
Physical background for parameters of the quantum Rabi model

I. D. Feranchuk,1, 2, 3 A. V. Leonov,3 and O. D. Skoromnik4, ∗

1Atomic Molecular and Optical Physics Research Group,
Ton Duc Thang University, 19 Nguyen Huu Tho Str.,

Tan Phong Ward, District 7, Ho Chi Minh City, Vietnam
2Faculty of Applied Sciences, Ton Duc Thang University,

19 Nguyen Huu Tho Str., Tan Phong Ward,
District 7, Ho Chi Minh City, Vietnam

3Belarusian State University, 4 Nezavisimosty Ave., 220030, Minsk, Belarus
4Max Planck Institute for Nuclear Physics,

Saupfercheckweg 1, 69117 Heidelberg, Germany

We investigate the applicability of the two major approximations which are most commonly
employed in the study of the quantum Rabi model, namely the description of a resonant cavity
mode as a single-mode quantized field and the use of the rotating wave approximation. Starting
from the Hamiltonian of a two-level system interacting with a multi-mode quantized field, we perform
the canonical transformation of the field operators. This allows one to partition the Hamiltonian
of the system into two parts. The first part is the interaction of the two-level system with a single
collective field mode, while the second one describes the interaction with field fluctuations. The first
part is usually associated with the resonant cavity mode. This division enables us to determine the
applicability condition of the single-mode approximation. In addition we identify simple approximate
relations for the description of the eigenstates, eigenfunctions and the time evolution of the quantum
Rabi model beyond the rotating wave approximation.
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I. INTRODUCTION

The quantum Rabi model, describing the interaction between a two-level system and
a single-mode quantized field [1], plays an extremely important role in various areas
of physics, ranging from quantum optics [2–5] to nanomechanics [6] and trapped ions
[7]. Due to its simplicity and predictive ability this model has been extensively studied.
Nevertheless, it still attracts a lot of theoretical interest, for example its integrability
properties [8–16] or extension to the nonlinear regime [17] were discussed only recently.

At the same time, quite often a further simplification of the quantum Rabi model
is employed, when the quickly oscillating counter-rotating terms are neglected in the
Hamiltonian - the Jaynes-Cummings model [18]. Despite its remarkable success in the
description of the atom-field interactions [2] a few extensions have been proposed, for
example inclusion of the losses of the resonant mode through a lossy cavity [19–29] or
the generalization to the case of a few discrete modes interacting with the atom [30–37].
However, the influence of the multi-mode character of the quantized field on the atom
dynamics was studied only lately [38–46].

In the present paper we aim to analyze the two major approximations viz. the de-
scription of the quantized field as a single-mode and the use of the rotating wave ap-
proximation and to formulate simple analytical expressions which define the validity of
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the former approximation while allow the description of the system beyond the later
one.

The single-mode approximation is related to the fact that in a real cavity the elec-
tromagnetic field is located in a limited volume within a finite time due to the energy
dissipation processes. This expresses the situation that the quantum states of the elec-
tromagnetic field form a quasi-continuous spectrum and an atom in the cavity interacts
with a wave packet of the field. The large number of field modes with different frequen-
cies and directions of ~k vectors of this wave packet are centered around some resonant
cavity mode. For this reason our goal is to establish the relation between the parameters
of this wave packet and the parameters of the single-mode Rabi Hamiltonian. We want
to briefly point here that a similar problem was recently solved for an electron, which
moves in a field of a laser wave [47].

As was mentioned above, the exact solution for the stationary states of the quantum
Rabi model has been recently formulated [14]. However, it is expressed in a form of
an infinite power series, hence the actual application of this solution in real calcula-
tions becomes problematic. Moreover, it describes the stationary states and not the
time evolution of the system. For this reason, several alternative attempts have been
performed to go beyond the rotating wave approximation, for example the development
of a stochastic Schrödinger equation approach including cavity losses [48], the applica-
tion of unitary transformations to the Rabi Hamiltonian [49], the use of quasienergies
and quasienergy states [50] or the construction of the symmetric and the generalized
forms of the rotating wave approximation [51, 52]. For this reason, we investigated the
Hamiltonian of the quantum Rabi model and were able to formulate extremely simple
analytical expressions, which allow one to calculate the eigenvalues and eigenstates of
the system with arbitrary accuracy.

Concluding, the paper is organized in the following way. In Sec. II we employ the
canonical transformation of the field operators, which allows us to sort out a single field
mode and fluctuations with respect to the latter. The parameters of this collective field
mode are defined through the parameters of the wave-packet. Moreover, the interaction
of the two-level system with this collective field mode coincides with the quantum Rabi
model. The interplay of the interaction of the atomic system with the collective field
mode and the fluctuations determines the applicability of the single-mode approximation
respectively. In Sec. III we analyze the applicability of the rotating wave approximation
within the framework of quantum Rabi model and demonstrate that the inclusion of the
counter-rotating terms in the Rabi Hamiltonian changes predominantly the integrals of
motion of the system. Next, we construct the approximate analytical expressions, which
describe the stationary states and the time evolution of the system beyond the rotating
wave approximation and demonstrate their validity in the whole range of variation of
the coupling constant.

II. TWO LEVEL SYSTEM IN A MULTI-MODE QUANTIZED FIELD
AND TRANSFORMATIONS TO THE QUANTUM RABI MODEL

The system consisting of a two-level system, which interacts with a quantized elec-
tromagnetic field is described via the Schrödinger equation

Ĥ|ψ〉 = E|ψ〉, (1)
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where the Hamiltonian Ĥ consists of the three parts

Ĥ = Ĥa + Ĥf + V̂af , (2)

Ĥa = − ε
2
|χ↓〉〈χ↓|+

ε

2
|χ↑〉〈χ↑|,

Ĥf =
∑
~k,s

ω~kâ
†
~k,s
â~k,s,

V̂af = − e0

me

∑
~k,s

(
2π

V ω~k

)1/2

ei
~k·~r(~e~k,s · ~̂p)(â

†
−~k,s

+ â~k,s).

Here Ĥa describes the atomic sub-system, Ĥf the field sub-system and V̂af the interaction
between the former and the latter, {|χ↓〉,−ε/2} and {|χ↑〉, ε/2} are the state vectors
and the energies of the ground and exited states of the two-level system respectively,
e0 < 0 and me the charge and the mass of the electron, â†~k,s, â~k,s the creation and

annihilation operators of the photon with the wave vector ~k, the frequency ω~k = |~k| and
the polarization ~e~k,s, V the cavity volume and ~̂p and ~̂r the operators of the momentum
and the coordinate acting in the Hilbert space of the atomic sub-system. We work in
natural system of units in which ~ = c = 1.

Let us discuss in more detail how the sums over the field states in Eq. (2) are defined.
These field states are centered around some frequency ω0 of an eigenmode of an ideal
cavity. However, due to the energy dissipation processes in a real cavity this eigenmode
becomes broadened and possesses width ∆ω related to the relaxation time τ = 1/∆ω
of the dissipation process, which in turn is associated with the cavity quality factor
Q = ω0/∆ω = ωτ . Consequently, the sums in Eq. (2) consist of a macroscopic number
of terms ND, which we can relate to the parameters of the cavity

ND =
V

(2π)3
4πω2

0∆ω =
V ω3

0

π2Q
, (3)

where we consider that the cavity eigenmode is polarized.
Another important remark is to be done about the two-level description of the atomic

system. It is evident that the representation of the atom as a two-level system instead
of a many level system is valid only under the condition that the transition frequency
ε between the states |χ↓〉, |χ↑〉 is close to the frequency ω0 and is highly detuned from
the frequencies ωλ of the other cavity eigenmodes and from the energy differences εµ of
the other atomic transitions:

|ω0 − ε| � |ω0 − ωλ|, |ω0 − ε| � |ε− εµ|. (4)

Consequently, in the following we will consider that the conditions defined via Eq. (4)
are fulfilled.

In order to derive the Hamiltonian Ĥ of the Rabi model from Eq. (2) we will employ
the dipole approximation ei~k·~r ≈ 1 which has a good accuracy in the optical and radio
frequency ranges. Then taking into account only two atomic transitions and the only
one field polarization the Hamiltonian (2) can be transformed into the form

Ĥ =
ε

2
σ̂3 +

∑
~k

ω~kâ
†
~k
â~k +

∑
~k

σ̂1M~k(â†
−~k

+ â~k); (5)

M~k = − e0

me

(
2π

V ω~k

)1/2

〈χ↑|(~e~k,s · ~̂p)|χ↓〉.
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Here Pauli matrices σ̂1,3 are acting in the atomic subspace |χ↓〉, |χ↑〉.
The Hamiltonian (5) still includes many field modes. In order to sort out the single-

mode approximation we will employ the method of model Hamiltonians, which was
introduced in the work [53]. The main idea can be quickly formulated as follows: some
model Hamiltonian is sorted out in the initial Hamiltonian in a way that it depends on
a set of variational parameters, is exactly solvable and is a good approximation for the
system under investigation. The variational parameters are to be adjusted such that
this model Hamiltonian becomes the best possible approximation. This method was
recently used in the problem of the interaction of a relativistic electron and a strong
external laser field [47]. Consequently, in the present problem we introduce the model
Hamiltonian for the Eq. (5) as follows

ĤA =
ε

2
σ̂3 +

∑
~k<∆

[
ω̃0â

†
~k
â~k + M̃0σ̂1(â~k + â†

−~k
)
]

+
∑
~k>∆

ω~kâ
†
~k
â~k, (6)

Ĥ ≡ ĤA + Ĥ1 + Ĥ2.

where the constant values ω̃0, M̃0 and a small volume ∆ in ~k-space, centered around
the vector ~k0 of the resonant mode are variational parameters of the model Hamiltonian
and will be determined later [53]. The sums

∑
~k<∆ and

∑
~k>∆ represent the summation

inside and outside ∆ region correspondingly and the operators Ĥ1,2 are found directly
from Eq. (5)

Ĥ1 =
∑
~k<∆

[
(ω~k − ω̃0)â†~k

â~k + (M~k − M̃0)σ̂1(â~k + â†
−~k

)
]
,

Ĥ2 =
∑
~k>∆

M~kσ̂1(â~k + â†
−~k

).
(7)

By the definition the model Hamiltonian ĤA should quantitively describe the system,
be diagonilizable and the perturbations due to the Hamiltonians Ĥ1,2 need to be small.
For the diagonalization of ĤA let us utilize the method of canonical transformation,
which was introduced by Bogolubov and Tyablikov in a polaron theory in the limit of
a strong field [54–56]. For this purpose we go back to the coordinate representation of
the field operators in Eq. (6)

ĤA =
ε

2
σ̂3 +

1

2
ω̃0

∑
~k<∆

(p̂2
~k

+ q̂2
~k
) + M̃0σ̂1

√
2
∑
~k<∆

q̂k +
∑
~k>∆

ω~kâ
†
~k
â~k, (8)

q̂~k =
â~k + â†

−~k√
2

, p̂~k = −i ∂
∂q~k

= −i
â~k − â

†
−~k√

2
.

Following Bogolubov [53], let us introduce the collective variable D̂ in which all field
modes are added coherently and the “relative” field variables ŷ~k, which define quantum
fluctuations relative to the collective mode

D̂ =
∑
~k<∆

q̂~k, ŷ~k = q̂~k −
1

N
D̂, q̂~k = ŷ~k +

1

N
D̂,

∑
k<∆

ŷ~k = 0, N =
∑
~k<∆

1, (9)

where N is the number of modes in the volume ∆ and in principle this number does not
coincide with ND from Eq. (3), however, being of the same order of magnitude.
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The field momenta are calculated according to their definition [57]:

p̂~k = −i ∂
∂q~k

= −i

 ∂D

∂q~k

∂

∂D
+
∑
∆~f

∂y~f
∂q~k

∂

∂y~f

 . (10)

Evaluation of the derivatives with the help of Eq. (9) gives the generalized momenta:

p̂~k = P̂ + p̂y~k ,
∑
∆k

py~k = 0, P̂ = −i ∂
∂D

, p̂y~k = −i ∂
∂y~k

+
i

N

∑
∆~f

∂

∂y~f
. (11)

Insertion of Eqs. (11) and (9) into Eq. (8) for the Hamiltonian leads to the separation
of the collective coordinate D̂, the fluctuation operators ŷ~k and the “external” variables
â~k and â†~k, in which ~k > ∆:

ĤA =
ε

2
σ̂3 +

1

2
ω̃0

[
1

N
D̂2 +NP̂2

]
+ M̃0σ̂1

√
2D̂

+
1

2
ω̃0

∑
~k<∆

(p̂2
y~k

+ ŷ2
~k
) +

∑
~k>∆

ω~kâ
†
~k
â~k. (12)

Let us now quantize the collective and “relative” variables by introducing a new set
of creation and annihilation operators

D̂ =

√
N√
2

(Â+ Â†), P̂ = −i 1√
2N

(Â− Â†), [Â, Â†] = 1,

ŷ~k =
1√
2

(
ˆ̃
b~k +

ˆ̃
b†~k

), p̂y~k = −i 1√
2

(
ˆ̃
b~k −

ˆ̃
b†~k

),

ˆ̃
b~k = â~k −

1

N

∑
~f<∆

â~f , [â~k, â
†
~k1

] = δ~k~k1
, [

ˆ̃
b~k,

ˆ̃
b†~k1

] = δ~k~k1
+

1

N
.

(13)

Then with the accuracy 1/N the Hamiltonian ĤA, defined through Eq. (12), trans-
forms into the form

ĤA =
ε

2
σ̂3 + ω̃0Â

†Â+ M̃0σ̂1

√
N(Â+ Â†)

+ ω̃0

∑
~k<∆

ˆ̃
b†~k

ˆ̃
b~k +

∑
~k>∆

ω~kâ
†
~k
â~k ≡ ĤQRM + Ĥf + Ĥe, (14)

ĤQRM =
ε

2
σ̂3 + ω̃0Â

†Â+ M̃0σ̂1

√
N(Â+ Â†),

Ĥf = ω̃0

∑
~k<∆

ˆ̃
b†~k

ˆ̃
b~k,

Ĥe =
∑
~k>∆

ω~kâ
†
~k
â~k,

where the normal ordering for operators is assumed and the energy of “vacuum oscil-
lations” is not taken into account. In this representation the operator ĤQRM which
corresponds to the single-mode approximation viz. quantum Rabi model is completely
separated from the operators Ĥf and Ĥe describing fluctuations relative to the resonant
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cavity mode with the frequency ω0 and the external field modes are not included in the
wave packet respectively.

Consequently, one of the conditions to be satisfied for the model Hamiltonian is ful-
filled, namely the operator ĤA can be exactly diagonalized, and therefore, the state
vector of the system is represented as the product:

|Ψ〉 = |ΨQRM〉|{nf}〉|{ne}〉, ˆ̃
b†~k

ˆ̃
b~k|n

f
~k
〉 = nf

~k
|nf
~k
〉, â†~k

â~k|n
e
~k
〉 = ne

~k
|ne
~k
〉, (15)

where the state vector |nf
~k
〉 defines the state of the “fluctuations” and the state vector

|ne
~k
〉 the state of the non-resonant electromagnetic field not interacting with an atom.

The remaining contribution |ΨQRM〉 describes the state of the atom interacting with
a collective resonant mode of the field and satisfies the equation, which is up to the
notations ω̃0 and M̃0 completely equivalent to the conventional equation [1] for the
single mode quantum Rabi model:

ĤQRM|ΨQRM〉 =
[ ε

2
σ̂3 + ω̃0Â

†Â+ M̃0σ̂1

√
N(Â+ Â†)

]
|ΨQRM〉 = E|ΨQRM〉. (16)

In what follows we will estimate the different terms in the Hamiltonian in Eq. (16).
However, let us note that in order the Eq (5) to be fulfilled the difference ω0− ω̃0 needs
to be small and consequently

ω0 − ω̃0

ω0
≈ ∆ω

ω0
= O

(
1

Q

)
. (17)

For this reason below we will drop tilde on top of all quantities, until the very end of
this section.

Quite often the Hamiltonian operator ĤQRM is written in the dimensionless form,
when a special system of units is employed, i.e. ω0 → 1 and ε → ω0ε̄; E → ω0Ē. In
this dimensionless form Eq. (16) reads as

ĤQRM =
ε̄

2
σ̂3 + Â†Â+ fσ̂1(Â+ Â†). (18)

As mentioned already above the Hamiltonian ĤQRM defined by Eq. (16) coincides
with the conventional form of the Hamiltonian of the quantum Rabi model. However,
the operators Â and Â† describe the collective field mode and not the resonant cavity
mode as in the usual case. Moreover, the atom is coupled to this collective field mode
through the constant f which is also different and depends on both the atom and on the
cavity parameters. For this reason, let us determine the contribution of the additional
terms, contained in the total Hamiltonian operator (14), assuming that the initial state
of the electromagnetic field is the wave packet

|Ψf〉 = exp

∑
~k

[
u~kâ
†
~k
− u∗~kâ~k

] |0〉, â~k|0〉 = 0, (19)

which is a set of coherent states with the parameters u~k. This wave packet is centered
around the resonant cavity mode, with the frequency ω0, in the k-space and will be
modeled with the Gaussian distribution

u~k = C exp

{
−

~k2
⊥

2κ2
1ω

2
0

}
exp

{
− (ω − ω0)2

2κ2
2ω

2
0

}
, (20)

~k = ~k⊥ + ω
~k0

ω0
, ~k⊥ · ~k0 = 0.



7

The two dimensionless parameters κ1 = (ω0S)−1 and κ2 = ∆ω/ω0 = Q−1 are the
angular and the frequency spreads correspondingly and S is the cavity transverse area.

The constant C in Eq. (20) is deduced from the normalization of the state |Ψf〉 on
the total energy W of the resonant mode in the cavity:

W = 〈Ψf |
∑
all ~k

ω~kâ
†
~k
â~k|Ψf〉 ≈ ω0〈Ψf |

∑
all ~k

â†~k
â~k|Ψf〉

= C2 ω0V

(2π)3

∫
dωd~k⊥|u~k|

2 = C2 V

8π3
ω4

0π
3/2κ2

1κ2 ⇒

C =

√
8π3/2W

V κ2
1κ2ω4

0

. (21)

As all relevant quantities of the field wave packet are defined, we can proceed with
the estimation of the different terms in the Hamiltonian ĤA in Eq. (14).

The first term defines the contribution to the energy of the collective field mode
ω0Â

†Â:

E0 = 〈Ψf |ω0Â
†Â|Ψf〉 ≈ 〈Ψf |

∑
~k<∆

ω0â
†
~k
â~k|Ψf〉 =

ω0C
2V

(2π)3

∫
d~k|u~k|

2

=
8π3/2W23

(2π)3

(∫ ∆1
κ1ω0

0

dze−z
2

)2 ∫ ∆2
κ2ω0

0

dze−z
2

= WΦ3(δ), (22)

where we assumed that the volume ∆ in k-space can be parametrized as ∆ = ∆2
1∆2 =

δ3κ2
1κ2ω

3
0 . Here δ ∼ 1 is the dimensionless parameter depending on the particular

resonator form and Φ(z) = 2/
√
π
∫ z

0
e−t

2

dt is the error function.
The remaining terms in ĤA are estimated in a similar way:

N =
∑
~k<∆

1 =
V

(2π)3
δ3κ2

1κ2ω
3
0 , (23)

Ef = 〈Ψf |Ĥf |Ψf〉 = 〈Ψf |
∑
~k<∆

â†~k − 1

N

∑
~f<∆

â†~f

â~k − 1

N

∑
~f<∆

â~f

 |Ψf〉

= C2
∑
~k<∆

u∗~k − 1

N

∑
~f<∆

u∗~f

u~k − 1

N

∑
~f<∆

u~f

 =

= C2 V

(2π)3

(∫
d~k|u~k|

2 − V

(2π)3N

∣∣∣∣∫ d~ku~k

∣∣∣∣2
)

= WΦ3(δ)

(
1− 23π

3
2

δ3

Φ6( δ√
2
)

Φ3(δ)

)
, (24)

Ee = 〈Ψf |Ĥe|Ψf〉 ≈ 〈Ψf |
∑
~k>∆

ω0â
†
~k
â~k|Ψf〉 = W

(
1− Φ3(δ)

)
, (25)

Ea−f = 〈Ψf |M0σ̂1

∑
~k<∆

(â†~k
+ â~k)|Ψf〉 ≈ 2M0C

V

(2π)3

∫
d~ku~k
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=
4
√

2Cπ3/2

δ3
NM0Φ3

(
δ√
2

)
= 8
√
N

√
π

5
2

δ3

W

V

e0

meω0
|〈χ↑|(~e~k0,s

· ~̂p)|χ↓〉|. (26)

Now one can use the freedom in the choice of the variational parameters in the model
Hamiltonian ĤA. The first parameter δ can be chosen in a way that the average contri-
bution Ef = 〈Ψf |Ĥf |Ψf〉 of the fluctuations relative to the collective field mode is equal
to zero. This corresponds to the determination of δ from the solution of the equation(

1− 23π
3
2

δ3

Φ6( δ√
2
)

Φ3(δ)

)
= 0, δ = 3.54. (27)

We also note, that the particular value of the parameter δ depends on the actual dis-
tribution of the wave packet modes, but in every case its value can be calculated in an
analogous way.

The contribution of the external modes can be neglected, as the ratio of Ee/E0 is

Ee

E0
=

(
1− Φ3(δ)

)
Φ3(δ)

≈ 1.64× 10−6. (28)

Next, we pay attention to the fact that even if the average value of Ĥf is equal to
zero the variance of Ĥ2

f is not equal to zero and influences the validity of the single-
mode approximation. In order to estimate this variance, we consider the field as a
noninteracting photon gas. Consequently, we can use the well known estimation from
statistical mechanics [58], i.e. the variance is proportional to the

√
N , therefore

DEf =

√
〈Ĥ2

f 〉 = ω0

√
N. (29)

As all estimations have been performed we can conclude that in order to determine the
validity of the single-mode approximation we, therefore, should compare the interaction
energy between the atom and the field Ea−f with the variance of the fluctuations DEf :

µ ≡ Ea−f

DEf
= 8

√
π

5
2

δ3

√
W

V

e0

meω2
0

|〈χ↑|(~e~k,s · ~̂p)|χ↓〉| & 1. (30)

In order to estimate the transition matrix element we express the velocity of the electron
through the transition frequency and since ε̄ and ω0 are of the same order of magnitude,
we can write according to the virial theorem that ω0 = mev

2
e/2 [57]. Consequently, the

final equation for the parameter µ reads

µ ≈ 7e0

√
W

V

1

meω3
0

& 1. (31)

From the previous equation, we can immediately conclude that the applicability condi-
tion of the single-mode approximation highly depends on the frequencies of the resonant
modes of the cavity. The estimation of the critical energy density wc = Wc/V :

wc =
meω

3
0

49e2
0

≈ 5.7× 1010

λ3
0[nm]

[
J

cm3

]
, (32)

shows that for the optical frequencies range the energy density inside the cavity should
be greater than wc & 102 J/cm3, while for the radio frequencies range wc & 1 nJ/cm3.
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We have investigated the two out of three conditions to be satisfied by the model
Hamiltonian ĤA, namely its diagonalization and physical meaning. However, during
the estimations above, the variational parameters ω̃0 and M̃0 were replaced by the
corresponding parameters of the resonant mode of the cavity. For this reason, in order
to conclude our formulation, the connection between ω0, M0 and ω̃0, M̃0 should be
established. Consequently, we construct the first-order perturbation theory which will
determine the corrections due to the Ĥ1 and Ĥ2:{

ĤA − E
}
|Ψ〉 = −(Ĥ1 + Ĥ2)|Ψ〉, (33)

The formal introduction of the small parameter λ on the right hand side of Eq. (33)
and the corresponding expansion of the state vector |Ψ〉 and the eigenvalue E in a power
series in λ

|Ψ〉 = |Ψ0〉+ λ|Ψ1〉, E = E0 + λE1,

yields

(E0 + λE1 − ĤA)(|Ψ0〉+ λ|Ψ1〉) = λ(Ĥ1 + Ĥ2)(|Ψ0〉+ λ|Ψ1〉). (34)

The equality of terms with the same powers of λ determines the corresponding correc-
tions to the state vector and the eigenvalue

λ0 : (E0 − ĤA)|Ψ0〉 = 0,

λ1 : E1|Ψ0〉+ (E0 − ĤA)|Ψ1〉 = (Ĥ1 + Ĥ2)|Ψ0〉.
(35)

Consequently, we conclude that the first equation at the zeroth power of λ leads to
the Hamiltonian of quantum Rabi model Eq. (16), while the second determines the first
correction E1 to the energy of the system

E1 = 〈Ψ0|(H1 +H2)|Ψ0〉. (36)

As was demonstrated in the reference [59], the optimal values for the two unknown
quantities ω̃0 and M̃0 in the model Hamiltonian ĤA can be found from the condition

E1 = 0. (37)

However, the calculation of the expectation value 〈Ψ0|(Ĥ1 + Ĥ2)|Ψ0〉 is rather cumber-
some and was described in great detail in our paper [47]. Therefore, we will not present
this calculations here, however, we note that the condition (37) leads to the following
result

ω̃0 =
1

N

∑
~k<∆

ω~k; M̃0 =
1

N

∑
~k<∆

M~k. (38)

The Eqs. (38) allow a simple physical interpretation, namely the optimal choice of
the parameters of the single collective field mode corresponds to the average frequency
of the wave packet, which in turn depends on the cavity Q-factor.

Moreover, in the work [47] the influence of the second-order corrections on the validity
of the single-mode approximation was investigated and it was shown that under the
condition defined by Eq. (30) this contribution can be omitted.
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III. ANALYSIS OF THE QUANTUM RABI MODEL BEYOND THE
ROTATING WAVE APPROXIMATION

In the previous section we demonstrated that under the conditions defined by Eqs. (4)
and (31) the problem of the interaction between a two-level system and a single-mode
qunatized electromagnetic field in the cavity is reduced to the solution of the following
Schrödinger equation

ĤQRM|ψ〉 = E|ψ〉, (39)

ĤQRM =
ε

2
σ̂3 + Â†Â+ fσ̂1(Â+ Â†)

with the coupling constant f defined as

f =
M0

ω0

√
N = − e0

me
〈χ↑|(~e~k0,s

· ~̂p)|χ↓〉

√
2πN

V ω3
0

≈ −e0ve

√
2πND

V ω3
0

= −e0ve

√
2

πQ
. (40)

and we also dropped bar on the top of ε. Here we replaced for simplicity the Gaussian
form of the wave packet with the rectangular one and introduced the cavity quality
factor Q and the electron velocity ve.

In modern applications the dimensionless coupling constant f and the field amplitude√
n̄ (n̄ = 〈Â†Â〉 being the average number of photons of the resonant mode) are varied

in the very broad ranges [60–62]. In particular, even for the relatively small f but in
the strong electromagnetic field, the ratio ξ = Ω/ω0 = 2f

√
n̄ of the Rabi frequency Ω

to the field frequency ω0 can be quite large [63]. For example, in recent experiments
with superconducting qubits the strong coupling limit has been reached [50, 64] and in
many papers it was demonstrated that the numerical analysis of the experimental data
requires the solution beyond the rotating wave approximation [65–67]. In addition the
strong driving field can be also used for an effective control of a two-level system [68–72].
Moreover, when n̄ � 1 the electromagnetic field is usually considered classically, and
it is relevant to completely describe the influence of quantum effects and the validity
of the rotating wave approximation in this limit [63]. Furthermore, we note here that
similar effects can arise when an electron moves in a strong electromagnetic wave, where
the quantum fluctuations can lead to the collapse–revival dynamics [73].

As was demonstrated in the work [65], the validity of the rotating wave approximation
for the solution of the Schrödinger equation is defined through the inequality

ξ =
Ω

ω0
= 2f

√
n̄� 1, (41)

which, with the help of Eq. (40), can be cast into the form

ξ = 2|e0|ve

√
2

π

W

Qω0
� 1. (42)

Consequently, when the parameter ξ is larger than unity the system description should
be performed beyond the rotating wave approximation. There is only one exception,
namely when the cavity eigenmode is circularly-polarized and the counter-rotating terms
in Eq. (39) are identically equal to zero [1].
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Concluding, the development of the effective numerical and analytical methods for the
description of the evolution of the quantum Rabi model that is valid within the whole
range of the variation of the parameters is an actual problem. The approximation
of the stationary states, which is uniformly convergent to the exact numerical results
in the whole range of variation of coupling constants of this model was introduced in
references [74, 75], while in the work [76] an analogous approach for the description of
the quantum evolution operator beyond the rotating wave approximation was presented.
This allowed one to provide the theoretical description for the new effects that can appear
in the regime ξ � 1, i.e. beyond the rotating wave approximation in the evolution of
the quantum Rabi model, namely the suppression of the collapse–revival effect [65, 77–
80] and the qualitative changes of the time evolution of the population difference in
comparison with the Rabi oscillations [81]. These effects are justified by the experimental
data introduced in the reference [63]. Consequently, below we will consider briefly some
of these results.

It is well-known that the exact solution of the evolution problem for any quantum
system is defined by the eigenfunctions of the corresponding Hamiltonian. Let us split
the Hamiltonian of the quantum Rabi model (39) into two parts:

ĤQRM ≡ Ĥ0 + Ĥ1, (43)

Ĥ0 =
ε

2
σ̂3 + Â†Â+ f

(
σ̂+Â+ σ̂−Â

†
)
, (44)

Ĥ1 = f
(
σ̂+Â

† + σ̂−Â
)
, (45)

where the operator Ĥ0 corresponds to the rotating wave approximation.
Here we stress, that the quantum Rabi model possesses the following exact integral

of motion, which is called the combined parity [74]

P̂ = σ̂3Ŝ, Ŝ = eiπÂ
†Â, (46)

and is substantially different from the one Ĵ =
(

1
2 σ̂3 + Â†Â

)
corresponding to the

rotating wave approximation. Consequently, the eigenvectors of the exact Hamiltonian
of the system depend on the two quantum numbers and satisfy the system of equations

ĤQRM|ψn(p)〉 = En(p)|ψn(p)〉,
P̂ |ψn(p)〉 = p|ψn(p)〉,

(47)

where p = ±1 defines the parity and n = 0, 1, 2, ... the principle quantum numbers of
the field excitations respectively.

Despite its simple form the attempt to find the exact analytical solution of the system
of Eqs. (47) with the Hamiltonian (43) is a tough challenge [14]. As it was demonstrated
in the reference [74], it is possible to derive the rapidly convergent iterative expressions
for the numerical computation of the eigenfunctions and eigenvalues of this system on
the basis of the operator method [59] with any required accuracy. Moreover, even
the zeroth-order approximation of the operator method provides analytical expressions
for the eigenstates of the system, with relatively high accuracy in the whole range
of variation of the coupling constant. We will refer to this as the uniformly available
approximation. In addition, a similar approximation was derived later by other methods
in the work [75].

The following analytical expressions represent the uniformly available approximation
for the eigenvalues and eigenfunctions of the quantum Rabi model (they generalize the
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ΔEnp

f

a) b)

f

ΔEnp

Figure 1. (color online) The normalized energy levels ∆Enp = Enp − (n− f2) of the quantum
Rabi model as a function of the coupling constant f in the case of exact resonance (ω0 = 1.0)
between the single-mode frequency and the atomic transition frequency: Pane (a): n̄ = 10.
Pane (b) n̄ = 100. The solid lines correspond to the uniformly available approximation and
the dashed lines to the exact numerical simulations.

results from [74, 75]):

E(±)
n = n+

1

2
− f2 +

1

4
ε(−1)n (Sn+1,n+1 + Snn)

± 1

2

√[
1 +

ε

2
(−1)n (Sn+1,n+1 − Snn)

]2
+ ε2S2

n+1,n, (48)

∣∣∣ψ(±)
n

〉
=
{
A(±)
n |n, f〉+B(±)

n |n+ 1, f〉
}
χ+

+ (−1)nŜ
{
A(±)
n |n, f〉+B(±)

n |n+ 1, f〉
}
χ−, (49)

where the coefficients A(±)
n , B(±)

n and λ(±)
n read

A(±)
n =

1√
2

1√
1 +

(
λ

(±)
n

)2
, B(±)

n = −λ(±)
n A(±)

n ,

λ(±)
n =

n− f2 + 1
2ε(−1)nSnn − E(±)

n

1
2ε(−1)nSn+1,n

. (50)

For the matter of convenience in Eqs. (49), (50) we use a different classification of the
energy levels, where the two values of the quantum number p are replaced with ± [76].

Here the matrix elements of the parity operator Ŝ in the basis of the coherent states
of the field {|n, f〉} (â|0, f〉 = f |0, f〉) are defined as [59]

Snm(u) = Smn(u),

Snm(u) = (−1)me−2u2

√
m!

n!
(2u)n−mLn−mm (4u2), n ≥ m, (51)

where Lan(x) are the generalized Laguerre polynomials.
The evaluation of the eigenvalues of the quantum Rabi model as a function of the

coupling constant f is presented in the Fig. 1, which demonstrates an excellent agree-
ment with the exact numerical solutions of Eq. (47) obtained as a sum of large number
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Figure 2. (color online) Population difference W of a two-level system interacting with a
single-mode quantized field as a function of the dimensionless time τ (τ = ft). The red dashed
lines represent the exact numerical evaluation, while the blue solid lines describe the uniformly
available approximation. Pane (a): The interaction constant f = 0.01, the average photon
number n̄ = 25 and the exact resonance (ω0 = 1.0) between the single-mode frequency and
the atomic transition frequency. Pane (b): The interaction constant f = 0.1, the average
photon number n̄ = 100, the other parameters are the same as on Pane (a). Pane (c): The
detuning |ε̄−ω0| = 0.2 between the single-mode frequency and the atomic transition frequency
is introduced. The other parameters are the same as on Pane (a). Pane (d): The detuning |ε̄−
ω0| = 0.2 between the single-mode frequency and the atomic transition frequency is introduced.
The other parameters are the same as on Pane (b).

of terms of the series of the operator method. One can observe that all qualitative
peculiarities of the exact solution are reproduced.

Let us now consider the time evolution of the quantum Rabi eigenstates. We assume
that at the initial moment of time (before the interaction is switched on) the atom was
in its ground state and the quantum field was in the coherent state with the coherent
state parameter α ≈

√
n̄� 1, such that the initial state vector is represented as

|Ψ(0)〉 = |χ↓〉
∞∑
k=0

αk√
k!
|k〉 e−α

2/2. (52)

The time evolution of the coherent state (52) is defined by the following expansion:

|Ψ(t)〉 =

∞∑
n=0

∑
r=±

Cnr

∣∣∣ψ(r)
n

〉
e−iE

(r)
n t, (53)

where the coefficients Cnr of the expansion are calculated from the initial condition
Eq. (52).
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For the following we need the density matrix

ρ̂a(t) = Trf {|Ψ(t)〉 〈Ψ(t)|} =

∞∑
k=0

〈k, f | ρ̂a |k, f〉 =

(
ρ↑↑ ρ↑↓
ρ∗↑↓ ρ↓↓

)
, (54)

such that the population difference is calculated as [1]

W (t) = ρ↑↑ − ρ↓↓. (55)

The exact expressions (53)–(55) based on the stationary states (47) are calculated
within the framework of the operator method. The number of intermediate states ∆n
that is needed to perform the summation in Eq. (53) and the dimension of the matrices
∆m for the numerical solution of (47) are defined by the dimensionless field amplitude
∆n ∼ ∆m ∼ α. However, we present below the analytical approximation for the
evolution operator on the basis of Eqs. (48)–(49).

For this purpose we substitute Eqs. (48) and (49) into (53)–(55) and obtain for the
population difference

W (t) = 2 Re

{ ∞∑
k=0

∞∑
n=0

∑
r=±

∑
q=±

Drq
kne
−i

(
E(r)

n −E
(q)
k

)
t

}
, (56)

where

Drq
kn ≡ (−1)nCnrC

∗
kq

×
[
A

(q)
k

(
A(r)
n Skn +B(r)

n Sk,n+1

)
+B

(q)
k

(
A(r)
n Sk+1,n +B(r)

n Sk+1,n+1

)]
, (57)

with the evolution coefficients

Cnr =
1√
2
e−

1
2 (α+f)2

{
(α+ f)

n

√
n!

(
A(r)
n +B(r)

n

(α+ f)√
n+ 1

)
− (−1)nγnr

}
,

γnr ≡
∞∑
m=0

(α+ f)
m

√
m!

(
A(r)
n Smn +B(r)

n Sm,n+1

)
. (58)

The comparison of the time evolution of the population difference W obtained via
Eq. (56) (the uniformly available approximation) and the summation of a large number
terms of the operator method are presented in Fig. 2. The Fig. 2 demonstrates an
excellent agreement in the whole range of f

√
n̄, as in the case of the exact resonance

(ω0 = 1.0) between the single-mode frequency and the atomic transition frequency, as
well as when the detuning is introduced.

The comparison of the evolution of the population difference W as a function of time
within and beyond the rotating wave approximation is presented in Fig. 3. As can
be seen from this figure, the evolution of the system in the rotating wave approxima-
tion is substantially different from the one beyond the rotating wave approximation in
the regime of the strong field. Moreover, even the qualitative peculiarities can not be
reproduced.

Nevertheless, the actual usability of the expressions defined via Eqs. (56)–(58) for the
calculation of the observable quantities of the system is still complicated. However, in
the practically important case of the strong field (n̄� 1 and f

√
n̄� 1), it is possible to

carry out an analytical summation over the intermediate states in Eq. (56) and obtain
a compact expression for the population difference as a function of time. The further
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Figure 3. (color online) Population differenceW of a two-level system interacting with a single-
mode quantized field as a function of the dimensionless time τ (τ = ft). The red dashed lines
represent the uniformly available approximation, while the blue solid lines describe the rotating
wave approximation. Pane (a): The interaction constant f = 0.01, the average photon number
n̄ = 25 and the exact resonance (ω0 = 1.0) between the single-mode frequency and the atomic
transition frequency. Pane (b): The interaction constant f = 0.1, the average photon number
n̄ = 100, the other parameters are the same as on Pane (a). Pane (c): The detuning |ε̄−ω0| =
0.2 between the single-mode frequency and the atomic transition frequency is introduced. The
other parameters are the same as on Pane (a). Pane (d): The detuning |ε̄−ω0| = 0.2 between the
single-mode frequency and the atomic transition frequency is introduced. The other parameters
are the same as on Pane (b).

derivations are based on the implementation of the following relation for the sum over
matrix elements:

∞∑
m=0

Smn ≈ (−1)n +O
[
n−1

]
, (59)

which can be derived from the asymptotic behavior of the Laguerre polynomials.
With the help of Eq. (59) one can simplify the corresponding expression for γnr in

Eq. (58)

γnr ≈ (−1)n

{
A(r)
n

(α+ f)
n

√
n!

−B(r)
n

(α+ f)
n+1√

(n+ 1)!

}
, (60)

and obtain the following representation of the evolution coefficients

Cnr ≈
√

2e−
1
2 (α+f)2 (α+ f)

n+1√
(n+ 1)!

B(r)
n . (61)
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The coefficients A(±)
n and B(±)

n are smooth functions of the parameter n. Moreover,
the main contribution to the sum in Eq. (56) is given by the small region near the value
n̄ = n̄0 = α2 with variance Dn ∼ α. Consequently, these coefficients can be evaluated in
the central point n = n0 and removed from the sum. As a result, Eq. (56) is transformed
into the form

W (t) ≈ 4e−α
2 ∑
r=±

∑
q=±

∞∑
n=0

∞∑
k=0

ξnD̃
rq
kn cos Ωrqknt, (62)

where we introduced the abbreviations

Ωrqkn ≡ E
(r)
k − E

(q)
n ; ξn ≡ (−1)n

(α+ f)
2(n+1)

(n+ 1)!
;

D̃rq
kn ≡ A

(q)
n0
A(r)
n0
B(q)
n0
B(r)
n0
Snk +A(q)

n0
B(r)
n0
B(r)
n0
B

(q)
n0+1Sn+1,k

+A(r)
n0
B(q)
n0
B(r)
n0
B(q)
n0
Sn,k+1 +B(r)

n0
B(r)
n0
A

(q)
n0+1B

(q)
n0+1Sn+1,k+1.

(63)

The further simplification can be achieved with the use of an asymptotic representa-
tion of the Laguerre polynomials in the limit of n� 1, which is expressed through the
Bessel functions [82]

L(a)
n (x) ≈

(n
x

) a
2

Ja(2
√
nx). (64)

Consequently, the matrix elements of the operator Ŝ take the form

S′nk(f) = (−1)ne−2f2

e−
k2

4n Jk(4f
√
n) (65)

where the prime implies the fact that the matrix element Smn in Eq. (51) coincides with
the S′n,m−n, i.e., the shift of the index k = m− n is performed. In the following we will
use only the asymptotic elements and consequently the prime will be omitted below.

The double sum over r and q in Eq. (60) can be separated into groups with r = q
and r = −q respectively. The corresponding asymptotic expansion of the frequencies in
Eq. (63) yields

Ωr,rkn ≈ (n− k); Ωr,−rkn ≈ (n− k) + rβn;

βn ≡
√[

1− εe−2f2J0(4f
√
n)
]2

+ ε2e−4f2J2
1 (4f

√
n). (66)

At last, with the help of Eqs. (64), (65), (66) and relations for the Bessel functions
[82]

J0(z) + 2

∞∑
k=1

J2k(z) cos[2kθ] = cos[z sin θ];

∞∑
−∞

Jk(z)tk = e
1
2 (t− 1

t )z (67)

the summation over the index k can be performed.
Finally, in order to reach the answer the summation over n is replaced by an integra-

tion. Then with the help of the saddle point method [83], one can derive the approximate
analytical equation for the population difference of the two-level system interacting with
a single-mode quantized field, which is valid in the limit of α� 1 and fα� 1

W (t) ≈ − cos (4fα sin t) (68)
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Figure 4. (color online) Population differenceW of a two-level system interacting with a single-
mode quantized field as a function of time (arb. u.) in the case of exact resonance (ω0 = 1.0)
between the single-mode frequency and the atomic transition frequency, n̄ = 103 and f = 0.1.
Pane (a): The dashed red line represents the exact numerical solution (56) and the blue solid
line the approximate relation (68). Pane (b): The red dashed line represents the approximate
relation (68) and the blue solid line the inverse population in the rotating wave approximation
[1].

The comparison of the simple analytical expression Eq. (68) with the exact numerical
simulation of the full evolution operator in Fig. 4 demonstrates an excellent agreement
for the population difference of the two-level system interacting with a single-mode
quantized field. At the same time, the use of the rotating wave approximation does not
even reproduce the qualitative peculiarities of the system evolution.

IV. CONCLUSION

In this paper we have investigated the applicability of the two major approximations
which are most commonly employed in the study of the quantum Rabi model, namely
the description of a resonant cavity mode as a single-mode quantized field and the use
of the rotating wave approximation. We have demonstrated that in a real cavity with
finite Q-factor a finite distribution of modes has to be considered. Consequently, due to
energy dissipation processes a two-level system interacts with a field wave packet, which
is centered at the resonant cavity eigenmode. Starting from the Schrödinger equation
describing the interaction between the two-level system and the multi-mode quantized
field we performed the canonical transformation of the field variables, and consequently
divided this interaction Hamiltonian into two parts. The first part describes the inter-
action between the atom and the single-collective field mode, while the second describes
the interaction with the fluctuations. Afterwards, we have shown that the interplay
between the energy of the fluctuations and the interaction energy between the atom
and the collective-field mode defines the applicability conditions of the single-mode ap-
proximation. We have found that in the case when the energy density w in the resonant
cavity mode is larger than the critical energy density

w > wc =
meω

3
0

49e2
0

≈ 5.7 · 1010

λ3
0[nm]

[
J

cm3

]
,

the field can be described with good accuracy as a single-mode.
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After establishing this condition we switched to the analysis of the stationary states
and the time evolution of the system beyond the rotating wave approximation. It was
shown that in this case the integrals of motion are different from the ones of the rotating
wave approximation, namely the operator of the combined parity P̂ = σ̂3 exp(iπÂ†Â)
commutes with the Hamiltonian of the quantum Rabi model. Thereafter, we were able
to determine simple analytical expressions that allow one to calculate the spectrum of
the system with arbitrary required accuracy. Moreover, our results are valid in the
whole range of variation of the coupling constant. This was proven by comparing the
exact numerical simulations with the approximate analytical formulas. Furthermore,
we analyzed the time evolution of the system numerically, assuming that the field at
the initial moment of time was in the coherent state. In the experimentally important
regime of large photon occupation numbers we derived an extremely simple analytical
formula for the description of the time dependence of the inverse population

W (t) ≈ − cos (4fα sin t) ,

which is in excellent agreement with the exact numerical simulations. Finally, it was
shown that in the regime of n� 1 the use of the rotating wave approximation does not
even reproduce the qualitative peculiarities of the system evolution, i.e., the suppression
of collapses in the collapse–revival effect and the qualitative changes of the time evolution
of the population difference in comparison with the Rabi oscillations.
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