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Abstract. We assess several systematic coarse-graining approaches by
coarse-graining poly(3-hexylthiophene-2,5-diyl) (P3HT), a polymer show-
ing π-stacking of the thiophene rings and lamellar ordering of the π-
stacked structures. All coarse-grained force fields are ranked accord-
ing to their ability of preserving the experimentally known crystalline
molecular arrangement of P3HT. The coarse-grained force fields parametrized
in the amorphous melt turned out to accurately reproduce the struc-
tural quantities of the melt, as well as to preserve the lamellar ordering
of the P3HT oligomers in π-stacks. However, the exact crystal struc-
ture is not reproduced. The combination of Boltzmann inversion for
bonded and iterative Boltzmann inversion with pressure correction for
nonbonded degrees of freedom gives the best coarse-grained model.

1 Introduction

Coarse-graining is a systematic way of reducing the number of degrees of freedom de-
scribing a specific physical system. A typical but by no means complete list of coarse-
graining procedures includes: (i) A renormalization group analysis in the vicinity of a
critical point, where degrees of freedom (e.g. spins) are blocked together [1]. (ii) The
formulation of system dynamics in terms of a master equation, with the entire phase
space represented by a few states [2]. (iii) Parametrization of classical force-fields, in
which electronic degrees of freedom are incorporated into classical interaction poten-
tials [3]. (iv) United-atom or coarser classical particle-based force fields, with light
atoms (e.g. hydrogens) incorporated into the heavier ones [4].

Coarse-graining often relies on a certain time-scale separation: some parts of the
system evolve on a significantly slower timescale, e.g., a thiophene ring rotation in
a polythiophene is a much slower process than a characteristic bond vibration. In
this case it is possible to combine several coherently moving atoms into a single
interaction site, reducing the number of degrees of freedom to be propagated and,
more importantly, obtaining a smoother potential energy landscape. Softer interaction
potentials lead to less friction (faster dynamics), helping to reach ten to hundred times
longer simulation times.

The coarse-graining procedure in itself involves three steps: choice of the coarse-
grained degrees of freedom, identification of a merit function which quantifies the
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difference between the fine- and coarse-grained representations, and determination
of the coarse-grained potential energy surface (PES). The entire procedure can be
thought of as a projection of the fine- onto the coarse-grained PES and is therefore
sensitive to the number and types of basis-functions employed in the CG represen-
tation. To perform the same statistical sampling of the coarse-grained degrees of
freedom, ideally, the potential of mean force should be used as the coarse-grained in-
teraction potential [5]. This is inherently a many-body potential which, in practice, is
projected on basis functions that are used to represent the coarse-grained force-field.
Existing projection schemes either try to reproduce various pair distribution func-
tions (structure-based coarse-graining [6, 7]), to match the forces [8, 5], to minimize
the information loss in terms of relative entropy [9], or to make use of the liquid state
theory [10].

While these coarse-graining techniques have been successfully applied to simple
liquids (solvents) [11, 7, 12], amorphous polymer melts [13, 14, 15, 16, 6], and amor-
phous organic solids [4], the number of examples with more structured macromolecu-
lar systems is rather sparse. The systems with long-range order are, however, exactly
the systems where coarse-grained models are needed the most: In many fields, one
of the most challenging tasks is to quantify the self-organizing abilities of a material
solely based on its chemical structure. For example, in polymeric organic semicon-
ductors, self-assembled structures are lamellar arrangements of conjugated polymers,
partially crystalline phases of a small-molecule donor/acceptor material, or molecu-
lar alignments at the interface between the organic layers. However, the final goal of
studying the whole process of self-assembly on a computer has not been achieved so
far [17].

The purpose of this work is to review the performance of existing coarse-graining
techniques when applied to a complex, self-assembling, polymeric system. As a test
case, we consider regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT), the chemical
structure of which is shown in Fig. 1. P3HT is used as a donor in bulk heterojunc-
tion solar cells [18, 19]. In combination with PCBM as an acceptor, it yields device
efficiencies of up to 4.4%, which in 2005 was the highest achieved value for polymeric
solar cells [20].

P3HT is an ideal case study for testing coarse-graining models of macromolecu-
lar systems: It is a polymorph with three different crystal structures, form I, I’ and
II [21, 22, 23]. All polymorphs show a π-stacking of the thiophene rings in b-direction
and a lamellar ordering in a-direction of the unit cell. They differ in the conformation
and the interdigitation of the hexyl side chains, the inclination of the backbones with
respect to the π-stacking direction and the shift of successive polymer chains along
the π-stacking direction. The polymorph I, for example, has a monoclinic unit cell
with a = 1.60 nm, b = 0.78 nm and c = 0.78 nm [24]. Depending on the processing
conditions, P3HT can crystallize into high aspect-ratio secondary structures, e.g., up
to micrometer long nanofibres [25, 26, 27, 28, 29]. This can be achieved by solvat-
ing P3HT into a poor solvent or a mixture of different solvents and a slow cooling
process [26, 27]. These structures are of particular interest to achieve a good device
efficiency of field-effect transistors.

P3HT has also been studied using different types of simulation techniques: classical
force fields have been parametrized [30, 31] to study crystalline phases of P3HT [30,
32] and high-temperature amorphous melts [33, 34], for which the melting tempera-
ture (490 K) and the glass transition temperature (300 K) were shown to be in good
agreement with experimental results [32]. However, due to limitations regarding the
chain lengths and simulation times, it was not possible to observe the process of
self-assembly or crystallization from solvated P3HT chains or an amorphous melt in
all-atom classical MD simulations. Some ordering of the chains has been observed
when cooling the amorphous melt [35].
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Fig. 1. Chemical structure of regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT), its map-
ping scheme with three types of beads, T , Ha, and Hb, as well as eleven bonded degrees of
freedom. Note that in the text the subscripts of the T beads are omitted.

Coarse-grained models of P3HT with different resolution have also been developed
where one repeat unit of P3HT is modeled either with one [36] or three coarse-grained
beads [37, 38, 39, 40]. To this point, all coarse-grained models have been derived
with structure-based techniques either on the basis of a high-temperature amorphous
melt [37, 38], a liquid mixture of P3HT and PCBM [36] or P3HT monomers solvated
in anisole (methoxybenzene) solvent [39], with some empirical refinements [40]. In all
cases, the non-bonded interactions are modeled as isotropic two-body interactions and
are either tabulated [37, 38, 39] or Lennard-Jones potentials [36, 40]. Regarding the
three-site models, the onset of phase separation between P3HT and PCBM is observed
upon cooling from the melt [37, 38]. Simulations with nonbonded potentials obtained
from the single-monomers solutions show lamellar ordering into layers [40] and an
aggregation of P3HT chains with decreasing temperature [39]. The spacing of the
lamellae of about 1.7− 2.0 nm [39, 40] is found to be in agreement with experimental
results of 1.68 nm [41].

In this work, we would like to assess the quality of systematic bottom-up coarse-
graining approaches when applied to a complex self-assembling system, such as P3HT.
Realizing that self-assembling the systems in silico is computationally too demand-
ing even for a coarse-grained model, we here use a much simpler criterion: a good
coarse-grained model should preserve, as closely as possible, the experimentally known
self-assembled structure of a polymer. Atomistic force-fields, for example, are doing
extremely well in this respect [30].

The paper is organized as follows. We first describe the coarse-grained model in
section 2. We then compare the resulting potentials in sections 3 and 4. Finally, we
summarize the performance of coarse-grained models in section 5.

2 Coarse-grained degrees of freedom

In all studied cases, we use three types of coarse-grained beads per repeat unit of
P3HT, representing the thiophene ring T , the first three, Ha, and the last three,
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Hb, methyl groups of the hexyl side-chain, as shown in Fig. 1. This CG scheme is
consistent with previous works [37, 38, 39, 40]. Here, however, the T -bead is located
at the intersection of the two C-C bonds connecting the thiophene ring with the next
and the previous thiophene unit of the P3HT chain. This center of the thiophene
bead T does not correspond to the center of mass (COM) of the thiophene ring. The
reason for this choice of the mapping coefficients is to prevent coupling of bond and
angular degrees of freedom along the thiophene backbone. The Ha and Hb beads are
located at the COM of the methyl groups.

To determine bead positions, the linear mapping operator is used

Ri =
∑

α∈i
wα rα, (1)

where Ri is the position of the i-th CG bead, wα are the mapping coefficients, and
rα are the coordinates of atoms belonging to the bead i.

The masses of the CG beads are set to obtain consistency in momentum space [5]

Mi =

(∑

α∈i

w2
α

mα

)−1
, (2)

resulting in MT = 57.406 amu, MHa = 42.048 amu and MHb = 43.056 amu. MHa and
MHb are equal to the sum of the atomistic masses, whereas MT is only 70% (end
beads of the chain) and 71% (beads in the center of the chain) of the sum of the
atomistic masses of one thiophene unit.

For the three-bead model, eleven bonded degrees of freedom are introduced (see
also Fig. 1): three bonds, TT , THa, and HaHb; four angles, TTT , TTHa, HaTT ,
and THaHb; and four dihedrals, TTTT , HaTTHa, TTHaHb, and HbHaTT , similar
to the ones discussed in Refs. [37, 38, 39]. Note that, due to the directionality of the
regioregular P3HT chain, it is necessary to differentiate the TTHa and the HaTT , as
well as the TTHaHb and the HbHaTT interactions.

In terms of nonbonded interactions, we have limited ourselves to pair potentials
between all bead types, i.e. six pairwise interaction potentials. This is again in line
with the CG models discussed in Refs. [37, 38, 39].

Selection of coarse-grained beads, corresponding degrees of freedom, and basis
functions of the coarse-grained force fields completes the first coarse-graining step. In
what follows we parametrize the basis functions of the coarse-grained force field using
the VOTCA package [7].

3 Bonded interactions

We will start with the eleven bonded interactions. To parametrize the bonded poten-
tials we use two different methods and three different setups:

1. Force matching of all degrees of freedom together (see Appendix C for the details
of the method). In this case, 6 nonbonded interactions are parametrized simultane-
ously with 11 bonded interactions, i.e. 17 different tabulated interaction potentials
are determined together. Parametrizations are performed in a melt at 500 K and
in a glassy amorphous system (quenched melt) at 300 K.

2. Boltzmann inversion (see Appendix B for details) of bond, angular, and dihedral
distributions. These distributions are sampled for an isolated chain with exclu-
sions, i.e. beads further that four bonds apart are not interacting with each other.
This is often used to derive CG potentials for polymer melts, where non-bonded
interactions are screened. The sampling has been performed at two temperatures,
500 K and 300 K.
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system →
CG method ↓

single chain with
exclusions

single chain in a
solvent

amorphous melt

BI at 300 K × × ×
BI at 500 K × ×
FM at 300 K ×
FM at 500 K ×

Table 1. Different systems and coarse-graining methods (Boltzmann inversion, BI, and force
matching, FM) used to parametrize bonded interactions. The FM method here is used to
parametrize nonbonded and bonded interactions simultaneously.

3. Boltzmann inversion of the distributions obtained by sampling a single chain sol-
vated in dichlorobenzene (DCB), without any exclusions.

4. Boltzmann inversion in a melt at 500 K or glassy amorphous systems (quenched
melt) at 300 K.

All systems and CG schemes used to parametrize the bonded interactions are sum-
marized in table 1 and shown in Fig. 2 (angles) and Fig. 3 (dihedrals), together with
the results presented in Ref. [37, 39]. The bond length potentials are shown in the
Supporting Information and are similar for all methods. All tabulated interactions,
the coefficients of the Ryckaert-Belleman potentials and the bond length potentials
are given in the supporting information.

Angular potentials In principle, all methods lead to comparable angular potentials.
Boltzmann inverted distributions are practically the same for the amorphous melt,
the isolated chain with exclusions, and a chain in a solvent. The FM potentials show a
systematic shift of the potential minimum to about 20◦(TTHa, HaTT ) and 10◦(TTT )
higher values with respect to the BI potentials, both at 300 K and 500 K. For THaHb

there is no shift but FM potentials are slightly stiffer than the BI potentials. The
potentials of Refs. [37, 39] are significantly softer. This can be explained by a difference
in mapping schemes, as discussed in sec. 2: if the centers of mass of the thiophene rings
are used as T -bead positions, as it is done in Refs. [37, 39], the dihedral and angular
degrees of freedom are coupled, and a larger variation of the bond angle is observed.
Indeed, the most pronounced differences between the potentials parametrized in this
work and the ones of the 353 K solvent and the 550 K melt [37, 39] are observed for
the TTT angular potentials: The latter are significantly broader and the potential
minimum is shifted to bond angles between about 160◦-170◦, in contrast to about
145◦-155◦ for the potentials parametrized in this work.

Dihedral potentials The bond dihedral interactions of the different systems and
parametrization methods are compared to the ones of previous studies [37, 39] in
Fig. 3. One can see that all TTHaHb BI potentials are rather similar and agree to
the ones parametrized at 353 K and 550 K [37, 39]. The FM potentials show distinct
differences and lack the additional potential maximum at φ = 0◦. The HbHaTT
potentials of the different systems and temperatures are also rather similar to each
other. Here, the differences of the FM potentials are less distinct. In all cases, a po-
tential maximum at about φ = 0◦ and φ = ±180◦ is visible. However, the maxima
at φ = 0◦ of the BI potentials are significantly broader and the ones parametrized
at 300 K show an additional small dip at about φ = 0◦. Both HaTTHa potentials
of previous studies [37, 39] have minima at φ = 0◦ and φ = ±180◦. The potential
minimum at φ = ±180◦, in both cases, is deeper which corresponds to the trans
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Fig. 2. Bond angle potentials parametrized at 300 K (left column) and 500 K (right column).
Comparison to parametrization of P3HT decamers in anisole solvent at 353 K [39] and to
melt of P3HT 12-mers at 550 K [37].
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Fig. 3. Bond dihedral potentials parametrized at 300 K (left column) and 500 K (right
column). Comparison to parametrization of P3HT decamers in anisole solvent at 353 K [39]
and to melt of P3HT 12-mers at 550 K [37]. Here, the fits to Ryckaert-Belleman potentials,
which are used in MD simulations, are shown.
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configuration where two neighboring side chains are oriented in opposing directions,
which is the configuration found in the crystalline polymorphs. The BI potentials
parametrized at 300 K show minima at φ = 0◦ and φ = ±180◦ of about equal height.
The same holds for the BI potential of the amorphous melt at 500 K. This implies that
the cis conformation where two neighboring side chains point in the same direction
has about equal probability than the trans configuration in these systems. In both
FM potentials (amorphous system at 300 K and 500 K), the potential minima are at
about ±130◦ − 140◦ instead of ±180◦ and the minimum at 0◦ is less preferential.
The BI potential of the single P3HT chain in vacuum at 500 K shows a significantly
different behavior with two minima at about ±100◦. The backbone dihedral poten-
tials of previous works [37, 39], TTTT , both, have a single minimum at 0◦ which
corresponds to a configuration where one pair of four monomers in a row is in the cis
conformation meaning this is more likely than all four monomers in a row being in the
trans configuration. The BI potentials of the amorphous system (300 K and 500 K)
and the BI potential of the solvated chain (300 K) show minima at 0◦ and 180◦ of
about equal depths. The BI potential of the single chain in vacuum shows a similar
behavior. However, instead of a minimum at 0◦, two small minima at about ±40◦ are
visible. In contrast to this, the FM potentials are significantly different. They show
minima only at ±180◦, implying that the atomistic forces favor a configuration where
all monomers in a row are in the trans conformation, which is consistent with the FM
dihedral potential HaTTHa.

To summarize, all Boltzmann inversion-based methods give roughly the same
bonded potentials and are in fair agreement (taking into account slightly different
mappings) to the ones of previous studies [37, 39]. The biggest differences are visible
in some of the bond dihedral interactions, e.g. HaTTHa and TTTT , of the single
chain in vacuum compared to the other parametrizations. As expected, the biggest
differences in the angle and dihedral potentials are observed between the FM and BI
parametrizations.

4 Nonbonded interactions

Nonbonded interactions are parametrized using three different methods and two dif-
ferent systems:

1. Iterative Boltzmann inversion (IBI with pressure correction, see Appendix D for
details) applied to the high temperature amorphous melt and the crystalline phase
(polymorph I). In principle, IBI requires an equilibrated system at every iteration
step, which is the reason for choosing the 500 K melt instead of the 300 K amor-
phous system. The use of the crystalline system certainly violates this requirement
and is performed only out of curiosity.

2. Force matching (see Appendix C) of all interactions together, where all 11 bonded
and 6 nonbonded interactions are parametrized simultaneously in the high tem-
perature amorphous melt and the crystalline phase.

3. Force matching with exclusions [42] where the forces of the atomistic reference
trajectory are recalculated, excluding all forces between atoms that belong to CG
beads that are separated at most 4 repeat units from each other. This implies that
the bonded interactions are excluded implicitly. The remaining forces are taken
as the reference forces of the FM procedure. In this case only the 6 nonbonded
interactions are parametrized and the bonded interactions are provided by the IBI
parametrization.

In Fig. 4, the nonbonded CG potentials of the different CG schemes are compared
to parametrizations in the amorphous melt [37] and in a mixture of P3HT monomers
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Fig. 4. Nonbonded potentials from amorphous melt of P3HT at 500 K. Different CG meth-
ods. Comparison to parametrization of P3HT monomers in anisole solvent at 353 K [39] and
to melt of P3HT 12-mers at 550 K [37].

in anisole solution [39]. One can see that in most cases the interaction potential has
a repulsive core up to 0.4-0.5 nm, followed by a first minimum at 0.5-0.6 nm with a
well depths of -1 kJ/mol to -4 kJ/mol and a second potential minimum at 0.9-1.0 nm
with a smaller well depths.

For the side-chain–side-chain interactions (i.e., HaHa, HaHb, and HbHb), FM of
all degrees of freedom together leads to significantly more repulsive interactions com-
pared to the other methods (FM with exclusions and IBI). No such clear distinction
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Fig. 5. Nonbonded potentials obtained in crystalline polymorph I of P3HT.

can be made for THa, THb and TT . In fact, a similar trend has been observed for the
3-bead CG representation of liquid hexane [42], where one of the 3 different 2-body
nonbonded potentials is purely repulsive for the full FM method.

Finally, Fig. 5 shows the nonbonded CG potentials based on the crystalline poly-
morph I. As mentioned before, sampling of the crystalline system is not ergodic and
IBI potentials have no physical meaning: the pair correlation functions in the crys-
talline system has several minima which are reflected in the interaction potential.
On the other hand, both FM potentials will not lead to a desired lamellar molecular
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arrangement: The TT potential, which is of special interest for the stability of the
crystalline polymorph, has no minima at the π-stacking distance of 0.4-0.5 nm.

It is clear that it is not possible to foresee which of the nonbonded potentials will
result in required structural and thermodynamical properties of the CG model. In the
next section we will use a simple validation scheme to compare different coarse-grained
parametrizations.

5 Validation

To assess the quality of the coarse-grained model, we have looked at several ther-
modynamic quantities of an amorphous melt and the crystalline polymorph I. To do
this, we conduct CG MD simulations of 80 ns with a time step of 4 fs. The starting
configurations are either mapped CG configurations of the amorphous MD simulation
at 500 K or the crystalline phase I.

First, we evaluate the properties of the amorphous melt: For the IBI and FM
with exclusions potentials NPT simulations at 1 bar are performed. For FM with
all degrees of freedom parametrized together, the box expansion is too high due to
the repulsiveness of the interactions. Here, an 80 ns NV T simulation is carried out,
resulting in the average pressure of 2.34 kbar. In all cases, a Nose-Hoover thermostat
is used with a damping parameter of 1 ps. In the NPT simulations, a barostat of
the Parrinello-Rahman type is employed with the damping parameter of 1 ps and the
compressibility parameter of 4.5 · 10−5 bar−1. In each case, the last 20 ns of the CG
trajectories are evaluated, both for the thermodynamic and the structural quantities,
and configurations are stored every 10000 time steps.

Density of an amorphous melt The density of the CG simulations is 0.87 g/cm3 (IBI)
and 0.76 g/cm3 (FM with exclusions) in comparison to the density of the atomistic
MD simulation: 0.9 g/cm3. Due to the non-COM mapping of the CG beads of type
T (see section 2), the CG mass of a P3HT chain is only about 85.8% of the atomistic
one. The CG densities are scaled by this factor to compare to the atomistic ones.
Having this in mind, the IBI CG densities are about 96.9% (IBI) and 85.4% (FM
with exclusions) of the atomistic one. It is of course not a surprise, since IBI with
pressure correction reproduces local structure by construction. This is also in good
agreement with previous simulations of the amorphous melt [37], where the largest
deviation between the CG and atomistic mass density is 4± 2% at 650 K for the CG
potential parametrized at 550 K.

Local structure of the amorphous melt In Fig. 6, we compare the pair correlation
functions of the CG simulations to the atomistic ones at 500 K. The labels (IBI) and
(FM with exclusions) refer to NPT simulations, whereas the label (FM all together)
refers to the NV T simulation at the atomistic system density. In general, the agree-
ment of the CG and the atomistic curves is good. The IBI pair correlation functions
practically match the atomistic ones. This is expected, as the latter are the target
functions of the structure based IBI iterations. However, the short-range cutoff of the
interaction potentials is rcut = 1.2 nm, both, for the atomistic and the CG potentials.
Therefore, the agreement for inter-monomer distances larger than 1.2 nm can not be
expected a priori. The largest deviations between the CG and atomistic curves is vis-
ible for the FM scheme of all interactions together, most visible in gT T (r). Similar
observations hold for the bond length, bond angle and bond dihedral distributions.
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Fig. 6. Pair correlation functions of amorphous melt at 500 K. Comparison of different CG
simulations with atomistic MD simulation.

Stability of the crystalline phase In order to be able to observe a crystallization
of P3HT chains from solution or from the melt in silico, it is important to have
an interaction potential that keeps the crystalline phase stable. The performance of
all 6 different CG models on the crystalline polymorph I is tested. NV T and NPT
simulations are carried out with the CG starting configuration of the atomistic MD
simulation containing 400 P3HT 20-mers. The simulation parameters are the same
as in case of the CG simulations of the amorphous melt. However, the angle between
the π-stacking (y) and the lamellae (x) directions of the simulation box is allowed
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to relax with a target stress of 1 bar. All three CG potentials of the amorphous melt
derived at 500 K keep the lamellar ordering of the crystal structure stable, i.e. the
ordering of the P3HT oligomers in π-stacks and lamellae remains intact in the CG
simulation, but not the exact crystal structure of the crystalline polymorph I.

As in case of the amorphous melt, the CG parametrization from FM with all
degrees of freedom parametrized together results in a too high average pressure of
5.18 kbar in the NV T simulation at the atomistic box dimensions. This, again, leads
to a fast box expansion in the NPT simulation making a NPT simulation unstable.
Regarding the potentials parametrized from the crystalline phase, only the IBI poten-
tial allows for a CG simulation run where the crystalline structure does not dissolve.
As already pointed out before, this is because the two CG potentials resulting from
the different FM schemes do not have a potential minimum in UT T at the π-stacking
distance of 0.4-0.5 nm (see Fig. 5).

systems
IBI crystalline
polymorph I

(300 K)

IBI amorphous
melt (500 K)

FM with
exclusions

amorphous melt
(500 K)

MD atomistic

Lx [nm] 18.7962 15.7724 21.3148 16.8746
Ly [nm] 15.4514 17.0013 16.6898 15.0324
Lz [nm] 7.84636 7.8982 7.84628 8.08108
αyx [◦] 80.25 83.13 73.64 84.74

Table 2. Box dimensions of the crystalline polymorph I. Different CG schemes compared
to atomistic MD simulation.

Table 2 compares the average box dimensions of the NPT simulations of the
different parametrizations to the box dimensions of the atomistic simulation. The
z-direction of the simulation box changes the least between different systems, since
this is the direction along the backbones of the P3HT oligomers. Regarding the π-
stacking (y-)direction of the simulation box, all CG simulations show a slight increase
compared to the atomistic MD simulation of about 3% (IBI of crystalline polymorph
I) to about 13% (IBI of melt at 500 K). The largest variance of the box dimensions
occurs in the x-direction of the simulation box.

In Fig. 7, representative snapshots for all CG potentials are shown that allow stable
NPT simulations of the crystalline phase. These are compared to a CG snapshot of
the crystalline polymorph I from the atomistic MD simulation. It can be clearly seen
that the ordering into π-stacks and lamellae stays intact in all cases. However, the
local ordering of the chains changes in the CG simulations compared to the atomistic
one. The snapshot corresponding to the IBI parametrization of the crystal structure
at 300 K (bottom right) is in the best agreement with the atomistic simulation (top
left).

The local structural ordering is examined in terms of pair correlation functions,
shown in Fig. 8. As expected, IBI of the crystal structure agrees the best with the
target functions of the atomistic simulation. The peaks in HaHa and THa are even
more pronounced than in the atomistic MD simulation. Also, the CG potentials of the
amorphous melt reproduce the structure quite well. In general, the peak heights are
lower and the peaks are slightly broader in the CG simulations. The crystalline order-
ing of the backbones is best captured with TT : The first-neighbor peak corresponds
to the closest distance between two thiophene rings of neighboring chains, i.e. the
π-stacking distance. The peak maximum is shifted to slightly larger distances from
about 0.43 nm (MD atomistic) to about 0.47-0.5 nm for the different CG potentials
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Fig. 7. Snapshots of different systems. Comparison of NPT simulations of atomistic to CG
simulations. Top left: Atomistic MD. Top right: IBI of melt at 500 K. Bottom left: FM with
exclusions of melt at 500 K. Bottom left: IBI of crystalline polymorph I at 300 K.

of the amorphous melt at 500 K. The second and third peak resemble the distance
between the thiophene ring (T -bead) of one chain and the T -bead displaced by one
or two bonds of the next chain in the π-stacking direction. The correlation functions
involving the side chains are more complicated to interpret due to the amorphous
nature of the side chains in this crystalline polymorph. However, the first-neighbor
peaks in HaHa, HaHb and HbHb resemble the π-stacking distance, as well. They cor-
respond to the distance between to CG units of the hexyl side chains of neighboring
chains in the y-direction of the simulation box.

Dihedral distributions in the crystalline phase To obtain a clearer picture of the
backbone and side chain ordering, we have also examined the bond dihedral distribu-
tions. Fig. 9 depicts all relevant distributions. TTTT and HaTTHa show one sharp
maximum at φ = ±180◦. This corresponds to two neighboring monomers being in
the trans configuration where the side chains point in opposite directions. This her-
ringbone conformation is the only occurring configuration in the crystal structure.
As in case of the pair correlation functions, the peak height decreases and the peak
width increases for the CG potentials parametrized in the amorphous melt at 500 K.
An additional small peak in HaTTHa is visible at φ = 0◦ in all configurations, cor-
responding to the cis conformation of two neighboring monomers. These defects are
most pronounced for the FM with exclusions potential of the 500 K melt in agreement
with this parametrization leading to the largest deformation of the simulation box.
In TTTT , an additional peak at φ = 0◦ is barely visible in all cases. This dihedral
angle corresponds to the conformation where one pair of four monomers in a row is
in the cis conformation. TTHaHb and HbHaTT give more insight in the conforma-
tion of the hexyl side chains. These distributions show maxima at about φ = ±60◦
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Fig. 8. Pair correlation functions of crystalline polymorph I at 300 K. Comparison of differ-
ent CG simulations with atomistic MD simulation.

(TTHaHb) and about φ = ±120◦ (HbHaTT ) corresponding to configurations where
the side chains point out of the plane determined of the backbones by about 60◦.
This is due to the CH3 bond. The atomistic MD distributions show additional peaks
at φ = ±180◦ (TTHaHb) and φ = 0◦ (HbHaTT ) which are not present in the CG
distributions. These correspond to configurations where the side chains stick out in
the plane fixed by the backbones. In case of the atomistic MD simulations these con-
figurations are mainly stabilized by the nonbonded interactions. The difference in the
CG simulations can be understood when looking at the bond dihedral potentials de-
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Fig. 9. Distributions of bond dihedral angles of crystalline polymorph I at 300 K. Compar-
ison of different CG simulations with atomistic MD simulation.

picted in Fig. 3. The bonded potentials used in the CG simulations are the ones from
the amorphous system which lack the additional peaks at φ = ±180◦ (TTHaHb) and
φ = 0◦ (HbHaTT ). In case of HaTTHa and TTTT , the additional potential maxima
at φ = 0◦ in the amorphous system are practically not sampled when starting from
the starting configuration of the crystalline polymorph I due to steric hindrance.

6 Conclusions

In this work, we developed a set of coarse-grained force fields for the P3HT polymer.
To parametrize the models, Boltzmann inversion, iterative Boltzmann inversion with
simple pressure correction, force matching of all degrees of freedom together, and
force matching with excluded bonded interactions have been used.

The bonded interactions, namely bond length, bond angle and bond dihedral
interactions, have been parametrized based on the simulation of a single chain in
vacuum (at 300 K and 500 K), a single chain solvated in DCB solvent (at 300 K) and
an amorphous configuration (melt) (at 300 K and 500 K). The nonbonded interactions
have been evaluated for the atomistic configurations of an amorphous melt at 500 K
and the crystalline polymorph I at 300 K. In all cases, nonbonded interactions have
been represented by tabulated two-body potentials.
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The CG force fields have been validated by: (i) reproduction of the properties of
the amorphous melt (density and radial distribution functions) and (ii) preservation
of the experimentally known crystal structure of the crystalline polymorph I.

All CG force fields parametrized in the amorphous melt at 500 K are capable
of reproducing the structural properties of the melt. The IBI parametrization with
pressure correction leads to a density of 96.9% of the atomistic system, while the FM
scheme with exclusions results in a density of 85.4%. The FM applied to all degrees
of freedom together leads to too small system densities.

All CG force fields parametrized in the amorphous melt at 500 K are also capa-
ble of preserving the lamellar ordering and π-stacking of the crystalline polymorph
I. However, the local ordering of the chains, π-distances and interlamellar separa-
tions change: The π-stacking distance slightly increases, whereas the lamellar spacing
slightly decreases for the IBI potential and significantly increases for the potential
from FM with exclusions. Among the CG potentials parametrized in the crystalline
phase, only the IBI potential can keep the crystal structure stable. However, this
potential is unphysical and not transferable to other, e. g., amorphous systems.

The key result of this work is that the coarse-grained potentials, parametrized in
the amorphous state of P3HT, also preserve, to a certain degree, its lamellar order-
ing. Surprisingly, IBI with a simple pressure correction provides the best model in
this respect. The best force matching results are obtained when only the nonbonded
interactions are parametrized, i.e. by excluding all interatomic forces contributing to
the coarse-grained bonded interactions.
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A Simulation details

All atomistic molecular dynamics (MD) simulations of the crystalline polymorph I
[21], the amorphous system, a single P3HT chain in dichlorobenzene (DCB) solvent
and single chain in vacuum are performed using the GROMACS package [43] (version
5.1) with a time step of 1 fs. The atomistic interaction potential is a modified version
of the OPLS-AA [3, 44] force field [30]. In case of the simulation of the solvated P3HT
chain, the DCB force field parameters are also taken from the OPLS force field.

All simulations are performed using 100% regioregular chains with 20 repeat units,
namely a thiophene ring with the hexyl side chain. In each case, the system is first
equilibrated in a NPT run at constant external pressure. Afterwards, a NV T pro-
duction run is carried out at the mean box dimensions of the preceding NPT run. In
all cases, a Nose-Hoover thermostat [45, 46] is used with a damping parameter of 1 ps,
meaning the temperature is relaxed to the target temperature in a time span of 1000
time steps. For constant pressure simulations, a barostat of the Parrinello-Rahman
type [47, 48] is employed with a target pressure of ptarget = 1 bar which is the at-
mospheric pressure. The damping parameters are set to 1 ps and the compressibility
parameters are set to the one of water, namely 4.5 · 10−5 1/bar.

The crystalline setup is taken from Ref. [30], namely a supercell containing 400
chains (10 lamellae and 20 chains in the π-stacking direction). The NPT equilibration
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at 300 K is done for 15 ns. In this case, in addition to the box dimension also the angle
between the π-stacking (y) and the lamellae (x) direction of the simulation box is
allowed to relax with a target stress of 1 bar. Again, the damping and compressibility
parameters are 1 ps and 4.5 · 10−5 1/bar. The mean box dimensions of the last 5 ns of
the production run are: Lx = 16.8746 nm, Ly = 15.0324 nm, Lz = 8.08108 nm and
αyx = 84.74◦. This corresponds to a density of ρ = 1.08 g/cm3. The NV T production
run is carried out for 1 ns.

Amorphous systems are studied at two different temperatures, namely 300 K and
500 K. As mentioned in the introduction, the first temperature is about the glass
transition temperature and the second one above the melting temperature of the
crystalline phase in the liquid state [32]. The systems are prepared as follows: First,
the crystalline system is heated up to 750 K in 100 ps and then equilibrated at 750 K
for another 3627 ps until the originial crystal structure has dissolved. Afterwards, the
system box is replicated fourfold in z-direction and now contains 1600 P3HT chains.
To obtain the amorphous system at 300 K, this configuration is quenched down to 300
in 100 ps and annealed at 300 K for about 60.6 ns. To prepare the amorphous structure
at 500 K the same configuration is quenched down from 750 K to 300 in 100 ps and
annealed at 500 K for about 12.4 ns. In contrast to all other simulations, these runs
are carried out with a Berendsen thermostat and barostat [49] with time constants of
1 ps (NV T and NPT ) for the equilibration at 750 K, of 1 ps (NV T ) and 0.5 ps (NPT )
for the quench and annealing at 300 K and of 0.1 ps (NV T ) and 0.5 ps (NPT ) for the
simulation run at 500 K. The resulting configurations are taken from [50]. Next, the
equilibration at 300 K is continued with a 4.1 ns run with the Nose-Hoover thermostat
and barostat with the same parameters as for the crystalline system. The 500 K NPT
simulation is continued for another 12 ns. It should be noted that at 300 K the P3HT
chains show nearly now diffusion. Therefore, at least the intermediate range structure
of the 300 K configuration resembles the structure at a higher temperature. At 500 K,
however, the amorphous system can be equilibrated at the timescale of the NPT
simulation. The mean box dimensions of the last 3.1 ns of the production run at
300 K are: Lx = 19.6108 nm, Ly = 22.8062 nm, Lz = 18.9935 nm and αyx = 87◦.
At 500 K, the box dimensions are averaged over the last 10 ns: Lx = 20.947 nm,
Ly = 24.2387 nm, Lz = 19.4284 nm. In both cases, the angle between the x and the y
axis is fixed to αyx = 87◦. The dimensions correspond to densities of ρ = 1.03953 g/cm3

(300 K) and ρ = 0.895231 g/cm3 (500 K). The NV T production runs are of the length
of 500 ps (300 K) and 1 ns (500 K).

In addition to these configurations with 400 and 1600 oligomers, two different
kinds of single chain simulations are carried out. They are set up to sample the
conformations within the P3HT chain. Again, regioregular chains with 20 repeat
units are used. In one case, the chain is solvated in 8000 DCB molecules. Here, a cubic
simulation box is used. After an NPT equilibration of 2000 ps at 300 K, a production
run of 1000 ps is carried out at the same temperature. The mean box dimensions of the
NPT run are Lx = Ly = Lz = 11.4238 nm. This refers to a density of ρ = 1.31 g/cm3.
In the other case, the chain conformations of a single chain in vacuum are studied. To
prevent backfolding of the polymer chain, all non-bonded interactions between atoms
are excluded that are more than 4 repeat units apart along the backbone of the chain.
In this case the box size is fixed to Lx = Ly = Lz = 20 nm without periodic boundary
conditions and the chain conformations are sampled in a NV T run of 50000 ps.

The interactions between the CG sites can be divided into bonded and non-bonded
interactions. In this work, the bonded interactions are parametrized by two different
methods, namely Boltzmann inversion (BI) [16] and force matching (FM) [8, 5]. The
nonbonded interactions are parametrized by iterative Boltzmann inversion (IBI) [6]
and force matching (FM). In all cases, a cutoff of rcut = 1.2 nm is used for the
nonbonded potentials. This is consistent with the short-range cutoff of the atomistic
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force field. In addition, nonbonded interactions are only taken into account between
CG beads that are separated more than four repeat units from each other.

B Boltzmann inversion

The general idea of Boltzmann inversion (BI) is that in a canonical ensemble, the
partition function of independent degrees of freedom factorizes. For each independent
variable q it has the following form: Pq (q) ∝ exp [−β U (q)], β = 1/kBT , and can be
inverted to obtain the CG potential of this variable, namely:

U (q) = −kBT ln Pq (q) + const, q = r, θ, φ. (3)

It is a potential of mean force and, due to construction, neglects all correlations
between different degrees of freedom. In practice, this usually works well for the
parametrization of bonded interactions. It should be noted that the histograms of
bonds Hr (r), angles Hθ (θ) and dihedrals Hφ (φ) have to be normalized [7] in or-

der to get the correct distribution functions: Pr (r) = Hr(r)
4πr2 , Pθ (θ) = Hθ(θ)

sin(θ) and

Pφ (φ) = Hφ (φ). In the first place, all bonded interactions are tabulated and a simple
smoothing is performed. Second, the dihedral interactions are represented by analyti-
cal functions of the Ryckaert-Belleman type:

∑5
i=0 ci cos (180◦ − φ). The coefficients

are determined by a least squares fit to the tabulated potentials.

C Force matching

The force matching (FM) or multiscale coarse-graining (MS-CG) in its most general
description leads to a many-body potential of mean force that yields an equilibrium
distribution of the CG degrees of freedom which is consistent with the atomistic
system from which this potential has been derived [5]. In practice, this potential of
mean force has to be approximated by means of a set of basis functions. In the current
implementation of the force matching routine of the VOTCA package [42] these basis
functions are cubic splines. The procedure is as follows:

The reference forces on the coarse-grained beads can be written in the following
form:

f refi = Mi

∑

α∈i

wαfα
mα

. (4)

Here, Mi is the mass of the CG bead (see equation (2)). The forces on the CG beads
are a weighted sum of the atomistic forces on all atoms belonging to the coarse-grained
bead with mapping coefficients according to equation (1). The CG representation of
the force is then determined by solving the following system of equations:

fCG
il (g1, . . . , gM ) = f refil , i = 1, . . . , N, l = 1, . . . , L. (5)

The coefficients g1, . . . , gM are the spline coefficients of the set of cubic splines ne-
cessary to represent all interactions, N is the number of CG beads and L the number
of simulation snapshots analyzed in parallel. The condition M < N × L has to be
fulfilled, in order to get a unique solution. In practice, M > N×L and the problem is
overdetermined. Employing (cubic) splines as basis functions ensures that the set of
equations (5) is a set of linear equations. The VOTCA implementation of the cubic
splines and the calculation of the bonded (bond, angle) and nonbonded interaction are
described in detail in [7]. In this work, the FM routine has been extended to calculate
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tabulated dihedral interactions. In this course, additional restraints are implemented.
The first one guarantees a periodic force and the second one implies that the average
dihedral force is equal to zero. In all cases (bonded and nonbonded), the interaction
potentials are determined from the forces by numerical integration. For the nonbonded
interactions, before the numerical integration, first, a simple smoothing is carried out
and, second, the tabulated 2-body forces are multiplied by an analytic function of the
form:

fswitch (r) = cos

(
π

2

r − rsm
rcut − rsm

)
. (6)

This is done for all distances greater than rsm = 1.0 to ensure a smooth decay to zero
at the short range cutoff of rcut = 1.2 nm.

D Iterative Boltzmann inversion

Iterative Boltzmann inversion (IBI) is an extension of the simple Boltzmann inversion.
Here, the interaction potential iteratively refined, according to the following update
scheme:

U (n+1) = U (n) + α∆U (n), ∆U (n) = kBT ln
P (n)

Pref
. (7)

This is an empirical scheme and reaches convergence as soon as the distribution
function P (n) matches the reference distribution function Pref. In this work, IBI is only
used for the nonbonded intaractions and the distribution function refers to the pair
correlation function g (r). The choice of a scaling parameter α < 1 can help to stabilize
the algorithm. As the target function(s) of IBI is/are the structural quantities, one
can in general not expect to obtain a CG model that reproduces thermodynamical
quantities correctly at the same time. It has been found [6] that a simple pressure
correction in terms of adding a linear inter-particle correlation function can help
finding a potential that, at least, yields an approximately correct system density:

∆U (r) = A

(
1− r

rcut

)
, (8)

A = −sgn (∆p) 0.1kBT min (1, f∆p). Here, ∆p = pi− ptarget and f is a scaling factor.
Here, this post-processing is applied at every second step and α = 0.1 and f = 0.001
are chosen in all cases.

References

1. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th edn. (Claren-
don Press, Oxford : New York, 2002)

2. A. Jansen, Computer Physics Communications 86(1-2), 1 (1995)
3. W.L. Jorgensen, J. Tirado-Rives, J. Am. Chem. Soc. 110(6), 1657 (1988)
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48. S. Nosé, M. Klein, Molecular Physics 50(5), 1055 (1983)
49. H.J. Berendsen, J.v. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, The

Journal of chemical physics 81(8), 3684 (1984)
50. P. Gemünden, C. Poelking, K. Kremer, K. Daoulas, D. Andrienko, Macromol.

Rapid Commun. 36(11), 1047 (2015)


