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Quantum technologies will ultimately require manipulating many-body quantum sys-
tems with high precision. Cold atom experiments represent a stepping stone in that
direction: a high degree of control has been achieved on systems of increasing com-
plexity, however, this control is still sub-optimal. Optimal control theory is the ideal
candidate to bridge the gap between early stage and optimal experimental protocols,
particularly since it was extended to encompass many-body quantum dynamics. Here,
we experimentally demonstrate optimal control applied to two dynamical processes
subject to interactions: the coherent manipulation of motional states of an atomic
Bose-Einstein condensate and the crossing of a quantum phase transition in small sys-
tems of cold atoms in optical lattices. We show theoretically that these transformations
can be made fast and robust with respect to perturbations, including temperature and
atom number fluctuations, resulting in a good agreement between theoretical predic-
tions and experimental results.

The last two decades have seen exceptional progress in
the ability to engineer, manipulate and probe complex
quantum systems. The concepts of quantum computa-
tion, quantum simulation or precision measurement bey-
ond the classical limit have been validated in the laborat-
ory and quantum sensing and metrological devices have
been developed for specific applications [1–6]. Another
important challenge to meet in order to fully exploit the
potential of complex quantum systems is to design more
robust and efficient experimental protocols.

Most of the protocols developed so far in research
laboratories rely on analytic or simple empirical solu-
tions. In the paradigmatic example of a superfluid-to-
Mott-insulator transition in a lattice, adiabatic manip-
ulations are generally applied. Although maintaining
adiabaticity is impossible in the thermodynamic limit,
almost adiabatic transformations can become feasible for
finite size systems. However, they are – by definition
– slow compared to the typical timescales of the system.
Thus, they are highly sensitive to decoherence and exper-
imental imperfections. Speeding up the transformation
can lead to a significant gain in that regard. In another
common case, the driving of a transition between two
energy levels of a system, an adiabatic solution does not
necessarily exist. The transition can, under certain con-
straints, be driven by a Rabi pulse at the frequency of
the level splitting. However, in the presence of other ac-
cessible levels or loss processes, this option has a strongly
limited efficiency. It would therefore be desirable to have
at our disposal a method to design fast and arbitrary
complex manipulations. In addition, to be experiment-

ally sound, such a method would have to be robust with
respect to system perturbations. This challenge can be
met by means of optimal control theory, that is, the auto-
mated search of an optimal control field to steer the sys-
tem towards the desired goal [7, 8]. Quantum Optimal
Control (QOC) has been applied very successfully in the
case of (effective) few-body quantum systems: it has been
shown that QOC can steer the dynamics in the minimum
allowed time and that the optimal protocols are robust
with respect to noise [8]. In particular, it has been exper-
imentally demonstrated, for quantum dynamics taking
place in an effective two-level system, that QOC allows to
saturate the Quantum Speed Limit (QSL) – the minimal
time necessary to transform one state into another for a
given energy of the driving [9–14]. However, only recently
QOC has been extended to embrace many-body quantum
dynamics in non-integrable quantum systems [15–19].

In this paper, we apply QOC to two ultracold atom
systems undergoing complex transitions in the non-
perturbative regime and we show that it is possible to
speed up their dynamics at timescales comparable with
the QSL theoretical estimate (Fig. 1a). The two selected
experiments are prime examples of quantum systems in
which the dynamics is affected by interactions between
particles and where much is to be gained from speed-
ing up the attempted transformation. In the first ex-
periment, we demonstrate a fast control scheme for the
motional state of a quasi-condensate on an atom chip
(Fig. 1b). The complexity of this system arises from the
multiplicity of accessible motional states and the non-
linearities induced by atom-atom interactions. We show
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Figure 1. a) The CRAB optimal control applies a first control field Vguess(t) to a numerically simulated experiment. Taking into
account experimental constraints, it optimizes the control field relying on the figure of merit F after time evolution. The final
control field obtained after optimization, VOPT(t), optimally steers the system in the minimal possible time TOPT compatible
with the theoretical and experimental limitations.
b) Vienna atomchip experimental setup: illustration of the experimental setup with the atomchip (top) used to trap and
manipulate the atomic cloud (middle) and the light sheet as part of the imaging system (bottom). The trapping potential,
centered on a DC wire, is made slightly anharmonic by alternating currents in the two radiofrequency (rf) wires. It is then
displaced (black arrow) along the optimal control trajectory VOPT(t), using an additional parallel wire located far away from
the DC wire and carrying a current proportional to VOPT(t). By this mechanical displacement of the wavefunction, a transition
is realized from the ground to the first excited state of the trap. The atomic cloud is imaged after a 46 ms time-of-flight.
c) Garching lattice experiment setup: an optical lattice is applied along an array of tubes and drives the superfluid to Mott-
insulator transition with one atom per site (top) following the optimized control field VOPT(t) (black arrows). The distribution
of atoms in the Mott regime is probed by fluorescence imaging through a high-resolution microscope objective with single-site
resolution and single-atom sensitivity (bottom right).

that, using a mean-field Gross-Pitaevskii representation
of the system, QOC is successful at optimizing state
transformations or state preparation, making it a versat-
ile tool for potential quantum information processing ap-
plications. Following an optimized non-trivial trajectory,
we achieve theoretical and experimental infidelities below
1% on a timescale on the order of the QSL. In the second
experiment, we experimentally speed up the crossing of
the one-dimensional superfluid Mott-insulator (SF-MI)
quantum phase transition of cold atoms in an optical
lattice (Fig. 1c). This experiment is the first example
of QOC applied to quantum phase transitions and might
have implications to improve the efficiency of future adia-
batic quantum computation protocols. It also shows the
power of QOC to efficiently treat many-body dynamics:
the optimal quantum phase transition crossing is about
one order of magnitude faster than the adiabatic protocol
while maintaining the same final state fidelity.

As we will show, the optimal transformations we engin-
eer are in general robust with respect to moderate fluc-
tuations of the systems’ parameters, finite temperature
and atom number fluctuations, a fundamental require-
ment for a successful application of optimal protocols to
experimental systems.

OPTIMAL CONTROL AND QUANTUM SPEED
LIMIT

A typical optimal control problem is defined as fol-
lows: given a dynamical law which defines the time evol-
ution of the system state ρ and depends explicitly on
an external control field V (t), one looks for the optimal
control field VOPT(t) such that a quantity of interest —
the figure of merit F (V (t)) — is extremized (Fig. 1a).
In the following, among the different algorithms that
have been successfully developed to perform QOC pro-
cesses [8, 20], we will exploit an approach recently intro-
duced by some of us [15, 21]: the Chopped RAndom
Basis (CRAB) optimization. This approach has been
specifically designed to solve optimal control problems
where the access to the knowledge of the system prop-
erties is limited and/or the computation of the figure of
merit is highly demanding (see appendix A for details):
for example when using tensor network methods [22, 23],
multi-configuration time-dependent Hartree Fock meth-
ods [24–26], or in a closed-loop setting whenever the op-
timization is performed directly as part of the experi-
mental cycle [16].

Despite the successes of QOC, there are fundamental
limitations that clearly cannot be overcome. One of the
most fundamental ones is related to the energy-time un-
certainty – the QSL. It accounts for the fact that the sys-
tem’s finite energy defines a minimal time-scale needed
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for the system to react [9]. The simplest instance of
such fundamental limit is, in a two-level system, given
by the Rabi frequency which provides a lower bound
for the time needed to perform a transition between the
levels. More generally, it can be proven that the time
needed to perform a given transformation between two
states is bounded by T ≥ d(ρi, ρf )/Λ, where d(ρi, ρf ) is
the distance between the initial and the final states, and
Λ is the time-averaged p-norm of the Liouvillian [9–13].
Whenever the previous bound is saturated, the system is
said to be driven at the QSL [27]. An independent heur-
istic estimate of the QSL can be provided by solving the
(constrained) optimal control problem at different total
times T for fixed control field strength: the minimal time
needed to reduce the figure of merit below some critical
threshold can be defined as the QSL of the process. It
has been shown in a few cases that these two definitions
coincide [26–28].

The functional dependence with the total time T of
the final figure of merit depends on the specific system
considered: if the time-optimal transformation follows
the geodesic in the Hilbert space between the initial and
the final (orthogonal) state at maximum constant speed,
the final figure of merit is given by F (T )/F (T = 0) =
cos2(πT/(2TQSL)) [26–28] for T ≤ TQSL. This simple for-
mula allows then to estimate the QSL by means of a one-
parameter fit according to the previous definition. It can
be either directly applied or adapted, as we will show in
the two optimal processes studied. Finally, when apply-
ing this approach to describe any experimental setup, one
should take into account the deviations from the ideal-
ized theoretical model and the concrete measurement
capabilities, which introduce a limited distinguishability
between states (in terms of any measurable quantity):
hereafter we choose as optimal total duration of our ex-
periments TOPT < TQSL, the minimal time where the
figure of merit reaches the minimum compatible with the
experimental resolution.

In summary, in the following we perform a numerical
CRAB optimization for different final times T of two
complex dynamical processes (illustrated in Fig. 1b-c),
from which we obtain a theoretical estimate of TOPT and
the corresponding optimal control fields, which we use
successfully to experimentally manipulate the system at
a timescale compatible with the QSL.

FAST MANIPULATION OF THE MOTIONAL
STATE OF A BEC ON AN ATOM CHIP

The first system for which we demonstrate time-
optimized driving is a one-dimensional (1D) Bose-
Einstein condensate (BEC) of Rubidium 87 atoms on
an atom chip, performed at the Technische Universität
Wien. Optimal control is used to perform coherent
transfers between eigenstates of the transverse confin-
ing potential. Such transfers are tools for probing non-
equilibrium quantum dynamics and studying decay pro-

cesses from excited eigenstates, for example the emis-
sion of twin-atom beams [29]. Furthermore, coherent
manipulation of non-classical motional states allows per-
forming interferometric sequences with these states [30],
and opens perspectives for quantum information opera-
tions. For the useful implementation of such operations,
as well as to separate the timescales of state initializ-
ation and of decay processes, the duration of the op-
timal control transfers is key. We characterize here the
QSL for a full population transfer from the ground to
the first excited state, and implement experimentally the
predicted shortest possible transfer which allows keeping
high transfer efficiency.

The atom chip used in this experiment consists of
setups of micro-fabricated structures on a surface, gen-
erating magnetic fields to trap neutral atoms [31]. They
can produce strongly confining potentials and allow for
very precise manipulation of the atoms. These capacities
[31] are here exploited to produce a well-defined trans-
versally anharmonic potential and to accurately displace
the trapping potential along the anharmonic direction,
following a trajectory designed by QOC. To realize trans-
fers between the BEC motional states, the anharmon-
icity is necessary as it lifts the degeneracy between the
levels and allows transfers to specific eigenstates of the
trap or superpositions thereof. It also induces a coupling
between center-of-mass motion and intrinsic motion of
the BEC [32]. There is no trivial way to perform these
transfers fast, due to the presence of interactions and
higher energy levels. In order to constrain the dynam-
ics into the two-level system formed by the initial and
target states, the minimum duration for a Rabi driv-
ing field — a weak amplitude, sinusoidal displacement
at the level spacing frequency — should be defined by
the detuning between the level spacings, which is on the
order of 0.6 kHz. This simple picture is complicated by
the interactions, which shift the energy levels and are
also responsible for population transfers between eigen-
states. The required driving time, obtained from numer-
ical simulations, exceeds 9 ms. This is much longer than
the timescale of interaction-induced decay into twin-atom
beams, about 3 ms for our typical atom number [29].
Therefore, although the initial and final states can be
described in a two-level model, the time-optimal transfer
trajectory is expected to involve higher motional states.
Designing the necessary complex driving fields thus re-
quires the use of QOC.

As long as the decay processes can be neglected, there
is no coupling between the different axes of the poten-
tial and the steering dynamics can be described by con-
sidering only the transverse y-direction along which the
potential is displaced. Thus, in a mean-field approach,
the dynamics of the condensate can be described by an
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Figure 2. a) Theoretical prediction of the infidelity F1 as a function of the transformation time T achieved by optimal driving
of the ground-to-first-excited state transfer for N = 700 (blue squares). The blue solid lines are fits of the numerical results
according to α cos2(βT ) with α ' 1, 0.56 and β ' 7.35, 1.18 (left and right curve respectively). The green region represents the
minimum measurable infidelity in our present experiment. Insets: modulus squared of the evolved wave function (orange area)
at T = 0.15 ms and at the final time T = 1.09 ms (upper and lower panels), initial and goal states probability distributions are
shown as reference (dashed blue and red lines).
b) Optimal control fields for transformation times T = 1.09 ms for N = 1, 700 and 7000 atoms obtained via full CRAB
optimization (respectively red, blue, and yellow line). Inset: Fourier spectrum of the optimal control field for T = 1.09 ms and
N = 700 (blue solid line). The vertical lines correspond to single particle transitions from the ground state (red).

effective 1D Gross–Pitaevskii equation (GPE):

i~
∂ψ(y, t)

∂t
= Ĥgp[ψ]ψ(y, t),

Ĥgp[ψ] =

[
− ~2

2m

∂2

∂y2
+ V (y, t) + g1DN |ψ(y, t)|2

]
,

(1)

with N being the number of atoms in the quasi-
condensate and g1D = g1D(N) an effective 1D coupling
constant for the displacement direction y (see appendix
B) [33]. The potential along y can be well approximated

by V (y, t) = p2 [y − λ(t)]
2
+p4 [y − λ(t)]

4
+p6 [y − λ(t)]

6
,

where λ(t) is the control field and p2, p4, p6 are fitting
parameters of the trapping potential (see appendix C).

The system is initially prepared in the ground state
φ0(y) of the trap V (y, 0) with N interacting bosons, and
the target state is chosen as the corresponding first ex-
cited state φ1(y). The relevant figure of merit is the

infidelity F1 = 1 −
∣∣∫

R dy φ∗1(y)ψ(y, T )
∣∣2, where ψ(y, T )

is the final state of the system.
We perform a CRAB optimization including the lim-

ited bandwidth of the electronics and the maximum pos-
sible trap displacement λmax = 1 µm. The results for
different transformation times T are reported in Fig. 2.
The infidelity F1 decays monotonically with one inflex-
ion point, which we interpret as the crossover between
two characteristic timescales. Indeed, within the fast-
est timescale (about 0.15 ms) the optimal solution is to
perform an almost rigid translation of the initial wave
packet, which maximizes the overlap with one of the two

lobes of the first excited state of the trap (see upper inset
in Fig. 2a). This results from the fact that simply dis-
placing the initial ground state already yields a figure of
merit of about 60 %. Solving the full problem obviously
requires to modify the wavefunction shape (lower inset
in Fig. 2a) by means of more complex manipulations of
the system parameters, over a longer time. This optimal
dynamics has also a geometric interpretation: it is com-
posed by two optimal transitions, the first between the
initial state and the intermediate one depicted in Fig. 2a
(upper inset), and the second between the latter and the
goal state. Each transformation displays a monotonic
decay of the final figure of merit F1 as a function of the
transformation time T , which can be fitted via a cos2(T )
decay (blue lines in Fig. 2a), that is, they are compat-
ible with two concatenated optimal transformations at
the QSL.

In summary, the optimal process taking into account
experimental constraints and finite measurement preci-
sion (on the order of 1 %, indicated by the green interval
in Fig. 2a) lasts TOPT ' 1.09 ms and reaches an infidel-
ity F1 ' 0.005. This time-optimal transfer is about five
time shorter than previously achieved [29, 34]. The cor-
responding optimal control field for N = 700 atoms is
shown in Fig. 2b (blue line). This control field was used
as an initial guess for optimizing two other pulses, for
different atom numbers N = 1 and 7000. As shown in
Fig. 2b, the resulting pulses have similar shape but with
clear deviations.

To investigate the composition of the optimal trans-
fer control field and gain some physical insight into it,
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Figure 3. a) Theoretical predictions for the final infidelity F1 as a function of the atom number when using the control fields
optimized for 700 atoms. The shown numerical results are obtained for total transformation times T = 1.09, 5.01 ms (blue and
red lines) and are compared to experimental results (circles) obtained with the optimal control field for T = 1.09ms.
b) Transverse distribution after time-of-flight during the optimal process (t < TOPT) and after (TOPT < t < 2 ms) for N = 700:
experiment (center), corresponding GPE simulation (left) and residual difference (right). The gray horizontal line highlights
TOPT.

we performed a Fourier analysis of the optimal control
field for TOPT and N = 700 atoms, shown in the inset
of Fig. 2b. Frequencies beyond ∼ 25 kHz do not play
any relevant role. For lower frequencies, the spectrum
has a rather continuous behavior with some prominent
peaks. We compared the structure of the spectrum with
the transitions of the single particle Hamiltonian (ver-
tical lines in the inset). It appears that the main peaks
are close to single-particle transitions from ground state
to excited states, showing that many eigenstates of the
potential are involved in the transfer dynamics. However,
not all peaks could be clearly matched with a single phys-
ical transition, either single particle or a collective Bogoli-
ubov excitation, see Eq. 3 in appendix B (not shown in
the inset of Fig. 2). This analysis emphasizes the com-
plexity of the optimized control field and also the diffi-
culty of engineering and understanding these optimized
control fields in intuitive ways.

The optimal control field obtained above, although
promising, would be useless if it were not stable against
experimental fluctuations. In the present experiment,
atom number fluctuations are the main source of perturb-
ation. In normal conditions, fluctuations of the order of
10 %−20 % of the atom number are unavoidable. There-
fore, we checked the stability of the optimal process de-
scribed above against fluctuations of the number of atoms
N . The numerical results are reported in Fig. 3a, for dif-
ferent atom numbers and different transformation times
T , one corresponding to the optimal time TOPT and an-
other one about five times as long, comparable with the
transformation time used in the experiment of Ref. [29].
As can clearly be seen, the slower process results in a bet-
ter theoretical infidelity F1 at N = 700; however its sens-
itivity against atom number fluctuations is much higher,

due to the fact that the effects of atom interactions are in-
tegrated over a longer time. Eventually, for atom number
fluctuations above 20 %, the performances of the slower
optimal protocols become even worse than those of the
faster ones. In order to further investigate the effects of
atom interactions, we also simulated the application of
the the optimal control field computed for N = 1 to the
interacting system. We obtained for the optimal time an
infidelity F1 = 0.07, an effect that becomes much worse
for the long pulse, with F1 = 0.25. This result reflects
again the fact that the effects of interactions accumulate
with time, but also that interactions must be taken into
account to obtain good results, including at the optimal
time.

Experiments

We describe the experimental test of the optimal
process engineered theoretically in the previous section.
A BEC is prepared in the transverse ground state of an
elongated potential. As illustrated in Fig. 1b, the BEC
is trapped and manipulated by current-carrying wires
on an atom chip. At any point during the manipulation
sequence or after it, the atomic ensemble can be released
from the trap and imaged when it crosses a light sheet
after a time-of-flight (for details on the experimental
setup and sequence, see appendix C) [35]. The profiles of
the transverse atomic distribution after time-of-flight are
then stacked to construct an image of the time evolution
of the transverse momentum distribution during the
transfer to the first excited state (Figure 3b, middle
panel). Figure 3b shows a typical experimental result
and comparison to simulations: the image in the middle
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Figure 4. a) Theoretical prediction of the optimal figure of merit F2 as a function of the control field duration T (blue squares).
The blue solid line is a fit determining the QSL, the crossing point between the numerical result and the green region (estimated
experimental limitations) defines the optimal time TOPT = 12.0(2) ms (gray vertical line). The red square displays the final F2

for the fast linear control field.
b) Theoretical prediction for the final atom number fluctuation in the center of the trap ∆n2

L/2(T ) for different atom numbers
N for the linear (red) and optimal (blue) control fields. The optimized control field works best for 16 atoms, but a small
deviation only slightly decreases the figure of merit (blue). The linear ramp results in a higher figure of merit for all atom
numbers (red).
c) Lattice ramps used in the experiment. Top: the lattice is first slowly ramped to 3Er (grey) before either the fast linear
control field (red) or fast optimized control field (blue) is applied. The typical adiabatic control field (yellow) is much longer.
Bottom: magnification of the comparison between the linear (red) and the optimal control field (blue).

represents the experimental transverse momentum distri-
bution (fluorescence measurement results) as it evolves
in time, starting from the beginning of the transfer
field. This can be qualitatively compared with the GPE
numerical simulation (left panel), or more quantitatively
by plotting their difference (right panel). The transfer
efficiency is inferred from the evolution of the momentum
distribution after the application of the control field,
e.g. after TOPT = 1.09 ms. This distribution is fitted
with Gross-Pitaevskii equation simulations, where the
fit parameter of interest is the population in the first
excited state. Finally, this analysis yields a transfer
efficiency of 99.3(6) %, corresponding to an estimated
figure of merit F1 = 0.7%± 0.6%, in excellent agreement
with the theoretical prediction. We also repeated the
experiment with the same control field for different atom
numbers, obtaining a good agreement between theory
and experiment over one order of magnitude of different
atom numbers N , as shown in Fig. 3a.

We therefore demonstrated that applying QOC to the
atom chip system provides a fast, robust, and efficient
method for state initialization and manipulation. This
fast state manipulation allowed performing a Ramsey in-
terferometer with motional states [30]. In the next sec-
tion, we apply the same optimization algorithm to a dif-
ferent system, showing that the optimal steering demon-
strated here is not dependent on this particular experi-
mental setup or process, but it shall be expected in gen-
eral.

MOTT-INSULATING GROUND STATE OF
BOSONIC ATOMS IN AN OPTICAL LATTICE

The phase transition between the superfluid (SF) and
the Mott-insulating (MI) phase in cold atoms has been
studied in different experiments [36], and nowadays the
MI state with typically unit filling is used, for instance, as
a well-defined initial state for experiments simulating the
dynamics of effective spin systems [37–39]. These exper-
iments start with a BEC and cross the phase transition
to the desired MI state by slowly increasing the depth of
the optical lattice. In an infinite-size homogeneous sys-
tem these two states are separated by a quantum critical
point and therefore cannot be adiabatically connected by
varying the lattice depth. In typical experimental sys-
tems, however, the finite number of atoms and the pres-
ence of an additional confining potential turn the phase
transition into a crossover, thereby opening the possibil-
ity for an adiabatic preparation of the MI ground state.
Here we demonstrate that a faster, non-adiabatic optimal
steering across the 1D SF-MI crossover, is possible. The
optimized control field we engineer speeds up most of the
ramp of the system by a factor of ten compared to the
adiabatic protocol, from 120 ms to 12 ms, without meas-
urable additional distortion of the final state.

The system we use is composed of parallel tubes con-
taining on average 16 Rubidium 87 atoms each. An op-
tical lattice of depth V (t) is applied along these tubes.
Each tube is described by the one-dimensional bosonic
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Hubbard Hamiltonian [40]

ĤBH = −J
∑
i

(
b̂†i b̂i+1 + b̂†i+1b̂i

)
+
U

2

∑
i

n̂i(n̂i − 1)

+
1

2
mω2a2lat

∑
i

(i− i0)2n̂i , (2)

where the index i = 1, . . . , L labels the lattice sites and
i0 = (L − 1)/2 the center of the trap, J is the tunnel
coupling between neighboring sites, U is the on-site in-
teraction strength, ω denotes the harmonic confining po-

tential, and alat the lattice spacing. The operator b̂i (b̂†i )

annihilates (creates) an atom at site i while n̂i = b̂†i b̂i
counts the number of atoms at that site. In the absence
of the harmonic confinement (ω = 0), the critical point
of the SF-MI transition is located at U/J ≈ 3.4 [41],
corresponding to a lattice depth Vc = 4.5Er, where
Er = (2π~)2/(8ma2lat) is the recoil energy of the lattice
and m the atomic mass of the atoms. All the presen-
ted theoretical results are obtained in the presence of a
trapping frequency ω = 2π × 63.5 Hz equal to the fre-
quency measured in the experimental setup, and unless
stated otherwise, simulating N = 16 atoms in a lattice
of L = 32 sites.

The dynamics of the Hamiltonian (2) is simulated
via the time-dependent density matrix renormalization
group algorithm (t-DMRG, see appendix D). The time-
dependent tunnel coupling J(t) and the on-site interac-
tion energy U(t) are derived from the lattice depth V (t)
by calculating the overlap integrals of the Wannier func-
tions for the single-particle problem [40]. The bosonic
Hubbard Hamiltonian, provided by Eq. (2), is only a
good description of the system for sufficiently large lat-
tice depths (typically V > 3Er). We therefore assume
the system to be initialized at a lattice depth of 3Er and
we optimize the functional dependence in time of the lat-
tice depth for a ramp ranging from 3Er to 14Er driving
the SF-MI crossover.

The shape of the lattice depth V (t) is optimized for
different transformation times T using the CRAB al-
gorithm. The figure of merit we minimize is the rescaled
average variance of the site occupancy in the center of the
trap where we expect that the effect of the harmonic po-
tential will be negligible and we could observe a MI state.

That is, F2(T ) =
1

8

∑L/2+4
i=L/2−4 ∆n2i (T )/∆n2i (0) where

∆n2i (t) = 〈n̂2i (t)〉 − 〈n̂i(t)〉2 and the sum runs over the
eight sites at the center of the harmonic trap. The numer-
ical figure of merit ranges from F2(T = 0) = 1 to F2 = 0
for a perfect Mott-insulator, while any residual excita-
tions at the final time will increase F2(T ). Figure 4a
displays the resulting optimal figure of merit F2 as a func-
tion of the transformation time T . As expected for an
optimal crossing of a quantum phase transition [27], the
numerical results are accurately described by the curve
F2(T ) = cos2(T/TQSL), resulting in TQSL = 17.3(2) ms.
However, due to experimental limitations arising from
the non zero temperature of the 1D tubes (green region
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Figure 5. a) Experimental mean parity profiles Pi resulting
from the adiabatic (yellow points), optimized (blue points)
and linear (red points) lattice ramps compared to the rescaled
numerical results (blue and red lines). The short linear lattice
ramp has a dip in the parity profile at the center due to non-
adiabatic effects. Inset: magnification of the central part of
the main panel. Standard deviations of the measured data
are smaller than data points in the main plots and therefore
only shown in the inset.
b) The red and blue shaded areas display the numerically
computed atom number fluctuations for the linear and the
optimized ramps.

in Fig. 4a) the optimal verifiable figure of merit corres-
ponds to an optimal time TOPT ∼ 12 ms.

Before proceeding with the experimental verification
of the optimal process, we investigate the robustness of
the optimal process with respect to total atom number
fluctuations. We show in Fig. 4b the final density fluc-
tuations at the center of the trap ∆n2L/2(T ) under de-

viations ∆N of the atom number up to more than 10%
(i.e. ∆N ± 2) in the system for the optimized lattice
ramp (blue). For comparison, we also show the result
of a linear lattice ramp of same duration (red). As be-
fore, the optimal process displays a rather high level of
robustness: the density fluctuations remain similar for
all atom numbers, however larger atom numbers lead to
a larger amount of defects in the density distribution.
The corresponding optimal lattice ramp V (t), together
with a linear ramp and the adiabatic one for reference,
is displayed in Fig. 4c. The optimal protocol has been
computed only for a system prepared in the ground state
of the initial Hamiltonian, but we show below that the
insensitivity to atom number fluctuations also provides a
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certain immunity against a finite initial temperature of
the system.

Experiments

The experimental implementation of the theoretically
predicted optimal protocol presented in the previous sec-
tion was performed on the quantum gas microscope ex-
periment at the Max-Planck Institut für Quantenoptik
in Garching. At the beginning a two-dimensional de-
generate gas of polarized Rubidium 87 atoms is pro-
duced in a single anti-node of a vertical optical lattice
(period alat = 532 nm) [42, 43] (see appendix E). By
slowly ramping up an additional optical lattice along the
y-axis, the system is divided into about 10 decoupled one-
dimensional tubes (both lattices had a depth of 20Er). A
third optical lattice (x-axis), perpendicular to the other
two, is used to drive the system from the SI to the MI
phase by varying its depth V (t) over time. The initial
number of atoms is tuned to result in a lattice filling
of one in the insulating phase, corresponding to about
N = 16 atoms in the central tubes. At the end of this
ramp, the density distribution is ‘frozen’ by rapidly rais-
ing all three lattice depths to ∼ 80Er. Finally, the on-site
parity projected atom density is detected by fluorescence
imaging [42].

The usual adiabatic crossing of the phase transition in
two dimensions to the MI phase uses a double s-shaped
ramp where the slope is minimum at the phase transition.
Here we use a similar ramp for the one-dimensional sys-
tems as a reference point (see yellow line in the upper
panel of Fig. 4c). Each s-shaped ramp has a duration of
75 ms and the step is centered around the critical lattice
depth of Vc. This adiabatic preparation leads to an aver-
age parity of the site occupancy of 0.80(1) in the center of
the trap. This means that 80 % of the sites are filled ini-
tially with one atom, the rest being either empty or filled
with two atoms (the probability for a triple occupancy
can be neglected). We attribute the 20 % defects mostly
to the finite temperature of the initial state (we note that
in a 2D geometry average final parities of >96 % are typ-
ical) because this fraction does not significantly vary as
we increase the duration of the lattice ramp. The the-
oretically predicted optimal steering field is implemented
in the experimental setup by increasing the lattice depth
first from 0 to Vi = 3Er over 30 ms and then from Vi to
Vf = 14Er over 11.75 ms following the optimal control
field. In order to reduce the atom number fluctuations
in the experimental sample, we restrict the analysis to
the central 5 tubes in two-dimensional samples having a
diameter of 16 lattice sites (see appendix E).

The measured parity of the site occupancy in the final
state is plotted in Fig. 5, where we compare the result
of the optimal protocol to those of the adiabatic state
preparation and of a linear fast control field of the lattice
performed in 11.75 ms. We observe no significant differ-
ence between the optimal and adiabatic protocols (yellow

and blue data sets): the optimal control technique there-
fore leads to a factor of ten speed up of the state pre-
paration without loss of fidelity. The performance of the
optimized protocol is better appreciated when comparing
with the final state reached using a linear control field
of the same duration. Here the parity of the site occu-
pancy displays a dip in the center, surrounded by narrow
bands of high parity. Such a distribution indicates that
the redistribution of atoms across the system that is ne-
cessary to build an extended insulating region could not
take place. Instead, insulating regions that formed loc-
ally around the points where the initial site occupancy
was close to one have confined the excess particles in
the center of the trapping potential [44]. Note that, as
displayed in the inset of Fig. 5, the difference between
the optimized and the linear control field — especially
in the center of the trap — differs by more than three
standard deviations. Moreover, in Fig. 5 we compare the
experimental results with the numerical simulations for
the optimal control fields: both experimental and numer-
ical results feature a flat top profile of comparable width,
but the maximum parity of the site occupancy achieved
in the experiment yields Pmax = 0.80(1), compared to
Pmax = 0.96(1) in the numerical simulation. This differ-
ence is a consequence of the simulation being performed
at zero temperature, whereas the experimental system
has a finite initial temperature. However, if rescaled by
the experimental value of Pmax, there is a good agreement
between them, that is, their difference can be paramet-
rized with a single parameter corroborating the fact that
their discrepancy originates most likely from the different
temperature (purity) of the states.

CONCLUSIONS

We theoretically engineered and experimentally imple-
mented two fast optimally controlled processes for dif-
ferent paradigmatic complex cold atom systems: the op-
timal preparation of a non-classical motional state of a
BEC in a magnetic trap and the 1D superfluid-to-Mott-
insulator crossover of cold atoms in an optical lattice.
In particular, the latter is the first experimental demon-
stration of optimal control of a crossover related to a
quantum phase transition in a finite system. We demon-
strated that optimal processes can be engineered and im-
plemented for many-level systems with non-linearities as
well as for many-body quantum systems, and that the
theoretical estimate of the QSL can be experimentally
reached. We have shown numerically that the optimal
processes are robust with respect to experimental imper-
fections, stable against atom number fluctuations (that
are unavoidable without post-processing of the data) and
finite temperature corrections, paving the way to a sys-
tematic utilization of optimal control in experiments with
quantum many-body systems.

The optimal preparation of excited states of cold
atoms on an atom chip, performed with an unpre-
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cedented fast process, open new perspectives for the
development of accurate and sophisticated protocols for
sensing, interferometry and cold atom manipulations.
The numerical and experimental results on the SF-MI
crossing demonstrate that the purity of the state reached
by the fast optimal protocol is the same as the one
obtained by means of the adiabatic protocol. This
experiment indicates that, along the same lines, the
generic adiabatic quantum computation scheme can
be in principle performed in a fast and optimal way
(i.e. not adiabatically). Finally, the speedup of these
processes naturally reduces the detrimental effects of
decoherence in the system and thus paves the way to
the experimental realization of protocols of increasing
complexity in the near future.
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APPENDIX

A. CRAB optimal control

Optimal control theory is devoted to find the solution
to functional minimizations of the form minV (t) F (V (t)),
where V (t) is the control field and F a figure of merit
to be computed via a dynamical law that describes the
time evolution of the system. In QOC problems, the dy-
namical law is given by a Liouvillian equation for the
system density matrix, which for pure states reduces to
the time-dependent Schrödinger equation. Typical fig-
ures of merit are the overlap fidelity of the final state
with respect to some given target state, the final en-
ergy of the system or some other interesting properties
of the final state or of the path followed between the ini-
tial and the final state. Finally, figures of merit might
include also constraints as the maximal power used to
drive the system, the limited band-width of the con-
trol field or any other experimental constraints to be
satisfied. In this work we employ the CRAB optimal

control approach, that is, the optimization is implemen-
ted by looking for an optimal control field of the form
V (t) = V0(t) f(t), where V0(t) is some guess function we
can use to include our physical intuition on the problem,
or a preexisting solution to a simplified version of the
complete optimal control problem, and f(t) is a correc-
tion expressed in a truncated and randomized basis. For
example, one could work in a truncated Fourier series of
the form f(t) = 1 +

∑
k[Ak sin(νkt) + Bk cos(νkt)]/Γ(t)

where k = 1, ..., nf , νk = 2π(k + rk)/T are random-
ized Fourier harmonics with T the total time evolution,
rk ∈ [−1/2, 1/2] are random uniformly distributed, and
Γ(t) is a normalization function to keep the initial and
final control field values fixed. The optimization problem
is then reformulated as the extremization of a multivari-
able function F (Ak, Bk, νk), which can be performed with
standard numerical algorithms, also gradient-free to im-
prove their efficiency [28]. This approach has been suc-
cessfully applied to different systems and protocols and it
has been shown that it allows to achieve an efficient con-
trol of many-body quantum system dynamics [15–17, 45].
It has also been theoretically shown that the minimal
value of the final figure of merit drops exponentially with
the number of optimization parameters nf , property that
guaranties in most cases of interests an efficient and quick
convergence to optimal control fields that results in errors
comparable to experimental ones [18].

B. Effective one-dimensional Gross-Pitaevskii
equation

The displacement of the trap, needed to excite a quasi-
1D BEC as discussed in the first experiment of the paper,
occurs along one of the two transverse directions, where
the confinement is much stronger than in the axial dir-
ection (the frequency ratio between the transverse and
the axial confinements is about 102). Usually, see for in-
stance Ref. [33], a quasi-1D GPE for the axial motion is
derived under the assumptions that the motion is effect-
ively frozen to the ground state of the transverse confine-
ment and that the atomic interactions can be described
by a contact potential. Nonetheless, we shall now show
that an effective GPE for the motion along one of the
two transverse directions (hereafter the y axis) can be ob-
tained, since the dynamics along the y-direction is much
faster than in the axial one (hereafter the x axis), and
therefore phononic (axial) excitations can be neglected
during the transfer process.

To this end, we first compute the Heisenberg equa-
tion of motion for the atomic quantum field operator
Ψ̂(r). Then, we perform the replacement Ψ̂(r) 7→
Ψ(r) =

√
Nψ(x)ψ(y)ψ(z) with N being the atom num-

ber, ψ(x) =
√
n1(x), ψ(z) =

(
mωz

π~
)1/4

e−
mωz
2~ z2 , whereas

the axial atomic density of the quasi condensate is given
by n1(x) = α[1−(x/L)2]{α[1−(x/L)2]+4}/(16as3D) such

that
∫ L
−L dxn1(x) = N [46] (as3D is the three dimensional
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s-wave scattering length). Here m is the atomic mass,
ωz the trap frequency of the harmonic confinement in
the z direction, 2L = 2a2x

√
α/a⊥ the size of the con-

densate along the axial direction with ax =
√
~/mωx,

a⊥ =
√

~/mω⊥, and ω⊥ =
√
ωyωz. The parameter

α is obtained by solving the algebraic equation α3(α +
5)2 − (15Na⊥a

s
3D)2/a4x = 0. Now, by integrating over

x and z the equation of motion of the matter-wave field
Ψ(r), we obtain the effective GPE reported in Eq. (1),

with g1D(N) = g3DIx/(
√

2πaz), g3D = 4π~2as3D/m, and
Ix = α2L(α2 + 9α+ 21)/[315(as3DN)2]. Hence, contrary
to the usual coupling constant for a quasi-1D trapped
atomic Bose gas [47], in our scenario the coupling con-
stant relies on the atom number as well. We also note
that for a fixed atom number the nonlinearity in Eq. (1)
is smaller than in a genuine quasi-1D quantum Bose gas,
and therefore a multiorbital description of the dynam-
ics does not provide any significant improvement to our
mean field theory, as we have checked via the multi-
configurational time-dependent Hartree method for bo-
sons [24].

Finally, we note that in order to analyze the struc-
ture of the spectrum of the optimal control field, we
have solved the Bogoliubov–de Gennes equations [33] for
the GP ground (φ0) and first excited (φ1) states, that
is, we solved the eigenvalue equations L0,1(uk, vk)T =
~ωk(uk, vk)T , with the Bogoliubov–de Gennes operator
given by [48]

L0,1 =

(
Ĥgp[2|φ0,1|2]− µ0,1 g1Dφ

2
0,1

−g1Dφ∗20,1 −Ĥgp[2|φ0,1|2] + µ0,1

)
.

(3)

Here µ0 (µ1) is the chemical potential corresponding to
φ0(y) [to φ1(y)]. For more details, we refer to Ref. [48].

C. BEC on atom chip experimental setup

The experimental setup consists in a quantum degener-
ate Bose gas of Rubidium 87 atoms trapped on an atom
chip. The atom chip is a square multilayer structure
covered in current-carrying gold wires. The central DC
wire together with homogeneous external magnetic fields
form a strongly confining anisotropic Ioffe-Pritchard trap
of aspect ratio of ∼ 200. Transversally, the trap is
dressed by radio-frequency fields to form an effective
slightly anharmonic potential [49]. As we outlined in the
main text, the exact anharmonic potential has been ap-
proximated with a polynomial V (y, t) = p2 [y − λ(t)]

2
+

p4 [y − λ(t)]
4

+ p6 [y − λ(t)]
6
, whose fit parameters are:

p2 = 2π~ × 310/r20 J/m2, p4 = 2π~ × 13.6/r40 J/m4, and
p6 = 2π~× 0.0634/r60 J/m6 with r0 = 172 · 10−9m. This
experiment was performed with the potential described
in Ref. [30]. The measured frequency in the y direc-
tion is ν = 1.77 kHz. The atomic gas is cold enough
(T < 50 nK ' h/kB × 1 kHz) and the chemical poten-

tial small enough (µ/h ' 0.6 kHz for N ∼ 700) that the
system sits in the ground state of this potential.

To realize transfers between motional states, the po-
tential is displaced according to the optimized control
field using an external wire, located as far away from
the trapping wires as possible. This simple scheme leads
to a close-to-horizontal displacement, with, however, a
19° tilt with respect to the y direction. Excitations in
the z-direction are anyway limited by the anisotropy of
the potential but, to avoid them more completely, the
angle can also be compensated for by tilting the axes of
the trapping potential using the radio-frequency dress-
ing. This configuration has been used to take the present
data. However, an alternative scheme using an offset cur-
rent on the radio-frequency wires has been implemented
as well, enabling a purely horizontal displacement and
leading to similar results.

Following the displacement in real time is not possible,
but recording the evolution of the momentum distribu-
tion in the trap is. For this, the atomic cloud is released
from the trap at different times during and after the
transfer process, and imaged after 46 ms time of flight.
These images are integrated to obtain the density dis-
tribution along the y direction as illustrated on Fig. 1b,
and stacked to construct and represent the time evolution
of the density after time-of-flight as shown on Fig. 3b.
Due to the fast expansion of the cloud after the strongly
confining trap is switched off, the interactions become
rapidly negligible and the imaged density is homothetic
to the in-trap momentum distribution. The atomic cloud
is imaged by fluorescence when it falls through the light
sheet, which is a very thin (∼ 40 µm) layer of laser light
formed by two counter-propagating laser beams, slightly
detuned from resonance. Part of the emitted photons
are then captured by an objective located below the
light sheet, and the atom imaged with an EMCCD cam-
era [35].

The efficiency of the transfer and the errorbars on it
are extracted from these density evolution patterns by
comparison to GPE simulations, as in Ref. [30]. The
1D GPE evolution of the momentum distribution in the
transverse potential is calculated starting from an initial
superposition of states |Ψinitial〉 =

∑
k

√
pke

iθk |k〉 where
k ∈ 0, 1, 2 corresponds to the ground, first excited and
second excited states in the transverse direction of in-
terest. A fit to the experimental data with the GPE
simulation of the momentum distribution evolution, us-
ing the pk’s and θk’s as fit parameters, yields the ratio
of population in the first excited state, p1, which corres-
ponds to the fidelity as defined for the optimization.

D. Density matrix renormalization group

The Density Matrix Renormalization Group (DMRG)
is a numerical technique tailored to one-dimensional, cor-
related quantum many-body systems on a lattice [22, 23].
In its modern formulation, it exploits a tensor-network
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ansatz (namely a Matrix Product State) – dependent
on an auxiliary dimension χ – to efficiently represent a
many-body state with a polynomial number of free para-
meters as a function of the number of lattice sites. By
means of different minimization techniques it is possible
to obtain a faithful representation of the eigenstate prop-
erties of the system and exploiting the few-body short-
range nature of the interaction among different sites and
the Suzuki-Trotter formalism, it is possible to numeric-
ally simulate the time evolution of many-different setups.
In particular, the process considered here can be effi-
ciently simulated with up to tens of sites L and particles
N . Recently, t-DMRG has been merged with optimal
control theory by means of the CRAB optimal control
technique described in appendix A. All simulations have
been made with auxiliary dimension of up to χ = 24,
Trotter step ∆t = 10−2~/Er and truncation error below
ε ≤ 10−5.

E. Cold atoms in the optical lattice experimental
setup

For preparing a Rubidium 87 gas in a 1D geometry,
we first prepare a two-dimensional (2D) gas by loading
a three-dimensional BEC in a red-detuned optical lattice
along the vertical z direction, which is the imaging dir-
ection. We then single out one of the filled lattice nodes
and remove all the others by combining a strong mag-
netic field gradient along the lattice axis, a microwave
transfer between two hyperfine states and a resonant op-
tical pulse, as described in Ref. [42]. Once a single 2D gas
is isolated, we adiabatically switch on (200 ms) a second

optical lattice in the horizontal y direction, thereby form-
ing an array of 1D tubes. The remaining tunnel coupling
strength between neighboring tubes is estimated to be
J/h = 5.05 Hz using standard band structure calcula-
tions, which has a negligible effect over the duration of
the experiment. The lattice along the 1D gas (x-axis),
which drives the transition from the superfluid to the
Mott-insulating state, is turned on and slowly ramped
up to 3Er within 30 ms. This is the initial state for the
ramps to 14Er described in the main text.

Due to the presence of an external harmonic confine-
ment in each direction of space, the length of the 1D gas
is bound to at most 16 sites in order to maintain a filling
of one atom per site in the Mott-insulating regime. For
the data analysis we focused on the central 5 tubes so
as to ensure that the harmonic confinement along the
tubes was approximately constant. The experiment was
repeated 176 times for each control field profile (linear,
adiabatic and optimal), therefore yielding a statistical en-
semble of 880 independent samples. Because the imaging
process only gives access to the parity of the density dis-
tribution we could not sort the samples according to their
atom number. We therefore included all available data
in the analysis. However, based on the measured radius
of the 2D gas, we are confident that the atom number
in the central 5 tubes was close to 16 in average with
fluctuations of the order of ±1 atom. The temperature
of the gas in the Mott-insulating regime can be extracted
from the measured density profile [42]. We find typically
T ∼ 0.1 U/kB, where kB is the Boltzmann constant. We
were unable to achieve lower temperatures with the pro-
tocol used in this study, where the inital 2D gas is first
loaded in the optical lattice along the y-direction (instead
of the x- and y-lattices to be ramped simultaneously).
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