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Abstract

The paper shows that the Mertens-Zamir (1985) reconciliation of
belief hierarchy and type space models of incomplete information is
robust to the requirement that the topology on belief hierarchies re-
flect the continuity properties of strategic behaviour, taking account
of the fact that beliefs of arbitrarily high orders in agents’ belief hi-
erarchies can have a significant impact on strategic behaviour. When
endowed with one of the finer topologies proposed by Fudenberg et al.
(2006) and Chen et al. (2010, 2017), the space of belief hierarchies
is still homeomorphic to the space of probability measures (beliefs)
over exogenous data and other agents’ belief hierarchies. The canoni-
cal mapping from nonredundant abstract type spaces with continuous
belief functions to the space of belief hierarchies is an embedding if
the range of belief functions has the topology of convergence in total
variation.
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1 Introduction

The Program of Mertens and Zamir (1985). The theory of games
with incomplete information took off when Harsanyi (1967/68) introduced
the notion of an agent’s "type" as determining the agent’s payoff function
and the agent’s beliefs about exogenous parameters of the game and about
the other agents’ "types". Previously, there had been a sense that thinking
about incomplete information involves an infinite regress, beginning with
agents’ beliefs about the exogenous parameters and going on with their
joint beliefs about the exogenous parameters and the other agents’ beliefs
about the exogenous parameters, their joint beliefs about the exogenous pa-
rameters and the other agents’ joint beliefs about the exogenous parameters
and yet other agents’ beliefs about the exogenous parameters, and so on.
Harsanyi’s notion of a "type" as determining beliefs represented by a sin-
gle probability measure over exogenous parameters and over other agents’
"types" avoided the hierarchies of beliefs, beliefs about beliefs, etc. and
brought games of incomplete information into the domain of standard de-
cision theory and game theory. However, the gain in tractability from the
avoidance of the infinite regress came at a cost because the notion of "type"
is a black box and the notion that an agent’s "type" determines the agent’s
beliefs about exogenous parameters and about the other agents’ "types"
involves an element of circularity.!

Whereas Harsanyi left open the question how "types" are related to belief
hierarchies, Mertens and Zamir (1985) developed a mathematical framework
in which the belief hierarchies themselves can be interpreted as "types". In
this framework, Kolmogorov’s extension theorem implies that any coherent
belief hierarchy of an agent defines a unique probability measure over ex-
ogenous parameters and other agents’ belief hierarchies such that the finite-
order beliefs generated by this measure are exactly the finite-order beliefs
in the given hierarchy.? If belief hierarchies are interpreted as "types", the
mapping from an agent’s belief hierarchies to probability measures over ex-
ogenous parameters and other agents’ belief hierarchies that is provided by
Kolmogorov’s theorem can be interpreted as a mapping from "types" to joint
probability measures over exogenous parameters and other agents’ "types",
just like a belief mapping in Harsanyi’s approach. In this formulation, the el-
ement of circularity inherent in the notion of "type" is apparent rather than
real, an artefact of the infinite dimension of the spaces of belief hierarchies.

!For an extensive discussion of the strengths and weakness of thinking in terms of belief
hierarchies versus thinking in terms of type spaces, see Heifetz and Samet (1998).
2 A belief hierarchy is coherent if the beliefs of different orders are mutually compatible.



The analysis of Mertens and Zamir (1985) was subsequently generalized by
Brandenburger and Dekel (1993) and Heifetz (1993).

This body of work also shows that, if the beliefs of any order are given the
topology of weak convergence of probability measures (the weak™ topology)
and if belief hierarchies are given the product topology, then the mapping
from belief hierarchies to beliefs over exogenous data and other agents’ be-
lief hierarchies is a homeomorphism, one-to-one, bi-continuous, and onto.
Moreover, for any nonredundant abstract type space with belief functions
a la Harsanyi, the natural mapping from abstract types to hierarchies of
beliefs of different orders is an embedding, a homeomorphism between the
abstract type space and some subspace of the space of belief hierarchies. In
some of the literature, the space of belief hierarchies is therefore called the
universal type space.’

Heifetz and Samet (1998, 1999) have criticized this literature for what
they consider to be an excessive reliance on topological assumptions. The
use of Kolmogorov’s extension theorem presumes that the space of belief
hierarchies is treated as a product of topological spaces. Heifetz and Samet
(1999) show that, without topological assumptions, there may exist coherent
belief hierarchies that are not compatible with any probability measure over
exogenous parameters and other agents’ belief hierarchies. Also, without
topological assumptions, Heifetz and Samet (1998) show that with purely
measure theoretic tools one can still obtain a type space into which any other
type space can be mapped by a belief-preserving function. The elements of
this universal type space can be identified with coherent belief hierarchies,
but not all coherent belief hierarchies belong to it.

From a measure theoretic perspective, the Heifetz-Samet critique is im-
portant because it clarifies the conditions that underlie the interpretation of
belief hierarchies as types in the sense of the Harsanyi formalism.* From a

3See, e.g., Brandenburger and Dekel (1993), Dekel et al. (2006, 2007), Chen at al.
(2010, 2017). Mertens and Zamir (1985) refer to the space of belief hierarchies as the
universal belief space; they use the term universal type space for the space of measures
induced by a belief hierarchy. Heifetz (1993) as well as Heifetz and Samet (1998, 1999)
also refer to "types" as measures.

*However, from the perspective of Gul (1998), the precedence that Heifetz and Samet
give to "types" over coherent belief hierarchies would seem to be questionable. Whereas
Heifetz and Samet (1998) talk about the universal type space as a set of states of the
world, Gul (1998) seems to think about an agent’s belief hierarchy as a matter concerning
the agent’s own reasoning. His concerns about the metaphysical assumptions needed to
assume the existence of a common prior would also seem to apply to the objectification
inherent in thinking about the different agents’ reasonings as pertaining to a common space
of states of the world. The focus of Dekel et al. (2006, 2007) on interim rationalizable as
opposed to equilibrium outcomes can also be interpreted in this individualistic vein.



game theoretic perspective, however, the Heifetz-Samet critique is moot if
the topological assumptions that they criticize are needed for game theoretic
purposes anyway. One needs topological assumptions to study the continuity
properties of agents’ strategic behaviours, i.e., of the mappings that relate
the choices agents take to the data of their decision problems. The topolog-
ical assumptions that yield desirable continuity properties of behaviours are
also sufficient for the use of Kolmogorov’s extension theorem.

The homeomorphism theorems of Mertens and Zamir (1985) and sub-
sequent papers should be seen in this context. These theorems indicate
that, for the continuity properties of an agent’s strategic behaviour, it does
not make a difference whether one thinks about the agent’s information in
terms of belief hierarchies or in terms of beliefs over exogenous parameters
and other agents’ belief hierarchies. For any continuity property in one ap-
proach there is an equivalent continuity property in the other approach and
vice versa. Similarly, it does not make a difference whether one thinks about
strategic behaviour in terms of abstract types a la Harsanyi or in terms of the
belief hierarchies that are obtained by the natural mapping from abstract
types to belief hierarchies.

In the purely measure-theoretic approach of Heifetz and Samet (1998),
there is no analogue of these homeomorphism theorems. Without topologies,
one cannot study the continuity properties of strategic behaviour.

The Critique of Dekel et al. (2006). Continuity properties of be-
haviours depend on the topologies that are imposed on the different spaces.
The homeomorphism theorems of Mertens and Zamir (1985) and subsequent
papers rely on the assumptions that the beliefs of any order have the topol-
ogy of weak convergence of probability measures and that belief hierarchies
have the product topology. The question is whether this specification of
topologies provides a good basis for studying continuity. Dekel et al. (2006)
assert that the answer to this question is positive if one is only interested in
upper hemi-continuity and negative if one is also interested in lower hemi-
continuity.

Upper strategic convergence property: A behaviour correspondence is up-
per hemi-continuous if, for any convergent sequence of exogenous data and
any convergent sequence of choices induced by these data, the limit of the
sequence of choices belongs to the set of choices that the behaviour corre-
spondence stipulates for the limit of the sequence of exogenous data. For
the topologies used by Mertens and Zamir (1985), or for any finer topol-
ogy, for optimizing choices of an agent, this property follows by standard



arguments based on the maximum theorem.’ In games of complete infor-
mation, this upper hemi-continuity property of optimizing behaviour trans-
lates directly into an upper hemi-continuity property of Nash equilibrium
and rationalizable-outcome correspondences. Similarly, Dekel et al. (2006)
show, that, in games of incomplete information, for the indicated topology
on the space of belief hierarchies, the correspondence mapping belief hier-
archies into interim correlated rationalizable outcomes has what they call
the upper strategic convergence property (Theorem 2, p. 294). They also
show that this property fails to hold for any coarser topology on the space
of belief hierarchies (Theorem 1, p. 294).

Lower strategic convergence property: A behaviour correspondence is
lower hemi-continuous if, for any convergent sequence of exogenous data
and any choice that the behaviour correspondence stipulates for the limit
of the sequence of exogenous data, there exists a sequence of stipulated
choices associated with the sequence of exogenous data that converges to
the choice taken at the limit of the sequence of exogenous data. Unless best
responses are everywhere unique, optimizing behaviours will usually not be
lower hemi-continuous, nor will equilibrium and rationalizable outcomes.

However, following Fudenberg and Levine (1986), the literature has also
considered the lower hemi-continuity properties of solution concepts involv-
ing behaviours that are only e-optimal, so stipulated choices may fall short
of the optimum by less than €. If the e-optimality conditions are written
as strict inequalities, then in games of complete information, lower hemi-
continuity holds for e-optimal choices, as well as e-Nash equilibrium and
e-rationalizable outcomes.’

Given this observation, Dekel et al. (2006) have proposed to add what
they call a lower strategic convergence property to the desiderata for a topol-
ogy on the space of belief hierarchies of an agent. They formulate this lower
strategic convergence property in terms of interim correlated e-rationalizable
choices. In Dekel et al. (2007), they show that all types that have the same
hierarchies of beliefs also have the same set of interim correlated rationaliz-
able outcomes and conclude that this solution concept characterizes common
certainty of rationality in the universal type space.

However, the product topology on the space of belief hierarchies is too
coarse for the lower strategic convergence property. The reason is that, under

®See Berge (1959), p. 121.

®Dekel et al. (2006, 2007) specify e-best-response conditions as weak inequalities. In
this case lower hemi-continuity need not hold, but the lower strategic convergence property
implies that the mapping from parameters to the smallest € for which lower hemi-continuity
holds is lower semi-continuous.



the product topology, two belief hierarchies can be similar even though, for
very large k the associated beliefs of order k are very different. Therefore
the lower strategic convergence fails whenever the set of interim correlated
e-rationalizable outcomes is sensitive to differences in beliefs of arbitrarily
high orders. An example of this phenomenon is provided by Rubinstein’s
(1989) electronic mail game. Ely and Peski (2011) provide a systematic
analysis of its occurrence.

Finer Topologies. Because of this shortcoming of the product topol-
ogy, Dekel et al. (2006) and Chen et al. (2010, 2012) have proposed finer
topologies for the space of belief hierarchies. The strategic topology of Dekel
et al. (2006) is explicitly specified with reference to the desired upper and
lower convergence properties of interim correlated e-rationalizable choices,
with open sets defined so that these continuity properties hold over all strate-
gic games with the given exogenous parameter spaces. The uniform strategic
topology of Dekel et al. (2006) is defined so that these continuity properties
hold uniformly over all strategic games with the given exogenous parameter
spaces.

Whereas Dekel et al. (2006) specify their topologies with explicit ref-
erences to the desired continuity properties of strategic behaviour, Chen et
al. (2010, 2017) introduce a topology that is defined only in terms of the
beliefs of different orders in a hierarchy, without any reference to strategic
behaviour. In contrast to the product topology, which is not very sensitive to
beliefs of very high orders, their uniform weak topology gives equal weight to
beliefs of all orders. This property ensures the lower and the upper strategic
convergence properties of interim correlated e-rationalizable choices. Chen
et al. (2010, 2017) show that their uniform weak topology is actually equiv-
alent to the uniform strategic topology of Dekel et al. (2006). Given this
equivalence, I propose to use the simpler term uniform topology for both.

Chen et al. (2017) also show that a weaker form of uniform weak conver-
gence, uniform weak convergence on frames, is equivalent to convergence in
the strategic topology of Dekel et al. (2006). By restricting the uniformity
of convergence to frames, they allow for the fact that, unlike the uniform
strategic topology, the strategic topology of Dekel et al. (2006) does not
require strategic convergence to be uniform over all games.

Objective of this Paper. With the new topologies of Dekel et al
(2006) and Chen et al. (2010, 2017), it is not clear what becomes of the
homeomorphism theorems of Mertens and Zamir (1985) and Brandenburger
and Dekel (1993). What can be said about the continuity properties of the



mapping from the belief hierarchies of an agent to the set of probability mea-
sures over exogenous parameters and the belief hierarchies of other agents
that is provided by Kolmogorov’s extension theorem?

The change in topologies on belief hierarchies affects both the domain
and the range of this mapping. If we think about the domain of the mapping,
having more open sets works in favour of continuity; if we think about the
range of the mapping, having more open sets works against continuity.”
What can one say about the balance of these countervailing effects?

In fact, these two countervailing effects just cancel each other out: The
mapping from the belief hierarchies of an agent to the set of probability mea-
sures over exogenous parameters and the belief hierarchies of other agents is
a homeomorphism even if the spaces of belief hierarchies have the uniform
topology.

Measure Theoretic Issues. Before one can address this issue, how-
ever, one must deal with a fundamental difficulty. The Borel o-algebra that
is generated by the uniform topology is strictly finer than the Borel o-algebra
generated by the product topology. Kolmorogorov’s extension theorem only
provides for the assignment of probabilities to events in the Borel o-algebra
for the product topology. How then should we think about probabilistic
beliefs over exogenous data and other agents’ types when the space of other
agents’ types has the uniform topology?

One might think of extending the measure provided by Kolmogorov’s
theorem to the Borel o-algebra for the uniform weak topology. However,
under the usual set theoretic assumptions, such an extension need not exist.
Moreover, if an extension exists, it need not be unique.

The measure provided by Kolmogorov’s theorem may be concentrated
on an uncountable set that is discrete in the uniform topology and may
assign probability zero to singletons. Every subset of this uncountable dis-
crete set belongs to the Borel o-algebra for the uniform weak topology. An
extension of the measure provided by Kolmogorov’s theorem from the Borel
o-algebra for the product topology to the Borel o-algebra for the uniform
topology would therefore have to assign a probability to every subset of the
uncountable discrete set. This is incompatible with a standard axiom for
the set theory underlying most probability theory, that the cardinal ¢ of the

"The range of the belief mapping consists of measures over exogenous parameters and
other agents’ belief hierarchies. If the space of these measures has the topology of weak
convergence, i.e., convergence of integrals of bounded continuous functions, having more
open sets in the space of other agents’ belief hierarchies implies that there are also more
open sets in the space of such measures.



continuum is not atomlessly measurable.®

In view of this problem, I consider the o-algebras in the spaces of belief
hierarchies that are generated by the open balls, rather than all open sets, in
the uniform topology. ® Whereas any open set is an arbitrary union of open
spheres, the g-algebra generated by the open balls only allows for countable
unions and is strictly coarser than the o-algebra generated by the open sets,
i.e., the Borel o-algebra.

For the spaces of belief hierarchies, the o-algebra that is generated by
the open balls actually coincides with the o-algebra that is generated by the
product topology, as well as the o-algebra in the purely measure theoretic
construction of Heifetz and Samet (1998). Therefore, the construction of the
mapping from an agent’s belief hierarchies to probability measures over ex-
ogenous parameters and other agents’ belief hierarchies poses no difficulties.
Kolmogorov’s extension theorem provides for an unambiguous assignment
of probabilities to events in the specified o-algebra and for a well-defined
mapping from belief hierarchies of an agent to probability measures over
exogenous parameters and belief hierarchies of the other agents.

However, the domain of this mapping now has the uniform topology
rather than the product topology. The range of this mapping is given the
topology of weak convergence, defined in terms of convergence of integrals
of bounded continuous real-valued functions that are also measurable with
respect to the specified o-algebra.'® The set of continuous functions to be
considered depends on the topology, so with the uniform topology on the
spaces of other agents’ belief hierarchies, the set of such functions is larger
than with the product topology. The induced topology of weak convergence
is therefore strictly finer than the topology of weak convergence that in in-
duced when the spaces of other agents’ belief hierarchies have the product

8The question whether ¢ is atomlessly measurable is at the core of what Banach and
Kuratowski (1929) call the "probem of measure". Following Ulam (1930), for a long time,
the literature formulated the "problem of measure" in terms of the distinction between
"measurable" and "nonmeasurable" cardinals; see e.g., Appendix III in Billingsley (1968).
Nowadays the distinction "measurable/nonmeasurable" is used for the case where the
measures under consideration are two-valued. For the problem of measure as posed in
Banach and Kuratowski (1929), the terminology is "atomlessly measurable/not atomlessly
measurable". For more on the problem of measure, including its relation to the Continuum
Hypothesis, see the end of Section 5 below.

9These o-algebras were introduced by Dudley (1966,1967). He was concerned with
the formulation of convergence theorems for stochastic processes exhibiting jump discon-
tinuities. He introduced the o-algebras that are generated by open balls (in the uniform
topology) as an alternative to working with the Borel o-algebras for the Skorokhod topol-
ogy, as in Billingsley (1968).

"This topology was introduced by Dudley (1966, 1967). See also Pollard (1979).



topology. The greater fineness of the topology on the range exactly matches
the greater fineness of the topology on the domain of the Kolmogorov map-
ping so that the homeomorphism property of the mapping is preserved.

Embedding Abstract Type Spaces in the Universal Type Space.
I go on to study what the imposition of the uniform topology on the space
of belief hierarchies does to the Mertens-Zamir result that every abstract
type space with continuous belief functions can be embedded in the space
of belief hierarchies. Two results are obtained. First, not surprisingly, if the
ranges of the belief functions in an abstract-type-space model, i.e. proba-
bility measures over exogenous data and other agents’ types are given the
topology of weak convergence, the mappings from abstract type spaces to
belief hierarchies are not generally continuous when the spaces of belief hier-
archies have the uniform topology. Second, if the ranges of belief functions
in an abstract-type-space model are given the topology of convergence in
total variation, the mappings from abstract type spaces to belief hierarchies
are continuous even when the spaces of belief hierarchies have the uniform
topology. For nonredundant compact type spaces, these mappings are again
embeddings. A remaining open question is whether this finding could also
be obtained with a coarser topology on the range of agents’ belief functions
in an abstract type space model.

Relevance for Genericity Considerations. The homeomorphism
theorem for the relation between belief hierachies and probability measures
on exogenous parameters and other agents’ belief hierarchies matters not
only for continuity but also for genericity considerations. An example is
provided by the scope for full surplus extraction in mechanism design with
correlated values, studied in Gizatulina and Hellwig (2017). The analysis in
Gizatulina and Hellwig (2017) focuses on a condition that McAfee and Reny
(1992) introduced as being necessary and sufficient for full surplus extrac-
tion to be feasible. This condition refers to beliefs as probability measures
over the other agents’ types. In the context of the universal type space, any
such condition on beliefs about other agents’ types raises questions about
the implications of this condition for belief hierarchies. The homeomor-
phism theorem of this paper implies that, if the universal type space has the
uniform topology, any genericity results that are obtained from the McAfee-
Reny condition can be translated into genericity results about the space of
belief hierarchies.

Another example concerns the (non-)genericity of common priors. The
very notion of a common prior refers to the mappings from agents’ types



to their probabilistic beliefs about exogenous parameters and other agents’
types. A common prior is a prior probability distribution on the space of ex-
ogenous parameters and all agents’ types under which, for every agent, this
mapping is a regular conditional distribution for exogenous parameters and
other agents’ types given the agent’s own type. Given this definition, one
would expect the question of genericity or sparseness of models with com-
mon priors to be addressed in terms of the space of priors, i.e. probability
measures on the space of exogenous parameters and all agents’ types.'!

Chen et al. (2017) instead study this question in terms of belief hierar-
chies, introducing notions of "common-prior types" and "non-common-prior
types" (belief hierarchies) and proving that "non-common-prior types" are
generic in the strategic topology. Perhaps the homeomorphism theorem of
this paper will provide a basis for linking their result with an analysis of the
(non-)genericity of common priors when treated as measures on the space
of exogenous parameters and other agents’ belief hierarchies.

Outline. Section 2 provides a brief review of the main results on belief
hierarchies with the product topology. Section 3 discusses the critique of
Dekel et al. (2006) and introduces the uniform topology on belief hierarchies.
Section 4 discusses the difficulties involved in using the Borel o-algebra
induced by the uniform topology on belief hierarchies and instead introduces
the o-algebra generated by the open balls in the uniform topology. Section
5 formulates and proves the homeomorphism theorem for the Kolmogorov
mapping when belief hierarchies have the uniform topology and beliefs are
defined as probability measures on the c-algebra generated by the open
balls in the uniform topology. Section 6 studies the problem of embedding
abstract type spaces in the space of belief hierarchies.

2 Belief Hierarchies with the Product Topology:
A Review

In constructing the space of belief hierarchies, I follow Brandenburger and
Dekel (1993). Their formulation is simpler than that of Mertens and Zamir
(1985). It is also more explicit about the role of Kolmogorov’s extension
theorem.

Let © be a non-singleton compact metric space of exogenous parameters.

""See for example Hellman and Samet (2012).
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Suppose that there are I = 2 agents.!? Proceeding inductively, define spaces
X0 X1, X2 .. by setting

X'=0, x!'=X%x M(X?), (2.1)

and, for k =2,3, ...,

xk = {(0,@1,...,uk) e X0 x M(X%) x ... x M(X* 1) margyr_op® = uk_l},

where marg yr—2p* is the marginal distribution on X*~2 that is induced by
pF and, for any ¢ < k, M(X?) is the space of probability measures on the
Borel g-algebra B(X*) on X*.

Throughout the paper, I write B(X) for the Borel o-algebra on a metric
space X and M(X) for the space of probability measures on (X, B(X)),
endowed with the topology of weak convergence (the weak* topology). In
this topology, a sequence {u"} in M(X) converges to a limit u € M(X)
if and only if, for every bounded continuous real-valued function on X, the
integrals [ f(z)du"(z) converge to [ f(z)du(x). Because the continuity of a
real-valued function f on X depends on the topology on X, the notion of
weak convergence of probability measures on (X, B(X)) also depends on the
topology on X.

If X is a compact metric space and M (X) has the topology of weak con-
vergence, then M(X) is also a compact metric space.!® By a straightforward
induction therefore, the assumption that X° = © is a compact metric space
implies that, for any & > 0, M(X*71) and X* are also compact metric
spaces.

The spaces X%, X', X2, ... contain the objects about which agent i forms
beliefs of orders 1,2, 3, ..., namely the exogenous parameters and the lower-
order beliefs of agent j # 4. The condition margyr—p* = p*~1 in (2.2)
indicates that agent j’s beliefs are coherent in the sense that, for each k,
agent j’s beliefs of orders £ and k — 1 order beliefs assign the same joint
distribution to the exogenous parameter and the belief of order k — 2 of
agent 1.

A belief hierarchy for player i € {1,2} is defined as a sequence {uf}2  of
measures such that pf € M(X*1) for k = 1,2,... and

marg yr—2uF = i1 (2.3)

7

12For general I, the notation would be more complicated, but the analysis would be the

same.
13Gee, e.g., Parthasarathy (1967), p. 45.

11
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for k = 2,3, .... Condition (2.3) ensures that player i’s own beliefs of differ-
ent orders are themselves coherent, like the beliefs of agent j that agent i
considers possible.

For i € {1,2}, let H; be the set of all belief hierarchies of player i. By
construction, this set is the same for both agents. Even so, it will be useful
to write H; and H; to indicate whose belief hierarchies are meant. These
sets are subsets of the infinite product

H =[] mx*. (2.4)

k>1

The sets H; and Hj are interrelated. For any k, let 7 be the projection
from H to M(X* 1) and let 7% = (7q,...m1) be the projection from H to
M(X0) x ... x M(X*1). Then

m(H;) = mj(H;) = M(X*1), (2.5)
and one can rewrite (2.2) in the form
X" =0 x 7t (H;). (2.6)

Upon combining these two equations, with &k replaced by k — 1 in (2.6), one
obtains
T (H;) = M(© x 7" 1(H;)) (2.7)

for k = 1,2, ... A belief hierarchy for agent ¢ can be interpreted as a family of
measures on the projections from the space © x H; of exogenous parameters
and belief hierarchies of agent j # ¢ to the finite-dimensional products © x

M(XO) x ... x M(XFD),

Proposition 2.1 Let H have the product topology and let Hy, Hy have the
associated subspace topologies. Then, fori € {1,2} and every belief hierarchy
{,uf}zozl i H;, there exists a unique probability measure

p = B{uf}i2)) € M(© x Hj) (2.8)

such that, for any k, the marginal distribution on X*~t = © x 7*~1(H;) that
is induced by p° is equal to the k" order beliefuf in the hierarchy {uf}zozl

Proof. The proposition is implied by Proposition 2 of Brandenburger and
Dekel (1993). I nevertheless give a proof in order to provide a better starting
point for the subsequent discussion. First, for any k, the measure ,uf in the

12



belief hierarchy can be used to define a measure p$° on the "cylinder" o-
algebra

B(© x "1 (H;)) x {0, M(X®)} x {0, M(X*1)} x ... (2.9)

by setting
12 (By x M(XF) x M(X*¥1) x ) = b (By) (2.10)

for any By, € B(© x 7*71(H;)). The coherence condition (2.3) ensures that
the specifications (2.10) that are given for different k are mutually compati-
ble. For example, for By, taking the form Bj_; x M(X*71), (2.10) and (2.3)
yield

p5° (B X M(X*®) x M(X*H) x ) = wf (Br) = " (Bra),

which is just (2.10) with &k replaced by k£ — 1.

As specified, ° is a finitely additive measure on the "cylinder" sets By, €
B(O)x BIM(X)) x .. x BM(X*F ) x M(XF)x M(XFH)x ..., k=1,2,..
By Kolmogorov’s extension theorem, this measure has a unique extension
to a countably additive measure on the product o-algebra B(© x H;). m

Proposition 2.1 defines a mapping

{3y — B (2.11)

from the space H; of agent i’s belief hierarchies to the space M(© x Hj)
of probability measures on (O x H;,B(© x Hj)). I call this mapping the
Kolmogorov mapping.
The Kolmogorov mapping is invertible: For any p® € M(© x H;), one
has
pf = 15 o (projyx—1) ", (2.12)

and therefore
{1$° o (projxr—1) 1352, = B~ (1), (2.13)

where projyx-1 is the projection from © x H; to X*~1.14
To emphasize that H; and H; have the product topology, I write Hlp and

H f rather than H; and H;. With this topology, one easily verifies that the
mappings § and B! are both continuous. Thus, one obtains:

"The argument in Mertens and Zamir (1985) uses (2.12) to obtain u$°® as a projective
limit of the measures p. In this argument, the problem of assigning probabilities to
events that do not belong to the algebra of cylinder sets and the recourse to Kolmogorov’s
theorem for this purpose appear implicitly rather than explicitly.
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Proposition 2.2 The Kolmogorov mapping from H} to M(© x HY) is a
homeomorphism.

Propositions 2.1 and 2.2 provide the basis for a reconciliation of belief
hierarchy and type space approaches to incomplete information. For two
agents, a ©-based abstract type space model is given by a pair T;,7 = 1, 2,
of compact metric spaces and a pair b; : T; — M(© xTj),i=1,2 and j # i,
of continuous belief mappings with the interpretation that, if t; € T; is the
"type" of agent 7, then b;(t;) € M(O x T}) is the agent’s probabilistic belief
about the exogenous parameter § € © and the type ¢; € Tj of the other
agent.

Propositions 2.1 and 2.2 show that, if we think of belief hierarchies as
"types", we have exactly the Harsanyi format, with 5(-) as a belief function
that maps a player’s types into beliefs, i.e., probability measures over ex-
ogenous parameters and the other player’s types.!> Upon setting T; = HY
and b;(-) = B(-), i = 1,2, one obtains an abstract type space model that
differs from the general formulation only in that the belief functions are
given by the Kolmogorov mapping. The fact that the Kolmogorov mapping
is a homeomorphism implies that the space of belief hierarchies of agent ¢
and the space of probability measures over exogenous parameters and belief
hierarchies of agent j are topologically equivalent, so that, for any state-
ment about the continuity properties of functions and correpondences on
one space, there is an equivalent statement about continuity properties of
functions and correspondences on the other space.

The triple © x HY x HY is called the universal type space because every
nonredundant ©-based abstract type space can be embedded in it: Given
compact metric spaces T; and continuous belief functions b; : T; — M(O x
Tj), i = 1,2, for any 7 and ¢;, one obtains a function

ti — {oF (ti) 1o (2.14)
from T; into H; by setting

i (ti) = bi(-[t:) o (me) ™" (2.15)

5Different papers in the literature assign different meanings to the word "type". The
identification of "types" with belief hierarchies follows Brandenburger and Dekel (1993),
see also Dekel et al. (2006) and Chen et al. (2010, 2017). In contrast, Mertens and
Zamir (1985) and other authors define "types" as measures, such as the measure u$° in
Proposition 2.1; see also Heifetz (1993) as well as Heifetz and Samet (1998, 1999). Mertens
and Zamir (1985) actually refer to spaces of measures and spaces of belief hierarchies as
equal "up to BL morphisms".
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and, for k > 1,
PF(t:) = bi(-]ti) o (me x (¢}  omrry)) 7, (2.16)

where 7g is the projection from © x Tj to © and 77, is the projection from
© x Tj to Tj. To see that, for every t;, the sequence {¢F(t;) e, belongs to
H;, it suffices to observe that, for any 4,5 # i, and k, the function

(evtj) 7o X (90?71 ° WTj) = (9, wfil(tj)) (217)

takes values in the space X*~! that is defined by (2.1) and (2.2). Therefore
the function (¥ takes values in M(X*~1).

Proposition 2.3 Given the compact metric spaces T; and the continuous
belief functions b; : T; — M(O© x Tj), i = 1,2,j # i, for i = 1,2, the
function t; — {@F(t;)}2°, that is defined by (2.15) and (2.16) maps T;
continuously into HY. If this function is injective, it is an embedding, i.e., a
homeomorphism between T; and a subspace of HY.

Proof. The first statement of the proposition is equivalent to the statement
that, for any k and any bounded continuus real-valued function h* on X*~1,
the mapping
t; — RF (xR 1) d (2P ts) (2.18)
Xk-1
is continuous. By (2.15), for k£ = 1, this is equivalent to the statement that
the mapping

b [ O = [ o). 5)
XO @XTJ'

is continuous. The latter statement is true because h' is continuous and
bounded and the belief function b; : T; — M (O x T}) is continuous.

Proceeding by induction on k, consider k > 1 and suppose that the
continuity of the mapping (2.18) has been established for any k& < k— 1,
for i = 1,2, and any bounded continuus real-valued function h¥ on X*~1.
By (2.16), the continuity of the mapping (2.18) for k = k, for i = 1,2, and
any bounded continuus real-valued function h* on X*~1 is equivalent to the
statement that the mapping

t; — hk(ﬁ, (p?_l(tj»dbi(e,tj‘ti)
@XTj
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is continuous. This statement is true because h¥ is continuous and bounded,
by the induction hypothesis the mapping t; +—— ¢§71(tj) is continuous,
and the belief function b; : T; — M(© x T}) is also continuous. The first
statement of the proposition is thereby proved. The second statement follows

by standard arguments. m

3 The Choice of Topology

Propositions 2.1 - 2.3 rely on the topological structure implied by the topol-
ogy of weak convergence on the spaces of beliefs of different orders and the
product topology on the spaces of belief hierarachies. This reliance on the
topological structure has been criticized from two sides. On one side, Heifetz
and Samet (1998, 1999) have criticized the reliance on topology in the proof
of Proposition 2.1 and have proposed a purely measure theoretic approach
for constructing a universal type space associated with a space © of exoge-
nous parameters. On the other side, Dekel et al. (2006) and Chen et al.
(2010, 2017) have argued that the chosen topology is too coarse to capture
all the continuity properties of strategic behaviour that we should be inter-
ested in. This paper is concerned with implications of the latter critique but
in view of several reactions that I have received I will make a remark on the
former critique as well.

Whereas Heifetz and Samet (1998, 1999) were concerned with the need
for topological assumptions in using Kolmogorov’s theorem to prove the
existence of a universal type space, later adherents of the purely measure
theoretic approach have also dropped the topological questions of Proposi-
tions 2.2 and 2.3 from their agenda. Thus, a referee of this paper wrote: "It
is not clear why (the) weak(*) topology should be used, definitely it is not
true that the weak(*) topology is the weakest topology such that its Borel
o-field includes the epistomologically essential events like a player believes a
certain event happens at least (with) a certain probability. For this issue of
topology see Pintér (2010)." Pintér (2010, p. 225) claims that "previous pa-
pers on type spaces which use topology do so because they want to apply the
Kolmogorov extension theorem, not because this is the natural mathemati-
cal apparatus to express information. However, even if a certain topology is
taken for only mathematical reasons, since the events in the model are the
Borel sets of the given topology, the chosen topology describes and represents
the information of the considered player." The main result of Pintér (2010)
asserts the nonexistence of a universal topological type space; this result is
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based on the fact that "there is no weakest topology among the topologies
whose Borel o-fields meet" a specified measure theoretic condition.

For someone who has been trained on the work of Arrow, Debreu, and
Nash, this is a strange way to think about the choice of a topology. In
the tradition of these authors, topologies are chosen with a view to their
implications for the continuity properties of certain functions and corre-
spondences that one is interested in, not for the information content of the
Borel o-algebras they generate.

Pintér’s claim that "previous papers on type spaces which use topol-
ogy do so because they want to apply the Kolmogorov extension theo-
rem" is counterfactual. In the literature on choice under uncertainty, the
weak* topology, or topology of weak convergence of probability measures,
is usually chosen because it is the coarsest topology that permits the ap-
plication of Berge’s (1959, p. 121) maximum theorem. Specifically, if
A is a space of actions and u : ©® x A — R is a bounded continuous
function, the topology of weak convergence of probability measures is the
coarsest topology on the space M(©) under which the function p ——
maxaecA [g u(f, a)du(a) from M(O) to R is continuous and the correspon-
dence p1 — argmaxgea [gu(0,a)dp(a) from M(O) to A is upper hemi-
continuous and closed-valued.'® For a game theorist interested in best-
response correspondences, this property is important regardless of whether
the specified topology "is the natural mathematical apparatus to express
information". The usefulness of the chosen topology for the application of
Kolmogorov’s theorem comes in as a happy coincidence, rather than the
main reason for choosing this topology.

Dekel et al (2006) raise the question of what is the appropriate topol-
ogy for the space of belief hierarchies without reference to Kolmogorov’s
theorem. They are interested in the continuity properties of the correspon-
dences relating the interim correlated e-rationalizable choices of an agent to
the agent’s belief hierarchies. In line with the argument of the preceding
paragraph, they show that the topology specified in the preceding section,
involving the topology of weak convergence for beliefs of any one order and
the associated product topology for the hierarchies of beliefs of all order, is
the coarsest topology with what they call the upper strategic convergence
property, which implies that, in all games with continuous and bounded von
Neumann-Morgenstern utility functions u, the correspondences relating the

Y5For a discussion, see, for example, Jordan (1977). A finer topology may be required if
© is a space of time paths of exogenous variables and A is a space of adapted time paths of
actions, and conditional distributions of remaining time paths do not depend continuously
on histories; see Hellwig (1996).
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interim correlated e-rationalizable choices of an agent to the agent’s belief
hierarchies are upper hemi-continuous.'”

Even so, Dekel et al. (2006) consider the given topology to be unsatisfac-
tory. In addition to upper hemi-continuity, they are also interested in lower
hemi-continuity properties of behaviour correspondences. To be sure, in the
absence of appropriate convexity assumptions, best responses, i.e. maxi-
mizers, are not generally unique, and best-response correspondences are not
lower-hemicontinuous. However, correspondences involving the dependence
of e-best responses on the parameters of the optimization problems are usu-
ally lower hemi-continuous if the e-best-response conditions are treated as
strict inequalities; this is true for e-optimal solutions to simple optimiza-
tion problems, for e-Nash equilibria, and for e-rationalizable actions setting
involving complete but possibly imperfect information. It is not true for
interim correlated e-rationalizable choices under incomplete information if
agents’ belief hierarchies are given the product topology associated with
beliefs of any order having the topology of weak convergence.

Therefore Dekel et al. (2006) propose finer topologies for the space of
belief hierarchies. The strategic topology of Dekel et al. (2006) is defined
in terms of the very upper and lower strategic convergence properties that
they consider desirable; in this topology, two belief hierarchies of an agent are
close if and only if the associated sets of interim correlated e-rationalizable
actions in all games are close. The uniform strategic topology of Dekel et al.
(2006) requires the strategic convergence properties to hold uniformly over
all games.

In an alternative formulation, Chen et al. (2010, 2017) introduce the
uniform weak topology, which is defined so that two belief hierarchies of an
agent are close if and only if the beliefs of all orders in these hierarchies
are uniformly close. Closeness here is defined in terms of the well-known
Prohorov metric, which induces the topology of weak convergence on the
space of measures in question.

Unlike the topologies proposed by Dekel et al. (2006), the uniform weak
topology is defined with reference to the belief hierarchies as such, without
any reference to strategic convergence properties. However, Chen at al.
(2010, 2017) show that the uniform weak topology is actually equivalent
to the uniform strategic topology of Dekel et al. (2006), i.e. two belief
hierarchies are close in the uniform strategic topology if and only if they are
close in the uniform weak topology.'® Because of this equivalence, I use the

17"See Theorems 1, p. 291, and 2, p. 294, in Dekel et al. (2006).
'8Chen et al. (2017) also show that uniform weak convergence on all frames is equivalent
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simpler term uniform topology for both.

For a formal treatment, recall that the space H; of the belief hierarchies
of agent j is a subset of the infinite product H M(XF*=1) of spaces of mea-

k>1

sures on X%, X1, X2 ... By construction, each of the spaces X, X1 X2 .. is
a compact metric space, and so is each of the spaces M(X?), M(X1), M(X?), ...
For any k, the topology of weak convergence on M (X"*™1) is metrized by
the Prohorov metric, which defines the distance pj (1", ﬂk) between two mea-
sures pF and % in M(X*-1) as the infimum of the set

{6 > 0|p*(B) < pF(B%)+6 and pF(B) < uF(B%)+6 for all B € B(X* 1)},

where B? is the -neighbourhood of B in X*~1,
Given the Prohorov metrics p (-, ) on M(X*~1), k = 1,2, ..., the uniform
metric p"(-,-) on the infinite product H M(X*1) is given by the formula
k>1

p (ke ke, = sup i (1", i) (3.1)

The uniform topology is the topology induced by this metric. This topology
stands in contrast to the product topology, which is induced by the metric

PP (-, -) satisfying

PN ) = 3 ok, i),
k=1

for all {p*}50 |, {1*}52, and some o € (0,1). For any &', no matter how large,
if pps (¥, 0¥ is significantly different from zero, then PRy ARy ))
is also significantly different from zero, but pP({u*}3°,, {#"1%2,) may be
small if &’ is large.

I will use a superscript v to indicate that a space of belief hierarchies has
the uniform topology. Thus, H;* and H;' are the spaces of belief hierarchies
of agents ¢ and j with the uniform topology. The same spaces with the
product topology will be denoted as H} and H}. Thus B(H}') and B(© x
HY) = B(©) x B(H}') are the Borel o-algebras on H; and © x Hj that are

to convergence in the strategic topology. They prove their equivalence results under the
assumption that the space © of exogenous parameters and the agents’ action sets are
finite. In Section 5.3, p. 1451, of Chen et al. (2017), however, they point out that their
results carry over to the case where these space are compact metrizable and the payoff
functions are continuous and bounded as well as equicontinuous in 6.
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induced when Hj has the uniform topology, and B(H}) and B(© x H}) =
B(©) x B(Hf) are the Borel o-algebras on H; and © x H; that are induced
when H; has the product o-algebra, as in the preceding section.

4 The Choice of Event Algebra

Contrary to the presumption of Pintér (2010) cited above, the choice of
topology need not prejudge the specification of the set of events to which
an agent assigns probabilities. To be sure, we like to work with Borel o-
algebras, but this is very much a matter of mathematical convenience.

In specifying the set of events about which agents form beliefs, Dekel et
al. (2006) actually rely on the o-algebra B(© x H. jI? ) that is induced by the
product topology. Dekel et al. (2007) rely on the o-algebra involved in the
©-based universal type space of Heifetz and Samet (1998). Under their as-
sumptions, the two o-algebras actually coincide, so there is no inconsistency
between the treatment in Dekel et al. (2006) and the treatment in Dekel et
al. (2007).19

There is however a real difference between these two o-algebras and the
Borel o-algebra B(© x H}') = B(©) x B(H}) for the uniform topology on
the spaces of belief hierarchies. Whereas H? is separable, H} is not, and
the o-algebra B(© x H}') is strictly finer than the o-algebra B(© x H7) used
by Dekel et al. (2006).2

Because of this difference, any attempt to rely on B(© x H}') rather than
B(© x H f ) is fraught with serious difficulties. Measures in the range of the
Kolmogorov mapping are defined on B(© x H;-’ ) rather than B(© x H}).
How can agent ¢ assign probabilities to events that belong to the difference
B(© x H}')\B(© x Hf)?

There would be no problem if the measure u2° = B({uF}2° ) that is gen-
erated by the Kolmogorov mapping 3 and the belief hierarchy {uf}z‘;l could
simply be extended from B(© x H 3"-’ ) to B(© x H}') and if moreover the ex-

"More generally, the ©-based universal type space of Heifetz and Samet (1998) is a
subset of the space of coherent belief hierarchies. If the o-algebra on © is the Borel o-
algebra, Kolmogorov’s theorem ensures that any coherent belief hierarchy is an element
of the ©-based universal type space.

*Whereas Chen et al. (2010) write that B(© x H}') and B(© x HY) are equal, Chen
et al. (2016) retract this claim, giving an example of a set in B(H;')\B(H7). The set
in question is an analytic set that has a non-analytic complement and therefore is not
in B(HY), but that can be represented as a countable intersection of sets in B(Hj') and
therefore is in B(Hj').
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tension was unique.?! However, this is not the case. Under the set theoretic
axioms that are usually made in probability theory, not every measure on
(©x HY,B(© x HY)) can be extended to a measure on (© x H}', B(© x H}')).
Moreover, if such an extension exists, it need not be unique.

Remark 4.1 Assume that the cardinal ¢ of the continuum is not atomlessly
measurable. Then there exists a belief hierarchy {,uf}zozl such that the mea-
sure pu® = B({uF} ) that is defined on (© x Hf,l’)’(@ X Hf)) cannot be
extended to a countably additive measure on (© x H}',B(© x HY)).

Proof. The assumption made implies that, that, for set ¥ C © x Hj,
there is no nontrivial countably additive atomless measure that is defined
on the set of all subsets of Y. To prove the remark, it suffices to specify
aset Y C © x Hj and a belief hierarchy {u¥}%°, such that the measure
p® = B({ukF12,) is concentrated on Y and is atomless and any extension
of p7° from B(© x H}) to B(© x HY) would be defined on all subsets of Y.

I construct Y as follows. Fix two distinct elements 01, 65 in ©. Consider
the infinite product {1,2}*°. For any = = {x1}32, € {1,2}°°, define y(z) =
(k) 1321 € © x H by setting

y1(21) = Oay, y2(2) = 00,,,y3(23) =I5, > -+

and let Y be the range of . The projection of Y to © is the set {01,602}. The
projection of Y to the space of agent j’s first-order beliefs is the set {y|6 €
{01,05}} of degenerate distributions that have all mass concentrated at ' €
{61, 02}; agent i considers agent j to have first-order beliefs concentrated at a
singleton subset of {01, 62}. The projection of Y to the space of agent j’s first-
and second-order beliefs is the set {51 X ds,, 01 € {01,05},60% € {61,05)} i.e.,
agent ¢ considers agent j to have second-order beliefs concentrated at (5592
where 5., is the degenerate distribution that has all mass concentrated at
dp2 with 62. Proceeding in this way, one obtains a space of belief hierarchies
for agent j such that, for any k, the beliefs of order k are characterized by
some 0% € {01,605}

One easily verifies that the mapping x —— y(z) is a homeomorphism
between the infite product {1,2}* and the subspace Y of © x Hj is both
spaces have the product topology and if both spaces have the uniform topol-
ogy. The problem of extending a measure from the o-algebra B(© x H: f )

2'In a previous version of this paper, I suggested that this was actually the case and
that the sets in B(© x H}') belonged to the completion of B(© x HY) under every measure.
The argument I gave, however, was flawed, and the suggestion is false. I am grateful to a
referee for pointing out the error.
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to the o-algebra B(© x H}')) is thus equivalent to the problem of extending
a measure from the o-algebra that is generated by the product topology
on {1,2}* to the o-algebra that is generated by the uniform topology on
{1,2}.

To see that such an extension need not exist, think about the elements of
{1,2}°° as the outcomes of an infinite sequence of tosses of a fair coin. The
associated measure on the product o-algebra on {1,2}> is the product mea-
sure that assigns probability 2% to the set of sequences of the form {z¢}7°,
with x; = & for £ = 0,...k — 1, for any given k and (&, ..., 25_1) € {1,2}*.
This measure assigns probability zero to any singleton {z} C {1,2}°°. More-
over, because any singleton {z} C {1,2} is open in the uniform topology on
{1,2}°°, the o-algebra that is generated by the uniform topology on {1,2}*
contains all subsets of {1,2}°. The existence of an extension of the measure
for infinite sequences of outcomes of fair coin tosses from c-algebra that is
generated by the product topology on {1,2}° to the o-algebra that is gen-
erated by the uniform topology on {1,2}° is therefore incompatible with
the axiom that the cardinal of the continuum is not atomlessly measurable.
]

Remark 4.2 For every belief hierarchy {u¥}, the measure u® = p({uF}2,)
that is defined on (© x Hf,B(@ X Hf)) can be extended to a finitely addi-
tive measure on (© x H},B(© x H}')), but for some belief hierarchies, the
extension is not unique.

Proof. Existence of a finitely additive extension follows from Theorem
2.1, p. 390, in Bachman and Sultan (1980). By Theorem 3.1, p. 544, of
Bachman and Sultan (1977), the extension is unique for all measures on
(© x HY,B(© x HY)) if and only if B(© x H}) separates B(© x H}') in the
sense that, for any pair A, B of nonintersecting sets in B(O x Hj“), there
exists a pair C, D of nonintersecting sets in B(© x H- f ) such that A C C and
B cCD.

To see that this condition is violated, consider the set Y in the proof of
the preceding lemma and the measures u$° = B({u¥}$° ) that are concen-
trated on Y. Recall that the mapping x — y(z) {1,2}* to Y that is a
homeomorphism if both {1,2}* and Y have the product topology and is
also a homeomorphism if both {1,2}* and Y have the uniform topology.
Clearly the pair A, B of nonintersecting sets in B(© x H}') satisfies the sep-
aration condition of Bachman and Sultan if and only if there exists a pair
C*, D* of nonintersecting sets in the product o-algebra on {1,2}° such that

22



the images A*, B* of A and B under the inverse of the mapping = — y(z)
satisfy A* C C* and B* C D*. Let A, B be such that A* is the set of all
sequences {x,}72, in {1,2}> with x;, = 1 no more than finitely many times
and B* is the set of all sequences {z¢}72, in {1,2}* with 2y = 2 no more
than finitely many times. Then A* N B* = (), but A* ¢ C* and B* C D* im-
ply C* = D* = {1,2}°°, which is incompatible with the separation condition
C* N D* = (). Indeed, it is easy to show that the assigment of probabilities
to the specified sets A and B is to some extent arbitrary. m

Given these difficulties, I see no scope for a general treatment of agent’s
beliefs about exogenous parameters and other agents’ belief hierarchies as
measures on (© x HY', B(© x H}')) and determined by the agent’s own belief
hierarchy. As an alternative, I therefore consider measures on the o-algebras
Bo(H}') and Bo(© x H}') = B(©) x Bo(H}') that are generated by the open
balls in the uniform topology (rather than the open sets). These o-algebras
were introduced by Dudley (1966, 1967).

For any belief hierarchy {uk}i"zl € H} and any r > 0, the open r-ball

Bu({pk}2e |, r) around {#*}%°, in the uniform topology is given as
o0 (o9}
B ({u"y2m) = U H k(s =~ (4.1)
n—1

where, for each k and 7/ > 0, By(u*,7') is the open 7/-ball around u*, as
given by the metric p, on M(X*~1).

Because the p“-open balls form a basis for the uniform topology, the
open sets in the uniform topology can be represented as arbitrary unions of
p-open balls. In contrast, By(H}') only allows for countable unions of open
balls. Therefore, Bo(H}') and Bo(© x H}') are much coarser than B(H}') and
B(©x H}'). The following lemma shows that, in fact, Bo(H}') and By(©x H})
are coextensive with B(HY) and B(© x HY).

Lemma 4.3 The o-algebra BO(H“) that is generated by the p"-open balls on
H is coextensive with the o- algebm B(Hp) that is generated by the product
topology, i.e., Bo(H}') = B(H ) Szmzlarly, Bo(© x Hj') = B(© x Hp)

Proof. I first prove that Bo(H}') C B(H}). Recall that B(H}) is the smallest

o-algebra on H; that contains the cylinder sets, the sets of the form

C = By X ... x By x M(X*) x M(X*) x .., (4.2)
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for some ¢ and open By, ..., By, and that is closed under countable unions
and intersections. Since (4.1) can be rewritten in the form

0o 00 4
B {1 = U H k(1" 7”—* H M(XF],
/=1n=1 =

= k=(+1

any p“-open r-ball is a countable intersection of countable unions of cylinder
sets and hence an element of B(H J’-) ). Since By(H}') is the smallest o-algebra
on H; that contains the p“-open balls and that is closed under countable
unions and intersections, it follows that any set in Bo(H}') is also in B(H; Py.

To prove that, conversely, B(Hp ) C Bo(H}), it suﬂices to show that
any set of the form (4.2), with By, ..., By open, belongs to BO(H;-‘). For this
purpose, let C be given as in (4.2). For any N > ¢, consider the projection

IV(C) = By x ... x By x M(X%) x ... x M(XN) € M(X?) x ... x M(XN).
(4.3)
Observe that, when endowed with the uniform metric

oY ({H (L) 1= mae oy (¥, i), (4.4)

the finite product M(X9) x ... x M(XN) is separable and has a countable
basis {z%,22,...}. For m = 1, 2 .and r > 0, let UV (k,r) be the p™V-open -
ball around zJ. Let M*(C) be the set of pairs (m, 7y, ) such that UN (m, 7,,) C
C for some r,;, > 0. Then, by standard arguments,

V)= | UNm,rm).
M*(C)

Next, fix some {Mk}io:NH and, for any m € M*(C), define
UN(m,rm) = UN(m,'rm) X BNH(MNH,rm) X BN+2(MN+2,rm) X ...

and

1

UN(m,rm) =

s

. 1 1
[UN(mv Tm—ﬁ)XBNH(MNH’ T'm—;> XBN+2(MN+2= 7’m—n
1

n

Then for any N > ¢ and any m, UY(m,r,,) is a p“-open ball in H; and
belongs to By(H}'). Moreover,

—)X...].



Since By(Hj') is closed under countable unions and intersections, it follows
that C' € Bo(H}), and, more generally, B(H}) C Bo(H}').
The second statement of the proposition follows immediately. m

Corollary 4.4 For any belief hierarchy {uF}°, € H;, the unique proba-
bility measure p® = B({uk} ) on (O x Hf,l’)’(@ X Hf)) that is given by
Proposition 2.1 is also a probability measure on (© x H}, By(© x HY)).

By working with By(© x H}') rather than B(© x H}), one avoids the
dilemma of whether and how the measure B({uF}?2,) can be extended from
B(© x HY) to B(© x H}). The Kolmogorov mapping suffices as a belief
function, as in the case of the o-algebra B(© X HJP ) that is induced by
the product topology. Moreover, the o-algebra B(© x Hf ) itself has an
interpretation in terms of the uniform topology, as By(© X HJ“) This latter
observation may perhaps resolve the seeming paradox involved when Dekel
et al. (2006) themselves work with measures on (6 x H},B(© x H})) even
as they criticize the reliance on the product topology.

The analysis of Dekel et al. (2006, pp. 283 f.) is unaffected by the restric-
tion to the smaller o-algebra. Their assessment of rationalizability focuses
on the question whether a given action a; of agent ¢ can be e-rationalized
by some joint distribution v over states of nature and "types" (belief hier-
archies) and actions of agent j # 4; in this assessment, any action a; that
is presumed to be taken by agent 7 must in turn be e-rationalizable with
probability one for agent j with the type ¢; that is presumed to take this
action. The realized payoff of any agent depends only on the game that is
being played, the state of nature, and the vector of actions of the different
agents. The expected payoff depends only on the agent’s assessment of the
joint distribution of the state of nature and the other agent’s action.

A joint distribution v over states of nature and "types" (belief hierar-
chies) and actions of agent j # i is determined by the agent’s type-dependent
belief over the state of nature and the other player’s "type" and by the
agent’s conjecture o; over the other player’s strategy. This conjecture over
the other player’s strategy is a mapping from states of nature and types of
the other player to probability distributions over actions of the other player.

In this formalism, the o-algebra on H; that determines the measurability
properties of agent j’s strategy function, as well as the o-algebra of event
in © x H; about which agent ¢ forms beliefs, matters for the specification
of the conjecture o; and of the domain of the agent’s type-dependent belief

25



over the state of nature and the other player’s "type". However, the impact
of this specification on the agent’s expected payoff is integrated out and
has no effect on the set of rationalizable actions. Specifically, if a joint
distribution v over states of nature and "types" (belief hierarchies) and
actions of agent j # i and conjecture o, are specified so as to allow for
events in B(© x H}') that do not belong to By(© x H}') = B(O x HY), then,
by taking conditional expectations of o;(-,-) conditional on By(© x HY),
one obtains a new conjecture o;(-,-) that is measurable with respect to
By(O x HJ“) and that yields the same joint distribution over states of nature
and the other agent’s actions as the original conjecture o;(-,-). The extra
richness that comes from the (larger) Borel o-algebra B(© x H]“) is irrelevant
for the analysis of rationalizability.

5 The Homeomorphism Theorem

The aim of this section is to establish an analogue of Proposition 2.2 when
the domain of the Kolmogorov mapping is H;* and the range is the space
of probability measures on (© x H}',By(© x H}')). I denote the space of
probability measures on (© x H}', By(© x H}')) as Mo(© x H}).

The space Mo(© x HY) is given the topology of weak convergence of
probability measures on (© x HY, Bo(© x H}')): Let Co(© x H}') be the space
of bounded, p“-continuous and B(O x H. f )-measurable real-valued functions
on ©x HY'. A sequence { ¢} of measures in Mg (0O x H}') converges weakly to
a limit p1 in Mo(©x HY) if and only if, for every f € Co(©x H}'), the integrals
fexH;L F(0,{pk}72,)dut converge to the limit f@xH;% FO,{p5}y2 ) )dp.

The topology of weak convergence on My(© x H]“) should not be con-
fused with the topology of weak convergence on M(© x H. f ) considered in
Section 2. To be sure, the term "topology of weak convergence" is the same,
and, by Lemma 4.3, the o-algebras By(© x H}') and B(© x ij) are coex-
tensive, and so are the spaces Mo(© x H}') and M(© x ij) of measures on
these o-algebras. However, the functions f whose expectations are consid-
ered for assessing weak convergence are not the same. In the definition of
the topology of weak convergence on M(© x H f ) in Section 2, these func-
tions were required to be continuous with respect to the product topology on
Ox H f ; now they are required to be continuous with respect to the product
topology on © x H}'. Because the uniform topology on Hj is strictly finer
than the product topology, the set Co(© x H}') is strictly larger than the set
of bounded continuous functions on © x H jI? . The criterion for convergence
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of a sequence of measures is therefore stricter, and the induced topology on
the range of the Kolmogorov mapping is strictly finer.

The proof of the homeomorphism theorem relies on the fact that, if the
cardinal ¢ of the continuum is not atomlessly measurable, then the topology
of weak convergence on Mo(© x H}') is metrizable by a p“-based version
of the Prohorov metric. The p“-based Prohorov distance between any two
measures g and i in Mo(© x HJ“) is defined as the infimum of the set

{e > 0[u(B) < u(B°)+¢ and p(B) < pu(B®)+¢ forall B € By(© x Hj')},

(5.1)
with B denoting the e-neighbourhood of B in © x H}'. In Hellwig (2017/2022)
I show that, for any € > 0, the e-neighbourhood B¢ of any set B € By(O x
H}') also belongs to By(© x H}'). For any B € By(© x H}'), therefore, the
terms fi(B¢) and p(B%) in (5.1) are well defined.

Proposition 5.1 If the cardinal ¢ of the continuum is not atomlessly mea-
surable, the topology of weak convergence of probability measures in Mo(© X
HJ“) 1s metrizable by the p“-based Prohorov metric.

For a proof of this proposition, the reader is referred to Hellwig (2017/2022).
The argument given there is similar to the argument that Billingsley (1968,
Appendix IIT) gave for Borel measures, but, because M (© X H]“) is a space
of non-Borel measures, some steps must be developed from first principles.

The main result of this paper is now stated as follows.

Proposition 5.2 Assume that the cardinal ¢ of the continuum is not atom-
lessly measurable and suppose that the spaces H; and Hj of belief hierar-
chies of agents i and j are endowed with the uniform topology. If the space
Mo(© x H}') of probability measures on (© x H}',Bo(© x H}')) is endowed
with the topology of weak convergence, then the Kolmogorov mapping defines
a homeomorphism between H}' and Mo(© x H}).

Proof. The Kolmogorov mapping S is obviously injective and onto. There-
fore it suffices to show that, if Mo(© x H}') has the topology of weak conver-

gence, then both 8 and B! are continuous. By Proposition 5.1, it suffices
to show that these continuity properties hold when My(© x H]“) has the
topology induced by the Prohorov metric.
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I first show that (§ is continuous. Proceeding indirectly, suppose that
/3 is not continuous. Then there exist a sequence ({{*"}x>1)22; of belief
hierarchies and a further belief hierarchy {ukoo}kzl, all in H;, such that

Jim P s 1, {1 kz1) = 0 (5.2)

but B({p*" }k>1) does not converge to B({1**®}>1). To simplify the no-
tation, write h" = {p* }i>1, 7 = 1,2,..., and h*® = {§**®};>1. Taking
subsequences if necessary, suppose that, for some ¢ > 0, the Prohorov dis-
tance between B(h") and B(h*°) exceeds ¢ for all r. For each r then, there
exists a set W" € By(© x H}') such that either

BWTIRT) > BIWT)|h>) + & (5.3)

BWTRZ) > BIWT)[R") + €, (5-4)

where Lemma 77 in the appendix ensures that the sets (W")¢

to Bo(@ X Hju)

For any n, let 7" be the projection of H; to the space M(XY) x ... x
M(X™). For any n and r, and let W™ be the projection of W" to © x 7™ (H}).
Further, let (W) be an e-neighbourhood of W' (in © x n"(H;)). Let

also belong

W™ = W™ x M(X") x M(X"2) x ... (5.5)
and R
We = (W™)° x M(X") x M(X"2) x ... (5.6)

be the cylinder sets in © x H; that are defined by W' and (W"™). One easily
verifies that the sequences {W"™}2° | and {W'™}>° | are nonincreasing and
that

W= a W™ and (W) = fj Wwrne (5.7)

for all r. By elementary measure theory, e.g., Theorem 3.1.1, p. 86, in
Dudley (2002), it follows that, for any = and any 6 > 0, there exists N"(9)
such that, for any n > N"(0),

BWT)*[h>) = BW™|h™) = § (5.8)
and

BIWTIRT) = BWT™eIRT) — & (5.9)
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Moreover, X
BWTIR") < BW™[R") (5.10)

and X
BWTh>) < BW™ ™). (5.11)

Upon combining (5.8) - (5.11) with (5.3) and (5.4), one finds that, for all r
and any ¢ > 0, there exists N"(9) such that, for any n > N"(§), either

BW™|AT) > B(WTE|h™) — 6 + (5.12)

or

BOW™|A®) > B(W™E|RT) — 6 +&. (5.13)

By the definitions of 3(-), as well as h" := {*" }>1 and b := {pF®}i>1,
one also has

BW™ ") = "™ (W), BVT[RT) = p™ (W')°) (5.14)
and
BOV™ 1) = (W), BV B) = (W) (5.15)
for all » and n. For any r and n, therefore, either
P (W) > " (W) — 6+ (5.16)

or

p (W) > e (W)7) — 6 + e (5.17)

If § < ¢, one also has (W'™)=% C (W™)¢ for all n and r and (W")s~% C
(WT) for all . For all » and § € (0,¢), therefore, there exists N"(d) such
that, for any n > N"(6), either

BT > (W) 2 6 (5.18)

or

Mnr(Wrn) > Mnoo((Wrnffé) +e—6. (519)

But then, for any r, for n > N7"(J), the Prohorov distance between the
measures u"" and p">® is at least ¢ — § > 0.
It follows that, for all r,

P (" Hes 1, (> his1) > € — 0,
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contrary to (5.2). The assumption that the mapping 3 from H}* to Mo(© x
H?') is not continuous thus leads to a contradiction and must be false.

Continuity of the mapping 87! from M (© ><HJ“) to H;" is easily obtained
by observing that, by Lemma 4.3, for any n and any set W" € B(Oxn"(H;)),
the associated cylinder set

W =W" x M(X") x M(X"1) x ... (5.20)
belongs to By(© x H}'), and, for any € > 0, the cylinder set
Wne = (W™)F x M(X™) x M(X") x .. (5.21)

that is defined by the e-neighbourhood (W"™)¢ of W™ in © x #n"(Hj;) is
actually an e-neighourhood of W™ in ©x H'. Hence, if the Prohorov distance
between two measures (> and > in Mo(© x H}) is less than ¢, it must
be the case that

p®(Wn) < i (Wne) + ¢ (5.22)

and ) X
a> (W) < p> (W) +e. (5.23)

By the definition of the marginal distributions, it follows that
W) < (W) + e (5.24)

and
prWT) < p"(W")7) +e. (5.25)

Since the choice of W™ € B(© x n"(H;)) was arbitrary, it follows that
the Prohorov distance between p" and " in M(© x n"(Hj)) is no greater
than the Prohorov distance between p> and > in Mo(© x H}'). Since this
statement holds for all n, it follows that the supremum over n of the Prohorov
distances between the marginal distributions p™ and 4" in M(© x7"(H;)) is
no greater than the Prohorov distance between £°° and 1> in Mo (O x H}).
Continuity of the mapping 8! from M(© x HJ“) to H;" follows immediately.
]

Proposition 5.2 provides an analogue to Proposition 2.2 above. The
homeomorphism property of the Kolmogorov mapping is unaffected if the
product topology on H; and Hj is replaced by the uniform topology. The
domain H}* and the range Mo(© x HJ“) of the Kolmogorov mapping are
topologically equivalent so, again, for any statement about the continuity
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properties of functions and correpondences on one space, there is an equiva-
lent statement about continuity properties of functions and correspondences
on the other space.

I conclude this section with a comment on the assumption that the car-
dinal ¢ of the continuum is not atomlessly measurable. By a theorem of
Banach and Kuratowski (1929), this assumption is implied by the Contin-
uum Hypothesis (CH).?2 The older literature, such as Dudley (1967) or
Billingsley (1968), invokes this theorem to suggest that the assumption is
unproblematic.?? In recent decades though, under the influence of Cohen
(1966), CH has increasingly met with criticism.

However, CH is not necessary for the condition that the cardinal ¢ of
the continuum is not atomlessly measurable. As shown by Ulam (1930), it
suffices that any cardinal below ¢ be weakly accessible. Bartoszynski and
Halbeisen (2003) emphasize that, in Banach and Kuratowskiy (1929), the
conclusion that c is not atomlessly measurable is obtained from an interme-
diate condition concerning the existence of a what they call a BK-matrix.
Whereas the existence of a BK-matrix is implied by CH, Bartoszynski and
Halbeisen (2003) show that the existence of a BK-matrix is also compatible
with the negation of CH.?*

If the cardinal ¢ of the continuum is atomlessly measurable, there is no
guarantee that the topology of weak convergence on Mo (© x HY') is metriz-
able (or on M(© x H}') for that matter).?’ In this case, the proof of Propo-
sition 5.2 still shows that the Kolmogorov mapping is a homeomorphism
between H* and My(© X Hj“) with the topology induced by the Prohorov
metric. However, the topology of weak convergence on M(© x H]“) may be

22For an accessible presentation of the argument, see Appendix C in Dudley (2002).

Z3Thus, Dudley (1967), citing Marczewski and Sikorski (1948), writes: "One can safely
assume that a finite countably additive measure on B is concentrated on a separable sub-
set." Marczewski and Sikorski (1948) in turn assume CH and cite Banach and Kuratowski
(1929). In a change of tone, Dudley (2002, pp. 518 f.) explains that CH is contro-
versial, but continues "Nevertheless, it remains a useful, consistent, and rather popular
assumption."

241f the underlying space is the unit interval, a BK-matrix is an infinite matrix of sets

i, € Nk € N, such that, (i) for each i € N,UpenAL = [0,1], (ii) for each i € N,
AL N AL, =0if k# k', and (iil) for any sequence {k;} in N, the set N;en(Ur<r, A%) is at
most countable. Bartoszynski and Halbeisen (2003) show that such a matrix exists if and
only if there exists a K-Lusin set of the size of the continuum.

25In this case also, Remark 4.1 is inapplicable, so the measure defined by the Kolmogorov
mapping may be extendable to B(© x Hj'). Remark 4.2 however remains valid, so the
extension is not generally unique, i.e., measures on (© x Hj',B(© x Hj')) are not fully
determined by belief hierarchies.
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coarser than the topology induced by the Prohorov metric.?® As a mapping
from H}* to My(© X Hj“) with the topology of weak convergence, therefore,
the Kolmogorov mapping is continuous, but its inverse need not be.

6 An Embedding Theorem for Abstract Type Spaces

As discussed in the introduction, the universal type space is called "univer-
sal" because it has room for a complete representation of all strategically
relevant aspects of a given specification of incomplete information. As indi-
cated by (2.14) - (2.16), any ©-based abstract type space with continuous
belief functions can be mapped into a ©-based space of belief hierarchies.
Proposition 2.3 shows that, if the abstract type space is nonredundant and
if the space of belief hierarchies is endowed with the product topology, this
mapping is actually an embedding, i.e., the ©-based abstract type space
is homeomorphic to a subset of the ©-based universal type space. In this
section, I study what becomes of Proposition 2.3 when the spaces of belief
hierarchies have the uniform topology.?”

Recall that a ©-based abstract type space model for two agents is given
by a pair T;,7 = 1,2, of compact metric spaces and a pair b; : T; — M(0O x
T;),©=1,2 and j # i, of continuous belief mappings with the interpretation
that, if ¢; € T; is the "type" of agent ¢, then b;(t;) € M(© x Tj) is the
agent’s probabilistic belief about the exogenous parameter § € © and the
type t; € Tj of the other agent. In Proposition 2.3, continuity of the belief
mappings was defined in terms of the given topologies on T; and the topology
of weak convergence on M(© x Tj), for i = 1,2 and j # 4. The following
stronger continuity condition provides a basis for an anlogue to Proposition
2.3 when the space of belief hierarchies has the uniform topology.

Continuity in Total Variation (CTV) Fori = 1,2 and j # 1, the belief
function b; maps T} continuously into the space M™V (0 x Tj) of prob-
ability measures on (© x T}, B(© x Tj)) endowed with the topology
induced by the total-variation metric p", where, for any two measures
v, on (© x Tj,B(0© x Tj)),

Vi, )= sup |v(B)-v(B). (6.1)
BeB(OXT;)

P

20The proof of this assertion is the same as the proof of the first statement of Theorem
5, p. 238, in Billingsley (2008).
?"The importance of this question is discussed in Morris (2002).
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Proposition 6.1 Given the ©-based abstract-type-space model {T;, bi}%:lv
with compact metric type spaces, for any i, the belief function b; satisfies
CTV, then the function t; — {@F(t;)}32, that is defined by (2.15) and
(2.16) maps T; continuously into H*. If this function is injective, it is an
embedding, i.e., a homeomorphism between T; and a subspace of H}'

Proof. For any k > 1, any t; € T; and any B*~! € B(X*~1), (2.16) implies
that

gpf(Bk_”ti) =b; ((71'@ X (80;‘?*1 o WTj))il (Bk_1)|ti> ‘ (6.2)

Thus, for any t; and #; in T},

sup @f(Bk_l\ti)—wf(Bk_llfi)’ < sup  |bi(Blt;) — bi(BlE)|
BE-1eB(Xk-1) BEB(OXT;)

= o'V (bi(ta), biE:)). (6.3)

Because the Prohorov distance between any two measures is no greater
than the total-variation distance,?® for any £ > 1 and ¢; and t; in T}, one
also has

PP (e (t), () < sup PF (B t) — F(BF L) (6.4)
BF-1leB(XFk-1)

and therefore,

P (0F (t4), 5 (£)) < P (ba(ta), bi(Ei)). (6.5)
By the same argument, one also has
p (ol (t:), @i (£)) < "V (bi(t), bi(E) (6.6)
for any t; and ¢; in T;. Hence
o (TN Leb @) < 77V (it biE))  (6)

for all t; and #; in T}, and the first statement of the proposition follows. The
second statement follows by standard arguments. =

To understand the difference between this result and Proposition 2.3,
it is useful to consider the following version of Rubinstein’s electronic mail

game. Let [ =2and © = {0,1}. Fori € I, let T; = {0, %, %, ..., 1} and endow

288ee, e.g., Gibbs and Su (2002), p. 428.
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T; with the subspace topology that is induced by the usual topology on the
unit interval. Specify the belief function for agent 1 so that, for ¢; = 0,

bi(t1) = 6(0,0); (6.8)
for t1 = nLH > 0,
1 1
bi(t1) = 55(1,"7*1) + 55(0,n11)a (6.9)
and, for t; = 1,
bi(t1) = 6(1,1), (6.10)

where, for any 6 € © and t2 € T3, d(y4,) is the degenerate measure that
assigns all probability mass to the singleton {(6,t2)}. Similarly, specify the
belief function for agent 2 so that, for t5 = 0,

ba(t2) = %5(0,0) + %5(1,%), (6.11)
for to = ;25 >0,
bo(ts) = %5(1,#1) + %5(0,%), (6.12)
and, for t5 =1,
ba(t2) = 6(1,1), (6.13)

where now for any 6 € © and {1 € T1, d(p,) is the degenerate measure that
assigns all probability mass to the singleton {(6,¢1)}.

One easily verifies that, for ¢ = 1,2, the belief function b; is continuous
if the space M(© x T;) has the topology of weak convergence and that it is
discontinuous at ¢; = 1 if M(© x T}) has the topology induced by the total-
variation metric. The associated mapping t; — {gof(tz)}zil from T} to H;
is continuous if H; has the product topology and discontinuous at ¢; = 1 if
H; has the uniform topology. Because of the discontinuity, the model fails
to have the lower strategic convergence property.

To see this, consider a strategic game in which each agent has a choice
between two actions ag and a;. Suppose that, for each agent, action ag always
gives the payoff zero, but action a; gives the payoff Y > 0 if § = 1 and if
the other agent also chooses the action a; and otherwise the payoff —X < 0,
where X > Y. For each agent i, one easily verifies that, if ¢ < %(Y - X),
then, for any ¢; € T;\{1}, ag is the unique interim correlated e-rationalizable
action of the agent, but for ¢; = 1, the action a; is also interim rationalizable.
The lower strategic convergence property of Dekel et al. (2006) fails to hold.
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The failure is directly related to the discontinuity of b; when the range of b;
has the topology induced by the total-variation metric.

The failure is also related to the discontinuity of the mapping t; ——
{eF(t:)}2, from T; to H; when H; has the uniform topology. If the map-
ping t; — {©F(t:)}2°, from T; to HY were continuous, then, by Theorem
1 of Chen et al. (2010), the lower strategic convergence property would
hold in the belief-hierarchies formulation of the game. By Proposition 6.1,
this property would also hold in the abstract-type-space formulation of the
game.?’

A remaining question is whether the topology induced by the total-
variation metric is actually the coarsest topology on M(© x T;) for which
the mapping ¢; — {¢F(:)}2, from T; to HY is continuous. Could one
obtain the conclusion of Proposition 6.1 for a coarser topology on the range
of the belief function b;? An answer to this question would complete the
program of extending the results reviewed in Section 2 to a setting where
beliefs of arbitrarily high orders can have a significant impact on strategic
behaviour.
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