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Predicting Human Brain Activity 
Associated with the Meanings 
of Nouns 
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The question of how the human brain represents conceptual knowledge has been debated in 

many scientific fields. Brain imaging studies have shown that different spatial patterns of neural 
activation are associated with thinking about different semantic categories of pictures and 
words (for example, tools, buildings, and animals). We present a computational model that predicts 
the functional magnetic resonance imaging (fMRI) neural activation associated with words for which 
fAARI data are not yet available. This model is trained with a combination of data from a trillion-word 
text corpus and observed fMRI data associated with viewing several dozen concrete nouns. Once 

trained, the model predicts fMRI activation for thousands of other concrete nouns in the text corpus, 
with highly significant accuracies over the 60 nouns for which we currently have fMRI data. 

The question of how the human brain rep 
resents and organizes conceptual knowledge 
has been studied by many scientific commu 

nities. Neuroscientists using brain imaging studies 

(7-9) have shown that distinct spatial patterns of 

fMRI activity are associated with viewing pictures 
of certain semantic categories, including tools, build 

ings, and animals. Linguists have characterized dif 

ferent semantic roles associated with individual 

verbs, as well as the types of nouns that can fill those 

semantic roles [e.g., VerbNet (10) and WordNet 

(11, 12)]. Computational linguists have analyzed 
the statistics of very large text corpora and have 

demonstrated that a word's meaning is captured to 

some extent by the distribution of words and phrases 
with which it commonly co-occurs (13-17). Psy 

chologists have studied word meaning through 
feature-norming studies (18) in which participants 
are asked to list the features they associate with var 

ious words, revealing a consistent set of core fea 

tures across individuals and suggesting a possible 

grouping of features by sensory-motor modalities. 

Researchers studying semantic effects of brain dam 

age have found deficits that are specific to given 
semantic categories (such as animals) (19-21). 

This variety of experimental results has led to 

competing theories of how the brain encodes mean 

ings of words and knowledge of objects, including 
theories that meanings are encoded in sensory 

motor cortical areas (22, 23) and theories that they 
are instead organized by semantic categories such 

as living and nonliving objects (18, 24). Although 
these mpeting theories sometimes lead to differ 

ent predictions (e.g., of which naming disabilities 
will co-occur in brain-damaged patients), they are 

primarily descriptive theories that make no attempt 
to predict the specific brain activation that will be 

produced when a human subject reads a particular 
word or views a drawing of a particular object. 

We present a computational model that makes 

directly testable predictions of the fMRI activity as 
sociated with thinking about arbitrary concrete 

nouns, including many nouns for which no fMRI 

data are currently available. The theory underlying 
this mputational model is that the neural basis of 

the semantic representation of concrete nouns is 

related to the distributional properties of those words 
in a broadly based corpus of the language. We de 

scribe experiments training competing mputation 
al models based on different assumptions regarding 
the underlying features that are used in the brain 

for encoding of meaning of concrete objects. We 

present experimental evidence showing that the best 

of these models predicts fMRI neural activity well 

enough that it can successfully match words it has 

not yet encountered to their previously unseen fMRI 

images, with accuracies far above those expected 

by chance. These results establish a direct, predic 
tive relationship between the statistics of word 

co-occurrence in text and the neural activation 

associated with thinking about word meanings. 

Approach. We use a trainable computational 
model that predicts the neural activation for any 

given stimulus word w using a two-step process, 
illustrated in Fig. 1. Given an arbitrary stimulus 

word w, the first step encodes the meaning of w as 

a vector of intermediate semantic features computed 
from the occurrences of stimulus word w within a 

very large text corpus (25) that captures the typ 
ical use of words in English text For example, 

one intermediate semantic feature might be the 

frequency with which w co-occurs with the verb 

"hear." The second step predicts the neural fMRI 

activation at every voxel location in the brain, as a 

weighted sum of neural activations contributed by 
each of the intermediate semantic features. More 

precisely, the predicted activation yv at voxel v in 

the brain for word w is given by 

where flw) is the value of the rth intermediate 
semantic feature for word w, n is the number of 

semantic features in the model, and cu is a learned 

scalar parameter that specifies the degree to which 

the rth intermediate semantic feature activates voxel 

v. This equation can be interpreted as predicting the 

full fMRI image across all voxels for stimulus word 

w as a weighted sum of images, one per semantic 

feature j?. These semantic feature images, defined 

by the learned cM, constitute a basis set of compo 
nent images that model the brain activation asso 

ciated with different semantic components of the 

input stimulus words. 

Predictive model 
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Fig. 1. Form of the model for predicting fMRI activation for arbitrary noun stimuli. fMRI activation 
is predicted in a two-step process. The first step encodes the meaning of the input stimulus word in 
terms of intermediate semantic features whose values are extracted from a large corpus of text 

exhibiting typical word use. The second step predicts the fMRI image as a linear combination of the 
fMRI signatures associated with each of these intermediate semantic features. 
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To fully specify a model within this com 

putational modeling framework, one must first 

define a set of intermediate semantic features 

f\(w) fi(w)- - fn(w) to be extracted from the text 

corpus. In this paper, each intermediate semantic 

feature is defined in terms of the co-occurrence 

statistics of the input stimulus word w with a 

particular other word (e.g., 'taste") or set of words 

(e.g., 'laste," "tastes," or ''tasted") within the text 

corpus. The model is trained by the application of 

multiple regression to these features/{w) and the 
observed fMRI images, so as to obtain maximum 

likelihood estimates for the model parameters cM 

(26). Once trained, the computational model can be 

evaluated by giving it words outside the training 
set and comparing its predicted fMRI images for 
these words with observed fMRI data. 

This computational modeling framework is 
based on two key theoretical assumptions. First, it 

assumes the semantic features that distinguish the 

meanings of arbitrary concrete nouns are reflected 

in the statistics of their use within a very large text 

corpus. This assumption is drawn from the field of 

computational linguistics, where statistical word 

distributions are frequently used to approximate 
the meaning of documents and words (14-17). 

Second, it assumes that the brain activity observed 

when thinking about any concrete noun can be 

derived as a weighted linear sum of contributions 

from each of its semantic features. Although the 

correctness of this linearity assumption is debat 

able, it is consistent with the widespread use of 

linear models in fMRI analysis (27) and with the 

assumption that fMRI activation often reflects a 

linear superposition of contributions from different 
sources. Our theoretical framework does not take a 

position on whether the neural activation encoding 

meaning is localized in particular cortical re 

gions. Instead, it considers all cortical voxels and 

allows the training data to determine which loca 

tions are systematically modulated by which as 

pects of word meanings. 

Results. We evaluated this computational mod 

el using fMRI data from nine healthy, college-age 

participants who viewed 60 different word-picture 

pairs presented six times each. Anatomically de 

fined regions of interest were automatically labeled 

according to the methodology in (28). The 60 ran 

domly ordered stimuli included five items from 
each of 12 semantic categories (animals, body parts, 

buildings, building parts, clothing, furniture, insects, 

kitchen items, tools, vegetables, vehicles, and other 

man-made items). A representative fMRI image for 

each stimulus was created by computing the mean 

fMRI response over its six presentations, and the 

mean of all 60 of these representative images was 

then subtracted from each [for details, see (26)]. 
To instantiate our modeling framework, we first 

chose a set of intermediate semantic features. To be 

effective, the intermediate semantic features must 

simultaneously encode the wide variety of semantic 

content of the input stimulus words and factor the 

observed fMRI activation into more primitive com 

"eaf "taste" "fill" 

Predicted 

"celery" = 0.84 

B "celery" "airplane" 

Predicted: 

Fig. 2. Predicting fMRI images 
for given stimulus words. (A) 
Forming a prediction for par 

ticipant PI for the stimulus 
word "celery" after training on 

58 other words. Learned cw co 

efficients for 3 of the 25 se 
mantic features ("eat," "taste," 
and "fill") are depicted by the 
voxel colors in the three images 
at the top of the panel The co 
occurrence value for each of these features for the stimulus word "celery" is 
shown to the left of their respective images [e.g., the value for "eat (celery)" is 
0.84]. The predicted activation for the stimulus word [shown at the bottom of 
(A)] is a linear combination of the 25 semantic fMRI signatures, weighted by 
their co-occurrence values. This figure shows just one horizontal slice [z = 

Observed: 

-12 mm in Montreal Neurological Institute (MNI) space] of the predicted 
three-dimensional image. (B) Predicted and observed fMRI images for 

"celery" and "airplane" after training that uses 58 other words. The two long 
red and blue vertical streaks near the top (posterior region) of the predicted 
and observed images are the left and right fusiform gyri. 

Fig. 3. Locations of 

most accurately pre 
dicted voxels. Surface 

(A) and glass brain (B) 
rendering of the correla 

tion between predicted 
and actual voxel activa 

tions for words outside 
the training set for par 

ticipant P5. These panels show clusters containing at least 10 contiguous voxels, each of whose 

predicted-actual correlation is at least 0.28. These voxel clusters are distributed throughout the 
cortex and located in the left and right occipital and parietal lobes; left and right fusiform, 
postcentral, and middle frontal gyri; left inferior frontal gyrus; medial frontal gyrus; and anterior 

cingulate. (C) Surface rendering of the predicted-actual correlation averaged over all nine 

participants. This panel represents clusters containing at least 10 contiguous voxels, each with 

average correlation of at least 0.14. 
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ponents mat can be linearly recombined to suc 

cessfully predict the fMRI activation for arbitrary 
new stimuli. Motivated by existing conjectures re 

garding the centrality of sensory-motor features in 

neural representations of objects (18, 29), we de 

signed a set of 25 semantic features defined by 25 
verbs: "see," "hear," "listen," "taste," "smell," "eat," 

"touch," "nib," "lift," "manipulate," "run," "push," 

"fill," ''move," "ride," "say," "fear," "open," "ap 

proach," "near," "enter," "drive 
" 

"wear," "break," 

and "clean." These verbs generally correspond to 

basic sensory and motor activities, actions per 

formed on objects, and actions involving changes to 

spatial relationships. For each verb, the value of the 

corresponding intermediate semantic feature for a 

given input stimulus word w is the normalized co 

occurrence count of w with any of three forms of the 

verb (e.g., "taste," "tastes," or 'lasted") over the text 

corpus. One exception was made for the verb "see." 

Its past tense was omitted because "saw" is one of 

our 60 stimulus nouns. Normalization consists of 

scaling the vector of 25 feature values to unit length. 
We trained a separate computational model for 

each of the nine participants, using mis set of 25 

semantic features. Each trained model was evaluated 

by means of a "leave-two-ouf 
' 
cross-validation ap 

proach, in which the model was repeatedly trained 

with only 58 of the 60 available word stimuli and 
associated fMRI images. Each trained model was 

tested by requiring that it first predict the fMRI 

images for the two "held-out" words and then match 

these correctly to their corresponding held-out fMRI 

images. The process of predicting the fMRI image 
for a held-out word is illustrated in Fig. 2A. The 

match between the two predicted and the two ob 

served fMRI images was determined by which 
match had a higher cosine similarity, evaluated over 

the 500 image voxels with the most stable 

responses across training presentations (26). The 

expected accuracy in matching the left-out words to 

their left-out fMRI images is 0.50 if the model per 
forms at chance levels. An accuracy of 0.62 or 

higher for a single model trained for a single par 

ticipant was determined to be statistically significant 
(P < 0.05) relative to chance, based on the empirical 
distribution of accuracies for randomly generated 
null models (26). Similarly, observing an accuracy 

of 0.62 or higher for each of the nine independently 

trained participant-specific models would be statis 

tically significant at P < 10-11. 

The cross-validated accuracies in matching two 

unseen word stimuli to their unseen fMRI images 
for models trained on participants PI through P9 

were 0.83, 0.76, 0.78, 0.72, 0.78, 0.85, 0.73, 0.68, 

and 0.82 (mean 
= 

0.77). Thus, all nine participant 

specific models exhibited accuracies significantly 
above chance levels. The models succeeded in dis 

tinguishing pairs of previously unseen words in 

over three-quarters of the 15,930 cross-validated 

test pairs across these nine participants. Accuracy 
across participants was strongly correlated (r 

= 

-0.66) with estimated head motion (i.e., the less the 

participant's head motion, the greater the prediction 

accuracy), suggesting that the variation in accu 

racies across participants is explained at least in part 

by noise due to head motion. 

Visual inspection of the predicted fMRI images 
rjroduced by the trained models shows that these 

predicted images frequently capture substantial as 

pects of brain activation associated with stimulus 

words outside the training set An example is shown 

in Fig. 2B, where the model was trained on 58 of the 

60 stimuli for participant PI, omitting "celery" and 

"airplane." Although the predicted fMRI images for 

"celery" and "airplane" are not perfect, they cap 
ture substantial components of the activation ac 

tually observed for these two stimuli. A plot of 

similarities between all 60 predicted and observed 
fMRI images is provided in fig. S3. 

The model's predictions are differentially accu 

rate in different brain locations, presumably more 

accurate in those locations involved in encoding 
the semantics of the input stimuli. Figure 3 shows 

the model's "accuracy map," indicating the cortical 

regions where the model's predicted activations 

for held-out words best correlate with the observed 

activations, both for an individual participant (P5) 
and averaged over all nine participants. These 

highest-accuracy voxels are meaningfully distrib 

uted across the cortex, with the left hemisphere 
more strongly represented, appearing in left inferior 

temporal, fusiform, motor cortex, intraparietal 

sulcus, inferior frontal, orbital frontal, and the oc 

cipital cortex. This left hemisphere dominance is 
consistent with the generally held view that the left 

hemisphere plays a larger role than the right hemi 

sphere in semantic representation. High-accuracy 
voxels also appear in both hemispheres in the oc 

cipital cortex, intraparietal sulcus, and some of the 

inferior temporal regions, all of which are also 

likely to be involved in visual object processing. 
It is interesting to consider whether these trained 

computational models can extrapolate to make ac 

curate predictions for words in new semantic cat 

egories beyond those in the training set To test 

this, we retrained the models but this time we ex 

cluded from the training set all examples belonging 
to the same semantic category as either of the two 

held-out test words (e.g., when testing on "celery" 
versus "airplane," we removed every food and ve 

hicle stimulus from the training set, training on only 
50 words). In this case, the cross-validated predic 
tion accuracies were 0.74, 0.69, 0.67, 0.69, 0.64, 

Participant 
P1 

Fig. 4. Learned voxel "eat" "push" 

activation signatures for 

3 of the 25 semantic fea 
tures, for participant PI 

(top panels) and averaged 
over all nine participants 
(bottom panels). Just one 
horizontal z slice is shown 
for each. The semantic fea 

ture associated with the 
verb "eat" predicts sub 

stantial activity in right 
pars opercularis, which is Mean over 

believed to be part of the participants 

gustatory cortex. The se 

mantic feature associated 

with "push" activates the 

right postcentral gyrus, 
which is believed to be 
associated with premotor 
planning. The semantic feature for the verb "run" activates the posterior portion of the right superior temporal 
sulcus, which is believed to be associated with the perception of biological motion. 

Pars opercularis 
(z=24 mm) 

Postcentral gyrus 
(z=30 mm) 

Superior temporal 
sulcus (posterior) 

(z=12mm) 

Fig. 5. Accuracies of models based 
on alternative intermediate semantic 

feature sets. The accuracy of compu 
tational models that use 115 dif 
ferent randomly selected sets of 
intermediate semantic features is 

shown in the blue histogram. Each 
feature set is based on 25 words 
chosen at random from the 5000 

most frequent words, excluding 
the 500 most frequent words and 
the stimulus words. The accuracy of 

the feature set based on manually 
chosen sensory-motor verbs is shown 

in red. The accuracy of each feature 

set is the average accuracy obtained 

when it was used to train models for 
each of the nine participants. 

0.55 0.6 0.65 0.7 0.75 

accuracy over nine participants 

www.sciencemag.org SCIENCE VOL 320 30 MAY 2008 1193 

This content downloaded from 192.87.79.51 on Tue, 11 Nov 2014 09:04:55 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


RESEARCH ARTICLES 

0.78, 0.68, 0.64, and 0.78 (mean 
= 

0.70). This 

ability of the model to extrapolate to words se 

mantically distant from those on which it was 

trained suggests that the semantic features and 

their learned neural activation signatures of the 

model may span a diverse semantic space. 
Given that the 60 stimuli are composed of five 

items in each of 12 semantic categories, it is also 

interesting to determine the degree to which the 

model can make accurate predictions even when 

the two held-out test words are from the same cat 

egory, where the discrimination is likely to be more 

difficult (e.g., "celery" versus "com"). These within 

category prediction accuracies for the nine individ 

uals were 0.61, 0.58, 0.58, 0.72, 0.58, 0.77, 0.58, 

0.52, and 0.68 (mean 
= 

0.62), indicating that al 

though the model's accuracy is lower when it is 

differentiating between semantically more similar 

stimuli, on average its predictions nevertheless 

remain above chance levels. 

In order to test the ability of the model to dis 

tinguish among an even more diverse range of 

words, we tested its ability to resolve among 1000 

highly frequent words (the 1300 most frequent 
tokens in the text corpus, omitting the 300 most 

frequent). Specifically, we conducted a leave-one 

out test in which the model was trained using 59 of 

the 60 available stimulus words. It was then given 
the fMRI image for the held-out word and a set of 

1001 candidate words (the 1000 frequent tokens, 
plus the held-out word). It ranked these 1001 

candidates by first predicting the fMRI image for 
each candidate and then sorting the 1001 candidates 

by the similarity between their predicted fMRI im 

age and the fMRI image it was provided. The ex 

pected percentile rank of the correct word in this 

ranked list would be 0.50 if the model were op 

erating at chance. The observed percentile ranks 

for the nine participants were 0.79,0.71,0.74,0.67, 

0.73, 0.77, 0.70, 0.63, and 0.76 (mean 
= 

0.72), in 

dicating that the model is to some degree appli 
cable across a semantically diverse set of words 

[see (26) for details]. 
A second approach to evaluating our compu 

tation model, beyond quantitative measurements of 

its prediction accuracy, is to examine the learned 

basis set of fMRI signatures for the 25 verb-based 

signatures. These 25 signatures represent the model's 

learned decomposition of neural representations into 

their component semantic features and provide the 

basis for all of its predictions. The learned signatures 
for the semantic features "eat," "push," and "run" 

are shown in Fig. 4. Notice that each of these signa 
tures predicts activation in multiple cortical regions. 

Examining the semantic feature signatures in 

Fig. 4, one can see that the learned fMRI signature 
for the semantic feature "eat" predicts strong activa 

tion in opercular cortex (as indicated by the arrows 

in the left panels), which others have suggested is a 

component of gustatory cortex involved in the sense 

of taste (30). Also, the learned fMRI signature for 

"push" predicts substantial activation in the right 

postcentral gyms, which is widely assumed to be 

involved in the planning of complex, coordinated 

movements (31). Furthermore, the learned signature 

for "run" predicts strong activation in the posterior 

portion of the right superior temporal lobe along the 

sulcus, which others have suggested is involved in 

perception of biological motion (32, 33). To sum 

marize, these learned signatures cause the model to 

predict that the neural activity representing a noun 

will exhibit activity in gustatory cortex to the degree 
that this noun co-occurs with the verb "eat," in mo 

tor areas to the degree that it co-occurs with "push," 
and in cortical regions related to body motion to the 

degree that it co-occurs with "run." Whereas the 

top row of Fig. 4 illustrates these learned signa 
tures for participant P1, the bottom row shows the 

mean of the nine signatures learned independently 
for the nine participants. The similarity of the two 

rows of signatures demonstrates that these learned 

intermediate semantic feature signatures exhibit 

substantial commonalities across participants. 
The learned signatures for several other verbs 

also exhibit interesting correspondences between 

the function of cortical regions in which they pre 
dict activation and that verb's meaning, though in 

some cases the correspondence holds for only a 

subset of the nine participants. For example, ad 

ditional features for participant PI include the sig 
nature for "touch," which predicts strong activation 

in somatosensory cortex (right postcentral gyms), 
and the signature for "listen," which predicts acti 

vation in language-processing regions (left posterior 

superior temporal sulcus and left pars triangularis), 

though these trends are not common to all nine 

participants. The learned feature signatures for all 

25 semantic features are provided at (26). 
Given the success of this set of 25 intermediate 

semantic features motivated by the conjecture that 

the neural components corresponding to basic se 

mantic properties are related to sensory-motor 

verbs, it is natural to ask how this set of interme 

diate semantic features compares with alternatives. 

To explore this, we trained and tested models based 

on randomly generated sets of semantic features, 

each defined by 25 randomly drawn words from the 

5000 most frequent words in the text corpus, ex 

cluding the 60 stimulus words as well as the 500 

most frequent words (which contain many function 

words and words without much specific semantic 

content, such as ctthe" and "have"). A total of 115 

random feature sets was generated. For each feature 

set, models were trained for all nine participants, and 

the mean prediction accuracy over these nine 

models was measured. The distribution of resulting 
accuracies is shown in the blue histogram in Fig. 5. 

The mean accuracy over these 115 feature sets is 

0.60, the SD is 0.041, and the minimum and max 

imum accuracies are 0.46 and 0.68, respectively. 
The random feature sets generating the highest and 

lowest accuracy are shown at (26). The fact that the 

mean accuracy is greater than 0.50 suggests that 

many feature sets capture some of the semantic 

content of the 60 stimulus words and some of the 

regularities in the corresponding brain activation. 

However, among these 115 feature sets, none came 

close to the 0.77 mean accuracy of our manually 

generated feature set (shown by the red bar in the 

histogram in Fig. 5). This result suggests the set of 

features defined by our sensory-motor verbs is 

somewhat distinctive in capturing regularities in the 

neural activation encoding the semantic content of 

words in the brain. 

Discussion. The results reported here estab 

lish a direct, predictive relationship between the 

statistics of word co-occurrence in text and the 

neural activation associated with thinking about 

word meanings. Furthermore, the computational 
models trained to make these predictions provide 

insight into how the neural activity that represents 

objects can be decomposed into a basis set of 

neural activation patterns associated with different 

semantic components of the objects. 
The success of the specific model, which uses 25 

sensory-motor verbs (as compared with alternative 

models based on randomly sampled sets of 25 

semantic features), lends credence to the conjecture 
that neural representations of concrete nouns are in 

part grounded in sensory-motor features. However, 

the learned signatures associated with the 25 

intermediate semantic features also exhibit signifi 
cant activation in brain areas not directly associated 

with sensory-motor function, including frontal re 

gions. Thus, it appears that the basis set of features 

that underlie neural representations of concrete 

nouns involves much more than sensory-motor 
cortical regions. 

Other recent woric has suggested that the neural 

encodings that represent concrete objects are at least 

partly shared across individuals, based on evidence 

that it is possible to identify which of several items a 

person is viewing, through only their fMRI image 
and a classifier model trained from other people (34). 
The results reported here show that the learned 

basis set of semantic features also shares certain 

commonalities across individuals and may help 
determine more directly which factors of neural 

representations are similar and different across 

individuals. 

Our approach is analogous in some ways to re 

search that focuses on lower-level visual features of 

picture stimuli to analyze fMRI activation asso 

ciated with viewing the picture (9, 35, 36) and to 
research that compares perceived similarities be 

tween object shapes to their similarities based on 

fMRI activation (37). Recent work (36) has shown 
that it is possible to predict aspects of fMRI activa 

tion in parts of visual cortex based on visual features 

of arbitrary scenes and to use this predicted activa 

tion to identify which of a set of candidate scenes an 

individual is viewing. Our work differs from these 

efforts, in that we focus on encodings of more ab 

stract semantic concepts signified by words and 

predict brain-wide fMRI activations based on text 

corpus features that capture semantic aspects of the 

stimulus word, rather than visual features that capture 

perceptual aspects. Our work is also related to recent 

research that uses machine learning algorithms to 

train classifiers of mental states based on fMRI data 

(38, 39), though it differs in that our models are 

capable of extrapolating to predict fMRI images for 

mental states not present in the training set 

This research represents a shift in the paradigm 
for studying neural representations in the brain, 
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moving from work that has cataloged the patterns of 

fMRI activity associated with specific categories of 
words and pictures to instead building computational 
models that predict the fMRI activity for arbitrary 
words (including thousands of woids for which 

fMRI dato are not yet available). This is a natural 

progression as the field moves from pretheoretical 

cataloging of data toward development of computa 
tional models and the beginnings of a theory of neu 

ral representations. Our computational models can 

be viewed as encoding a restricted form of predictive 

theory, one that answers such questions as "What is 

the predicted fMRI neural activity encoding word 
w?" and "What is the basis set of semantic features 

and corresponding components of neural activation 

that explain the neural activations encoding mean 

ings of concrete nouns?" Although we remain far 

from a causal theory explaining how the brain syn 
thesizes these representations from its sensory in 

puts, answers even to these questions promise to 

shed light on some of the key regularities underlying 
neural representations of meaning. 

Supporting Online Material 

www.sdencemag.org/cgi/conteni/full/320/5880/1191/DCl 
Materials and Methods 
SOM Text 

Figs. SI to 55 
References 

12 November 2007; accepted 3 April 2008 
10.1126/science.ll52876 

References and Notes 
1. 3- V. Haxby et ai, Science 293, 2425 (2001). 
2. A. Ishai, L G. Ungedeider, A. Martin, J. L Scheuten, ]. V. 

Haxby, Proc Nati Acad. Sei. USA. 96, 9379 (1999). 
3. N. Kanwisher, J. McDermott, M, M. Chun, j. Neurosa. 17? 

4302 ?997), 
4. T, A. Carlson, P. Schrater, S. He, /. Cogn. Neurosa 15, 

704 (2003). 
5. D. D. Cox, R. I. Savoy, Neuroimage 19, 261 (2003). 
6. T. Mitchell et ai, Mach. Learn. 57? 145 (2004). 

7. S. ]. Hanson, T. Matsuka, ). V. Haxby, Neuroimage 23, 
156 (2004). 

8. S. M. Polyn, V. S. Natu,}. D. Cohen, K. A. Norman, 
Science 310, 1963 (2005). 

9. A. ]. O'Toole, F. Jiang, H. Abdi? ]. V. Haxby, j. Cogn. 
Neurosa 17, 580 (2005). 

10. K. Kipper, A. Korhonen, H. Ryant? M. Palmer? Proceedings of 
the 5th International Conference on Language Resources 
and Evaluation, Genoa, Italy, 24 to 26 May 2006, 

11. G. Milter, R. Beckwith, C Fe?baum, D. Gross, K. j. Miller, 
?nt I Lexicography 3, 235 (1990). 

12. C. Fellbaum? Ed., WordNet: An Electronic Lexical 
Database (Massachusetts Institute of Technology Press, 

Cambridge? MA, 1998). 
13. K. W. Church, P. Hanks, Comput Linguist 16, 22 (1990). 
14. T. K. Landauer, S. T. Dumais, PsychoL Rev. 104, 211 (1997). 
15. D. Lin, 5. Zhao? I. Oin, M. Zhou, Proceedings of the 18th 

International Joint Conference on Artificial intelligence, 
Acapulco, Mexico, August 2003 (Morgan Kaufmann, San 

Francisco, 2003), pp. 1492-1493. 
16. D. M. Btei, A. Y. Ng, M. I. Jordan? j. Mack Learn. Res. 3? 

993 (2003). 
17. R, Snow, D. jurafsky, A. Ng? Proceedings of the 44th 

Annual Meeting of the Association for Computational 
Linguistics, Sydney, Australia, 17 to 21 July 2006. 

18. G. S. Cree, K. McRaeJ. Exp. PsychoL Gen. 132? 163 (2003). 
19. A. Caramazza, J. R. Shelton? J. Cogn. Neurosa. 10? 1 (1998). 
20. S. ]. Crutch? E. K. Warrington, Brain 126, 1821 (2003). 
21. D. Samson? A. Pillon, Brain Lang, 91, 252 (2004). 
22. A. Martin, L L Chao, Curr. Opin. Neurobioi. 11,194 (2001). 
23. R. F. Goldberg, C. A. Perfetti, W. Schneider? J. Neurosci. 

26, 4917 (2006). 
24. B. Z. Mahon, A. Caramazza, in The Encyclopedia of 

Language and Linguistics, K. Brown? Ed. (Elsevier 

Science, Amsterdam? ed. 2, 2005). 
25. T. Brants, A. Franz, www.ldc.upenn.edu/Catalog/ 

CatatogEntry.jsp?catalogld=LDC2Q06T13 (Linguistic Data 

Consortium, Philadelphia? PA, 2006). 

26. See Supporting Online Material. 
27. K. J. Friston er al, Hum. Brain Mapp. 2, 189 (1995). 
28. N. Tzourio-Mazoyer et ai, Neuroimage 15, 273 (2002). 
29. A. Martin, L G. Ungerteider, ]. V. Haxby, in The New 

Cognitive Neurosciences, M. 5. Gazzainga, Ed, 
(Massachusetts Institute of Technology Press, Cambridge, 

MA, ed. 2, 2000), pp. 1023-1036. 
30. B. Cerf, D. LeBihan, P. F. Van de Moortele, P. Mac Leod, 

A. Faurion, Ann. NX Acad. Sei 855? 575 (1998). 
31. K. A. Peiphrey, ]. P. Morris, C. R. Michelich, T. Allison, 

G. McCarthy, Cereb. Cortex 15, 1866 (2005). 
32. L M. Vaina, ]. Solomon, S. Chowdhury, P. Sinha, J. Belliveau, 

Proc Nati Acad Sei USA. 98, 11656 (2001). 
33. K. Sakai er ai, Magn. Reson. Med. 33, 736 (1995). 
34. S. V. Shinkareva et ai, PLoS One 3, el394 (2008). 
35. D. R. Hardoon, j. Mourao-Miranda, M. Brammer? 

J. Shawe-Taylor, Neuroimage 37, 1250 (2007). 
36. K. H. Kay, T. Naselaris, R. J. Prenger, J. L Gallant, Nature 

452, 352 ?2008). 
37. S. Edelman? K. Grill-Spector, T, Kushnir, R. Malach, 

Psychobiology 26? 309 (1998). 
38. J. D. Haynes, G. Rees, Nat Rev. Neurosa, 7, 523 (2006). 
39. K. A. Norman, S. M. Polyn, G. ). Detre, ]. V. Haxby, 

Trends Cogn. Sei 10, 424 (2006). 
40. This research was funded by grants from the W. M. Keck 

Foundation, NSF, and by a Yahoo! Fellowship to A.C. 
We acknowledge Google for making available its data from 
the trillion-token text corpus. We thank W. Cohen for 

helpful suggestions regarding statistical significance tests. 

The Cassiopeia A Supernova 
Was of Type lib 

Oliver Krause,1* Stephan M. Birkmann,1 Tomonori Usuda,2 Takashi Hattori,2 
Miwa Goto/ George H. Rieke,3 Karl A, Misselt3 

Cassiopeia ? is the youngest supernova remnant known in the Milky Way and a unique laboratory 
for supernova physics. We present an optical spectrum of the Cassiopeia A supernova near 

maximum brightness, obtained from observations of a scattered light echo more than three 
centuries after the direct light of the explosion swept past Earth. The spectrum shows that 

Cassiopeia A was a type lib supernova and originated from the collapse of the helium core of a red 

supergiant that had lost most of its hydrogen envelope before exploding. Our finding concludes a 

long-standing debate on the Cassiopeia A progenitor and provides new insight into supernova 
physics by linking the properties of the explosion to the wealth of knowledge about its remnant 

The supernova remnant Cassiopeia A is one 

of the most-studied objects in the sky, with 

observations from the longest radio waves 

to gamma rays. The remnant expansion rate indi 

cates that the core of its progenitor star collapsed 
around the year 1681 ? 19, as viewed from Earth 

(/). Because of its youth and proximity of 3.4 j^',3 
kpc (2), Cas A provides a unique opportunity to 

probe the death of a massive star and to test theo 

retical models of core-collapse Supernovae. How 

ever, such tests are compromised because the Cas 

A supernova showed at most a taint optical dis 

play on Earth at the time of explosion. The lack of 
a definitive sighting means that there is almost no 

direct information about the type of the explosion, 
and the nue nature of its progenitor star has been a 

puzzle since the discovery of the remnant (3). 
The discovery of light echoes due both to scat 

tering and to absorption and re-emission of the out 

going supernova flash (4,5) by the interstellar dust 
near the remnant raised the possibility of conduct 

ing a postmortem study of the last historic Galactic 

supernova by observing its scattered light. Similar 

ly, the determination of a supernova spectral type 

long after its explosion using light echoes was recent 

ly demonstrated for an extragalactic supernova (6). 
We have monitored infrared echoes around Cas 

A at a wavelength of 24 urn with use of the 

multiband imaging photometer (MIPS) instrument 
aboard the Spitzer Space Telescope (?). The results 
confirm that they arise from the flash emitted in the 
initial explosion of Cas A (J). An image taken on 
20 August 2007 revealed a bright (flux density 

^2%m 
= 0.36 ? 0.04 Jy, 1 Jy 

= W'26 W irf2 Hz""1) 
and mainly unresolved echo feature located 80 arc 

min northwest of Cas A (position angle 311? east of 

north). It had not been detected (F24fim < 2 mJy; 
5-g) on two previous images of this region obtained 

on 2 October 2006 and 23 January 2007 (Fig. 1). 
An image obtained on 7 January 2008 shows 

that the peak of the echo has dropped in surface 

brightness by a factor of 18 and shifted toward the 
west Transient optical emission associated with 

the infrared echo was detected in an /c*-band 

image obtained at a wavelength of 6500 ? at the 
Calar Alto 2.2-m telescope on 6 October 2007 

1ftAax-Ptanck-institut fur Astronomie, K?nigstuht 17, 69117 

Heidelberg, Germany, national Astronomical Observatory 
of Japan? 650 North A'ohoku Place, Hilo? HI 96720, USA. 
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