Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Experimental and theoretical assessment of Ni-based binary compounds for the hydrogen evolution reaction

MPG-Autoren
/persons/resource/persons141916

Ledendecker,  Marc
Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons1057

Antonietti,  Markus
Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121860

Shalom,  Menny
Menny Shalom, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ledendecker, M., Schlott, H., Antonietti, M., Meyer, B., & Shalom, M. (2017). Experimental and theoretical assessment of Ni-based binary compounds for the hydrogen evolution reaction. Advanced Energy Materials, 7(5): 1601735. doi:10.1002/aenm.201601735.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-0402-6
Zusammenfassung
Metallic binary compounds have emerged in recent years as highly active and stable electrocatalysts toward the hydrogen evolution reaction. In this work, the origin of their high activity from a theoretical and experimental point of view is elucidated. Here, different metallic ceramics as Ni3S2, Ni3N, or Ni5P4 are grown directly on Ni support in order to avoid any contaminations. The correlation of theoretical calculations with detailed material characterization and electrochemical testing paves the way to a deeper understanding of possible active adsorption sites for each material and the observed catalytic activity. It is shown that heteroatoms as P, S, and N actively take part in the reaction and do not act as simple spectator. Due to the anisotropic nature of the materials, a variety of adsorption sites with highly coverage-dependent properties exists, leading to a general shift in hydrogen adsorption free energies ΔGH close to zero. Extending the knowledge gained about the here described materials, a new catalyst is prepared by modifying a high surface Ni foam, for which current densities up to 100 mA cm−2 at around 0.15 V (for Ni3N) are obtained.