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Further Computational Details

The Born-Oppenheimer QM/MM MD simulations were carried out in our own implemen-

tation of an additive QM/MM Scheme,1–3 where the QM and MM regions are interfaced

through the total energy of the system:

Etot = EQM + EMM + EQM/MM (1)

where the three terms represent the energy of the QM subsystem, the MM subsystem and

their interaction energy, respectively. The interaction energy consists of a Coulomb term
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between the electronic density and the classical point charges, a Coulomb term between the

nuclei in the QM subsystem and the MM point charges, and a Lennard-Jones (LJ) term:

EQM/MM =
NMM∑
i

qi

∫ n(r)

|r−Ri|
dr +

NMM∑
i

NQM∑
α

qiZα
|Rα −Ri|

+ ELJ (2)

ELJ =
NMM∑
i

NQM∑
α

4εiα

( σiα
|Rα −Ri|

)12

−
(

σiα
|Rα −Ri|

)6
 (3)

The LJ parameters are combined using the Waldman-Hagler combination rules.4

The first term in eqn. 1 is evaluated with density functional theory (DFT), using the grid-

based projector augmented wave method, implemented in the GPAW package,5 which is

modified so that the total effective potential also contains a term from the MM subsystem.

The calculations were performed with a localised atomic orbital basis in combination with

the real space grid, allowing for high parallelisation as well as fast diagonalization of the

principal matrices.
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Preliminary Tests and Geometry Relaxations

Basis Sets & Grid Spacing

Figure S1: Convergence of the Ru-N distances as a function of grid spacing h and basis set
size. The color bar shows the distance in Å.

Figure S2: Convergence of the Co-N distances as a function of h and basis set size. The
color bar shows the distance in Å.

For the Ru=Co simulations, the QM real space cell size was chosen such that the molecule

had 5 Å of extra grid points in each dimension, to avoid truncation of the wave functions,

leading to a 25x20x30 Å cell.

Figures S1 and S2 show the convergence of the GS Ru/Co-N distances with respect to grid
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spacing and basis set size. In both cases, the major influence on the structure arises from

the choice of basis set, which converges rapidly when basis sets of size larger than double

zeta are chosen. For all values of 0.15 Å < h < 0.20 Å, the variation in bond distance is

at least 17 times smaller than the changes arising from changing the basis, meaning that all

grid spacings under 0.20 Å will be acceptable.

Geometry Relaxations

Table S1: Average bond lengths from the QM/MM MD simulations, compared to geometry opti-
mizations using a more conventional quantum chemistry package, ORCA.6

Ru Co
Bond: b1 b2 v1 v2 d1 d2 avg. b1 b2 v1 v2 d1 d2 avg.
Method GS
Orca, PBE, TZVP vacuum 2.110 2.110 2.108 2.109 2.104 2.104 2.108 1.997 1.997 1.968 1.968 1.997 1.976 1.984
Orca, PBE, TZVP COSMO(acn) 2.099 2.099 2.095 2.094 2.091 2.091 2.095 1.965 1.965 1.954 1.955 1.952 1.951 1.957
GPAW QM/MM MD avg. 2.145 2.149 2.145 2.142 2.140 2.139 2.143 2.012 2.012 2.005 2.003 2.001 1.999 2.005

LS
Orca, PBE, TZVP vacuum 2.128 2.128 2.111 2.110 2.103 2.102 2.114 2.175 2.173 1.953 1.953 2.067 2.065 2.064
Orca, PBE, TZVP COSMO(acn) 2.109 2.108 2.098 2.099 2.093 2.093 2.100 2.133 2.135 1.942 1.942 2.053 2.053 2.043
Orca, PBE0/6-31G(d,p)∗, COSMO(acn) 2.102 2.102 2.087 2.088 2.082 2.081 2.090 1.994 2.206 1.964 1.971 1.972 2.164 2.045
Orca, PBE0/def2-TZVP∗, COSMO(acn) 2.097 2.093 2.078 2.083 2.074 2.073 2.083 2.109 2.179 1.974 1.976 2.069 2.126 2.072
Orca, B3LYP/6-31G(d,p)∗, COSMO(acn) 2.126 2.129 2.121 2.120 2.110 2.120 2.121 2.124 2.147 1.950 1.952 2.046 2.050 2.045
Orca, B3LYP/def2-TZVP∗, COSMO(acn), 2.121 2.123 2.104 2.110 2.101 2.098 2.110 2.260 2.047 2.017 2.005 2.232 2.014 2.096
GPAW QM/MM MD avg. 2.185 2.186 2.193 2.193 2.192 2.194 2.190 2.132 2.139 2.118 2.110 2.105 2.106 2.118

HS
Orca, PBE, TZVP vacuum 2.131 2.132 2.111 2.111 2.103 2.102 2.115 2.194 2.192 2.132 2.135 2.119 2.119 2.149
Orca, PBE, TZVP COSMO(acn) 2.110 2.111 2.099 2.099 2.093 2.092 2.101 2.142 2.149 2.124 2.130 2.114 2.114 2.129
GPAW QM/MM MD avg. 2.176 2.173 2.165 2.162 2.159 2.156 2.165 2.211 2.214 2.199 2.199 2.196 2.194 2.202

Table S1 shows the thermally averaged bond lengths, compared to conventional geometry

optimizations. For the LS state, the study has been extended to encompass a variety of func-

tionals and basis sets. First, the Generalized Gradient Approximation-style PBE7 functional

also used in the QM/MM MD simulations, together with the Ahlrichs-style TZVP basis.8

Then, the hybrid functional PBE0, where the total exchange energy is obtained by adding

25% exact exchange energy and 75% PBE exchange.9 This functional is used in conjunction

with the Pople-style double-ζ quality basis set 6-31G(d,p),10–12 as also done elsewhere.13 For

comparison, optimizations have also been carried out using the Ahlrichs-style triple-ζ basis,

def2-TZVP.14 At last, geometry optimizations are carried using the hybrid B3LYP15,16 func-

tional (20% exact exchange). The simulations marked with ’*’ uses the Stuttgart-Dresden

effective core potential,17 to be identical to previously carried out work.13 The calculations
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labeled ’COSMO(acn)’ employs a dielectric continuum of acetonitrile parameters using the

COSMO model.18 On average, only the GPAW QM/MM MD results achieve the experi-

mental 0.20 Å HS bond elongation, with the dielectric continuum model undershooting the

bond stretch, giving 0.17 Å. For the geometry optimizations in the LS state, bond lengths

rounding off to < 2.1 Å are marked blue, and bonds rounding off to ≥ 2.1 Å are marked

red, to provide an easier overview. Except for B3LYP, we note a 4/2 distortion of the Co-N

bonds with the b and h bonds extending ∼ 0.1 Å, and the v bonds virtually unchanged,

when using Ahlrics style basis sets, whereas the Pople-style basis sets seem to favour a 2/4

distortion, showing that the results are very sensitive to both size and style of basis set, but

also to the chosen combination of functional and basis. This is expected, as the relevant

energy levels are almost degenerate, and the orbitals do indeed interchange dynamically, as

the QM/MM MD simulations described in the main text reveals.
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Figure S3: Comparison of the spread of the average Co-N bond results from conventional
geometry optimizations with the QM/MM thermal averages. The errorbars represent a 95%
confidence interval.

Figure S3 shows that the final thermal Co-N bond length average from the QM/MM sim-

ulations do not fall in the a 95% confidence interval of the basis- and functional-induced

spread of distances, indicating that the effects of explicit solvation are larger than basis

set/functional-induced discrepancies.
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Figure S4: The local Co magnetic moment in units of the Bohr magneton, µB, for each
individual LS trajectory.

Discerning between [3RuII=1CoIII] and [2RuIII=2CoII]

In the LS trajectories, the local magnetic moments were read out at each MD step. When

the local magnetic moment on the Co centre is > 1 µB, it can readily be assumed than

the system is in the charge-separated [2RuIII=2CoII] state. The figure S4 shows how the

filter is constructed for the analysis in the main text: Each line shows the sampled magnetic

moments of each individual trajectory, and the dashed lines show the applied limit.

Torsions

Figure S5: The relevant geometric definitions of [Ru=Co].
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Figure S6 shows the dihedral N-C-C-N torsions γ1 and γ2 (se figure S5 for definitions).
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Figure S6: Thermal distributions of torsions.

The Co γ increases on average by ∼ 2◦ in the HS state, while decreasing for the Ru centre.
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