(a). It can be observed, that neither the standard sigma 369

point approach, nor the higher order non product cubature approach and the 370

Gaussian approximation are able to approximate the overall virus release rate 371

with a reasonable accuracy. In contrast, the GMD approach shows good results. 372

The corresponding relative error stays within narrow bounds. The same is also 373

observed from Fig. 4(b) which shows the overall number of infected cells. Apart 374

from the approximation using the mean of the distribution as a sole abscissa, 375

all other approaches show at least a sufficient performance up to 300 tu. Again, 376

the GMD approach outperforms the other approaches and stays within very 377

narrow error bounds. In Fig. 5 approximations of the first and second order 378
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Figure 5: First and second order pure moments of the distribution for different cubatures

moments are depicted. As for the approximations of the overall cell number and 379

the overall virus release, all approaches other than the GMD approach show 380

significant approximation errors. 381

5.4. Multiple infection cycles 382

In the previous scenario, it was assumed, that all cells are infected initially. 383

However, in real vaccine production processes, the initial MOI is generally low: 384

A low number of virus particles is used to inoculate the reactor to obtain a 385

large harvest of replicated virus particles. In the following, the accuracy of the 386

approximation approaches presented in the previous section will be shown for 387

this multiple infection cycles scenario. 388

In contrast to the previous scenario, now initially only virions and uninfected 389

cells are present and thus the initial conditions are given by 390

Uc(t = 0) = 108
cells

[Vol]
, V (t = 0) = 103

virions

[Vol]
, Ic(t = 0,x) = 0

cells

[Vol]
.

(39)

In contrast to the single infection cycle setup, the full PBE (23) has to be taken 391

into account to characterize the infected cell dynamics. In the DQMOM context, 392
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this would require the numerical solution of (9) which may result in numerical 393

difficulties. As an alternative, the overall problem is reformulated as a series of 394

initial value problems 395

∂ic,k(t,x)

∂t
= −∇x {h(x) ic,k(t,x)} − kcd,ic(x) ic,k(t,x) (40)

with initial conditions given by 396

ic,k(t = tk,x) = kinf Uc(tk−1)V (tk−1) (tk − tk−1)︸ ︷︷ ︸
Inf(tk)

I(x) . (41)

Thereby, each of the initial value problems describes the dynamics of cells 397

ic,k(t,x) which have been infected in the interval [tk−1, tk). Comparing the 398

obtained series reformulation to the single cycle infection formulation (29), it 399

can be seen that the reformulated multiple infection cycles correspond to finite 400

number of single infection cycle scenarios. The number of subpopulations Nk 401

results from the chosen temporal discretization 402

t = [t0, t1, . . . , tk−1, tk, tk+1, . . . , tNk
] . (42)

Here, an equidistant grid with (tk − tk−1) = 0.5 tu and Nk = 2000 was used. 403

Integral quantities (i.e. moments, overall virus release rate etc.) can be approx- 404

imated by 405

∫

X

fi(x)ic(t,x)dx ≈
Nk∑

k=1

∫

X

fi(x)ic,k(t,x)dx . (43)

At this point it has to be emphasized that the reformulation does in general not 406

prevent the description of time variable environments. Each initial value problem 407

can be solved simultaneously in this case. However, in the current example the 408

intracellular virus kinetics are decoupled from the extracellular states (i.e. the 409

single cell dynamics of the infected cells (22) do not depend on Uc(t) and V (t) 410

). Under these circumstances, the overall numerical procedure can be further 411

simplified [55]. Instead of solving the full problem for the discrete reformulation, 412

the single infection cycle scenario is solved only once for a normalized initial 413
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condition 414

∂i∗c(t
∗,x)

∂t∗
= −∇x {h(x) i∗c(t∗,x)} − kcd,ic(x) i

∗
c(t

∗,x)

i∗c(t
∗ = 0,x) = I(x) = N (µ,Σ) . (44)

Arbitrary integral quantities can be approximated using the moment approxi- 415

mation algorithm presented previously 416

∫

X

fi(x)i
∗
c(t

∗,x) dx ≈
Nα∑

α=1

fi(x
∗
α(t

∗))w∗
α(t

∗) . (45)

Afterwards each of those is multiplied with the corresponding initial condition, 417

i.e. the number of newly infected cells in the interval [tk−1, tk) (41) to obtain 418

integral approximations for the subpopulations ic,k(t,x). 419

∫

X

fi(x)ic,k(t,x) dx = Inf(tk)

∫

X

fi(x)i
∗
c(t− tk,x) dx

≈ Inf(tk)

Nα∑

α=1

fi(x
∗
α(t− tk))w

∗
α(t− tk) (46)

Thus, the virus dynamics (27) can be written as 420

dV (t)

dt
=

Nk∑

k=1

∫

X

rrel(x)ic,k(t,x) dx− kinf Uc(t) V (t)− kdeg V (t)

=

Nk∑

k=1

Inf(tk)

Nα∑

α=1

rrel (x
∗
α(t− tk))w

∗
α(t− tk)− kinf Uc(t) V (t)− kdeg V (t) .

(47)

In the following, the same dependency of the cell death rate on the intracellular 421

components as in the second single infection cycle scenario is assumed 422

kcd,ic(x) = kcd,icrrel(x) = kcd,ick5[gen][str] . (48)

The overall uninfected and infected cell concentration dynamics are depicted 423

in Fig. 6. It can be seen, that the concentration of infected cells increases signifi- 424

cantly after a certain delay of round about 300 tu. This is a direct result of a low 425

initial MOI: At the begin only a low number of uninfected cells gets infected and 426
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Figure 6: Multiple infection cycle scenario: overall cell dynamics for different cubatures

the infection takes a certain time to spread through the whole system. On the 427

single cell scale, the viral replication mechanism and the resulting virus release 428

rate (see Fig. 4(a)) additionally contribute to the delay. 429

It can be seen that all cubature formulas show nearly the same results for 430

the uninfected cells, only the approximation which is based on a sole cubature 431

abscissa at the mean of the initial distribution yields significant errors. However, 432

differences are obtained for the dynamics of the overall number of infected cells. 433

Again, the mean abscissa approximation shows the worst performance. Other 434

approximation approaches, based on the standard sigma points, the Gaussian 435

cubatures and the higher order non-product formula are at least sufficiently 436

accurate for t < 600 tu, but their approximation quality worsens for larger sim- 437

ulation times. Again, the performance of the Gaussian mixed density approach 438

stands out and stays very close to the reference computed with a large num- 439

ber of random abscissas. These statements on the approximation accuracy are 440

also valid for the overall virus concentration dynamics which are shown in Fig. 7 441

Excluding the mean abscissa approach, all approaches show a good performance 442

for t < 500 tu but significant errors emerge for larger simulation times where 443

only the Gaussian mixed density approach gives accurate results. The same is 444

observed for the first and second order pure moments which are depicted in 445

Fig. 8. It can be seen that the approximations based on standard sigma points, 446

the Gaussian cubature or the higher order non product cubature formula are ac- 447
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Figure 8: Multiple infection cycle: Pure moments of the distribution for different cubatures

curate up to t ≈ 400 tu but show significant errors for later time points. Again 448

it can be seen, that the GMD stays very close to the reference solution and 449

provides an accurate approximation. 450
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Thus, it has been shown that a sufficient accuracy of the multi-dimensional 451

moments can be achieved by using GMD approach for the choice of the initial 452

abscissas. This approach constitutes a direct extension of the SP approach with 453

which the problem of choosing a good sigma point distribution can be avoided 454

by the cost of more abscissas. For increasing NGMD the overall GMD approxi- 455

mation approaches the corresponding MC approximation. Thus, by successively 456

increasing the number of applied GMDs, a good approximation accuracy can 457

be achieved easily. In the current example NGMD = 11 lead to an efficient ap- 458

proximation accuracy. 459

6. Application to a detailed model of influenza virus replication in 460

cell cultures 461

In a second step, the methodology proposed in this paper is applied to a 462

detailed model of influenza A virus replication in mammalian cell cultures. Cell 463

culture based technology has developed as a promising alternative for influenza 464

vaccine production compared to traditional processes in embryonated chicken 465

eggs [60, 61]. Main advantage is increased flexibility which allows to respond 466

rapidly to the frequently changing demands. From the practical point of view 467

there is a high interest for the development of genetically engineered cell lines to 468

establish a high yield production platform. Here, genetic modifications, e.g. by 469

lentiviral transduction, are used to enhance or inhibit certain steps of the viral 470

replication mechanism aiming for an increased cell specific viral production rate. 471

However, usually not all cells are modified with the same efficiency [62]. Thus 472

a significant cell-to-cell variability with respect to the intracellular kinetics and 473

the viral production rates is expected. 474

To analyze the impact of these variances a detailed single cell model of in- 475

fluenza A virus replication in mammalian cell cultures can be used [24]. Therein, 476

the interactions of a large number of viral components are considered. The basic 477

scheme is depicted in Fig. 9. 478

The full set of dynamic equations and kinetic parameters according to [63] 479
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Figure 9: Basic scheme of the single cell kinetics with affected reaction steps

can be found in the supplementary information. In the following, a short overview 480

of the process shall be given. Free virus particles VEx attach to the cell surface 481

at binding sites with either high or low affinity. Attached virus particles (VAtt
hi 482

and VAtt
lo ) either detach again or they are absorbed via endocytosis resulting 483

in the enclosure of the virus particle VEn by an intracellular endosome. After 484

fusion of the viral envelope with the endosomal membrane the segmented viral 485

genome is released into the cytoplasm in the form of eight viral ribonucleoprotein 486

complexes (vRNPs). In Fig. 9 these vRNPs are denoted as Vpcyt. Subsequently, 487

they are imported into the nucleus (Vpnuc) where transcription into messenger 488

RNAs (mRNAs, RM
1...8) and complementary RNAs (cRNAs, RC) takes place. Vi- 489

ral mRNAs migrate to the cytoplasm are translated into viral proteins PA, PB1, 490

PB2, HA, NP, NA, NEP, M1, and M2 of which the first three form the RNA- 491

dependent RNA polymerase (RdRp). In the nucleus cRNAs are stabilized by 492

consecutive attachment of RdRp and nucleoprotein NP forming cRNPs (Cp). 493

In a second step freshly produced cRNPs are used to synthesize new vRNA 494

molecules (Rv), which are also encapsidated by RdRp and NP forming stabi- 495

lized progeny vRNPs (Vpnuc). By binding of viral matrix protein M1, vRNPs 496

are excluded from any further participation in the replication cycle (VpnucM1 ). 497
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Subsequent attachment of nuclear export protein NEP initiates the export to 498

the cytoplasm (VpcytM1). Eventually, all necessary vRNP complexes and viral pro- 499

teins assemble at the cell membrane to form progeny virions that bud from the 500

surface into the surrounding medium as newly released virus particles (VRel). 501

The single cell description was used to come up with a bottom-up population 502

balance model [44]. The latter can be viewed as direct extension of a previously 503

proposed age-structured model of the process [63]. It enables the combination 504

of detailed description of the viral replication mechanisms with the overall in- 505

teraction of virus, infected and uninfected cells on the cell population level. In 506

this contribution, recent numerical results will be presented briefly. For details 507

on implementation we refer to [44]. 508

Five significant steps of the viral replication cycle, i.e. the production of viral 509

proteins, as well as viral mRNA, cRNA, vRNA synthesis and the binding rate of 510

M1, were assumed to be target of genetic modifications aiming at an increased 511

maximum of virus concentration and a minimum peak time. The modified in- 512

tracellular reactions are highlighted in the single cell reaction scheme in Fig. 9. 513

In a pragmatic sensitivity analysis 35 different parameter sets of the five rates 514

were obtained to investigate the impact of up- or downregulation by means of 515

increasing or decreasing the corresponding rates or keeping them at the original 516

values. Therein, it was assumed that the rates are the same for all cells. For that 517

reason each of the 35 candidate parameter sets was used to simulate the dynamic 518

behaviour of a homogeneous cell population with the proposed approximate mo- 519

ment method using only one abscissa which is located at the exact parameter 520

values. Here, it should be noted that the cell population is homogeneous re- 521

garding to the modified parameters, but a variability in the stage of infection 522

caused by low initial seed virus concentration was considered further. Simu- 523

lation results of each parameter set were screened for an increased maximum 524

virus production and a minimum peak time to evaluate the up-/downregulation 525

combination. Concerning that criteria, the combination of upregulated synthe- 526

sis rates of mRNA, vRNA and proteins together with a downregulation of the 527

binding rate of M1 to progeny vRNPs and an unchanged parameter for the 528
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synthesis of cRNA represents the best parameter set (see also µ5 in Eq. 50). 529

The simulation result with this best combination is depiced in Fig. 10 (green 530

line). The red line in Fig. 10 represents the unmodified cell line dynamics for 531

comparison. It can be seen that both aims, increase of the maximum virus yield 532

and reduction of peak time are achieved (see also Tab. 2). Investigated cellu- 533

lar modifications can be achieved by biotechnological methods, e.g. lentiviral 534

transduction [64, 65]. However, in general not all cells are modified with the 535

same efficiency. This leads to cellular heterogeneity and can be accounted for by 536

assuming that kinetic parameters are not uniform for the whole cell population 537

but appear distributed. In consequence, different efficiencies of the genetic mod- 538

ifications can be mapped to broadening parameter distributions. The cell-to-cell 539

variability resulting genetic modifications is represented by a weighted sum of 540
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Table 2: Maximum virus yield and peak time for modified and unmodified cell dynamics

max(V ) (# ml−1) peak time (h)

unmodified 5.94 108 30

homogeneous modification 1.47 109 25.2

scenario I 1.44 109 25.5

scenario II 1.32 109 25.9

scenario III 1.11 109 26.2

five logarithmic Gaussians to obtain a well-shaped distribution. As five reaction 541

rates are considered, those Gaussians are five dimensional 542

k =

5∑

l=1

al µl · eN (0,diag(σl)) . (49)

The mean vectors of the distributions µl are logarithmically distributed between 543

the nominal parameter vector µ1 and the best combination µ5 544

µ1 =
[
k
Syn
C , k

Syn
M , k

Syn
P , k

Syn
V , kBind

M1

]T
,

µ5 =
[
k
Syn
C , 5 k

Syn
M , 5 k

Syn
P , 5 k

Syn
V , 0.2 kBind

M1

]T
. (50)

The variances are chosen as σl = 0.05 to obtain a well-shaped distribution. The 545

influence of different modification efficiencies was analyzed for highly efficient, 546

mid-range or broad distributions of the parameter rates based on publications 547

on transduction methods [64, 65]. The three different scenarios are realized using 548

different values of the weighting parameters al 549

aI = [0.01, 0.03, 0.04, 0.06, 0.86] ,

aII = [0.04, 0.12, 0.19, 0.27, 0.38] ,

aIII = [0.20, 0.20, 0.20, 0.20, 0.20] . (51)

For each scenario, the moment dynamics were approximated with our proposed 550

technique applying the GMD approach. Different numbers of Gaussian distribu- 551

tions were evaluated against a Monte-Carlo approximation with Nα,MC = 104 552
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and NGMD = 15 was chosen for a good approximation accuracy (see Fig. 11). 553

Thus, the overall number of abscissas is given by Nα,GMD = NSPNGMD = 150. 554

It can be seen in Fig. 10, that an increasing variance is attended by a reduced 555

maximum virus yield and an increasing peak time. However, in comparison to 556

the unmodified cell line even for the worst case scenario an significant increase 557

in the maximum virus concentration is obtained for the assumed genetic modifi- 558

cations (see Tab 2). Thus it can be concluded, that the above modifications are 559

a promising candidate for improving influenza vaccine production processes. 560

7. Conclusion 561

Population balance modeling offers a suitable framework to characterize the 562

dynamics of nonuniform particle ensembles as they are found in many applica- 563
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tions from chemical and biotechnological process systems. In particular for the 564

latter, a large number cellular properties has to be accounted for. The resulting 565

multi-dimensional PBEs can be solved numerically using approximate moment 566

methods. 567

In this manuscript we presented an efficient method for the approximate com- 568

putation of moments for this type of models, which is based on the DQMOM. 569

Analytical solutions for the dynamics of weights and abscissas are derived and, 570

thus, the subsequent numerical solution of linear equation systems can be omit- 571

ted . Furthermore, a sophisticated choice of the abscissas with a sigma point 572

cubature rule ensures a limited numerical effort. In contrast to Gaussian cuba- 573

tures which scale exponentially with the dimension of the problem, here, the 574

numerically effort increases linearly. The algorithm is equivalent to our recently 575

presented technique [41]. 576

The algorithm is evaluated for a benchmark problem describing virus repli- 577

cation in cell cultures. Therefore different cubature approaches are compared to 578

a Monte Carlo evaluation. The presented approach shows good accuracy for all 579

implemented formulas in a first test case where cell death does not depend on the 580

intracellular state. It is shown that the performance can be further improved by 581

using higher order non cubature and a Gaussian mixed density approach, respec- 582

tively. In contrast to other applied cubature rules, the latter also gives excellent 583

results if cell death depends nonlinearly on the intracellular composition. The 584

corresponding numerical effort increases in comparison to the standard sigma 585

point formula but is still smaller compared to Gaussian cubatures. 586

In addition, application is briefly shown for a detailed PBE describing in- 587

fluenza virus replication. The presented technique is applied to analyze on the 588

overall virus dynamics when using genetically modified cells. It was shown that 589

even for a large degree of cellular variance, a significant increase in the maximum 590

virus titer can be obtained. The results suggest, that genetic modifications may 591

be a suitable tool to come up with a high yield cell line for influenza vaccine 592

production. 593

In the future, focus will be on further application of the technique for model 594
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based analysis of the effects of cellular variance when using genetically modified 595

cell lines to overcome limitations in vaccine production processes. Furthermore, 596

extension of the algorithm on bio systems with non negligible cell division is 597

worthwhile. In addition, the method may be extended to problems with non 598

negligible spatial gradients and to agglomeration processes. An alternative ap- 599

proach for the latter is the moving pivot method [66] which is also based on 600

some moving reference points like the presented approach. 601

Although focus in this manuscript was on bio systems, the algorithm can 602

also be applied to other processes that can be described by multi-dimensional 603

population balance equations, e.g. shape evolution in crystallization processes. 604
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Appendix 613

Evaluation of weight and abscissa dynamics for arbitrary moments. For P = 614

0 and Nd = 2 (8) reduces to 615

Nα∑

α=1

[
aα (1− l1 − l2)x

l1
1,αx

l2
2,α + b1,αl1x

l1−1
1,α xl2

2,α + b2,αl2x
l1
1,αx

l2−1
2,α

]

=

α=1∑

Nα

wα

[
l1x

l1−1
1,α xl2

2,αG1,α + l2x
l1
1,αx

l2−1
2,α G2,α −Dαx

l1
1,αx

l2
2,α

]
. (52)

In the next step the analytic expressions for the dynamics of weights and abscis- 616

sas can be derived by comparison of the coefficients for zeroth and first order 617
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moments as 618

aα = −wαDα ,

b1,α = wα (G1,α − x1,αDα) , b2,α = wα (G2,α − x2,αDα) . (53)

These are inserted to (52) resulting in 619

Nα∑

α=1

[
−wαDα (1− l1 − l2) x

l1
1,αx

l2
2,α

+wα (G1,α − x1αDα) l1x
l1−1
1,α xl2

2,α + wα (G2,α − x2αDα) l2x
l1
1,αx

l2−1
2,α

]

=

Nα∑

α=1

wα

[
l1x

l1−1
1,α xl2

2,αG1,α + l2x
l1
1,αx

l2−1
2,α G2,α −Dαx

l1
1,αx

l2
2,α

]
. (54)

The left hand side expression can be rearranged and condensed to 620

Nα∑

α=1

wα

[
l1x

l1−1
1,α xl2

2,αG1,α + l2x
l1
1,αx

l2−1
2,α G2,α + xl1

1,αx
l2
2,αDα(−1 + l1 + l2 − l1 − l2)

]

(55)

which equals the right hand side of (52). 621
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Notation

A matrix

a dynamics of weights

b dynamics of abscissas

c continuous phase state vector

D death rate

Dc medium exchange rate vector

d dimension of x

F exchange rate between dispersed and continuous phase

G vector of growth rates

g growth rate

ic infected cell number density distribution

k index

k◦ parameter

l index

ml1,...,ld(t) moment of order l1, . . . , ld with respect to n

N (µ,Σ) Gaussian normal distribution

n(t,x), ñ(t,x) number density distribution

n0 initial number density distribution

N overall number of particles

Nα number of abscissas

Nd number of dimensions

P particle production rate

P integral coupling rate vector

t time

Uc concentration of uninfected cells

V extracellular virus concentration

W set of cubature weights

wα cubature weight

X overall property state space
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xe vector of external coordinates

xi vector of internal coordinates

xα cubature abscissa

[◦] concentration of intracellular compound ◦

Greek Symbols

α index

α̃ tuning factor

β tuning factor

κ tuning factor

λ tuning factor

µ mean value vector

Σ covariance matrix

Abbreviations

DQMOM direct quadrature method of moments

ODE ordinary differential equation

PBE population balance equation

PDE partial differential equation

QMOM quadrature method of moments
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