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Abstract

In this work a newly proposed approach to study nuclear reactions relevant for nucleosynthesis under
plasma conditions resembling astrophysical sites is investigated from a theoretical point of view. The
scheme under investigation makes use of intense optical lasers to accelerate ions via the target normal
sheath acceleration scheme. The ions produce nuclear reactions in a second laser-induced target plasma.
We describe this process with the help of a fluid model for plasma expansion and take into account the
effect of electron screening of the nuclear reaction in the target plasma. In particular, we estimate the
neutron yield of the 7Li(d,n)24He reaction in the laser experimental scenario. This reaction might be the
key to explain the remaining lithium production problem of standard big bang nucleosynthesis. The
predicted yields show that the 7Li(d,n)24He reaction in plasma should be observable for the first time in
a laboratory experiment under laser parameters available today.

Diese Arbeit beschreibt aus theoretischer Sicht einen neu vorgeschlagenen Ansatz zur Untersuchung von
für Nukleosynthese bedeutsamen Kernreaktionen in Plasma unter Bedingungen wie sie in der Astro-
physik von Bedeutung sind. Die untersuchte Anordnung nutzt intensive optische Laser zur Beschleuning
von Ionen durch den Target-Normal-Sheath-Acceleration-Prozess. Die Ionen verursachen Kernreak-
tionen in einem zweiten laser-induzierten Plasma. Wir beschreiben diesen Prozess mit Hilfe einens
Flüssigkeits-Modells der Ausdehnung von Plasma und berücksichtigen den Elektronen-Abschirm-Effekt
in der Kernreaktion im Zielplasma. Insbesondere schätzen wir den Neutronenertrag der Reaktion
7Li(d,n)24He im Laserexperiment Szenario ab. Diese Reaktion ist möglicherweise von entscheidender
Bedeutung zur Erklärung des verbleibenden Lithium-Problems in der standard Big-Bang-Nukleosynthese.
Der vorhergesagte Ertrag zeigt, dass die Reaktion 7Li(d,n)24He in Plasma zum ersten mal in einem Labor
Experiment unter heute verfügbaren Laserparametern beobachtbar sein sollte.
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Chapter 1

Introduction

Plasma is the most common form of ordinary matter known, making up over 99% of the visible universe.
The intergalactic, interstellar and interplanetary medium as well as solar winds consist mainly of diffuse
plasmas while stars are made of dense plasma. In the big bang cosmology the entire universe was a plasma
prior to the era of recombination several hundred thousand years after the big bang.
Effects characteristic to the plasma state are therefore important to correctly describe for example
the fusion reactions taking place in stars or the nucleosythesis during the early phase of the universe
(primordial nucleosnthesis). In this context, one of the most crucial effects is electron screening, meaning
that the free electrons in the plasma partially screen the Coulomb barrier between two nuclei, with a
resulting enhancement of the fusion reaction rate.

An example of a nuclear reaction in plasma that is important to astrophysics is the 7Li(d,n)24He
reaction. It was recently addressed by Coc et al. [5] as one of the most important reactions affecting the
Carbon-Nidrogen-Oxygen (CNO) abundances produced during the big bang nucleosynthesis (BBN).
Besides CNO, the 7Li(d,n)24He reaction rate also influences the Li abundance in the early universe and is
therefore interesting in the context of the so-called lithium problem, which describes the disagreement of
calculations and measurements of the primordial lithium abundance. Providing new experimental data
focused on the determination of the outgoing neutron flux is essential in order to up-grade our knowledge
of this process and consequently of the BBN. The critical temperature of about 1GeV will be affordable
by the PW laser facility of ELI-NP [9].

The proposed experimental setup is shown in Fig. 1.1. A first laser pulse impinges on a solid 7Li target
of several micrometers thickness. The ultraintense femtosecond laser pulse leads to the appearance of a
cloud of hot electrons at the rear surface of the target that accelerates the lithium ions through its electric
field. This mechanism is called Target Normal Sheath Acceleration (TNSA). The stream of lithium ions
expand along a cone, whose axis is normal to the lithium target surface, and impact on a deuteron plasma.
This plasma is generated through the irradiation of a second laser on a deuteron gas jet target. By choosing
the duration of the second laser pulse from 10−15 s up to 10−9 s one can obtain plasma temperatures
ranging from eV to keV [9].

In this thesis we calculate the neutron yield expected for the 7Li(d,n)24He reaction in such an experi-
ment. We do this for the two cases that the reaction takes place in plasma or in gas.

The thesis has the following structure. First, an introduction into the topic of primordial nucleosyn-
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thesis and in particular the so-called lithium problem is given, showing the relevance of the 7Li(d,n)24He
reaction. The next chapter is concerned with cross sections and reaction rates in astrophysics, introducing
the concept of the astrophysical S-factor, the Gamow peak and the screening factor. This is followed by a
chapter on the model that we use to describe the TNSA mechanism. In the end we present the results of
our numerical calculations of the neutron yield from the 7Li(d,n)24He reaction. The thesis concludes
with a Summary and Outlook.

Figure 1.1: experimental setup
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Chapter 2

Nuclear Reactions in Primordial
Nucleosynthesis

Primordial or Big bang nucleosynthesis (BBN) describes the production of the lightest nuclides via a
dynamic interplay among the four fundamental forces during the early phases of the universe. The BBN
is one of the three evidences for the Big-Bang model together with the expansion of the Universe and the
Cosmic Microwave Background (CMB). It is usually assumed to have taken place from ∼ 10 seconds to
∼ 20 minutes after the Big Bang when the universe was hot enough for the nuclear reactions in which
the lightest stable elements 4He, D, 3He and 7Li were produced to take place [5] . Nuclei heavier than
lithium were only produced in comparatively small quantities.

An overview over some of the most important reactions in primordial nucleosynthesis in given in
Fig. 2.1.

2.1 The Lithium Problem

The primordial abundances of the light elements 4He, D and 7Li are known from astrophysical obser-
vations. In the case of 4He one uses He emission lines from nearby metal-poor galaxies. Since 4He is
produced in stars alongside heavier elements, the primordial abundance (mass fraction) [6]

Yp ≈ 0.25

is gained through extrapolation to zero metallicity. It is affected by systematic uncertainties such as
plasma temperature or stellar absorption.

Deuterium can be measured directly at high redshift. Its most primitive abundance is determined
from the observation of distant neutral hydrogen gas clouds, on the line of sight of distant quasars. The
measured mass fraction is [6]

�

D
H

�

p
= (2.53± 0.04) · 10−5.

The primordial lithium abundance is deduced from observations of metall-poor stars in the halo
of our Galaxy. In these stars the lithium abundance is almost independent of metallicity, displaying
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Figure 2.1: Simplified BBN network displaying the important reactions for 4He, D, 3He, and 7Li (blue),
6Li (green), 9Be (pink), 10,11B (cyan), and CNO (black) production. Figure taken from Ref. [5]

.

the so-called Spite plateau (see Fig. 2.2). Because heavy elements (metals) increase with time as Galactic
nucleosynthesis proceeds, this plateau indicates that the lithium abundance in these stars is unrelated to
Galactic nucleosynthesis processes and thus is primordial [8]. This gives [6]

�

Li
H

�

p
= (1.6± 0.3) · 10−10.

These observations can be compared to the predictions of the standard BBN, which is a theory of
light-element production combining the Standard Model of particle physics with the standard cold dark
matter cosmology [8]. All the parameters that enter into standard BBN have been measured today. The
number of light neutrino families, the lifetime of the neutron important to weak reaction rate calculations
and many nuclear reaction rates have been measured in laboratories. In standard BBN, the abundances
are usually parameterised by the baryon-to-photon ratio η≡ nb/nγ , or equivalently the present baryon
densityΩb h2 ≡ωb . This quantity has been fixed by a series of precise measurements of cosmic microwave
background (CMB) anisotropies, for example by the Wilkinson Microwave Anisotropy Probe (WMAP)
[5] and most recently by the Planck space telescope [6] yielding

η= 6.10± 0.04,
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Figure 2.2: Lithium abundances versus the star’s metallicity in selected metal-poor Galactic halo stars.
The horizontal band gives the CMB prediction; the gap between this prediction and the plateau illustrates
the 7Li problem. Figure taken from Ref. [8].

ωb = 0.02225± 0.00016.

The abundance of several elements at times up to 104 s as predicted by standard BBN using the
parameters named above, is depicted in Fig. 2.5.

There is an overall agreement between predictions by the standard BBN using the CMB baryon
density and observations of light element abundances, except for 7Li (see Fig. 2.3). This phenomenon is
known as the lithium problem. Any model that tries to solve the lithium must reduce 7Li abundance
substantially, yet not perturb the other light elements unacceptably. There are three categories of possible
solutions to the lithium problem [8] :

(1) systematic uncertainties in astrophysical measurements of the lithium abundance and/or their
interpretation

(2) revised nuclear physics inputs to the BBN calculation, in the form of increased 7Li destruction via
novel reaction pathways or by resonant enhancement of otherwise minor channels

(3) new physics beyond the Standard Model of particle physics or large changes to the cosmological
framework used to interpret light-element data

The 7Li(d,n)24He rate is an important input into the standard BBN calculation of the lithium abun-
dance. The measurement of this rate under extreme plasma conditions, as in the experiment discussed in
this thesis, can therefore contribute to the second category named above. The effect of increasing the
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Figure 2.3: Light-element predictions using the CMB determination of the cosmic baryon density. The
purple curves are the BBN+CMB predictions. The yellow curves show astronomical measurements of
the primordial abundances, for all but 3He where reliable primordial abundance measures do not exist.
The cyan curve shows the CMB determination of 4He. Figure from Ref. [6].

7Li(d,n)24He reaction rate by a factor of 1000 is depicted in Fig. 2.4. Even though the final abundances
are left unchanged, the peak 7Li abundance at t ≈ 200s is reduced by a factor of about 100.

The sensitivity study in Ref.[5] has furthermore shown that the reaction 7Li(d,n)24He has a con-
siderable effect on the Carbon-Nitrogen-Oxygen (CNO) nucleosynthesis. How a changed rate of the
7Li(d,n)24He reaction would influence the primitive CNO abundance according to Ref. [5] is shown in
Table 2.1.

f 0.001 0.01 0.1 10 100 1000
Xi/Xi0 1.66 1.65 1.55 2.80 · 10−1 5.99 · 10−1 2.18 · 10−2

Table 2.1: Ratio of the standard BBN abundance Xi 0 of CNO and the abundance Xi when the reaction
rate of 7Li(d,n)24He is changed by factor f .
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Figure 2.4: Standard big bang nucleosynthesis production of H, He, Li, Be, and B isotopes with the
7Li(d,n)24He reaction rate from Ref. [4] (dashed lines) and with the same rate multiplied by a factor of
1000 (solid lines). Ωb h2 =WMPA means that the baryon density for this calculation taken from WMAP.
Figure from Ref. [5]
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Figure 2.5: Standard BBN production of different elements as a function of time. Ωb h2 =WMPA means
that the baryon density for this calculation taken from WMAP. Figure from Ref. [5]
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Chapter 3

Reaction Rate in Plasmas

The center of mass energy of two colliding nuclei with the reduced mass µ = m1m2/(m1 + m2) and
relative velocity v = v1− v2 is

E =
1
2
µv2. (3.1)

The cross section σ for a reaction is an area that describes the probability of a pair of nuclei to
react. Classically, the geometrical cross section is equal to the combined geometrical area π(r1+ r2)

2 of
the projectile with radius r1 and the target with radius r2. In quantum mechanics, the sum of radii has
to be replaced by the reduced de Broglie wavelength, so that the geometrical cross section is inversely
proportional to the center-of-mass energy of the reaction [1]

σgeom∝ λ2 =
�

h
µv

�2

∝ 1
E

. (3.2)

In order to fuse, the nuclei have to overcome the Coulomb potential

VC (r ) = Z1Z2e2 r−1 (3.3)

at nuclear radius r = rn , where the strong and attractive nuclear force comes into play. Since one can
assume E �VC (rn), the cross section is proportional to the probability P of a nucleus tunneling the
Coulomb barrier. For energy E =VC (rc ) the classical turning point is rc and the probability P of barrier
penetration (tunneling) is therefore given by the ratio of the square of the wave function Ψ at distances rn

and rc

σ∝ P =
|Ψ(rn)|2

|Ψ(rc )|2
. (3.4)

Solving the Schrödinger equation delivers [18]

P = exp
�

−2K rc

�

arctan(rc/rn − 1)0.5

(rc/rn − 1)0.5

�

−
rn

rc

�

(3.5)

with K =
p

2µ(VC (rn)− E)ħh−1. At low energies E � VC (rn), that is rn � rc , one can approximate
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Eq. (3.5) as follows

P = exp(−2πη); η= Z1Z2e2α
È

µ

2E
. (3.6)

The parameter η is called the Sommerfeld parameter and α is the fine-structure constant. Alternatively,
P can be expressed in terms of the Gibbs energy EG ,

P = exp

�

−
s

EG

E

�

; EG = (Z1Z2απ)
2µc2. (3.7)

Combining Eq. (3.2) and Eq. (3.4) leads to the cross section

σ(E) =
S(E)

E
exp (−2πη) , (3.8)

here S(E) is the astrophysical factor, which contains the strictly nuclear effects of the reaction after
barrier penetration. For non-resonant reactions, S(E) varies smoothly and much less rapidly with energy
than the cross section does. It is therefore a useful quantity if one wants to extrapolate data to low energies.

The reaction rate per particle pair is the product of the cross section and the relative velocity averaged
over all velocities

< σv >=
∫ ∞

0
Φ(v) σ(v)v dv, (3.9)

where the function Φ(v) gives the probability of the relative velocity being v and fulfills
∫∞

0 Φ(v) dv = 1.
The number of reactions per volume and time between nuclei of species x and y with densities nx and ny

is then given by
R= nx ny

�

1+δxy

�−1
< σv > . (3.10)

Without the Kronecker delta δxy all reactions would be counted twice if the nuclei are of the same species.
In thermodynamic equilibrium the velocities of both nuclei follow a Boltzmann distribution and Eq. (3.9)
turns into [18]

< σv >=

√

√

√
8
πµ
(kB T )−3/2

∫ ∞

0
exp

�

− E
kB T

�

E σ(E) dE . (3.11)

Inserting the cross section from Eq. (3.8) into Eq. (3.11) leads to

< σv >∝
∫ ∞

0
S(E)exp

�

− E
kB T

−
s

EG

E

�

dE . (3.12)

Because S(E) varies relatively slowly with energy, the energy dependence of the integrand in Eq. (3.12) is
dominated by the two exponential terms. The Boltzmann factor vanishes at high energy and the barrier
penetrability goes to zero at low energy so that the product of both leads to a peak (so-called Gamow
peak) of the integrand at energy Ep = (

p

EG kB T /2)
2
3 [18]. This formula is widely used in order to

determine the effective energy region in which most of the nuclear reactions occur at given temperature.

11



3.1 Screening Effect

The electrostatic potential of an ion in a plasma causes a polarization in the surrounding electrons and
nuclei so that part of the ion charge is shielded by a cloud of free electrons. The Coulomb barrier that
two reacting nuclei have to overcome is therefore lowered and the nuclear reaction rate increased. This is
called the screening effect.

At temperatures and densities relevant to primordial nucleosynthesis the screening is weak, that is the
Coulomb interaction energy between a nucleus and the surrounding charge cloud is small compared to
the thermal energy.

We now derive the screening factor for the the case of weak screening following the description in
Ref. [20].

We can assume all atoms to be completely ionized: The ratio of the ionization potential of a K-shell
electron in a hydrogen-like atom of charge Z to the mean thermal energy is

Iz =
1

4πε0

Ze2

2a0

1
kB T

� 1, (3.13)

where a0 = 4πε0ħh
2/me Ze2 is the Bohr radius for such an atom.

The reaction rate in the plasma of temperature T is proportional to

∫ ∞

0

�p
E exp

�

− E
kB T

��

P (E) σnuc(E) dE . (3.14)

The term in square brackets in this integrand is the Maxwell-Boltzmann factor, P is the barrier
penetration factor and σnuc the nuclear factor. The latter depends on the details of the interaction after
barrier penetration.

Two colliding nuclei of charge Z1 and Z2 each carry a cloud of free electrons with them through the
plasma, screening part of their charge. Therefore, the total interaction energy between the two nuclei at
distance r12 can be written as

Ut ot (r12) = Z1Z2e2/r12+U (r12). (3.15)

The integrand of Eq. (3.14) has a sharp maximum at the energy Emax >> kB T . Let rn be the nuclear
radius and rc the classical turning point at energy

Emax =
Z1Z2e2

rc
. (3.16)

We define the parameter a as the average inter-particle distance given by

4πa3ρNA= 1, (3.17)

where ρ is the density in gcm−3 and NA the Avogadro number.The charge cloud surrounding a nucleus
has radius R> a.

We assume rc � R. P essentially only depends on Ut ot for distances r12 between rn and rc . U (r12)
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must be small for r12� R and approach a constant value U0 ∼ Z1Z2e2/R as r12 becomes small compared
with R. It follows that

rc

R
∼

U0

Emax
� 1. (3.18)

Because U (r ) is only needed for r12� rc it can be replaced by a constant potential U0 =U (r = 0). The
penetration factor P and nuclear factor σnuc without electron screening at energy E are then equal to
the correct factors with screening at an energy E +U0. Therefore, Eq. (3.14) turns into

∫ ∞

0

p

E +U0 exp
�

−
E +U0

kB T

�

P (E) σnuc (E)dE . (3.19)

Since Emax � U0 we can assume
p

E +U0 ≈
p

E . With these approximations the effect of electron
screening on the reaction rate is expressed by the factor

gs c r = exp
�

−
U0

kB T

�

(3.20)

with U0 = Z1Z2e2/R.

In order to find an expression for R, we first write the interaction energy between nuclei of charges
Z1 and Z2 at distance r in the following form

Ut ot (r ) = Z1Z2e2Ψt ot (r ); Ψt ot (r ) = r−1+Ψ(r ). (3.21)

The charge Z1 is fixed at r = 0. We introduce the electrostatic potential V (r ) = Z1eΨ(r ) and the electric
charge densityρ̄(r ), which are averaged over all particles except the nucleus at the origin r = 0. They are
related via the Poisson equation:

∇2[Z1eΨt ot (r )] =−4πρ̄(r )− 4πZ1eδ (3)(r ). (3.22)

Let z and A be the charge and mass number of the main constituent of the gas. Taking into account the
Boltzmann factors of electrons and nuclei, the charge density is

ρ̄(r ) =
ρNAze

A
exp

�

−Z1ze2Ψt ot (r )
kB T

�

− exp
�

Z1ze2Ψt ot (r )
kB T

�

. (3.23)

In the case of weak screening the two exponential factors in Eq. (3.22) are small for r in the order of
magnitude of a or larger. Expanding those exponential factors and substituting Eq. (3.23) into Eq. (3.22)
gives

∇2Ψ(r ) = 4πρNA
z2+ z

A
e2

kB T

�

1
r
+Ψ(r )

�

. (3.24)

The solution of Eq. (4.5) is

Ψ(r ) = r−1(exp[−r/R]− 1); Ψ(0) =−R−1, (3.25)
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with

R=
�

kB T
4πρNAe2

�
1
2

ζ −1 =
�

kB T
e2/a

�
1
2

a2ζ −1, (3.26)

and

ζ =
s

z2+ z
A

. (3.27)

Inserting Eq. (3.26) into Eq. (3.20) gives the screening factor for weak screening if one assumes that
the electrons are non-degenerate. Non-degeneracy means that the ratio of Fermi energy and thermal
energy D = EF /kB T is much smaller than one. For non-relativistic electrons, the Fermi energy is

EF =
ħh2

8π2m
(3π2NAξ ρ)

2
3 , (3.28)

with the the average number of electrons per atomic mass unit

ξ =
∑

i

xi zi

Ai
, (3.29)

where xi is the fractional abundance by mass of nuclei of charge zi and mass Ai .
We now consider weak screening in case of an arbitrary degree of electron degeneracy, that is an

arbitrary ratio D = EF
kB T . Let f (η) be the Fermi-Dirac function,

f (η) =
∫ ∞

0

p
x [exp(x −η)]

1
2 dx. (3.30)

If the electrons at point r experience the interaction energy Ue , the ratio of the actual density and the
field-free density is f (η−Ue/kB T )/ f (η), where f ′ is the derivative of f and η is given by f (η) = 2

3 D
3
2 .

If a < r ∼ R then Ue � kB T for weak screening. With a Taylor expansion of f (η−Ue/kB T ) up to the
second term, the ratio of actual density to field free density becomes

f (η−Ue/kB T )
f (η)

= 1−
f ′(η)
f (η)

·
Ue (r )
kB T

. (3.31)

This gives the general form of the quantity ζ from Eq. (3.26)

ζ =
�

∑

i

xi

z2
i

Ai
+
�

f ′

f

�

∑

i

xi
zi

Ai

�
1
2

. (3.32)

Thus, the final result for the screening factor in a weakly screened plasma is

gs c r = exp
�

Z1Z2e2

R · kB T

�

, (3.33)

with R from Eq. (3.26) and ζ from Eq. (3.32). We will therefore multiply our calculated number of
neutrons resulting from the reaction 7Li(d,n)24He with this screening factor to take into account that the
reaction is taking place in a plasma.
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Chapter 4

Target Normal Sheath Acceleration

Let us assume in the following a scenario in which a strong, PW laser hits on a solid-state target composed
of light-Z elements. The laser irradiation generates a current of hot electrons at the front side of the target
that eventually reaches the rear side. There, as the hot electrons attempt to escape out of the target, the
charge unbalance generates a sheath field normal to the rear surface that accelerates the ions. This scheme
is known as Target Normal Sheath Acceleration (TNSA). TNSA was intensively studied in the last years;
experiments and models show that this acceleration scheme works very well in the intensity domain
between 1018− 1020 Wcm−2 [17, 13].

In this section, we introduce a model describing the TNSA scheme that is based on the fluid model of
plasma expansion into a vacuum studied in Ref. [15]. The model from Ref. [15] is an isothermal, fluid
model, in which the charge separation effects in the collisionless plasma expansion can be studied. In this
model, at time t = 0, a plasma is assumed to occupy the half-space x < 0. The ions are cold and initially
at rest with density ni = ni0 for x < 0 and ni = 0 for x > 0 with a sharp boundary. The electron density
ne is continuous and corresponds to a Boltzmann distribution

ne = ne0 exp
�

eΦ
kB Te

�

, (4.1)

where Te is the electron temperature, Φ the electrostatic potential and e the electron charge. We assume
quasi-neutrality ne = Zni in the plasma.

The potential Φ is described by the Poisson equation

ε0∂
2Φ/∂ x2 = e(ne −Zni ), (4.2)

and the initial condition Φ(−∞) = 0.
The ion velocity vi is then given by the equations of continuity and motion:

(∂ /∂ t + vi∂ /∂ x)ni =−ni∂ vi/∂ x, (4.3)

(∂ /∂ t + vi∂ /∂ x)vi =−(Ze/mi )∂ Φ/∂ x. (4.4)
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For times x + cs t > 0, Eqs. (4.1), (4.2),(4.3) and (4.4) are solved by the the self-similar expansion

ne = Zi ni = ne0 exp
�

− x
cs t
− 1

�

, (4.5)

vi = cs +
x
t

, (4.6)

and the corresponding self-similar electric field

Es s =
kB Te

ecs t
. (4.7)

In the equations above, mi is the ion mass and cs is the ion sound speed,

cs =

√

√

√
ZkB Te

mi
. (4.8)

Based on the self-similar expansion [Eqs. (4.5)- (4.7)] and numerical solutions of Eqs. (4.1)- (4.4), Mora
obtained in Ref. [15] a very good approximation for the electric field at the ion front,

Efront(t ) = 2
Æ

ne0kB T /ε0
1

q

2exp(1)+ω2
pi t 2

. (4.9)

This equation is compared to experimental results in Fig. 4.2.
Integrating d

d t vfront = ZeEfront/mi gives the velocity of the ion front

vfront(t )≈ 2cs ln(τ+
p

τ2+ 1), (4.10)

where the ion plasma frequencyωpi =
p

ne0ZkB Te/mi is used to normalize the time

τ =
ωpi t

p

2exp(1)
. (4.11)

The charge distribution resulting from this model can be seen in Fig. 4.3 at timeωpi t = 50. There
are two layers of positive surface charge density, one around the position x = −cs t and a second one
just on the left of the ion front. Just right of the ion front there is an electron cloud with charge density
σ =−ε0Es s .

The fluid model from Ref. [15] is isothermal and would thus predict endless ion acceleration. To
take into account the progressive transfer of energy from the fast electrons to the ions one may therefore
introduce a phenomenological maximum acceleration time tacc depending on the laser pulse duration
τlaser. According to Ref. [10], the approximation tacc ∼ 1.3τlaser matches well with experimental results.

Using Eq. (4.10), the maximum (cutoff) energy of the ions is then

Emax =
mi

2
v2

front(t = tacc ) = 2Z1kB Te

h

ln
�

tp +
q

t 2
p + 1

�i2
, (4.12)
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where tp is the normalized acceleration time

tp =
ωpi tacc
p

2exp(1)
. (4.13)

In most of the experiments, a preformed plasma (preplasma) is present in front of the target owing
to the long-duration, low-level laser energy reaching the target before the main pulse. The electrons are
accelerated into the target following the irradiation by the main pulse. As the electrons are accelerated
over the laser pulse duration and spread over the surface of the sheath Ssheath, one has

ne0 =
Ne

cτlaserSsheath
, (4.14)

where Ne is the total number of electrons. The surface of the sheath Ssheath is given as

Ssheath =π(r0+ d tanθ)2. (4.15)

The quantity Ssheath depends on the half-angle divergence (θ ∼ 25 ◦) of the hot electron inside the
target [10], the target thickness d and the initial radius r0 of the zone over which the electrons are
accelerated at the target front surface, that is, the laser spot. For given laser power P and laser intensity I
this radius can be calculated via

r0 =
s

P
πI

. (4.16)

The model predicts a number of accelerated ions per energy and surface given by [10]

dN
d E
=

ni0cs taccSsheath
p

2EE0

exp

 

−
√

√

√
2E
E0

!

, (4.17)

with E0 = ZkB Te .
In order to obtain the cutoff energy and the energy spectrum of the ions, the density ne0 and

temperature Te of the electrons must be known. The electron temperature is found numerically [23]
and experimentally [14] to be given by the laser ponderomotive potential,

kB Te = me c2





√

√

√

1+
Iλ2

1.37 · 1018
− 1



 , (4.18)

where me is the electron mass, I is the laser intensity in Wcm−2, and λ is the laser wavelength in
micrometers. As shown in Ref. [10], the total number of electrons accelerated into the target is

Ne =
f Elaser

kB Te
, (4.19)

where Elaser is the laser energy and f is the fraction of laser light that is absorbed into the preplasma.
According to a recent fit of experimental results, the following dependence of the fraction f on the laser

17



intensity can be adopted [22, 7, 11]

f =





Iλ2

4.3 · 1021 W µm2

cm2





0.2661

. (4.20)

This fit was shown to be adequate from 2 · 1018 to 2 · 1020 Wµm2 cm−2 ; beyond 2 · 1020 Wµm2 cm−2 the
absorption is leveling off or even falling [7].
Fig. 4.4 shows that the TNSA model described above fits quite well the experimental results. We will use
this model to calculate the energy spectrum of the Lithium ions that were accelerated by laser irradiation
on the primary target.
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Figure 4.1: Charge density at timeωpi t = 50 Figure from Ref. [15].

Figure 4.2: Electric field at the ion front as a function of time. The empty circles correspond to the
numerical results and the full line to the theoretical formula [Eq. (4.9)]. Figure from Ref. [15].

Figure 4.3: Energy spectrum per unit surface as a function of the energy normalized to ZkB Te . The
dotted lines correspond to the prediction of the self-similar solution [Eq. (4.17)] and the full line to
numerical results. Figure from Ref. [15].
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Figure 4.4: Calculations using the fluid model (assuming 20 µm-thick targets, a 10 µm FWHM laser spot
size and a 0.5 ps laser pulse duration) and experimental data (circles and squares). (a) Maximum proton
energy as a function of laser pulse duration. The intensities are in units of Wcm−2. (b) Number of
protons in a 1 MeV bin around 10 MeV as a function of laser intensity multiplied by the laser wavelength
squared. The last parameter is chosen as it governs the hot electron temperature. Figures taken from
[10].
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Chapter 5

Numerical Results

We now estimate the number of neutrons that would be produced in the experimental setup described
in the introduction. We calculate this for different laser power, intensity and pulse duration and also
vary the thickness of the primary target and the temperature of the secondary target. Fix parameters are
the laser wavelength λ= 800 nm as well as the thickness dD = 10 µm and density nD = 1021 cm−3 of the
deuteron target.

First, we use Eq. (4.17) to calculate the energy spectrum of the lithium ions as they leave the primary
target. The spectrum for one set of laser parameters is shown in Fig. 5.1. The different cut-off energies as
calculated via Eq. (4.12) are listed in Table 5.2.

0 1 2 3 4 5

5.0 ×1011

1.0 ×1012

1.5 ×1012

Li energy [MeV]

d
N
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E
[M

e
V
⁻
¹]

Figure 5.1: Spectrum of lithium ions as function of the lithium energy for the parameter set no.2 in
Table (5.2)

.
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5.1 Nuclear cross section data

In order to calculate the reaction rate, we need the data of the cross section for the reaction 7Li(d,n)24He.
For very low energies there are no measurements of the cross section itself but extrapolations of the
astrophysical S-factor, which then give the cross section via Eq. (3.8). For the energy range E ≤ 0.05 MeV
we take from Ref. [19]

S(E) = 80 mbMeV− 37mb · E

and from Ref. [12] for 0.05 MeV< E ≤ 0.10 MeV the S-factor

S(E) = 151 mbMeV− 1020mb · E .

The cross section in the range 0.104 MeV ≤ E < 1.68 MeV, 0.477 MeV ≤ E < 3.806 MeV and
2.15 MeV ≤ E < 8.524 MeV was measured in Refs. [3], [21] and [16], respectively. The data given
in Ref. [21] and Ref. [3] are the differential cross section per solid angle at only one specific angle, so
that the approximation σ ≈ 4πd σ/dΩ has to be used. According to Ref. [19], this is a reasonable
assumption for low energies. For high energies, however, this approximation seems to highly overestimate
the cross section, comparing to the result in Ref. [16]. We therefore use the cross section given in Ref. [3]
for 0.104 MeV≤ E < 0.477 MeV and the mean value of the measurements in Ref. [3] and Ref. [3] for
0.477 MeV ≤ E < 1.68 MeV and finally the data from Ref. [16] for high energies 2.15 MeV ≤ E <

8.52 MeV. The interpolation of these values is shown in Fig. 5.2.
One can observe two resonances at E ≈ 800MeV and E ≈ 600MeV. We assume that these resonances
correspond to the excited levels Jπ = 7

2
+

and Jπ = 5
2
−

of 9Be. The mass difference is

Q = m(9Be)−m(7Li)−m(D) = 16.69 MeV.

The sum of the Q-value and the center-of-mass energy of the reaction at the observed resonances therefore
equals the energies of these two exited states, which are given as 17.495±0.005 MeV and 17.300±0.005 MeV
in Ref. [2].

5.2 Neutron Number

In our one-dimensional model the center-of-mass energy is

E =
1
2
µ

�
√

√

√
2

mLi
ELi − vD

�2

, (5.1)

and the deuteron velocity follows a Gaussian distribution

Φ=
�

1
2π

�
1
2

exp

�

−
ṽ2

D

2

�

, (5.2)
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Figure 5.2: Cross section of 7Li(d,n)24He in the center-of-mass system.

where ṽD = vD/
p

kB T /mD is the deuteron velocity normed by the standard deviation
p

kB T /mD in
thermal equilibrium. The disrtribution is normed to one

∫ ∞

−∞
Φ(ṽD )dṽD = 1. (5.3)

We average the cross section at a given lithium ion energy over all deuteron velocities between±5 standard
deviations to find the mean cross section,

< σ > (ELi ) =
∫ 5

−5
σ(E)Φ(ṽD )dṽD . (5.4)

The number of neutrons Nn per unit lithium energy is then given by the product of the lithium spectrum
with the area density nD dD of the deuterons and the mean cross section

dNn

d ELi
=

dNLi

d ELi
· nD dD ·< σ > (ELi ). (5.5)

We finally calculate the total number of neutrons in the reaction by integrating the spectrum given
in Eq. (5.5) over all lithium energies from 0 to the cut-off energy [see Eq. (4.12)]. To account for the
electron screening effect in the plasma this result has to be multiplied by the screening factor gs c r from
Eq. (3.33). As can be seen in Table 5.1 and Fig. 5.3, this screening factor is negligibly different from 1 for
high temperatures.

In the second scenario, where the reaction does not take place in plasma but in the gas target, the
deuterons are cold enough to neglect the deuteron velocity vD . Thus, the averaged cross section in
Eq. (5.5) is replaced by the cross section at center-of-mass energy E = 1

2µ/mLi ELi . The lower deuteron
velocity in gases causes the difference between the neutron numbers in plasma compared to gas at high

23



T [eV] 100 104 105

density [ cm−3] 1021 1021 1021

screening factor 1.02633 1 1

Table 5.1: Screening factor at given deuteron temperature and density
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Figure 5.3: Calculated screening factor as a function of the plasma temperature.

plasma temperatures where the electron screening has no effect on the result [see Table 5.2]. These
differences are small, however, since the deuteron velocities are relatively small compared to the lithium
velocity even at high temperatures.

At low temperature (100 eV), where the screening is the strongest, the screening effect is still relatively
weak, causing only a difference of 2% between the neutron numbers in gas compared to plasma (see
Table 2.1).

The neutron spectra, both for reactions in plasma and in gas for several laser and target parameter,
are shown in Fig.5.4 to 5.13. One can see that the higher the temperature in which the reaction takes
place, the more washed out are the features of the spectrum. In particular, all the spectra in gas show
several local maxima that do not occur in the corresponding spectrum for plasma. This is because at
higher temperature the deuterons reach higher velocities so that at each lithium energy a broader range of
center-of-mass energies of the reaction are possible. The local maxima of the center-of-mass cross section
given in Fig. 5.3 are thus washed out when the average in Eq. (5.4) is taken.

As can bee seen in Table 5.2 the highest number of neutrons is achieved with parameter set no. 7. This
is due to the high laser puls length which causes a high TNSA cut-off energy and thus a high center-of-mass
energy in the reaction, corresponding to a high cross section.
From parameter sets 1-3 one can see that the neutron number increases with decreasing thickness of
the primary target. A thicker target yields more hot electrons under laser irradiation so that higher
ion energies are reached through the TNSA mechanism. The optimal value for the target thickness, at
which the TNSA process leads to the highest ion energies, depends on the prepulse duration, as has been

24



investigated experimentally [13]. For very thin targets a prepulse-induced plasma formation at the rear
side effectively suppresses TNSA.

25



1 2 3 4

0

20000

40000

60000

80000

Li energy [MeV]

d
N
/d

E
[M

e
V
⁻
¹]

1 2 3 4

0

20000

40000

60000

80000

100000

Li energy [MeV]

d
N
/d

E
[M

e
V
⁻
¹]

Figure 5.4: Neutron spectrum for parameter set no. 1 for reaction in plasma (top) or gas (bottom)
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Figure 5.5: Neutron spectrum for parameter set no. 2 for reaction in plasma (top) or gas (bottom)
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Figure 5.6: Neutron spectrum for parameter set no. 3 for reaction in plasma (top) or gas (bottom)
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Figure 5.7: Neutron spectrum for parameter set no. 4 for reaction in plasma (top) or gas (bottom)
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Figure 5.8: Neutron spectrum for parameter set no. 5 for reaction in plasma (top) or gas (bottom)

30



2 4 6 8 10 12

0

2 ×107

4 ×107

6 ×107

8 ×107

1 ×108

Li energy [MeV]

d
N
/d

E
[M

e
V
⁻
¹]

0 2 4 6 8 10 12

0

20000

40000

60000

80000

100000

Li energy [MeV]

d
N
/d

E
[M

e
V
⁻
¹]

Figure 5.9: Neutron spectrum for parameter set no. 6 for reaction in plasma (top) or gas (bottom)
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Figure 5.10: Neutron spectrum for parameter set no. 7 for reaction in plasma (top) or gas (bottom)
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Figure 5.11: Neutron spectrum for parameter set no. 8 for reaction in plasma (top) or gas (bottom)
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Figure 5.12: Neutron spectrum for parameter set no. 9 for reaction in plasma (top) or gas (bottom)
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Figure 5.13: Neutron spectrum for parameter set no. 10 for reaction in plasma (top) or gas (bottom)
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Chapter 6

Summary and outlook

We have described a possible experimental setup that can be used to measure reaction rates under extreme
plasma conditions by colliding two plasmas making use of the TNSA mechanism. The goal of this thesis
was to give an estimation of the number of neutrons that the 7Li(d,n)24 reaction would produce in such
an experiment.
In order to do that, we have used an one-dimensional, isothermal, fluid model of plasma expansion into
vacuum to describe the TNSA process and thereby find the lithium ion energy that would be achieved in
the experiment. For the reaction rate the effect of electron screening had to be considered. Given the high
temperature of the plasma the Coulomb interaction energy between a nucleus and the and the nearest few
electrons and nuclei is small compared to the thermal energy and the screening therefore weak. This has
simplified the theoretical description of the screening factor. We have then used this screening factor and
the cross section from experimental data to find the number of neutrons for the cases that the reaction
takes place in plasma or in gas.

The results show that the electron screening affects the neutron yield by no more than 2%. We
conclude that the 7Li(d,n)24 reaction is not well suited to experimentally study the effects of plasma
screening for nuclear reactions in astrophysical environments. However, the calculated neutron yields for
this reaction show that the experimental determination of the cross section in a plasma environment is
possible with currently available laser parameters. This would be the first time that one can reproduce in
the laboratory astrophysical plasma conditions. As an outlook, other nucleosynthesis-relevant reactions
that are more sensitive to the screening effect in plasmas could be investigated.
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