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Introduction 

Embryonic development is regulated by a co-ordinated 
programme ofintra- and inter-cellular signals which com- 
bine to shape the final body. Each organism contains 
within its genome a developmental programme allowing 
the faithful reproduction of the species. It is known that 
many of the cellular processes involved in organizing the 
embryo are conserved amongst vertebrates, suggesting 
that widely divergent species may share similar strategies 
for pattern development. One genetic element underpin- 
ning these strategies may be the homeobox, a conserved 
regulatory domain that encodes a 60-amino acid helix- 
containing motif [1] originally found in many Drosophila 
genes which control pattern development. Consequently, 
the identification of similar motifs in higher animals leads 
to the belief that the homeobox may also be an impor- 
tam regulatory domain for vertebrate development. The 
evidence implicating homeobox-containing genes in pat- 
tern formation in vertebrates, while still preliminary, is 
clearly consistent with this role. 

Homeoboxes as development determinants 

A number of vertebrate Hox genes have been isolated 
and their expression during embryogenesis character- 
ized. While many of the Antennapaedia-type homeobox 
genes are expressed in the central nervous system (CNS) 
and in mesodermal structures of the mouse embryo, each 
gene has a unique region of expression that partially 
ovedaps the expression region of other homeobox-con- 
raining genes. The overlapping expression of these genes 
in the neural tube and adjacent mesoderm may indicate 
a combined action in these tissues. 

Homeobox-containing genes may regulate pattern devel- 
opment in the vertebrate embryo in the following ways: 
(1) Homeobox-containing genes may direct specific 

cellular differentiation programmes within a dis- 
crete tissue in the developing embryo. Hence, 
they would act directly in concert with other 
genes in processes such as organogenesis. 

(2) The overlapping of expression in a particular re- 
#on  of the embryo may provide information on 
positron, possibly co-ordinating the fates of dif- 
ferent cell types within a defined region. For ex- 

ample, a particular pattern of gene expression 
might inform a cell of its position in the em- 
bryo or ensure migrating cells find their correct 
targets. Obviously, the overlapping expression of 
a small number of these genes would provide a 
very precise set of position determinants. 

The fact that some Hox genes are also specifically ex- 
pressed in certain adult tissues indicates a possible role 
in cellular differentiation. For example, the expression of 
the murine homologue of the caudal gene (Cdx-1) in 
the mouse embryo is consistent with a role in cell dif- 
ferentiation rather than determination of position. Cdx-1 
is expressed primarily late in murine embryogenesis and 
in the adult. Moreover, expression of Cdx-1 is restricted 
to the epithelium of the large intestine during formation 
of the intestinal villi [2]. A role in differentiation is also 
consistent with Cdx-1 expression in adult gut epithelium 
because of the continual proliferation and differentiation 
of gut epithelia that occurs in the adult. The next step in 
analysing the role of Cdx-1 will be to determine whether 
it  is expressed in stem cells or in one of the four types 
of differentiated epithelium found in the intestine. 

The expression pattern of the mouse engrafted gene En-2 
suggests a role in both loc~liTntion and cellular differenti- 
ation. The mouse En-2gene contains a homeobox of the 
engrailed-type and is expressed from early embryogene- 
sis throughout development into adulthood [3]. In the 
8-12 day embryo, En-2 is expressed in a band of neu- 
ral tissue in the metencephelon, and subsequently in the 
structures derived from this region, namely, the develop- 
ing cerebellum, pons, periaqueductal gray and coUicoli. 
In the neonate and adult strong expression of En-2 is 
still observed in the granule layer of the cerebellum and 
in the ports. While the region.specific expression of En-2 
in the early mouse embryo suggests that it has a role in 
delineating a sfmcific subdomain in the neural tube and 
brain, later expression in the cerebellum of the neonate 
may reflect an alternative role in cell differentiation. In- 
terestingly, the restricted regional expression of the En-2 
gene at the junction of the hindbrain and midbrain has 
also been conserved in zebra fish (Njolstad and Fjose, 
Bi~bem Biopbys Res Commun 1988, 157:426-432) and 
in the chick [4]. 

The expression of the An~type homeobox-contain- 
ing genes in vertebrates indicates that they may have a 
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Hg. 1. Structure of the homeotic gene and Hox gene loci in Drosphila, mouse and human. Genes that have been identified in each cluster 
are aligned according to position in the locus and with those members of the other loci sharing the greatest homology. Reproduced 
with the kind permission of Dr M. Kesse. 

role in determining region-specific events. In the mouse 
and human genome, four clusters of the Antp-class of  
homeobox-containing genes have been identified [5-8]. 
Recently, attention has been drawn to the fact that within 
these vertebrate Hox-gene clusters each gene shares con- 

siderable homology with its putative Drosophila counter- 
part on chromosome 3 (reviewed in [9], see also Fig. 1). 
Furthermore, in Drosophila, the arrangement of labpd- 
DFd-Scr-Anq>Ubx-abd A-abd B genes on chromosome 
3 parallels their anterior-posterior sequence of expres- 
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sion in the Drosoploila embryo. It now appears that genes 
within the Hox-gene clusters of the mouse show a sire - 
lar relationship. Thus the nearer to the 3' end a gene is 
in a cluster, the more anterior its border  of expression 
is in the developing embryo. For example, in the murine 
Hax-2 cluster, Hox 2. 7is expressed in hindbrain regions, 
while the anterior borders of  Hox 2.4 and Hox 2.5 ex- 
pression extend only to the cervical region of  the CNS 
[7]. This relationship also holds for the Hox5cluster [8]. 
Hox 5.2 and Hox 5.3 are expressed in the lower thoracic 
and lumbar regions of  the neural tube with the border 
of  Hox 5.2 being slightly anterior to that of  Hox 5.3. In 
contrast, Hox 5.1, which occupies a more 3' position in 
the cluster, is expressed in the neural tube as far forward 
as the myelencephalon [10]. These results support the 
argument that the vertebrate Angrtype homeobox-clus- 
ters and their Drosophila counterparts are derived from a 
common ancestral locus. Furthermore, the arrangement 
of  the Hox gene clusters and their concomitant over- 
lapping pattern of  expression seems to have been con- 
served as a mechanism for determining position along 
the rostral-caudal axis of  the vertebrate embryo. 

The expression of  many Hox genes in the neural tube 
and adjacent mesoderm of  vertebrates is not surprising, 
since the general body plan of vertebrates would appear 
to necessitate co-ordination of positional cues between 
these tissues. One gene that is expressed with similar 
boundaries in neural and mesodermal tissue is the Xena 
p u s X I H b o x  I gene whose expression is confined within 
a narrow anterior-posterior band [11]. Expression is re- 
stricted to neuroectoderm and mesodermal tissue with 
the same anterior and posterior boundaries. De Rober- 
tis et al. [12] argue that at the early neurala stage of 
Xenopus the position of  mesoderm is determined and 
can induce similar positional cues in the adjacent neu- 
roectoderm. This process, termed 'homeogenetic induc- 
tion', may be a mechanism for co-ordinating positional 
signals in different tissues within the embryo. In contrast 
to Xenopus, there is little evidence for homeogenetic in- 
duction in the mouse. While expression of  the Hox 1.5 
gene in the neuroepithelium and mesoderm is in close 
register in the early mouse embryo (Gaunt, Development 
1987, 102:51-60), expression of the endogenous Hox 1.1 
gene and a transgene containing lac Z under the control 
of  Hox 1.1 regulatory sequences are not in register 7-9 
days post-coitus (Dressier and Pfischel, personal commu- 
nication). Certainly, later in embryogenesis, nearly all the 
known Hox genes are clearly expressed 'out of register' 
in these two tissues. 

Pax  3, a new member of  the paired-type homeobox gene 
family has been identified and its expression suggests 
that it  may regulate morphogenetic gradients along the 
ventral-dorsal axis of  the embryo. Analysis of Pax-3 in 
the developing neural tube shows that it is expressed in 
the neuroepithelium only in the dorsal half of the neural 
tube. Restriction of  Pax-3 transcripts to those neuronal 
progenitor ceils along the entire dorsal half of  the neu- 
ral tube raises the possibility that Pax-3 plays a role in 
dividing the CNS into sensory and motor compartments 
(Goulding et aL, unpublished observations). 

The development of  extremities such as the limb requires 
a unique set of positional determinants, some of which 
may be shared by body and limb alike, whilst others 
might be region specific. Homeobox-containing genes 
are among the potential candidates for regulating posi- 
tional cues in the developing limb. In Xenopus and mice, 
the homologue of  the human Hox5 .2gene  is expressed 
in all four limb buds as a gradient as well as in caudal 
regions of the neural tube and somitic mesoderm. Maxi- 
mal expression of Hox 5.2 is observed in the distal and 
posterior mesenchyrne of the limb bud in contrast with 
X1 Hbox I which is expressed only in the anterior mes- 
enchyme of the forelimb [13]. The Hox Z1 gene shows 
a more limited pattern of  expression in the mouse. In 
121/a-day embryos, Hox Z1 is expressed predominantly 
in the most distal region of the limb bud, but also in 
the maxillary and mandibular processes that are derived 
in part from neural crest ceils [14,15]. Interestingly, Hox 
Z1 expression is restricted to neural crest ceils prior to 
and during neural tube closure. Whether Hox Z1 acts to 
influence the fate of  these neural crest cells needs to be 
clarified. The fact that Hox 1.1, X1 Hbox 1, Hox S.2 and 
Hox 7.1 are all expressed in characteristic gradients dur- 
ing limb bud formation may be indicative of an involve- 
ment in processes that polarize the limb bud. It may be 
now possible, by manipulating their expression pattern 
in limb bud cultures, to test whether these genes act as 
morphogenetic gradients in the limb. 

Functional analysis of homeobox genes in the 
vertebrate 

In Drosophila the functional analysis of  homeobox-con- 
raining genes in pattern formation has been greatly facil- 
itated by the plethora of genetic mutants available. With 
the advent of  molecular biology many of  these mutants 
have been identified and characterized. Data from genetic 
analyses of  the Hox genes in vertebrates are limited and 
as a result their exact role in vertebrate development re- 
mains unclear. 

Altering the normal morphogenetic gradients by over-ex- 
pression of Hox genes at ectopic sites in the embryo is 
one approach to testing their role during embryogenesis. 
Such studies may resolve the question of  whether the ob- 
served patterns of Hoxgene  expression impart positional 
information to the developing embryo. 

In Xenopus the functions of two homeobox-containing 
genes have been analysed by injecting synthetic messen- 
ger RNA (mRNA) encoding them into Xenopus embryos. 
Using this approach, it  has been shown that over-expres- 
sion of  the Xbox-lA gene, which is expressed predom- 
inantly in the somatic mesoderm, can disrupt somAtoge- 
nesis. In particular, over-expression of  Xhox-lA resulted 
in dysplasia of  somitic muscle tissue with the consequent 
loss of  the metameric pattern of muscle bundles adjacent 
to the neural tube. The differentiation of  somatic meso- 
derm into muscle ceils was not grossly altered, but the 
myotome on the affected side of the embryo appeared to 
be incorrectly orientated on the anterior-posterior axis. 
This supports the argument that Xhox-lA acts as a posi- 
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tional signal during somitogenesis rather than a differen- 
tiation signal [16]. 

A second Xenopus homeobox-containing gene has also 
been analysed using this approach. Xbox-3 is particu- 
larly interesting, since there is a gradient of expression 
of ~Jox-3 along the anterior-posterior axis of the Xeno- 
pus  embryo. This means that it is probable that 
Xbox-3 has a role in positional determination. In- 
jecting )05ox-3 mRNA into prospective anterior regions 
of the early embryo resulted in alterations to the normal 
gradient of Xbox-3 mRNA during gastmlation and neu- 
ralation. The anterior region, which normally has a low 
level of Xbox-3 mRNA, had morphological defects in em- 
bryos injected with Xbox-3 [17]. Interestingly, the phe- 
notype observed with Xbox-3 over-expression mimicked 
the defects caused by treatments that prevent prospective 
anterior mesodermal cells from migrating to their correct 
position during gastrulation. Both these studies support 
the theory that Hox genes act as positional determinants 
for mesodermal cells during Xenopus development. 

The roles of two developmentally regulated homeobox- 
containing genes have also been analysed in mice by 
causing over-expression during embryogenesis. In one 
study, the mufine Hox 1.4 gene was over-expressed in 
transgenic animals by introducing multiple copies of it 
under the control of its putative endogenous promoter 
[18]. Although very little expression of the transgene was 
detected in testes, which normally express Hox 1.4, there 
were elevated levels of the transgenic mRNA with the cor- 
rect spatial distribution in the CNS and lung. More impor- 
tantly, a high level of Hox 1.4 mRNA was observed in the 
gut mesenchyme, a site where no expression of Hox 1.4 
had been detected previously. The consequence of the 
over-expression of Hox 1.4 in the gut mesenchyme was 
that newborn mice developed a fatal condition known as 
congenital megacolon. Previously congenital megacolon 
has been associated with a severe deficiency in myenteric 
ganglia, neural crest derivatives that migrate into the gut 
mesenchyme. It is, therefore, possible that over-expres- 
sion of Hox 1.4 in these mice interferes with the posi- 
tional signals that normally guide the neural crest pro- 
genitors of myenteric ganglia to their target. This would 
suggest that Hox-gene expression may act as a positional 
cue for migrating neural crest cells. 

Neural crest cells also appear to be a target for ectopic 
expression of the Hox 1.1 gene in transgenic mice. When 
ubiquitous expression of the Hox 1.1 gene in mice was 
achieved using the 13-actin gene promoter, a number of 
abnormalities were found in newborn transgenic mice, 
i.e. cleft palate and non-fused pinnae (Bailing et aL, Cell 
1989, 58:337-347). 

It should be noted that the mesenchyme tissue that con- 
tributes to all the affected structures in these transgenic 
mice is derived at least in part from first arch neural crest 
cells. Morphological abnormalities in structure derived 
from the occipital somites are also observed in these 
mice (Kessel, unpublished results). This may be a con- 
sequence of ectopic expression of Hox 1.1 in the ante- 
rior somitic mesoderm and the subsequent alteration of 
the normal morphogenetic gradients in this region. The 

evidence to date is consistent with a role for homeobox- 
containing genes as positional determinants in the verte- 
brate embryo. Not only are they expressed in restricted 
patterns during embryogenesis, but altering these pat- 
terns of expression also has severe effects on develop- 
merit. 

Loss of gene function by homologous recombination to 
inactivate a particular gene is an alternative approach 
to the study of the function of homeobox-containing 
genes in development (Thomas and Capecchi, Cell 1987, 
51:503-512). While much progress has been made in de- 
veloping these potentially powerful techniques, germ line 
transmission still remains a problem [19,20]. 

Homeoboxes are transcriptional factors in 
vertebrates 

Recently, homeodomains have been identified in known 
eukaryofic transcription factors. The ubiquitous octamer- 
transcription factor (OTF)-I and the B cell specific 
OTF-2 each contain a functional homeobox domain 
[21-24]. Both OT/Zl and 07/:-2 bind to a conserved 
octamer motif ( A T ~ T )  present in a variety of pro- 
mote#enhancer regions. The homeodomains in OTF-2 
and OTF-1 are part of a larger conserved region known 
as the POU domain. While the homeodomain in each 
of these transcriptional factors is only distantly related 
to the Angrtype homeodomain, the OTF-1 and OTF-2 
proteins share a high degree of homology (87%) over 
the entire POU domain. At present, it is unclear exactly 
how the POU box works in these proteins, although, at 
least in the case of OTF-1, it is important in DNA bind- 
ing [25]. In other homeobox-containing proteins, the 
homeodomain appears to be sutiicient for DNA binding. 
Two other proteins, unc-86 and Pit-1 or growth hormone 
factor-I, also contain the POU domain [26-28]. The func- 
tion of unc-86 is in development in Caenorbabditis ele, 
gans to regulate neuronal cell differentiation, while Pit- 
1 is a rat-pituitary-specific transcriptional factor, regulat- 
ing transcription in lactotrophic and somatotrophic cell 
types. It is possible that Pit-1 acts in these cell types to 
regulate certain aspects of their development, since ex- 
pression of Pit-1 is seen in the rat brain during embryoge- 
nesis [29]. 07t7-2 is also expressed in the complete CNS 
during embryogenesis [29] (Hatzopoulos et al., unpub- 
lished observations) with high levels in the diencephalon 
at 12 days post-coitus as well as in discrete regions of 
the adult brain. A family of octamer-specific binding fac- 
tors has been identified in the mouse embryo (Scholer 
et al., F~IBOJ 1989, 8:2543-2550), and their character- 
ization will yield further insights into the mechanism of 
homeobox action during development. At present, struc- 
tural analysis of the homeodomain only strengthens the 
conclusion that the homeobox is an integral part of these 
transcriptional regulators. When the predicted consensus 
structure for a number of known homeobox domains is 
analysed, it shows striking structural homology with the 
k-repressor protein (Tsonis et al., Biocbem Biopl~,s Res 
Commun 1988, 157:100-105) [30]. These structure pre- 
dictions indicate that the homeodomain forms three or- 
helices, very similar to bacterial repressor molecules. 
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The circle has closed, but with a small twist. While it 
is clear that the homeobox is a functional domain in 
transcription factors, not all these transcription factors 
are cell-type specific. For a while we believed that the 
homeobox might be a unique motif encoded by devel- 
opmental control genes. Rather the reverse now appears 
to be true: the homeobox is a conserved protein domain 
that has been used to good effect by a number of pro- 
teins to regulate development. 

Conclusions and future prospects 

Many gaps remain in our knowledge of  how homeobox- 
containing proteins act during development. Clearly, we 
are dealing with a complex group of transcriptional reg- 
ulatory proteins; however, it remains to be determined 
how they function in embryonic development. Analysis of  
their role in development will require not only a mecha- 
nistic approach to their mode of action, but also an un- 
derstanding of how they interact with and influence the 
biological processes that shape the embryo. The struc- 
tural similarity of the homeodomain to the whelical mo- 
tifs in the ). repressor and cro proteins provides an im- 
portant clue to how homeo-proteins might work. It is 
well known that in L phage, cro and the X repressor 
(cI) play a pivotal role in executing the lysis-lysogeny de- 
cision by acting as a transcriptional switch mechanism. 
The subsequent transcriptional activation or repression 
of  early tytic genes determines the growth pathway X 
will follow. It is noteworthy that many of  the Drosophila 
homeodomain proteins activate or repress transcription 
of  potential candidate genes [31,32], although it is un- 
clear whether these observations can be extrapolated 
to vertebrates. Nevertheless, if homeodomain proteins 
are important components of transcriptional switching in 
vertebrates, then the X model allows us to understand 
how differing local concentrations of homeodomain pro- 
teins might activate or repress the transcription of  their 
developmental target genes. 
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