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SUPPORTING INFORMATION 

Text S1. Assessing the membrane tension in vesicles exposed to electrodeformation 
The force density 𝑓 arising from the accumulation of electric charge at both interfaces of the 
membrane acts as a local pressure on the membrane in addition to the pressure difference 𝛥𝛥 
between the interior and exterior of the vesicles as described by the Young-Laplace equation. At 
the poles (pol) and at the equator (equ), the force balance between pressure and tension has the 
form 2𝑀pol𝛴 = Δ𝑝 + 𝑓pol and 2𝑀equ𝛴 = Δ𝑝 + 𝑓equ, where 𝑀pol and 𝑀equ are the mean curvatures 
of the membrane at the poles and equator, respectively, and 𝑓pol and 𝑓equ are the respective force 
densities. By eliminating the osmotic pressure from these equations, one can obtains for the 
tension 𝛴 of the vesicle 

Σ =
𝑓pol − 𝑓equ

2(𝑀pol − 𝑀equ)
 

Full derivation of the force densities 𝑓pol and 𝑓equ can be found in Ref. (1), Appendix B (Ref. 30 in 
the main text). Here, we use the same notations. The resulting force densities for each angle 𝜃 
along the vesicle are the superposition of the radial Maxwell stresses directed to the exterior, the 
bilayer and the interior of the vesicle, denoted as 1, 2 and 3 in the indices, respectively, at the 
exterior (ex) and interior (in) interface: 

𝑓(𝜃) = [𝑇1𝑟𝑟(𝑟ex,𝜃) − 𝑇2𝑟𝑟(𝑟ex,𝜃)] + [𝑇2𝑟𝑟(𝑟in,𝜃) − 𝑇3𝑟𝑟(𝑟in,𝜃)] 
where 𝑟ex and 𝑟indescribe the outer and inner radius of the vesicle. 
Following equations 84 and 85 in Ref. (1), the radial components of the stresses that may cause a 
deformation at the exterior interface are: 

𝑇1𝑟𝑟(𝑟ex,𝜃) =
1
4
𝜖1𝐸02[|𝛼1,ex|2cos2𝜃 − |𝛾ex|2sin2𝜃]

𝑇2𝑟𝑟(𝑟ex,𝜃) =
1
4
𝜖2𝐸02[|𝛼2,ex|2cos2𝜃 − |𝛾ex|2sin2𝜃]

 

and at the interior interface (following equations 88 and 89 in Ref. (1): 

𝑇2𝑟𝑟(𝑟in,𝜃) =
1
4
𝜖2𝐸02[|𝛼2,in|2cos2𝜃 − |𝛾in|2sin2𝜃]

𝑇3𝑟𝑟(𝑟in,𝜃) =
1
4
𝜖3𝐸02[|𝛼3,in|2cos2𝜃 − |𝛾in|2sin2𝜃]

 

Here the amplitudes at the exterior (equations 65, 66 and 68 in Ref. (1)) and at the interior 
interface (equations 70, 71 and 73 Ref. (1)) are: 

𝛼1,ex = 𝛽1𝛼2,ex                                                       𝛼2,𝑖𝑖 = 9/𝐷

𝛼2,ex = 3[(1 + 2𝛽3) + 2(1 − 𝛽3)
𝑟in3

𝑟ex3
]/𝐷         𝛼3,𝑖𝑖 = 𝛽3𝛼2,𝑖𝑖

𝛾ex = −3 �(1 + 2𝛽3) − (1 − 𝛽3)
𝑟in3

𝑟ex3
� /𝐷          𝛾𝑖𝑖 = −𝛼3,𝑖𝑖

 

with the denominator 
𝐷 = (2 − 𝛽1)(1 + 2𝛽3) − 2(1 − 𝛽1)(1 − 𝛽3) 𝑟in

3

𝑟ex3
, 

the complex-value electric parameters 

𝛽1 =
𝜎2 − 𝑖𝑖𝜖2
𝜎1 − 𝑖𝑖𝜖1

,     𝛽3 =
𝜎2 − 𝑖𝑖𝜖2
𝜎3 − 𝑖𝑖𝜖3
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and the conductivities 𝜎1,2,3, the dielectric permittivities 𝜖1,2,3 and the circular electric frequency 
𝜔. 
At the poles (𝜃 = 90°) and equator (𝜃 = 0°), the force densities are then defined as: 

𝑓pol =  
1
4
𝐸02 �(𝜖1|𝛽1|2 − 𝜖2)�𝛼2,ex�

2
+ (𝜖2 − 𝜖3|𝛽3|2)�𝛼2,in�

2
� 

𝑓equ = −
1
4
𝐸02[(𝜖1 − 𝜖2)|𝛾ex|2 + (𝜖2 − 𝜖3)|𝛾in|2] 

The terms in the square brackets are invariable during the experiment leading to the following 
dependence for the membrane tension 

Σ =
𝑐𝑐𝑐𝑐𝑐 𝐸02

(𝑀pol − 𝑀equ)
 

where 𝑐𝑐𝑐𝑐𝑐 is a dimensional constant. Then, from the logarithmic expression for the relative 
area change in Eq. 1 in the main text, one obtains the simplified expression in Eq. 2 in the main 
text. 
 
An approximation for working at “small” field frequencies ω and low conductivities of the 
solutions 𝜎1,3 ≫ 𝜎2  and �𝛽1,3� ≪ 1 − (𝑟𝑖𝑖 𝑟𝑒𝑒⁄ )3 leads to: 

𝛼2,in →
9

2�1 − 𝑟in3

𝑟ex3
�

,    𝛼2,ex → 𝛼2,in − 3,     𝛾in → 0, 𝛾ex → −
3
2

 

yielding for the forces 

𝑓pol →
1
4
𝜖2𝐸02

⎝

⎜
⎛ 27

1 − 𝑟in3

𝑟ex3
− 9

⎠

⎟
⎞

 and  𝑓equ → −
9

16
𝜖1𝐸02 

From these simplified expressions, the actual membrane tension during electrodeformation can 
be also assessed. 
 
 
 



 3 

Figure S1 

 
Figure S1. Change in the area of a POPC vesicle at 40 °C as a function of applied electric field 
strength (in V/m units) as measured in an electrodeformation experiment (the curvatures were 
measured in units 1/m). From the slope of the data, one obtains the bending rigidity following 
Eq. 2 in the main text. 
 
 
 
 
Figure S2 
 

 
 
Figure S2. Images of vesicles with internal structures observed at room temperature for GM1 
fractions of (A) 5.3 mol% (confocal cross section,) and (B) 10 mol% (phase contrast). The 
vesicle diameters are approximately (A) 35 µm and (B) 25 µm.   
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Figure S3 

 
Figure S3. Partial phase diagram of POPC with palmitoyl ceramide (filled squares) or with GM1 
(open squares). The data for GM1 is identical to that in Fig. 3A in the main text. The data for the 
POPC/palmitoyl ceramide system is from Ref. (2) (Ref. 54 in the main text). The solid curves are 
guides to the eye. 
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Figure S4 
 

 
Figure S4. Example data for fluctuation analysis on vesicles with gel-like domains. The analysis 
is done following the approach in Ref. (3). The data was acquired on a vesicle with 8 mol% GM1 
at room temperature. (A) Absolute values of the Fourier coefficients �𝑣𝑞� for several of the 
modes 𝑞  with subtracted mean value. (B) Fit for the bending rigidity deduced for the same 
vesicle, 𝜅 = 12.1 ± 3.3 × 10-20 J. 
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