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We present a theory illuminating the cross-over from strong-field tunnelling ionization to weak-
field multiphoton ionization in the interaction of a classical laser field with a hydrogen atom. A
simple formula is derived in which the ionization amplitude appears as a product of two separate
amplitudes. The first describes the initial polarization of the atom by virtual multiphoton absorption
and the second the subsequent tunnelling out of the polarized atom. Tunnelling directly from the
ground state and multiphoton absorption without tunnelling appear naturally as the limits of the
theory.
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I. INTRODUCTION

Traditionally the interaction of a strong laser field with
an atom which leads to ionization is considered to oc-
cur by two contrasting mechanisms, as limiting cases of

the so-called Keldysh parameter γ =
√

Ip
(2Up)

where Ip

is the atom ionization potential and Up is the laser pon-
deromotive potential. The Keldysh parameter can be
represented in atomic units also as γ = ω(2Ip)

1/2/E0,
where the classical laser electric field has frequency ω and
strength E0. For γ < 1 or low frequency and high inten-
sity, ionization proceeds by tunnelling out of the atomic
potential under the influence of the potential supplied
by the field. When γ > 1, for high frequency and rela-
tively low intensity, then direct absorption of several pho-
tons occurs giving rise to ionization and possibly ”above-
threshold” ionization (ATI) due to absorption of further
photons by electrons already in the continuum.

The earliest theoretical treatments were based on
the ”strong-field approximation” (SFA) by Keldysh [1],
Faisal [2] and Reiss [3], known as the KFR approach.
More recent developments e.g.[4],[5], [6] contain exten-
sions of the SFA and in certain cases fully numerical cal-
culations are now available [7],[8], [9].

The SFA and its extensions have been very successful
in describing the ionization of atoms by laser fields. It
involves the approximation of the exact T-matrix element
for the ionizing transition by a matrix element of the form

f =

∫ ∞
−∞
〈φf (t′) |VF (t′)|φi(t′) 〉 dt′, (1)

where |φi 〉 is the initial eigenstate of the atom alone,
|φf 〉 is the continuum eigenstate of the laser field alone
and VF is the interaction of atomic electron with laser
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field. From the outset it was shown that both limits are
contained in this theory. This is plausible if one considers
that in a Floquet picture |φf 〉 contains the electron cou-
pled to any number of photons, so that multiphoton ion-
ization is described. Additionally, in the opposite limit of
γ < 1, a semi-classical description of |φf 〉 in the classi-
cal laser field corresponds to a tunnelling interpretation.
Nevertheless, a clear physical picture of the intermediate
region and the transition between the two limits does not
emerge.

Recently there has been renewed interest in develop-
ing the theory to explain more physically how the transi-
tion from direct tunnelling out of the ground state to the
seemingly quite different mechanism of multi-photon ab-
sorption occurs. A first step in this direction was made by
Klaiber et.al. [14] who recognized that during tunnelling
the electron may absorb energy from the field to emerge
at the tunnel exit with more energy than when it started
to tunnel. This ”non-adiabatic” energy absorption was
treated by classical mechanics. Clearly however, as will
be explained in more detail below, the energy gain can
also be thought of as the absorption of photons during
the tunnelling process.

In a recent letter [15] a numerical study of ionization
in extremely strong laser fields was reported. The results
were interpreted by pointing out that tunnelling may not
only occur directly out of the atomic ground state (the
hydrogen atom was used as example). Rather, excitation
of the atom to higher bound states may occur followed
by tunnelling. Indeed, since the binding energy is then
much reduced, as in the non-adiabatic case, tunnelling
is more efficacious from such excited states. In fact the
picture presented corresponds to ”over-the-barrier” ion-
ization out of excited states without the need for tun-
nelling. Although plausible, we feel that such a picture
is not quite correct. The authors considered that the
real time-independent hydrogen eigenstates must first be
populated by multi-photon absorption. Since for the case
of hydrogen the first excited N = 2 manifold lies 10.4eV
above the ground state, a significant multiphoton tran-
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sition is required to populate these states. Higher mani-
folds were not considered.

Here we put forward an alternative picture in which
the dominant role is played not by real eigenstates but by
virtual ”off the energy shell” states of the hydrogen atom.
For infra-red and visible photons these energy states lie
far below the N = 2 excited manifold but nevertheless
tunnelling can occur from them. We will show that the
picture of virtual absorption allows a simple description
of the smooth transition from tunnelling to multiphoton
ionization to be given. We make clear from the outset
that our aim is not to develop a theory with which to
confront specific experimental data. There one cannot
compete with fully numerical methods. Rather it is to
expose the physical mechanism of laser-atom interaction
and to explain in a simple picture how the cross-over from
tunnelling to multiphoton ionization arises.

When an atom is subject to an electric field whose fre-
quency is not resonant with transition to an eigenstate,
there is an interaction and distortion which is usually re-
ferred to classically as polarization of the electron cloud.
In the quantized photon picture this is ascribed to the
virtual absorption of photons. After each photon absorp-
tion there is a changed wavefunction and since the energy
is higher, this wavefunction usually extends to larger dis-
tance. That is, as each photon is absorbed virtually, the
atom ”swells” in extent. Clearly, ionization by real pho-
ton absorption or by tunnelling, can occur readily from
such extended and weakly-bound virtual states. A cal-
culation of this process of virtual excitation followed by
tunnelling is the subject of this paper.

Already in 1988 the virtual multiphoton off-shell
atomic states were used to provide the first explanation
of electron angular distributions in ATI of the hydrogen
atom [10] by comparison with experiments of Feldmann
et.al. [11]. Unfortunately, although studied extensively
in unpublished work of Kracke [12] and used in ion-atom
collisions [13], no further discussion of the nature and
properties of such wavefunctions seems to have been pub-
lished.

The plan of the paper is as follows. In section II we
present a critique of the standard scattering theory used
to calculate the transition amplitude (T-matrix element)
to continuum states. We show that the transition am-
plitude to a continuum state can be represented in an
intuitively appealing way in that it appears as a direct
product of the amplitude for virtual n-photon absorp-
tion and the probability for subsequent tunnelling from
this virtual excited state. The results of calculations for
the realistic case of the three-dimensional hydrogen atom
are presented in section III. The virtual absorption wave-
function is calculated numerically by iteration of the in-
homogeneous Schrödinger equation and for the tunnelling
wavefunction the quasi-static approximation is employed
using a separation in parabolic coordinates. The results
indeed exhibit a smooth and continuous transition from
optimum tunnelling directly from the ground state, to
dominant multiphoton ionization, as the Keldysh param-

eter is varied. Throughout we use atomic units in which
the electron charge, the electron mass and h̄ are equal to
unity.

II. THE BASIC EQUATIONS

A. The strong-field approximation

The dynamics of ionization of an initially-bound elec-
tron in a strong laser field is essentially decided by the
competition between two electric fields; that of the par-
ent nucleus and that of the external laser. As such there
is great similarity with the theory of electron exchange
in ion-atom collisions where the two competing fields are
those of the two nuclei and involve two frames of refer-
ence, the laboratory frame of the parent nucleus and the
moving frame of the incident nucleus. Indeed ”over the
barrier” ionization was first formulated for the ion-atom
problem. This analogy will emerge also in the formulas
presented here and perhaps casts a new light on the SFA.

We consider a total Hamiltonian

H(t) = Hi + VF (t) = K + V + VF (t) = Hf + V, (2)

where K is the electron kinetic energy operator, V is the
nuclear potential and VF (t) is the interaction between
electron and laser field (considered to be a classical field).
The electron wavefunction at time t is given by solution
of the equation

H(t)Ψ(t) = i
∂Ψ(t)

∂t
. (3)

The transition probability amplitude from an initial to a
final state at time t can be expressed in two equivalent
post and prior forms, i.e.

f(t) = 〈φf (t) |Ψ+
i (t) 〉 = 〈Ψ−f (t) |φi(t) 〉. (4)

The two exact wavefunctions propagate forward in time
with Ψ+

i (t)→ φi as t→ −∞ and backwards in time with
Ψ−f (t)→ φf as t→∞ respectively. If one considers that
φi is an eigenstate of Hi and φf is an eigenstate of Hf ,
then from the Schrödinger equation one can show that

f(t) =

∫ t

−∞
〈φf (t′) |V |Ψ+

i (t′) 〉 dt′ (5)

for the post form or

f(t) =

∫ ∞
t

〈Ψ−f (t′) |VF (t′)|φi(t′) 〉 dt′ (6)

for the prior form. These two expressions are exact.
An approximation that has received much attention for
ionization is the SFA of Eq. (1). In the formalism of re-
arrangement given here, one notes that φf (t) is an eigen-
state of the (electron + field) Hamiltonian Hf . Hence
this is a Volkov state and the SFA is made simply by
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replacing Ψ+
i in Eq. (5) by the initial state φi. Interest-

ingly, although often termed ”non-perturbative” now the
SFA appears as the first Born term for re-arrangement
of the electron between eigenstates of the two potentials

fSFA =

∫ ∞
−∞
〈φf (t′) |V |φi(t′) 〉 dt′. (7)

As in general re-arrangement scattering [16], one
can show that the equivalent first Born approximation
putting Ψ−f ≈ φf in the prior form Eq. (6) is identically
equal i.e.

fSFA =

∫ ∞
−∞
〈φf (t′) |VF (t′)|φi(t′) 〉 dt′, (8)

so that one can use either potential in the first Born SFA
re-arrangement matrix element.

In the length gauge the Volkov state reads (in units
with e = h̄ = m = 1 and c = 137)

φVf (r, t) = exp[i(p+A(t)/c].r− i
∫ t

dt′(p+A(t′)/c)2/2]

(9)
where A is the vector potential. This is simply the
Kramers-Henneberg space-translated plane wave [2] de-
scribing the electron stationary in the moving field. The
additional exponential energy and momentum factors in-
volving A are identical to the ”electron translation fac-
tors” appearing on final state wavefunctions in ion-atom
electron capture, where the electron is also stationary in
the moving field of the ion [25]. This justifies our view
of the SFA as a collisional re-arrangement process in first
Born approximation.

In approximate evaluations in collision theory, the time
integrated forms Eq. (5), Eq. (6) of the transition ampli-
tude are usually preferred to the direct projection forms
Eq. (4). Basically this is because, if φi and φf are orthog-
onal as is usually the case, the forms Eq. (4) give zero
for the first-order amplitude whereas the integral forms
Eq. (7) and Eq. (8) give a finite result.

By contrast, in numerically accurate propagations of
the time-dependent wavefunction it is more direct to use
the projection form Eq. (4). This will be the strategy
adopted in this paper and it removes a certain ambigu-
ity in the physical interpretation of the SFA when the
two equivalent forms Eq. (7) and Eq. (8) are used. In
the form Eq. (7) one would say that ionization out of
the initial state occurs by the electron scattering from
its parent nucleus and then accessing the Volkov state,
describing either tunnelling or absorption of photons de-
pending upon the value of γ. However, the form Eq. (8)
would be interpreted as an initial absorption of a single
photon via VF , followed by overlap on the same Volkov
state. Which physical picture is correct ?

In the following we describe ionization in a unified way
in that we approximate Ψ+

i in Eq. (5) essentially by a
product of a state which initially has absorbed virtually a
certain number of photons and a semi-classical state de-
scribing subsequent tunnelling in the full potential of the

nuclear and laser electric fields. This describes a contin-
uous transition from tunnelling to multiphoton regime
according as to which element of the product states is
dominant.

B. The approximate transition matrix element

We begin, not with the standard form Eq. (5) of the
transition amplitude, but with the direct time propaga-
tion of Eq. (4)

f(t) = 〈φf (t) |Ψ+
i (t) 〉 = 〈pf |U(t,−∞)|φi 〉 (10)

where 〈pf | is the final momentum state of the continuum
electron, |φi 〉 is the initial atomic state and(

H(t)− i ∂
∂t

)
U(t, t′) = 0 (11)

is the full time propagator. Our approach will be to
approximate the time development as occurring initially,
up to a time ti with the laser field as a perturbation,
followed by a propagation in the static field of the laser
plus atomic Coulomb potential. That is, we write the full
time-development operator as a product,

f(t) = 〈pf |U(t, ti)U(ti,−∞)|φi 〉
= 〈pf |U(t, ti)|ψ(ti) 〉

(12)

where |ψ(ti) 〉 is an off-shell atomic state with photons
absorbed virtually. This describes an initial polarization
of the atom by the laser field. In the next section this
state will be expanded in states in which a given number
n of photons has been absorbed virtually. The operator
U(t, ti) then describes the subsequent tunnelling transi-
tion of the electron to a final ionized state. Then we
write

〈pf |U(t, ti)|ψ(ti) 〉

=

∫
drf 〈pf | rf 〉〈 rf |U(t, ti)|ψ(ti) 〉.

(13)

Since the propagation through the tunnelling region and
beyond as a continuum electron will be described subse-
quently by a semi-classical wavefunction, we will define
ionization probability as given by the probability density
|〈 rf |U(t, ti)|ψ(ti) 〉|2 at a point rf , corresponding to the
exit from the tunnelling region. In appendix B it is shown
that, as a result of the imaging theorem [20], this is equal
to the transition probability |〈pf |U(t, ti)|ψ(ti) 〉|2.

The matrix element to be calculated can be written as
an integral of the product of the transition amplitude to
a virtual state multiplied by the tunnelling amplitude i.e.

Ψ+(rf tf ) ≡ 〈 rf |U(tf , ti)|ψ(ti) 〉

=

∫
〈 rf |U(tf , ti)| ri 〉〈 ri |ψ(ti) 〉 dri

=

∫
K(rf tf , riti)ψ(riti) dri

(14)

where we have introduced the kernel K(rf tf , riti).
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III. THE OFF-SHELL WAVEFUNCTIONS

We consider ionization of a hydrogen atom i.e. we take
Hi ≡ H0 = K + V where V (r) = −κ/r, the ionization
potential Ip = κ2/2 and nuclear charge κ = 1. The initial
bound 1s ground state is

ψ0(r) =

√
κ3

π
exp[−κr]. (15)

The first task is to calculate the virtual state |ψ(ti) 〉.
We approximate the exact state by its lowest-order per-
turbation result. Hence, for this part of the ioniza-
tion process the laser field is taken to be effectively a
c.w. pulse. Then, the hydrogen atom is driven by
a periodic circularly polarized laser with electric field
F(t) = E0x̂ cos[ωt] + E0ŷ sin[ωt]. The time-dependent
Schrödinger-equation then reads

H0|ψ(t) 〉 − r · F(t)|ψ(t) 〉 − i∂|ψ(t) 〉
∂t

= 0 (16)

Since the laser field is periodic the state vector can be
expanded in a Floquet Fourier series

|ψ(t) 〉 = exp[iIpt]
∑
j

|ψj 〉 exp[−ijωt] (17)

Inserting this expression into the Schrödinger equation,
multiplying by exp[inωt] and integrating over all time
yields

[H0 + (Ip − nω)]|ψn 〉 =
E0

2
[(x+ iy)|ψn−1 〉

+ (x− iy)|ψn+1 〉]
(18)

This equation describes the population of the state |ψn 〉
by absorption or emission of a photon from neighboring
states. Since we consider the initial state as the ground
state, in accordance with perturbation theory we retain
only the lower state in the inhomogeneous term to give

[H0 + (Ip − nω)]|ψn 〉 =
E0

2
(x+ iy)|ψn−1 〉. (19)

This is the inhomogeneous equation for the off-shell
Coulomb wavefunctions. In [10] it was solved iteratively
in a numerical procedure for the absorption of up to nine
photons to calculate angular distribution of ATI contin-
uum electrons. Here we restrict discussion to virtual
states which are still bound. In appendix A we show how
the inhomogeneous equation for the radial wavefunction
is derived and solved. The method goes back to Dalgarno
and Lewis in 1955 [21] and has been used often in early
work on multiphoton ionization e.g. in [22], [23], [24].
The results are shown on Fig.1. for the radial density
|R̃n(r)|2 as a function of distance r from the nucleus.
Since the absolute magnitude of the virtual wavefunc-
tions decrease strongly with n, we have normalized each
magnitude to unity by defining R̃n(r) ≡ Rn(r)/Rn(rn),
where rn is the position of the wavefunction maximum.

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

r [a.u.]


R˜
n
(r
)
2

FIG. 1. The off-shell Coulomb wavefunctions for n-photon
virtual absorption with ω = 0.025 a.u.. From left to right
n = 0 to 16.

For circular polarization the orbital angular momentum
quantum numbers (l,m) are simply l = m = n.

The absorption of multiple photons is usually depicted
as a vertical process in the atomic potential but the main
feature of the off-shell wavefunctions shown in Fig.1 is
that, as the energy and angular momentum of the elec-
tron increases, the wavefunction has its maximum at
larger and larger r values. In Fig.1, to illustrate clearly
the shift of the wavefunction from the nucleus, the mod-
ulus squared of each wavefunction for successive photon
absorption has been normalized by dividing by its maxi-
mum value . The actual magnitude of the wavefunction
decreases with each iteration due to the E0 factor. Of
course, the shift of the wavefunction to larger distances
as binding energy decreases is also a feature of the on-
shell eigenstates of the hydrogen atom. The effect is am-
plified here by the dipole operator in the inhomogenous
term. The important point for subsequent tunnelling is
that this virtual wavefunction has significant amplitude
in the tunnelling region of the combined atomic and laser
electric field potential. As shown in the next section,
this leads to enhanced tunnelling out of virtually-excited
states compared to that from the ground state..

It is interesting to compare the energy gain by virtual
photon absorption treated here, with the energy gain
calculated in the “non-adiabatic” tunnelling picture of
[14]. Since the former is calculated in quantum picture
and the latter in classical mechanics, the quantities to
be compared are somewhat arbitrary. However, to be
precise, we plot the effective total radial energy of the
quantum case against the total energy of the classical
case, both evaluated in the tunnelling direction x. That
is, we plot −(κ2n + n(n + 1)/r2)/2 (see Eq. (A3)) at the
maximum value of the wavefunction against the energy
(ṙ2/2−rE0−κ/r) for the classical energy gain [14]. This
comparison is shown in Fig.2.

In the cases γ = 0.66 and γ = 2.0, Fig.2 a and b, with
low frequency ω = 0.025 a.u. there is reasonable quan-
titative agreement but good qualitative agreement. For
γ = 0.66, the frequency implies that the energy increase,
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FIG. 2. The total potential in the x direction. The dots indi-
cate the position of the wavefunction maximum as a function
of energy for increasing number of photons. The dashed line
is the classical energy gain.

due to five photons absorbed, is small on the energy
scale shown. However, the quantum calculation shows
the wavefunction penetrating into the tunnelling region
as photons are absorbed. The same is true for the multi-
photon ionization regime γ = 6.0 shown in Fig.2c. Here
one observes 16 photons absorbed virtually with the en-
ergy increasing as a function of position in almost exactly
the same way as in the classical calculation. Of course
many photons corresponds to the classical limit but the
close agreement of the two estimates of energy versus
position is quite noteworthy.

IV. THE TUNNELLING WAVEFUNCTION

The second task is the calculation of the tunnelling
probabilities for different starting values of ri in Eq. (??)
and integration over ri to obtain total ionization proba-
bility. Eq. (??) we calculate the wavefunction at tunnel
exit

Ψ+(rf ) =

∫
K(rf , ri)ψn(ri) dri

(20)

The tunnelling wavefunction i.e. the kernel as a func-
tion of ri, with the (static) field of strength E0 in the x
direction, satisfies the Schrödinger equation(

−∆

2
− 1

r
− xE0

)
K = −κ

2
n

2
K (21)

where κ2n ≡ 2(Ip − nω). Following [17] and [18] the
tunnelling wavefunction is calculated in parabolic coor-
dinates (η, ξ, φ) with x = (η − ξ)/2, y =

√
ηξ cosφ, z =√

ηξ sinφ since the equation separates in these coordi-
nates. The tunnelling is described by the η equation
and, as shown in detail in [19], can taken to the lowest
order in h̄ i.e. the WKB solution. This gives the semi-
classical tunnelling wavefunction. Of course the virtual
wavefunction ψn(ri) in Eq. (20) is calculated in spherical
coordinates with the z axis perpendicular to the plane of
polarization. Then, for circular polarization, the state
with angular momentum l = n is populated and with the
highest m = n value. The electron density in the excited
state is aligned in the xy plane and correspondingly we
take m = 0 only with respect to the parabolic φ depen-
dence, which gives optimum tunnelling [19]. With these
approximations the function K(rf , ri) can be calculated
and the integral over ri in Eq. (20) performed numeri-
cally. Note that, in parabolic coordinates, the integrand
is exactly of the form considered by Landau and Lifshitz
[17] for ionization from the ground state. In their cal-
culation they simply assumed a particular starting point
ri. Here we have performed the integral over all ri.

The final ionization probability is a product of the
two competing processes of multi-photon absorption and
under-the-barrier tunnelling. In perturbation theory,
the n-photon wavefunction ψn(riti) contains a time-
dependent phase factor exp [i(Ip − nω)ti]. Hence we will
treat each n-photon state separately corresponding to a
different final energy. Also, to make the calculation of
tunnelling probability tractable, as in [14], we will de-
scribe tunnelling in the static electric field at a time cor-
responding to the maximum of the field strength. Then
the differential ionization probability out of a state with
n photons absorbed virtually is time independent

dPn
drf

=
∣∣Ψ+

n (rf tf )
∣∣2 =

∣∣∣∣∫ K(rf , ri)ψn(ri) dri

∣∣∣∣2 . (22)
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The n-photon absorption probability decreases as E2n
0

whereas the tunnelling probability increases exponen-
tially in (Ip−nω). Below, we consider a fixed frequency,
low enough to justify the quasi-static tunnelling approx-
imation but requiring many photons to be absorbed to
reach the ionization threshold. Varying γ then corre-
sponds to varying field strength.The maximum value of
field strength determines the height of the potential bar-
rier for tunnelling and so has a decisive effect on the tun-
nelling probability. The competition between the prob-
ability to access a state by photon absorption and the
probability to tunnel out from that state decides the
dominant mode of photo-ionization. The results illus-
trate this influence of the laser field strength on the ion-
ization mechanism and are presented in Fig.3.

V. THE IONIZATION PROBABILITIES

In Fig.3 we show the ionization probabilities as a func-
tion of the number of virtually-absorbed photons, up to
an energy corresponding to the top of the potential bar-
rier. To illustrate the relative probabilities for ionization
from each virtual state, we plot the quantity

P rel.n =
|Ψ+
n (rf )|2

|Ψ+
max(rf )|2

(23)

for each n, where |Ψ+
max|2 corresponds to the n value giv-

ing maximum ionization probability and rf is the tun-
nel exit. In all cases, ω is fixed at a value 0.025 a.u.
Direct photo-ionization corresponds to absorption of 20
photons. For small γ equal to 0.66 , shown in Fig.3a
and corresponding to a field strength of 0.04 a.u., ion-
ization occurs most probably directly out of the ground
state. Principally this is because the height and width of
the potential barrier falls with increasing maximum field
strength and tunnelling probability depends upon it ex-
ponentially. Here the barrier is such that tunnelling can
take place from the ground state. Although tunnelling
from higher energy states is even more probable, this is
more than offset by the reduced probability of photon
absorption, leading to a monotonic decrease of ioniza-
tion probability as a function of the number of photons
absorbed.

By contrast, at high value 6.0 of γ, Fig.3c, the pic-
ture is quite different. In this case the field strength is
only 0.003a.u. and the height of the barrier suppresses
tunnelling strongly from the lower-energy states. Here
one sees a monotonic increase of probability with pho-
tons absorbed corresponding to enhanced tunnelling out
of successively higher-energy states. Clearly this limit
corresponds to direct multiphoton ionization, as in the
ATI calculations of [10]. Paradoxically, it is the increas-
ing tunnelling rate that leads to the increase of ioniza-
tion probability with photon number, what is normally
referred to as the multiphoton ionization limit. As field
strength decreases this leads in turn to the most probable
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FIG. 3. The relative probabilities of ionization as a function
of increasing numbers n of virtually-absorbed photons of fre-
quency 0.025 a.u.

transition being due to no tunnelling at all, i.e. over-the-
barrier release of electrons.

Note that we are comparing always relative probabil-
ities as a function of photons absorbed. Since the field
strength is ten times lower, the absolute probabilities are
lower for γ = 6.0 than for γ = 0.66 due to the lower field
strength for fixed photon frequency.

As one might expect, intermediate values of γ inter-
polate between these two limits and exhibit preferential
tunnelling from virtual excited states which are still be-
low the top of the barrier. For the higher-energy states
the probability falls again even though tunnelling is en-
hanced. The example γ = 2.0, corresponding to field
strength 0.01a.u. is shown in Fig.3b. Here the calcula-
tion predicts that a maximum ionization probability oc-
curs for three photon absorption, followed by tunnelling.
The three panels of Fig.3 illustrate nicely the cross-over
from ground-state tunnelling to multiphoton ionization
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FIG. 4. The relative probabilities of ionization as a function
of increasing numbers n of virtually-absorbed photons for ω =
0.05 a.u..

without tunnelling.
The same pattern emerges for different values of ω,

although for higher frequencies, since for hydrogen γ =
ω/E0, the cross-over to predominant ground-state tun-
nelling (and even over-the-barrier escape) occurs at val-
ues of γ exceeding unity. This is illustrated in the subse-
quent figures where we consider the two cases of ω = 0.05
a.u. and 0.1 a.u..

In Fig.4a, we show the relative probabilities for ω =
0.05 a.u. and γ = 1.0 giving E0 = 0.05 a.u.. Already
for this field strength there is most probable tunnelling
out of the ground state and the multiphoton excitation
probability falls off rapidly for n = 1. At intermediate
γ = 2.0, shown in Fig.4b, the most probable tunnelling
has shifted to n = 1. At higher γ = 8, Fig.4c, corre-
sponding to field strength E0 = 0.006, the transition to
preferential multiphoton ionization has been made com-
pletely. The same is true for ω = 0.10 and γ = 8.0

γ=8.00

0 1 2

10-9

10-7

10-5

0.001

0.1

n

P
nre
l.

FIG. 5. The relative probabilities of ionization as a function
of increasing numbers n of virtually-absorbed photons for ω =
0.10 a.u..

shown in Fig.5. However, for this frequency, the field is
E0 = 0.012 and only the virtual absorption of two pho-
tons is necessary to reach the top of the barrier. In the
case of ω = 0.10 (not shown), already at γ = 2.0, the
field E0 = 0.05 is such that the barrier is so low that
ionization occurs over the barrier after the absorption of
just one photon and there is essentially no tunnelling.

VI. CONCLUSIONS

We have derived a simple intuitive expression, Eq. (14)
describing the ionization of the hydrogen atom by a clas-
sical laser field as consisting of two steps. The ionization
amplitude then factors into a product of the separate am-
plitudes of the two steps occurring. The first step is a
polarization of the atom and energy increase of the elec-
tron due to the virtual absorption of photons. The sec-
ond step is the tunnelling of the virtually-excited electron
out of the total (atom + field) static potential leading to
ionization.

The virtual absorption of photons leads to the elec-
tron gaining energy as it recedes from the nucleus and
this mechanism supports the supposition of Klaiber et.al.
[14] who described the “non-adiabatic” energy gain by
classical mechanics. Indeed, there is close agreement, for
large number of photons absorbed, between the energy
gain predicted in our quantum perturbation theory and
that ascribed to classical motion.

The results for the relative ionization probabilities as
a function of the number of virtually absorbed photons
are presented for fixed laser frequencies but low enough
as to require many photons to be absorbed to reach the
ionization threshold. The Keldysh parameter γ then is
inversely proportional to the peak field strength and this
decides the position and value of the peak of the tun-
nelling potential that is decisive for the tunnelling prob-
ability. The results demonstrate a continuous smooth
transition between the two limits in which the maximum
probability is associated with direct ground-state tun-
nelling for the higher strengths and complete multipho-
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γ≫1

γ≲1

γ≳1

FIG. 6. Schematic picture of the cross-over from tunnelling
to multiphoton ionization

ton absorption for lower strength fields.
The transition is indicated schematically in Fig.6 which

emphasizes that, contrary to the usual depiction of a
vertical transition in space, as the electron absorbs en-
ergy by virtual photon absorption, the atomic wavefunc-
tion swells in size. Schematically and following tradition,
γ ≈ 1 is shown as the intermediate cross-over region.
However, as we have seen in the example of ω = 0.10 a.u.,
the tunnelling region and indeed direct over-the-barrier
field ionization can set in for γ values greater than unity.
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Appendix A: Off-shell Coulomb wavefunctions

The inhomogeneous equation for the off-shell Coulomb
wavefunction is given in Eq. (19)

[H0 + (Ip − nω)]|ψn 〉 =
E0

2
(x+ iy)|ψn−1 〉.

In spherical coordinates this is

[H0 + (Ip − nω)]|ψn 〉 =
rE0

2
sin(θ) eiφ|ψn−1〉 (A1)

Projecting on spherical harmonics yields an iterative
equation for the radial part of the excited states ψn. With
ψ0(r) = R0(r)Y0,0(θ, φ)/r and R0(r) = 2

√
κ3r exp(−κr)

the first order equation reads:

R′′1 (r)− 2R1(r)

r2
+
(

2
(
−Ip + ω +

κ

r

))
R1(r)

= −
√

2

3
rE0R0(r).

(A2)

The nth order equation to be solved iteratively is

R′′n(r)+

(
−κ2n −

n(n+ 1)

r2
+

2κ

r

)
Rn(r)

= −
√

2n

2n+ 1
rE0Rn−1(r),

≡ f(r)

(A3)

where κ2n ≡ 2(Ip − nω).
The homogeneous equation has two solution functions

that are:

y1(r) = W 1
κn
,n+ 1

2
(2rκn)

y2(r) = M 1
κn
,n+ 1

2
(2rκn) , (A4)

where M and W are the Whittaker-functions. Taking
into account the asymptotic behavior of these functions
the nth off-shell wavefunction in the 3D-Coulomb poten-
tial can be given via the expression for the radial func-
tions

Rn(r) =− y1(r)

∫ r

0

dz
f(z)y2(z)

W (z)

+ y2(r)

∫ r

∞
dz
f(z)y1(z)

W (z)
.

(A5)

with the Wronskian W = y1y
′
2 − y2y′1.

Appendix B: Imaging Theorem

With a final measured momentum state |p 〉 the prob-
ability amplitude f(t), the projection on the exact time-
propagating state, can be written f(t) = 〈p |Ψ+(t) 〉 ≡
Ψ̃+(p, t). One notes that for a free electron this is just
the Fourier transform of the exact spatial wavefunction.
However, it is defined more generally e.g. in an asymp-
totic Coulomb potential. The imaging theorem (IT) [20]
shows that in the region where the semi-classical wave-
function is valid, the amplitude Ψ̃+(p, t) can be related
to the position wavefunction Ψ+(rt) of Eq. (14), which
is the quantity we calculate. Specifically, the IT equates
the probabilities,∣∣∣Ψ̃+(p, t)

∣∣∣2 dp =
∣∣Ψ+(r, t)

∣∣2 dr (B1)

at all points connecting the momentum p with position r
(and vice versa) along a classical trajectory. We have put
r = rf , the position corresponding to the barrier exit for
each virtual state energy. Thereby we equate the proba-
bility density in position space with the probability den-
sity for projection onto a momentum state. This means
that we have assumed that semi-classics is valid immedi-
ately following the electron’s transition to a continuum
state. This is an approximation but is compatible with
our use of semi-classics to describe the under-the-barrier
motion. The IT also lends credence to the strategy of
Ni et.al. [9] who use classical mechanics to propagate
numerically-calculated probability densities backwards in
time to the tunnelling region.
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