Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel

U. Benjamin Kaupp^{*}, Tetsuhiro Niidome, Tsutomu Tanabe, Shoichi Terada, Wolfgang Bönigk^{*}, Walter Stühmer[†], Neil J. Cook^{‡#}, Kenji Kangawa[§], Hisayuki Matsuo[§], Tadaaki Hirose[#], Takashi Miyata[¶] & Shosaku Numa

Departments of Medical Chemistry and Molecular Genetics, Kyoto University Faculty of Medicine, Kyoto 606, Japan

- * Institut für Biologische Informationsverarbeitung, Kernforschungsanlage, D-5170 Jülich, FRG
- † Max-Planck-Institut für biophysikalische Chemie, D-3400 Göttingen, FRG

‡ Abteilung Biophysik, Universität Osnabrück, D-4500 Osnabrück, FRG

|| Pharmaceutical Institute, Keio University School of Medicine, Tokyo 160, Japan

Pepartment of Biology, Kyushu University Faculty of Science, Fukuoka 812, Japan

The complete amino-acid sequence of the cyclic GMP-gated channel from bovine retinal rod photoreceptors, deduced by cloning and sequencing its complementary DNA, shows that the protein contains several putative transmembrane segments, followed by a region that is similar to the cyclic GMP-binding domains of cyclic GMP-dependent protein kinase. Expression of the complementary DNA produces cyclic GMP-gated channel activity in *Xenopus* oocytes.

VERTEBRATE photoreceptors respond to light by a transient hyperpolarization due to the closure of a cation channel in the plasma membrane. The channel is activated directly¹ by guanosine 3',5'-cyclic monophosphate (cGMP), the internal messenger of visual transduction (for reviews, see refs 2-4). The channel does not discriminate very well between alkali cations^{1,5-8} and is reversibly blocked by divalent cations⁹⁻¹¹ and 1-cis-diltiazem⁹. The cGMP-gated channel from bovine retina consists of a single type of polypeptide of relative molecular mass (M_r) 63,000 $(63K)^{12}$. The purified bovine cGMP-gated channel is functional when reconstituted into phospholipid vesicles¹³ or artificial planar bilayers¹⁴. Channel activation occurs by the cooperative binding of at least three^{10,11}, but probably more^{3,12,13}, cGMP molecules, which suggests¹² that the functional channel is composed either of several 63K polypeptides each harbouring one or two cGMP-binding sites, or of only a single polypeptide containing three or more cGMP-binding sites. It has also been proposed that the cGMP-gated channel is composed of polypeptides of M_r 39K¹⁵ or M_r 250K¹⁶ or of rhodopsin¹⁷ itself, which raises the possibility¹⁸ that the channel is composed of different polypeptides, that the 63K polypeptide is a dimer of the 39K polypeptide or that the 39 K polypeptide results from proteolytic modification of the 63K polypeptide. Alternatively, these polypeptides may represent different cGMPgated channels.

We have now cloned DNA that is complementary to bovine retinal messenger RNA coding for the 63K polypeptide and from the nucleotide sequence analysis of this cDNA we are able to predict the complete amino-acid sequence of the polypeptide. The cDNA has been functionally expressed in *Xenopus* oocytes, which suggests that this polypeptide alone is sufficient to form a functional cGMP-gated channel.

Cloning of cDNA

The initial approach to isolating cDNA for the cGMP-gated channel was to screen a cDNA library by hybridization with oligodeoxyribonucleotide probes synthesized on the basis of partial amino-acid sequence data. The cGMP-gated channel polypeptide of M_r 63K was solubilized from bovine rod outer segments and purified as described previously¹². After SDS-PAGE of the purified preparation, the 63K polypeptide was electroeluted from the gel and digested with trypsin. The resulting peptides were fractionated by reverse-phase HPLC (Fig. 1). Fifteen fractions (I-XV) were collected and analysed for amino-

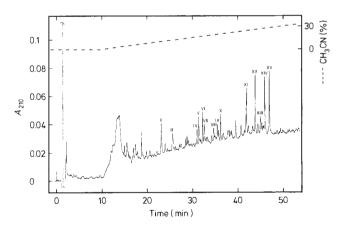


FIG. 1 Reverse-phase HPLC of tryptic peptides derived from the cGMP-gated channel. Solid line and left-hand axis, absorbance at 210 nm (A_{210}) ; broken line and right-hand axis, acetonitrile concentration. The amino-acid sequences determined for the fractions (I-XV) were identical to those of the following amino-acid residues deduced from the cDNA sequence (for aminoacid numbers, see Fig. 2); 1, 639-641; 11, 406-411; 111, 591-596; IV, 454-460; V, 417-422; VI, 642-652; VII, 240-245; VIII, 513-518; IX, 668-677; X, 628-637; XI, 261-269; XII, 279-284; XIII, 435-443; XIV, 663-676; XV, 435-443. Identical amino-acid sequences were determined from fractions XIII and XV, and the sequence for fraction XIV overlapped that for fraction IX. METHODS. The 63K protein was purified as described previously¹². After SDS-PAGE of the purified preparation, a piece of the gel carrying the 63K polypeptide was excised and the protein was electroeluted and dialysed³⁸ The peptides resulting from tryptic digestion of the dialysed material (330 pmoles) were fractionated by reverse-phase HPLC and sequenced; the procedures used were essentially identical with those described previously³⁹

[§] Department of Biochemistry, Miyazaki Medical College, Miyazaki 889-16, Japan

[#] Present address: Max-Planck-Institut für Biophysik, Abteilung Molekulare Membranbiologie, D-6000 Frankfurt 71, FRG.

ARTICLES

FIG. 2 Nucleotide sequence of cloned	5****AGAAAACTAGCTGTTTGTACATGTT*AAAGAAAGG	· 60
cDNA encoding the cGMP-gated chan-		- 1
nel from bovine retinal rod photorecep-	The type Lype Val Tie Fie Ash The Trip His Ser Phe Val Ash Tie Pro Ash Val Giy Pro Ash Val Giu Lys Giu Fie The Arg Me Giu Ash Giy Ala Cys Ser Ser Phe Ser Giv	
tors and the deduced amino-acid	ATG AAG AAA GTG ATT ATC AAT ACA TGG CAC TCT TTT GTA AAT ATT CCC AAT GTG GTT GGA CCA GAT GTT GAA AAG GAA ATA ACA AGG ATG GAA AAT GGA GCA TGC AGC TCC TTT TCT GGT	120
sequence. Nucleotide residues are	50 60 70 80 Asp Asp Asp Asp Ser Ala Ser Met Phe Glu Glu Ser Glu Thr Glu Asn Pro His Ala Arg Asp Ser Phe Arg Ser Asn Thr His Gly Ser Gly Gln Pro Ser Gln Arg Glu Gln 'yr Leu	
	ASD ASD ASD ASD ASD ASA AS SET MET PIE GIU BIU SET ULU INT ULU ASH PID NIS ALLA NUY SAD SET NINY SET ANY SET AST ASA ASA CAN TEA CAA AGA CAA CAA CAA CAA CAA CAA CAA CA	240
numbered in the 5' to 3' direction,	90 100 110 120	
beginning with the first residue of the	Pro Gly Ala Ile Ala Leu Phe Ash Val Kan Ash Ser Ser Ash Lya Glu Gin Glu Pro Lys Glu Lys Lys Lys Lys Lys Glu Lys Lys Ser Lys Pro Ash Ash Lya Ash Glu Ash Lys Cet Gas Geo Att Gas Chi Titt Ant Git Mac Ash Cas Gas Ath Asg Gas Gas Gas Cas Cas Gas Asg Gas Ash Gas Gas Ash Cas	360
ATG initiation triplet and the preceding	LET due det alt des fait aut aut aut aut aut aut aut aut aut au	300
residues are indicated by negative	tys Asp Pro Glu tys tys tys tys Glu tys Asp tys Asp tys tys tys Glu Glu tys Gly tys Asp tys tys Glu Glu tys tys Glu Val Val (14 Asp Pro Ser Gly	
numbers; numbers of the nucleotide	AAG GAC CCA GAA AAG AAA AAG AAA GAA AAG GAC AAA GAC AAG GAC AAA AAG AAA AAG GAA GAG GAG	48C
residues at the right-hand end of the	Asn Thr Tyr Tyr Asn Trp Leu Phe Cys lie Thr Leu Pro Val Met Tyr Asn Trp Thr Met Ile Ile Ala Arg Ala Cys Phe Asp Glu Leu Glo Ser Asp Tyr Leu Glu Tyr Trp Leu Ala	
individual lines are given. Nucleotide	AAT AGG TAT TAC AAC TGG CTG TTC TGC ATC ACC TTA CCT GTT ATG TAT GAC TGG ACC ATG ATT ATC CAA AGA GCA TGT TTT GAT GAA CTT GAT TAC CTA GAA TAC TGG CT" GCT	600
2,488 is followed by a poly(dA) tract	H 2 210 220 230 240 Phe Asp Try Leu Sey Mar Phe Vel Ang Thr Ang Thr Gty Try Leu Gtu Gtn Gty Leu Leu Vel Lys Gtu Gtu Ang Lys Leu IIe Asp Lys Try tys Ser	
connected with the vector DNA	TTT GAT TAC TTA TCA GAT GTA GTC TAT CTT CTT GAT ATG TTT GTA CGA ACA AGG ACA GGT TAC CTA GAA CAA GGA CTA CTG GTG AAG GAA GAG CGT AAA CTC ATA GAC AAG TAT AAA TCA	720
sequence ⁴⁰ . Amino-acid residues are	<u>H 3 250</u> 260 270 280	
•	The Phe GLD Phe Lys Leu Asp Val Leu Ser Val TLE Pro The Asp Leu Leu Tyr TLE Lys Phe GLy Tep Asm Tyr Pro GLu TLE Arg Leu Asm Arg Leu Leu Ang TLE Ser Arg Met Phe ACC TTT CAA TTT AAA CTT GAT GTT CTA TCA GTG ATC CCA ACT GAT CTG CTG TAT TATT AAG 311 GGC 76G AAT TAT CCA GAA ATT AGA TTA AAC AGA TTG TTA AGG ATC TCT CGA ATG TTT	84.0
numbered beginning with the initiating	290 3 00 H 4 3 10 3 20	
methionine. The hydrophobic segments	GLU PHE PHE GLU ANY THE GLU THE ANY THE ANY TYE PEO ANY LEE PHE ANY LEE SEE ANY LEU VAL MEE TYE LEE LEE LEE LEE HE STEEP ANY ALA TYE PHO ANY LEE PHE ANY ALA TYE PHO ANY LEE ANY THE ANY ALA TYE PHO ANY LEE ANY THE ANY T	960
with predicted secondary structure		400
(H1–H6) are overlined; the termini of	Lys Ala lie Gly Phe Gly Asn Asp Thr Trp Val Tyr Pro Asp Val Asn Asp Pho Asp Phe Gly Arg Leu Ala Arg Lys Tyr Val Tyr Ser Leu Tyr Trp Ser Thr Leu Thr Thr	
each segment are tentatively assigned	AAA GCT ATT GGG TTT GGA AAT GAC ACA TGG GTC TAT CCT GAT GTT AAT GAT CCT GAT TTT GGC CGT TTG GCT AGA AAA TAT GTG TAC AGT CTT TAC TGG TCT ACA CTG ACT TTG ACC ACT 370 380 H 5 390 400	1080
on the basis of the hydropathicity	Joo no Joo no site and the set of	
profile and the amino-acid sequence.	ATT GGC GAA AGA CCA CCT CCT GTG AGG GAT TCT GAG TAT TTC TTT GTG GTG GCT GAT TTC CTC ATT GGA GTG TTA ATT TTT GCC ACC ATT GTC GGT AAC ATA GGT TCT ATG ATT TCC AAC	
METHODS. The Okayama-Berg cDNA	410 420 430 440 Met Asn Ala Ala Arg Ala Glu Phe Gln Ala Arg Ile Asp Ala Ile Lys Gln Tyr Met His Phe Arg Asn Val Ser Lys Asp Met Glu Lys Arg Val Ile Lys Trp Phe Asp Tyr Leu "rp	
library ⁴⁰ used, derived from bovine	ATG ANT GCG GCC AGG GCA GAA THT CAA GCA AGA ATT GAT GCA AGA ATA CAA CAAT ATA CATG CAAT GTT AGA AAA GCA AAA GCA ATG GA GCA GCA GCA TAT GAA TGG CHT GCA TAT CGA TGA	1320
	450 460 470 <u>480</u>	
retinal poly(A) ⁺ RNA, was the same as	The Ash Lys Lys The Val Asp Glu Ang Glu Val Leu Lys Tyr Leu Pro Asp Lys Leu Ang Ala Glu 11e Ala 11e Ash Val His Leu Asp The Leu Lys Lys Val Ang 11e Phe Ala Asp ACC ARA ARA ARA GEG GAT GAG AGA GAA GTC TEG ARG TAT CTA CCT GAT ARA CTA AGA GEA GAG ATE GEC ATE ATT GET CAT TTA GAC ACA TTA ARA ARG GEO GEO ATT TET GEA GAC	1440
that described previously ⁴¹ . It was	H,6 490 500 510 520	
screened with the 5'-end-labelled	Cys Glu Ala Gly Leu Leu Val Glu Leu Val Leu Lya Leu Gin Pro Gin Val Tyr Ser Pro Gly Asp Tyr He Cys Lys Gly Asp He Gly Arg Glu Met Tyr He He Lys Glu Giy	
probes 5'-C ^{GA} AA ^A TGCAT ^A TA ^T TG-3'	TGT GAA GCT GGT CTG TTG GTG GAG TTG GTC TTG AAA TTA CAA CCC CAA GTC TAC AGT CT CGG GAT TAC ATT TGC AAG AAA GGG GAC ATT GGC CGA GAG ATG TAC ATC ATC ATC AGA GAA GGA SAD	1560
and 5'-TGGAAAGAACTCGAACAT-3', syn-	Lys Leu Ala Val Ala Asp Asp Gly Ile Thr Gin Phe Val Val Leu Ser Asp Gly Ser Tyr Phe Gly Glu Ile Ser Ile Leu Asn Ile Lys Gly Ser Lys Ala Giy Asn Arg Arp.	
thesized on the basis of partial amino-	AAA CTC GCC GTG GTG GGT GAT GAC GGG ATC ACT CAG TIT GTA GTA TTG AGT GAT GGC AGC TAC TIT GGT GAA ATC AGT ATC CIT AAT ATT AAA GGT AGC AAA GCT GGC AAT CGA AGA AGA	1680
acid sequences of tryptic peptides V	570 580 Ala Asn île tys Ser île Git Tyr Ser Asp. Leu Phe Cys. Leu Ser Lys. Asp. Asp. Leu Met Giu Ala Leu Thr Giu Tyr Pro Asp. Ala Lys. Giy Met Leu Giu Giu Lys. Giy iys Gin 11e	
and XII, respectively, to yield clone	GCC AAT ATT AAA AGC ATT GGC TAC TCA GAT CTA TTC TGT CTC TCA AAA GAT GAC ETC ATG GAA GCT CTA ACT GAG TAC CCA GAT GCC AAA GGT ATG CTA GAA GAC AAA GGG AAG CAA ATT	1800
pCG24 (carrying nucleotides 112-2,488	610 620 630 640	
and the poly(dA) tract) which hybridized	LEU MET LYA ASO GIV LEU LEU ASO ILE ASO ILE ASO ALSO GIVES ASO LEU GIU GIU LYA VAI THY Arg MET GIU SEY SEY VAI ASO LEU LEU GIN THY A'RG MET ASO ASO ASO ASO ASO CAN CAN GAR CAN CAN CAN ANT GAY GAN CAN CAN CAN CAN CAN CAN CAN CAN CAN C	
with both probes. Clone pCG101 (carry-	650 660 670 680	
	Arg 11e Lew Ala Glu Tyr Glu Ser Met Gin Gin Lys Lew Lys Gin Arg Lew Thr Lys Val Glu Lys Phe Lew Lys Pro Lew 11e Asp Thr Glu Phe Ser Ala 11e Glu Gly Ser Gly Thr	
ing nucleotides -194 to 279) was	CGG ATC CTG GCT GAG TAT GAG TCA ATG CAG CAG AAA CTG AAG CAG AGG CTA ACC AAG GTT GAG AAA TTC CTG AAA CCA CT1 ATT GAC ACA GAA TTT TCA GCT ATT GAA GGA TCT GGA ACT 690	2040
selected from the cDNAs that were	Glu Ser Gly Pro Thr Asp Ser Thr Gln Asp	
prepared ³¹ with the synthetic primer	GAA AGT GGG CCC ACA GAC TCT ACA CAG GAC TGA AAAGCTGGTTTTTCATAAGGACATTCCTCAGGATCCTTTTGGTGATGATGAAGGAGGACGAGGAGAAGAGGATGACTGAGCGGGAAATTGT	2188
5'-GCTGCTGTTGTTAACAT-3' (comple-	GETTIGGTACKGGGCAAAAGCCATACATTTGCTIGTGGGGTACTATAGCTAAAGAATCATCACKCTTAGAATTTTTCACAATGGATGACCTGCAAGAACCAATTAACTTGCACCATCTAATTTTCACATATGGTCCTTTAAG AACACTCTTTATAAAAGTAAACAAGCATCTCTCACTTTCAGACAATTTATATTGCTCAGGGGGAAATTATCATGTACCTCATGTCAGGATACTATTAAAAGAATTAGATGCAATAAAGTAGTATAAATCCT3'	
mentary to nucleotides 263-279)	ARLRUTTITATAAAAGIMAALAAGUATUTUTUTUTUTUTUTAGACAATTTATATTGUTUAGGGGAAUTGAAAATTATUATGACGTUATGITUKGGATACTATTTAAAAGAATTAGAATGGAAAAAGGGAATAAAAGGATATAAAATCCT5'	2488

mentary to nucleotides 263-279), tailed with poly(dC) and cloned into poly(dG)-tailed pBR322 (ref. 42). The probe used was the 5'-end-labelled HphI(131)/BstNI(243) fragment excised from pCG24; restriction endonuclease sites are identified by numbers (in

acid sequence (see Fig. 1 legend). Two synthetic oligodeoxyribonucleotide probes, prepared on the basis of partial amino-acid sequences of tryptic peptides V and XII, were used to screen a cDNA library derived from bovine retinal $poly(A)^+$ RNA, thus allowing a cDNA clone (pCG24) that hybridized with both probes to be isolated. Using a restriction fragment derived from the upstream region of pCG24 as a hybridization probe, we selected a collection of cDNA clones resulting from elongation of a synthetic primer. Clone pCG101 thus isolated carried a cDNA sequence extending beyond the translational initiation site. Details of the cloning procedure are described in Fig. 2 legend.

Protein structure

Figure 2 shows the 2,682-nucleotide sequence (excluding the poly(dA) tract) of the cDNA encoding the cGMP-gated channel from bovine retinal rod photoreceptors. There is an open reading frame that encodes 690 amino acids, including all the partial amino-acid sequences determined (see Fig. 1 legend). The translational initiation site was assigned to the first ATG triplet which appears downstream of nonsense codons found in frame. The nucleotide sequence surrounding the initiation codon agrees reasonably well with the consensus sequence¹⁹. The polyadenylation signal AATAAA (residues 2,469-2,474) is found 15 nucleotides upstream of the poly(dA) tract. The size of the cGMP-gated channel mRNA was estimated to be ~3,200 nucleotides by blot hybridization analysis²⁰ of bovine retinal $poly(A)^+$ RNA with a cDNA probe (Bst NI(243)/Bst NI(1,213)) fragment). The calculated M_r (including the initiating methionine) of this protein is 79,601. The difference between this value

parentheses) indicating the 5'-terminal nucleotide generated by cleavage. DNA sequencing 43,44 was carried out on both strands.

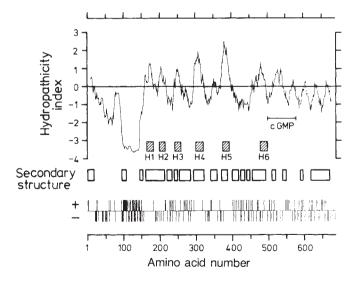


FIG. 3 Hydropathicity profile and predicted secondary structure of the cGMP-gated channel. The averaged hydropathicity index 45 of a nonadecapeptide composed of amino-acid residues i-9 to i+9 is plotted against *i*, the amino-acid number. The positions of the predicted structures of α -helix and/or β -sheet⁴⁶ that have a length of 10 or more residues are shown by open boxes below. The positions of the positively charged residues (Lys and Arg) and negatively charged residues (Asp and Glu) are indicated by upward (+) and downward (-) vertical lines, respectively. Segments H1-H6 are indicated by hatched boxes, and the putative cGMP-binding region by a horizontal bar.

	▼♡♡ ♡ ▼ ▼♡ ♡	$\nabla \blacksquare \blacksquare \blacksquare \blacksquare \nabla \blacksquare \nabla \blacksquare \nabla \blacksquare \nabla$		$\nabla \blacksquare \nabla \blacksquare \nabla \nabla \nabla \nabla \nabla \nabla \blacksquare \nabla \blacksquare$
c GMP channel	498 YSPGDYICKKGDIG	REHYIIKEGKLAVV-ADDGL	TOFVIVL SDGSYFGRISILN	1 F G S X A G N R R T A N TX S I G Y S D L F C L S KD 577
cGK (1)	123 YGKDSCIIKEGOVG	SIVYWEDGKVEVT	X E G V K L C T N G P G K V F G E L A I L -	YNCTRTATIVKTLVNVKLWAIDHO 194
c GK (2)	241 YENGEYIIROGARG	DTFFIISKGKVNVTREDSPN	E D P V F L R T L C K G D W F G E F A L O	1 F 0 5 X A) G N R R T A N 1 X S I G Y S D L F C L S KD 577

FIG. 4 Amino-acid sequence similarity between a region of the cGMP-gated channel and the cGMP-binding domains of cGMP-dependent protein kinase (cGK). Amino-acid residues 498–577 (in one-letter code) of the cGMP-gated channel are aligned with the sequences of the two cGMP-binding domains of bovine lung cGK²³ (referred to as cGK (1) and cGK (2)); numbers of the amino-acid residues at both ends are given. Identities between the cGMP-gated channel and cGK (1) or cGK (2) are indicated by solid boxes, and conservative substitutions⁴⁷ by dotted boxes. Between the cGMP-gated channel and cGK (1), 32% of the aligned positions are occupied by identical

and the M_r estimated by SDS-PAGE¹² (63K) may be attributed to the inaccuracy inherent in the measurement of M_r of membrane proteins by the electrophoretic method²¹ and/or to proteolytic modification *in vivo* or during preparation of the channel.

Similarity matrix analysis²² of the cGMP-gated channel detects no extensive amino-acid sequence similarity to other ionic channels, membrane transporters and G-protein-coupled receptors of known sequence. The deduced amino-acid sequence of the cGMP-gated channel was analysed for local hydropathicity and predicted secondary structure (Fig. 3). There are six hydrophobic segments with predicted secondary structure (referred to as H1-H6). These segments comprise ~20 aminoacid residues. Segments H4 and H5 probably represent transmembrane α -helices. Some or all of the four remaining segments may also span or interact with the membrane (see below). Segments H2, H3, H5 and H6 contain one to four charged (mostly negative) residues and segment H4, one histidine residue. In segments H2 and H5, the charged and polar side chains are clustered mainly on one side of the α -helix.

The region comprising 80 amino-acid residues located on the C-terminal side of segment H6 shows significant amino-acidsequence similarity to the two tandem cGMP-binding domains of cGMP-dependent protein kinase²³ (Fig. 4), segments of which are similar in sequence to the regulatory subunits of cAMPdependent protein kinase and the *Escherichia coli* catabolite gene activator protein (CAP)^{23,24}. The dimeric crystal structure of CAP with two bound molecules of AMP has been determined²⁵. By analogy with CAP, the side chain of Arg 559 of the cGMP-gated channel may interact with the phosphate group, and the side chain of Glu 544 may interact with the 2'-OH group of the ribose ring of cGMP. Moreover, glycines 508, 520, 539 and 543 are conserved in cGMP-dependent protein kinase as well as in CAP, and each of the corresponding glycines in CAP is located at the end of a β -strand or in a bend between two β -strands. Thus, it is suggested that these amino acids are important for the correct formation of the cGMP-binding pocket. The putative cGMP-binding region of the cGMP-gated channel is partly hydrophobic, which may indicate that a portion of the binding pocket is buried in the membrane. The region preceding segment H1 contains the consensus sequence Asn-Lys-X-Asp (residues 119-122), where X can be any amino acid, for binding the guanine ring of GTP/GDP (ref. 26), although these amino-acid residues are part of a long sequence composed of mostly Lys, Glu and Asp residues. It is possible that these residues may also be involved in the cGMP-binding site.

The relatively low hydrophobicity of segments H1, H2, H3 and H6 makes it difficult to predict the number of transmembrane segments and thus the transmembrane topography of the cGMP-gated channel. It is reasonable to assign the putative cGMP-binding region, located on the C-terminal side of segment H6, to the cytoplasmic side of the membrane. The cGMP-gated channel does not possess a hydrophobic N-terminal sequence indicative of a typical signal sequence. On the assumption that the N terminus is located on the cytoplasmic side, there should be an even number of transmembrane segments. By analogy residues, and 57% by identical or conserved residues; the probability that the sequence similarity occurs by chance²² is 1.2×10^{-11} . The corresponding degrees of similarity between the cGMP-gated channel and cGK (2) are 30% and 51% (probability, 5.2×10^{-11}). For evaluating sequence similarity, a continuous stretch of gaps (–) has been counted as one substitution regardless of its length. Filled arrowheads indicate identities, and open arrowheads conservative substitutions between the cGMP-gated channel and the cyclic AMP-binding domain of the *E. coli* CAP; the comparison is based on the sequence alignment of CAP with cGK (2) (ref. 23).

with other channels of known sequence, we favour the view that the cGMP-gated channel has either six (like the potassium channel²⁷ or one repeat of the sodium channel²⁸ and the calcium channel^{29,30}) or four transmembrane segments (like the ryanodine receptor³¹ or subunits of neurotransmitter-gated ionic channels^{28,32}), as schematically shown in Fig. 5*a*, *b*. The possibility that there are only two transmembrane segments (probably H4 and H5) cannot be excluded. The proposed models are consistent with one of the five potential *N*-glycosylation sites (Asn 423 for the model in Fig. 5*a* or Asn 327 for the model in Fig. 5*b*) being located on the extracellular side of the membrane; the remaining potential sites are asparagines 90, 91 and 177.

Functional expression

To examine whether the cloned cDNA actually encodes a functional cGMP-gated channel, we performed expression studies. The cDNA, including the poly(dA) tract, was linked with the bacteriophage SP6 promoter and transcribed *in vitro* with SP6 polymerase. The resulting mRNA was injected into *Xenopus* oocytes, which were incubated for 2-3 days before being tested.

Inside-out patches of large diameter³³ excised from injected *Xenopus* oocytes showed a large cGMP-activated outward current (membrane voltage V of +50 mV; Fig. 6a). The cGMP-activated current was reversible and its amplitude remained

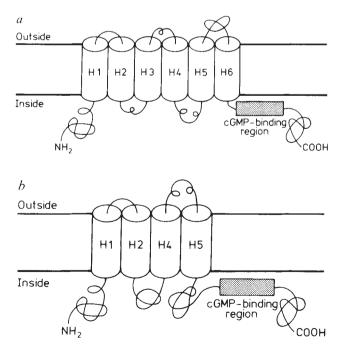


FIG. 5 Proposed transmembrane topography of the cGMP-gated channel. The presence of six (*a*) or four (*b*) putative transmembrane segments (indicated by cylinders) is assumed, which are displayed linearly; in *b*, it is possible that H3 and/or H6, instead of H1 and/or H2, span the membrane. The putative cGMP-binding region is also shown.

constant for several seconds, suggesting that the channel does not desensitize or inactivate in the presence of the agonist cGMP. All the 16 oocytes tested (5 injections, 20 patches) except one showed cGMP-activated currents, maximal amplitudes at saturating cGMP concentrations ($\geq 200 \,\mu$ M) being 2–5 nA. No such response to cGMP was detected in three non-injected oocytes (5 patches) and in two oocytes (7 patches) that had been injected with mRNA specific for a potassium channel³⁴. The cGMP-activated current was reversibly blocked to one half by ~40 μ M *l-cis*-diltiazem (data not shown).

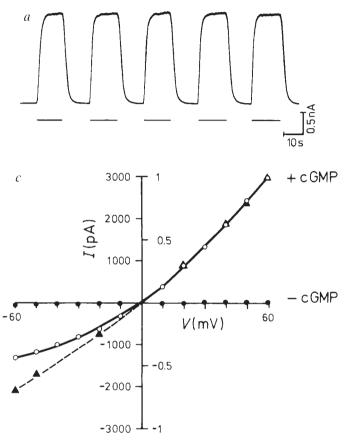
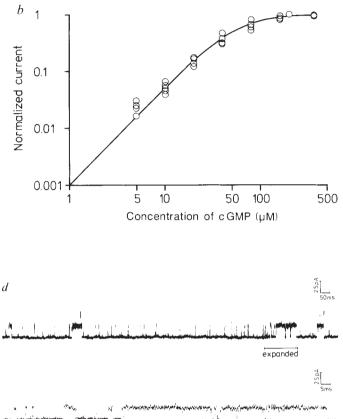



FIG. 6 Properties of the cGMP-gated channel expressed in Xenopus oocytes injected with mRNA derived from the cloned cDNA. a, Macroscopic currents activated by 200 μ M cGMP. Inside-out patch. Membrane voltage (V)= +50 mV. The duration of perfusion with cGMP is indicated by bars. b, cGMP-dependence of the current amplitudes normalized from five experiments in double logarithmic coordinates. The solid line has been drawn according to the equation in the text with $K_{1/2}$ =52.3 μ M and n=1.75 (V = +50 mV in four experiments and V = -40 mV in one experiment). c, Current-voltage relation of the cGMP-gated channel. Macroscopic current in the presence (open circles) and absence (filled circles) of 200 µM cGMP; single-channel current in the presence of 5 µM cGMP (filled triangles). Numbers on the left-hand side of the ordinate refer to macroscopic currents, and numbers on the right-hand side to single-channel currents. d. Traces of single-channel currents activated by 5 μ M cGMP at V = +120 mV. Insideout patch. Outward current upwards. Low-pass filtering at 2 kHz (-3 dB). Mean amplitudes of single-channel currents from two experiments were $2.38\pm0.21\,\text{pA}$ and $2.48\pm0.22\,\text{pA}$ (mean $\pm\,\text{s.d.};$ from ~800 and $\sim1,\!200$ single-channel events, respectively). The lower trace represents an expanded form of the current trace indicated by a bar. At least two classes of elementary currents are observed; smaller current events are indicated by arrowheads.

METHODS. The pSP65 recombinant (pRCG1) carrying the complete proteincoding sequence for the cGMP-gated channel was constructed as follows. The 457-base-pair (bp) *Nde*I(2,332)/*Nde*I (vector) fragment derived from clone pCG24 was cleaved by *Pvu*II, and the resulting 227-bp *Nde*I(2,332)/*Pvu*II(vector) fragment was ligated with the *Hpa*I(268)/ *Nde*I(2,332) fragment from pCG24. The 2,292-bp ligation product was isolated by agarose (1%) gel electrophoresis and cloned into the *Hinc*II site of pSP65 in the same orientation as the SP6 promoter to yield pSP65CG. Figure 6b shows dose-response relations for the cGMP-activated macroscopic current from five different patches. The solid curve was calculated according to:

$$I/I_{\rm max} = C^n/(C^n + K_{1/2}^n)$$

where I/I_{max} is the normalized current amplitude, C the cGMP concentration, $K_{1/2}$ the concentration of cGMP at which the current amplitude is half-maximal, and n the Hill coefficient ($K_{1/2} = 52.3 \,\mu\text{M}$; range 43-71 μM and n = 1.75; range 1.5-2.1). This result indicates that the channel is cooperatively activated

Finally the Rsal (-176)/Hpal(268) fragment from pCG101 was cloned into the Hincll site of pSP65CG to yield pRCG1. mRNA specific for the cGMP-gated channel was synthesized in vitro⁴⁸, using Hindlll-cleaved pRCG1 as template; transcription was primed⁴⁹ with the cap dinucleotide m⁷G (5')ppp(5')G (0.5 mM). The size (2.8 kb) of the mRNA, estimated by agarose (1.2%) gel electrophoresis, agreed with that expected from the structure of the plasmid. The mRNA was injected into Xenopus laevis oocytes (mRNA concentration, $0.4 \ \mu g \ \mu l^{-1}$; average volume injected per oocyte, ~50 nl). Macroscopic and single-channel current measurements on excised inside-out patches³³ were made after incubation³³ of injected oocytes for 2–3 days, followed by removal of the follicular cell layer and the vitelline membrane⁵⁰. The solution in the pipette and the perfusion medium contained (in mM): 100 KCI, 10 EGTA-KOH and 10 HEPES-KOH (pH 7.2). For determination of relative ion permeabilities from the reversal voltage ($\textit{V}_{\rm rev}$) under biionic conditions, KCl in the pipette solution was replaced by NaCl, and KCl in the perfusion medium by the respective ion species. In both solutions, HEPES-KOH buffer was replaced by Tris-HCI buffer, and the EGTA concentration was lowered to 1 mM. Measurements in situ on excised patches of isolated bovine rod outer segments confirmed that replacement of HEPES-KOH by Tris-HCl did not affect the cGMP-stimulated membrane current (H. Lühring, unpublished observation). Junction potentials varied between +2.0 and -1.9 mV and were neglected. cGMP-containing solution was applied by pressure through a glass pipette in front of the patch pipette. Macroscopic currents were either acquired on-line using a PDP 11/73 computer or stored on magnetic tape for off-line analysis. Single-channel currents were filtered at 2 kHz (-3 dB), stored on magnetic tape and analysed off-line on an Atari personal computer using standard single-channel analysis programs (Instrutech, Mineola, New York).

by cGMP. The $K_{1/2}$ and *n* values are similar to those observed in situ in amphibian^{4,10,11} and mammalian⁸ rod photoreceptors and cAMP failed to activate the channel at 1 mM concentration.

In the absence of divalent cations the I-V relation of the macroscopic current was slightly outward rectifying (Fig. 6c, open circles) and closely matches the I-V relation observed in excised patches from amphibian³⁵ and mammalian⁸ rod photoreceptors under similar conditions. The leak current recorded in the absence of cGMP was negligible (filled circles). The difference in voltage dependence between the macroscopic current (open circles) and the single-channel current (filled triangles) was small and became noticeable only at negative voltages. The small difference may be attributed to a weak voltage-dependence of gating and is in agreement with the observations in situ^{10,11} and in the reconstituted system¹⁴

Figure 6d shows single-channel currents (V = +120 mV)recorded in the absence of divalent cations and at a low cGMP concentration. The mean current amplitude in 100 mM KCl was 2.4 pA corresponding to a single-channel conductance of 20 pS, but smaller conductance sublevels (8-10 pS) were also observed. The single-channel conductance observed in $situ^{10,11}$ is 25 pS and that in the reconstituted system¹⁴ is 26 pS. At the membrane voltage used, periods with brief channel openings (mean open time $\tau_0 \sim 1$ ms) were interrupted by much longer openings ($\tau_0 \geq$ 10 ms), indicating that the time distribution of opening is not uniform and may be described by at least two exponential time constants.

The ion selectivity of the expressed cGMP-gated channel was examined by measurement of the reversal voltage V_{rev} under symmetrical biionic conditions. The following values for V_{rev} were obtained (mean \pm s.d.; *n* indicating the number of experiments): NH₄⁺, +27.3 ± 1.7 mV (n = 3); K⁺, +0.35 ± 1.3 mV (n =3); Li^+ , $-11.6 \pm 1.7 \text{ mV}$ (n = 5); Rb^+ , $-14.6 \pm 2.5 \text{ mV}$ (n = 5); Cs^+ , $-25.6 \pm 1.6 \text{ mV}$ (n = 4). Permeability ratios P_i/P_{Na} calculated from V_{rev} according to the Goldman-Hodgkin-Katz equation yielded the following series of ion selectivity:

> $NH_{4}^{+} > K^{+} \sim Na^{+} > Li^{+} > Rb^{+} > Cs^{+}$ = 2.93: 1.01: 1: 0.63: 0.56: 0.37

Received 8 September; accepted 31 October 1989

- 1. Fesenko, E. E., Kolesnikov, S. S. & Lyubarsky, A. L. Nature 313, 310-313 (1985).
- Stryer, L. A. Rev. Neurosci. 9, 87-119 (1986).
- 3. Kaupp, U. B., Hanke, W., Simmoteit, R. & Lühring, H. Cold Spring Harbor Symp. quant. Biol. 53, 407-415 (1988)
- Yau, K.-W. & Baylor, D. A. A. Rev. Neurosci. 12, 289-327 (1989).
 Nunn, B. J. Physiol., Lond. 394, 17P (1987).
- Menini, A. & Torre, V. Biophys. J. 55, 61a (1989).
- Furman, R. E. & Tanaka, J. C. *Biophys. J.* 55, 455a (1989)
 Lühring, H. & Kaupp, U. B. *Biophys. J.* 55, 377a (1989).
- 9. Stern, J. H., Kaupp, U. B. & MacLeish, P. R. Proc. natn. Acad. Sci. U.S.A. 83, 1163-1167 (1986).
- Haynes, L. W., Kay, A. R. & Yau, K.-W. Nature **321**, 66–70 (1986).
 Zimmerman, A. L. & Baylor, D. A. Nature **321**, 70–72 (1986).
- 12. Cook, N. J., Hanke, W. & Kaupp, U. B. Proc. natn. Acad. Sci. U.S.A. 84, 585-589 (1987)
- Cook, N. J., Zeilinger, C., Koch, K.-W. & Kaupp, U. B. J. biol. Chem. 261, 17033-17039 (1986).
 Hanke, W., Cook, N. J. & Kaupp, U. B. Proc. natn. Acad. Sci. U.S.A. 85, 94–98 (1988).
- 15. Matesic, D. & Liebman, P. A. Nature 326, 600-603 (1987).
- 16. Shinozawa, T., Sokabe, M., Terada, S., Matsusaka, H. & Yoshizawa, T. J. Biochem. 102, 281-290 (1987)
- 17. Clack, J. W. & Stein, P. J. Proc. natn. Acad. Sci. U.S.A. 85, 9806-9810 (1988).
- 18. Applebury, M. L. Nature 326, 546-547 (1987)
- 19. Kozak, M., Nucleic Acids Res. 12, 857-872 (1984)
- 20. Mishina, M. et al. Nature 321, 406-411 (1986).
- 21. Grefrath, S. P. & Reynolds, J. A. Proc. natn. Acad. Sci. U.S.A. 71, 3913-3916 (1974).
- 22. Toh, H., Hayashida, H. & Miyata, T. Nature 305, 827-829 (1983)
- 23. Takio, K. et al. Biochemistry 23, 4207-4218 (1984).
- 24. Weber, I. T., Steitz, T. A., Bubis, J. & Taylor, S. S. Biochemistry 26, 343-351 (1987). 25. McKay, D. B. & Steitz, T. A. Nature 290, 744-749 (1981).
- 26. Dever, T. E., Glynias, M. J. & Merrick, W. C. Proc. natn. Acad. Sci. U.S.A. 84, 1814-1818 (1987).
- Jan, L. Y. & Jan, Y. N. Cell 56, 13-25 (1989). 27.
- 28. Numa, S. Harvey Lect. 83, 121-165 (1989)
- 29. Tanabe, T. et al, Nature 328, 313-318 (1987)

Similar relative ion permeabilities have been determined in excised patches from amphibian^{1,5-7} and mammalian⁸ rod photoreceptors.

Discussion

The primary structure of the rod photoreceptor cGMP-gated channel has been deduced by cloning and sequencing the cDNA. The predicted structure suggests the presence of multiple transmembrane segments, which may be involved in forming the channel portion. On the carboxyl side of the putative transmembrane region, there exists a segment of 80 amino acids which exhibits significant amino-acid sequence similarity to the cyclic nucleotide-binding regions of cAMP-binding proteins and in particular of cGMP-dependent protein kinase. This strongly suggests that the corresponding region of the cGMP-gated channel is also involved in binding of cGMP. The channel is coopera-tively activated by at least three^{10,11}, probably more^{3,12,13} cGMP molecules. Moreover, cGMP-dependent protein kinase which is cooperatively stimulated³⁶ by two cGMP molecules per monomer³⁷, contains two tandem homologous cGMP-binding regions, whereas the cGMP-gated channel contains only one such region. This indicates that the cGMP-gated channel is a homo-oligomeric complex, each constituent polypeptide having a single cGMP-binding site.

The expression of cGMP-gated channel activity by injection of Xenopus oocytes with specific mRNA derived from the cloned cDNA identifies the encoded polypeptide as the cGMP-gated channel protein of mammalian rod photoreceptors and suggests that this polypeptide alone is sufficient to form the functional channel with properties similar to those observed in situ. In particular the expressed channel is cooperatively activated by cGMP with a $K_{1/2}$ of several tens of micromolar; it represents a channel that does not discriminate very well between alkali cations and whose major single-channel conductance is 20 pS; the macroscopic cGMP-activated current exhibits a weak outward directed rectification, probably due to the weak voltagedependence of gating and the almost linear I-V relation of the single channel; finally, the channel is blocked by the drug l-cis-diltiazem.

- 30. Mikami, A. et al. Nature 340, 230-233 (1989)
- 31. Takeshima, H. et al. Nature 339, 439-445 (1989)
- 32. Barnard, E. A., Darlison, M. G. & Seeburg, P. Trends Neurosci. 10, 502-509 (1987).
- 33. Stühmer, W., Methfessel, C., Sakmann, B., Noda, M. & Numa, S. Eur. Biophys. J. 14, 131-138 (1987).
- 34. Stühmer, W., Stocker, M., Sakmann, B., Seeburg, P., Baumann, A., Grupe, A. & Pongs, O. FEBS Lett. 242, 199-206 (1988). 35. Yau, K.-W., Haynes, L. W. & Nakatani, K. in Membrane Control of Cellular Activity (ed. Lüttgau,
- H. C.) 343-366 (Gustav-Fischer, Stuttgart, 1986). 36. McCure, R. W. & Gill, G. N. *J. biol. Chem.* **254**, 5083-5091 (1979).
- 37. Corbin, J. D. & Døskeland, S. O. J. biol. Chem. 258, 11391-11397 (1983).
- Kawakami, K. *et al. Nature* **316**, 733–736 (1985).
 Kubo, T., *et al. Nature* **323**, 411–416 (1986).
- Okayama, H. & Berg, P. *Molec. cell. Biol.* 2, 161–170 (1982).
 Tanabe, T. *et al. Nature* 315, 242–245 (1985).
- Noda, M. et al. Nature 295, 202-206 (1982). 42.

- Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499-560 (1980).
 Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463-5467 (1977).
 Kyte, J. & Doolittle, R. F. J. molec. Biol. 157, 105-132 (1982).
- Chou, P. Y. & Fasman, G. D. A. Rev. Biochem. 47, 251–276 (1978).
 Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. in Atlas of Protein Sequence and Structure Vol. 5, suppl. 3 (ed. Dayhoff, M. O.) 345-352 (National Biomedical Research Foundation, Silver Spring, Maryland, 1978).
- 48. Melton, D. A. et al. Nucleic Acids Res. 12, 7035-7056 (1984)
- Konarska, M. M., Padgett, R. A. & Sharp, P. A. Cell 38, 731-736 (1984).
- 50. Methfessel, C. et al. Pflügers Arch. 407, 577-588 (1986).

ACKNOWLEDGEMENTS. We thank Dr Atsushi Mikami for help in some experiments. This investigation was supported in part by the Ministry of Education, Science and Culture of Japan, the Mitsubishi Foundation, the Japanese Foundation of Metabolism and Diseases and the Deutsche Forschungsemeinschaft SFB 171, and by fellowships from the Japan Society for the Promotion of Science (U.B.K.) and the Feodor Lynen Program of the Alexander von Humboldt-Stiftung (U.B.K.).