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Abstract

We study the preparation of topologically ordered states by interpolating between an initial
Hamiltonian with a unique product ground state and a Hamiltonian with a topologically degenerate
ground state space. By simulating the dynamics for small systems, we numerically observe a certain
stability of the prepared state as a function of the initial Hamiltonian. For small systems or long
interpolation times, we argue that the resulting state can be identified by computing suitable effective
Hamiltonians. For effective anyon models, this analysis singles out the relevant physical processes and
extends the study of the splitting of the topological degeneracy by Bonderson (2009 Phys. Rev. Lett. 103
110403). We illustrate our findings using Kitaev’s Majorana chain, effective anyon chains, the toric
code and Levin—Wen string-net models.

1. Introduction

Topologically ordered phases of matter have attracted significant interest in the field of quantum information,
following the seminal work of Kitaev [Kit03]. From the viewpoint of quantum computing, one of their most
attractive features is their ground space degeneracy: it provides a natural quantum error-correcting code for
encoding and manipulating information. Remarkably, the ground space degeneracy is approximately preserved
in the presence of weak static Hamiltonian perturbations [BHM 10, BH11, MZ13]. This feature suppresses the
uncontrolled accumulation of relative phases between code states, and thus helps to overcome decoherence.
This is a necessary requirement for the realization of many-body quantum memories [DKLP02].

To use topologically ordered systems as quantum memories and for fault-tolerant quantum computation,
concrete procedures for the preparation of specific ground states are required. Such mechanisms depend on the
model Hamiltonian which is being realized as well as on the particular experimental realization. Early work
[DKLP02] discussed the use of explicit unitary encoding circuits for the toric code. This consideration is natural
for systems where we have full access to unitary gates over the underlying degrees of freedom. We may call this
the bottom-up approach to quantum computing: here one proceeds by building and characterizing individual
components before assembling them into larger structures. An example are arrays of superconducting qubits
[BKM " 14, CGM " 14, CMS " 15]. Other proposed procedures for state preparation in this approach involve
engineered dissipation [BBK " 13, DKP14], measurement-based preparation [LMGH15] or the PEPS preparing
algorithm in [STV " 13]. However, achieving the control requirements for experimentally performing such
procedures is quite challenging. They require either (a) independently applying complex sequences of gates on
each of the elementary constituents (b) precisely engineering a dissipative evolution, or (c) performing an
extensive set of local measurements and associated non-local classical data processing to determine and execute
asuitable unitary correction operation. Imperfections in the implementation of such protocols pose a severe
problem, especially in cases where the preparation time is extensive [BHV06, KP14].

In fact, these procedures achieve more than is strictly necessary for quantum computation: any ground state
can be prepared in this fashion. That is, they constitute encoders, realizing an isometry from a number of
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unencoded logical qubits to the ground space of the target Hamiltonian. We may ask if the task of preparing
topologically ordered state becomes easier if the goal is to prepare specific states instead of encoding arbitrary
states. In particular, we may ask this question in the top-down approach to quantum computing, where the
quantum information is encoded in the ground space of a given condensed matter Hamiltonian. An example are
Majorana wires [MZF " 12, NPDL" 14] or fractional quantum Hall substrates [VYPW11]. Indeed, a fairly
standard approach to preparing ground states of a Hamiltonian is to cool the system by weakly coupling it with a
thermal bath at a temperature significantly lower than the Hamiltonian gap. Under appropriate ergodicity
conditions, this leads to convergence to a state mainly supported on the ground space. Unfortunately, when
using natural equilibration processes, convergence may be slow, and the resulting prepared state is generally a
(logical) mixed state unsuitable for computation.

A natural alternative method for preparing ground states of a given Hamiltonian is adiabatic evolution: here
one initializes the system in an easy-to-prepare state (e.g., a product state), which is the unique ground state of a
certain initial Hamiltonian (e.g., describing a uniform field). Subsequently, the Hamiltonian of the system is
gradually changed (by tuning external control parameters in a time-dependent fashion) until the target
Hamiltonian is reached. If this time-dependent change of the Hamiltonian is ‘slow enough’, i.e., satisfies a
certain adiabaticity condition (see section 2), the state of the system will closely follow the trajectory of
instantaneous ground states. The resulting state then is guaranteed to be mainly supported on the ground space
of the target Hamiltonian, as desired.

Adiabatic preparation has some distinct advantages compared to e.g., encoding using a unitary circuit. For
example, in contrast to the latter, adiabatic evolution guarantees that the final state is indeed a ground state of the
actual Hamiltonian describing the system, independently of potential imperfections in the realization of the ideal
Hamiltonians. In contrast, a unitary encoding circuit is designed to encode into the ground space of an ideal model
Hamiltonian, and will therefore generally not prepare exact ground states of the actual physical system (which only
approximate the model Hamiltonian). Such an encoding into the ideal ground space may lead to a negligible
quantum memory time in the presence of an unknown perturbation [PKSC10]; this is because ideal and non-ideal
(perturbed) ground states may differ significantly (this phenomenon is referred to as Anderson’s orthogonality
catastrophe [And67]). Adiabatic evolution, on the other hand, elegantly sidesteps these issues.

The fact that adiabatic evolution can follow the actual ground state of a system Hamiltonian makesita
natural candidate for achieving the task of topological code state preparation. An additional attractive feature is
that its experimental requirements are rather modest: while some time-dependent control is required, this can
belocal, and additionally translation-invariant. Namely, the number of external control parameters required
does not scale with the system size or code distance.

1.1. Summary and outlook

Motivated by these observations, we consider the general problem of preparing topologically ordered states by
what we refer to as Hamiltonian interpolation. We will use this terminology instead of ‘adiabatic evolution’ since
in some cases, it makes sense to consider scenarios where adiabaticity guarantees cannot be given. For
concreteness, we consider a time-dependent Hamiltonian H(#) which monotonically sweeps over the path

H(t) = (1 — t/T) - Huv + t/T - Hiop te [0, T, )]

i.e., we assume that the interpolation is linear in time and takes overall time® T. Guided by experimental
considerations, we focus on the translation-invariant case: here the Hamiltonians H(¢) are translation-invariant
throughout the evolution. More precisely, we consider the process of interpolating between a Hamiltonian Hyiy
with unique ground state ¥(0) = ¢®* and a Hamiltonian Hiop with topologically degenerate ground space
(which is separated from the remainder of the spectrum by a constant gap): the state W(t) of the system at

time ¢ € [0, T]satisfies the equation of motion

2O _neve, o = e @

Generally, we consider families of Hamiltonians (or models) parametrized by a system size L; throughout, we will

assume that Lis the number of single particles, e.g., the number of qubits (or sites) in a lattice with Hilbert space

H = (C?)®L. The dimension of the ground space of Hjop will be assumed to be independent of the system size.
Our goal is to characterize the set of states which are preparable by such Hamiltonian interpolations starting

from various product states, i.e., by choosing different initial Hamiltonians Hyiy. To each choice ¥(0) = ¢t

of product state we associate a normalized initial trivial Hamiltonian Hygy := —> i P,fjj ) which fully specifies the

interpolating path of equation (1), with Péj ) = |¢) (| being the single particle projector onto the state ¢ at site .

6 . . . f > .

We remark that in some cases, using a non-linear monotone ‘schedule’ ¥: [0, T] — [0, 1]with 9 (0) = 0, 9(T) = 1and smooth
derivatives may be advantageous (see discussion in section 2). However, for most of our considerations, the simple linear interpolation (1) is
sufficient.




10P Publishing

NewJ. Phys. 18 (2016) 093027 X Nietal

Inthelimit T — o0, one may think of this procedure as associating an encoded (logical) state ¢ (¢) to any
single-particle state . However, some caveats are in order: first, the global phase of the state ¢ (¢) cannot be
defined in a consistent manner in the limit T'— o0, and is therefore not fixed. Second, the final state in the
evolution (2) does not need to be supported entirely on the ground space of Hiop because of non-adiaticity
errors, i.e., it is not a logical (encoded) state itself. To obtain a logical state, we should think of ¢ () as the final
state projected onto the ground space of Higp. Up to these caveats, our goal is essentially to characterize the
image of the association ¢ : ¢ — ¢ (), as well as its continuity properties. We will also define an analogous
map ¢r associated to fixed evolution time Tand study it numerically by simulating the corresponding
Schrodinger equation (2) on a classical computer.

While there is a priori no obvious relationship between the final states 1 (), t1 (") resulting from different
initial (product) states ¢F, 'L, we numerically find that the image of ¢y is concentrated around a particular
discrete family of encoded states. In particular, we observe for small system sizes that the preparation enjoys a
certain stability property: variations in the initial Hamiltonian do not significantly affect the final state. We
support this through analytic arguments, computing effective Hamiltonians associated to perturbations around
Hiop which address the large T'limit. This also allows us to provide a partial prediction of which states ¢ () may
be obtained through such a preparation process. We find that under certain general conditions, ¢ () belongs to
a certain finite family of preferred states which depend on the final Hamiltonian Hjop. As we will argue, thereisa
natural relation between the corresponding states ¢ () for different system sizes: they encode the same logical
state if corresponding logical operators are chosen (amounting to a choice of basis of the ground space).

Characterizing the set {¢ ()}, of states preparable using this kind of Hamiltonian interpolation is
important for quantum computation because certain encoded states (referred to as ‘magic states’) can be used as
aresource for universal computation [BK05]. Our work provides insight into this question for ‘small’ systems,
which we deem experimentally relevant. Indeed, there is a promising degree of robustness for the Hamiltonian
interpolation to prepare certain (stabilizer) states. However, a similar preparation of magic states seems to
require imposing additional symmetries which will in general not be robust. We exemplify our considerations
using various concrete models, including Kitaev’s Majorana chain [Kit01] (for which we can provide an exact
solution), effective anyon chains (related to the so-called golden chain [FTL"07] and the description used by
Bonderson [Bon09]), as well as the toric code [Kit03] and Levin—Wen string-net models [LW05] (for which we
simulate the time-evolution for small systems, for both the doubled semion and the doubled Fibonacci model).

1.2. Prior work

The problem of preparing topologically ordered states by adiabatic interpolation has been considered prior to
our work by Hamma and Lidar [HLO08]. Indeed, their contribution is one of the main motivations for our study.
They study an adiabatic evolution where a Hamiltonian having a trivial product ground state is interpolated into
atoric code Hamiltonian having a four-fold degenerate ground state space. They found that while the gap for
such an evolution must forcibly close, this may happen through second order phase transitions.
Correspondingly, the closing of the gap is only polynomial in the system size. This allows an efficient
polynomial-time Hamiltonian interpolation to succeed at accurately preparing certain ground states. We revisit
this case in section 2.1 and give further examples of this phenomenon. The authors of [HZHL08] also observed
the stability of the encoded states with respect to perturbations in the preparation process.

Bonderson [Bon09] considered the problem of characterizing the lowest order degeneracy splitting in
topologically ordered models. Degeneracy lifting can be associated to tunneling of anyonic charges, part of
which may be predicted by the universal algebraic structure of the anyon model. Our conclusions associated to
sections 5 and 6 can be seen as supporting this perspective.

1.3. Beyond small systems

In general, the case of larger systems (i.e., the thermodynamic limit) requires a detailed understanding of the
quantum phase transitions [Sac11] occurring when interpolating between Hyjy and Hiop. Taking the
thermodynamic limit while making T scale as a polynomial of the system size raises a number of subtle points. A
major technical difficulty is that existing adiabatic theorems do not apply, since at the phase transition gaps
associated to either of the relevant phases close. This is alleviated by scaling the interpolation time T with the
system size and splitting the adiabatic evolution into two regimes, the second of which can be treated using
degenerate adiabatic perturbation theory [RO10, RO12, RO14]. However, such a methodology still does not
yield complete information about the dynamical effects of crossing a phase boundary.

More generally, it is natural to conjecture that interpolation between different phases yields only a discrete
number of distinct states corresponding to a discrete set of continuous phase transitions in the thermodynamic
limit. Such a conjecture links the problem of Hamiltonian interpolation to that of classifying phase transitions
between topological phases. It can be motivated by the fact that only a discrete set of possible condensate-
induced continuous phase transitions is predicted to exist in the thermodynamic limit [BS09, BSS11].

3
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2. Adiabaticity and ground states

The first basic question arising in this context is whether the evolution (2) yields a state W(T') close to the ground
space of Hiop. The adiabatic theorem in its multiple forms (see e.g., [Teu03]) provides sufficient conditions for
this to hold: these theorems guarantee that given a Hamiltonian path { H (t) } o</« satisfying certain
smoothness and gap assumptions, initial eigenstates evolve into approximate instantaneous eigenstates under an
evolution of the form (2). The latter assumptions are usually of the following kind:

(i) Uniform gap: There is a uniform lower bound A(#) > A > 0 on the spectral gap of H(¢) forall t € [0, T].
The relevant spectral gap A (¢) is the energy difference between the ground space P, (t)H of the
instantaneous Hamiltonian H(#) and the rest of its spectrum. Here and below, we denote by P, (t) the
spectral projection onto the ground space” of H(t).

(ii) Smoothness: There are constants ¢, ..., ¢y such that the M first derivatives of H(f) are uniformly bounded in
operator norm, i.e., forallj=1,..., M, we have

< forallt € [0, T]. 3)

di
—H(t
| &ao

The simplest version of such a theorem is:

Theorem 2.1. Given a state W (0) such that P, (0)U(0) = W (0) and a uniformly gapped Hamiltonian path H(t) for
t € [0, T]given by equation (1), thestate U(T) resulting from the evolution (2) satisfies

[W(T) = Po(T)W(T)|| = O1/T).

In other words, in the adiabatic limit of large times T, the state U (t) belongs to the instantaneous eigenspace Py (T)H
and its distance from the eigenspaceis O (1/T).

This version is sufficient to support our analytical conclusions qualitatively. For a quantitative analysis of
non-adiabaticity errors, we perform numerical simulations. Improved versions of the adiabatic theorem (see
[GMC15, LRH09]) provide tighter analytical error estimates for general interpolation schedules at the cost of
involving higher order derivatives of the Hamiltonian path H(#) (see equation (3)), but do not change our main
conclusions.

Several facts prevent us from directly applying such an adiabatic theorem to our evolution (1) under
consideration.

Topological ground space degeneracy. Most notably, the gap assumption (i) is not satisfied if we study ground
spaces: we generally consider the case where H (0) = Hy;jy has a unique ground state, whereas the final
Hamiltonian H (T') = Hiop is topologically ordered and has a degenerate ground space (in fact, this degeneracy
is exact and independent of the system size for the models we consider). This means that if Py () is the projection
onto the ground space of H(¢), there is no uniform lower bound on the gap A (¢).

We will address this issue by restricting our attention to times t € [0, kT], where k ~ 1is chosen such that
H (kT) has anon-vanishing gap but still is ‘inside the topological phase’. We will illustrate in specific examples
how W¥(T) can indeed be recovered by taking the limit x — 1.

We emphasize that the expression ‘inside the phase’ is physically not well-defined at this point since we are
considering a Hamiltonian of a fixed size. Computationally, we take it to mean that the Hamiltonian can be
analyzed by a convergent perturbation theory expansion starting from the unperturbed Hamiltonian Higp. The
resulting lifting of the ground space degeneracy of Hjop will be discussed in more detail in section 3.

Dependence on the system size. A second potential obstacle for the use of the adiabatic theorem is the
dependence on the system size L (where e.g., L is the number of qubits). This dependence enters in the operator
norms (3), which are extensive in L—this would lead to polynomial dependence of Ton L even ife.g., the gap
were constant (uniformly bounded).

More importantly, the system size enters in the gap A(t): in the topological phase, the gap (i.e., the splitting
of the topological degeneracy of Hiqp) is exponentially small in L for constant-strength local perturbations
to Hiop, as shown for the models considered here by Bravyi, Hastings and Michalakis [BHM10]. Thus a naive
application of the adiabatic theorem only yields a guarantee on the ground space overlap of the final state if the
evolution time is exponentially large in L. This is clearly undesirable for large systems; one may try to prepare

7 More generally, P, (+) may be the sum of the spectral projections of H(t) with eigenvalues in a given interval, which is separated by a
gap A(t) from the rest of the spectrum.
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systems faster (i.e., more efficiently) but would need alternate arguments to ensure that the final state indeed
belongs to the ground space of Higp.

For these reasons, we restrict our attention to the following two special cases of the Hamiltonian
interpolation (1):

* Symmetry-protected preparation: if there is a set of observables commuting with both Hyy and Higp, these will
represent conserved quantities throughout the Hamiltonian interpolation. If the initial state is an eigenstate of
such observables, one may restrict the Hilbert space to the relevant eigenvalue, possibly resolving the
topological degeneracy and guaranteeing a uniform gap. This observation was first used in [HL08] in the
context of the toric code: for this model, such a restriction allows mapping the problem to a transverse field
Ising model, where the gap closes polynomialy with the system size. We identify important cases satisfying this
condition. While this provides the most robust preparation scheme, the resulting encoded states are
somewhat restricted (see section 2.1).

+ Small systems: For systems of relatively small (constant) size L, the adiabatic theorem can be applied as all
involved quantities are essentially constant. In other words, although ‘long’ interpolation times are needed to
reach ground states of Hiop (indeed, these may depend exponentially on L), these may still be reasonable
experimentally. The consideration of small system is motivated by current experimental efforts to realize
surface codes [KBF " 15]: they are usually restricted to a small number of qubits, and this is the scenario we are
considering here (see section 2.2).

Obtaining a detailed understanding of the general large L limiting behavior (i.e., the thermodynamic limit) of
the interpolation process (1) is beyond the scope of this work.

2.1. Symmetry-protected preparation

Under particular circumstances, the existence of conserved quantities permits applying the adiabatic theorem
while evading the technical obstacle posed by a vanishing gap in the context of topological order. Such a case was
considered by Hamma and Lidar [HL08], who showed that certain ground states of the toric code can be
prepared efficiently. We can formalize sufficient conditions in the following general way (which then is
applicable to a variety of models, as we discuss below).

Observation 2.2. Consider the interpolation process (1) ina Hilbertspace H. Let Py (T') be the projection onto
the ground space Py (T)H of H(T) = Hiep. Suppose that Q = Q?isa projection such that

(i) Qisaconserved quantity: [Q, Hiopl = [Q, Hyiv] = 0.
(i) The initial state W(0) is the ground state of Hyry, i.e., Py(0) ¥ (0) = W(0) and satisfies QU (0) = ¥ (0).
(iii) The final ground space has supporton QP (T)H = 0

(iv) The restriction QH(#) of H(f) to QH has gap A(t) which is bounded by a constant A uniformly in ¢ i.e.,
A(t) > Aforallt € [0, T].

Then QU (¢) = W(t), and the adiabatic theorem can be applied with lower bound A on the gap,
yielding || ¥(T) — Py(T)¥(T)|| < O(1/T).

The proof of this statement is a straightforward application of the adiabatic theorem (theorem 2.1) to the
Hamiltonians QHyiy and QHyop, in the restricted subspace Q7. In the following sections, we will apply
observation 2.2 to various systems. It not only guarantees that the ground space is reached, but also gives us
information about the specific state prepared in a degenerate ground space.

As an example of the situation discussed in observation 2.2, we discuss the case of fermionic parity
conservation in section 4. This symmetry is naturally present in fermionic systems. We expect our arguments to
extend to more general topologically ordered Hamiltonians with additional symmetries. It is well-known that
imposing global symmetries on top of topological Hamiltonians provides interesting classes of systems. Such
symmetries can exchange anyonic excitations, and their classification as well as the construction of associated
defect lines in topological Hamiltonians is a topic of ongoing research [BJQ13, BSW11, KK12]. The latter
problem is intimately related to the realization (see e.g., [Bom15, BMDO09]) of transversal logical gates, which
leads to similar classification problems [BBK " 14, BK13, Yos15b, Yos15a]. Thus we expect that there is a close
connection between adiabatically preparable states and transversally implementable logical gates. Indeed, a
starting point for establishing such a connection could be the consideration of interpolation processes respecting
symmetries realized by transversal logical gates.

5
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For later reference, we also briefly discuss a situation involving conserved quantities which—in contrast to
observation 2.2—project onto excited states of the final Hamiltonian. In this case, starting with certain
eigenstates of the corresponding symmetry operator Q, the ground space cannot be reached:

Observation 2.3. Assume that Q, Hyiy, Hiop, ¥(0) obey properties (i), (ii) and (iv) of observation 2.2. If the
ground space Py (T)H of Hiop satisfies QP (T)H = 0 (i.e., is orthogonal to the image of Q), then the
Hamiltonian interpolation cannot reach the ground space of Higp, i.e., (¥ (T), Po(T)¥(T)) = Q(1).

The proof of this observation is trivial since Q is a conserved quantity of the Schrédinger evolution.
Physically, the assumptions imply the occurrence of a level-crossing where the energy gap exactly vanishes and
eigenvalue of Qrestricted to the ground space changes. We will encounter this scenario in the case of the toric
code on a honeycomb lattice, see section 7.3.

2.2. Small-system case

In a more general scenario, there may not be a conserved quantity as in observation 2.2. Even assuming that the
ground space is reached by the interpolation process (1), itis a priori unclear which of the ground states is
prepared. Here we address this question.

As remarked earlier, we focus on systems of a constant size L, and assume that the preparation time T'is large
compared to L. Generically, the Hamiltonians H() are then non-degenerate (except at the endpoint, t ~ T,
where H(t) approaches Hiop). Without fine tuning, we may expect that there are no exact level crossings in the
spectrum of H(#) along the path t — H (¢) (say for some times ¢ € [0, kKT, k ~ 1). For sufficiently large overall
evolution times T, we may apply the adiabatic theorem to conclude that the state of the system follows the
(unique) instantaneous ground state (up to a constant error). Since our focus is on small systems, we will
henceforth assume that this is indeed the case, and summarily refer to this as the adiabaticity assumption. Again,
we emphasize that this is a priori only reasonable for small systems.

Under the adiabaticity assumption, we can conclude that the prepared state W(T') roughly coincides with
the state obtained by computing the (unique) ground state 1, of H (xT'), and taking the limit x — 1. In what
follows, we adopt this computational prescription for identifying prepared states. Indeed, this approach yields
states that match our numerical simulation, and provides the correct answer for certain exactly solvable cases.
Furthermore, the computation of the states 1, (in the limit £ — 1) also clarifies the physical mechanisms
responsible for the observed stability property of preparation: we can relate the prepared states to certain linear
combination of string-operators (Wilson-loops), whose coefficients depend on the geometry (length) of these
loops, as well as the amplitudes of certain local particle creation/annihilation and tunneling processes.

Since H (kT) for k = Lis close to the topologically ordered Hamiltonian Hiqp, it is natural to use ground
states (or logical operators) of the latter as a reference to express the instantaneous states 1. Indeed, the
problem essentially reduces to a system described by Hiop, with an additional perturbation given by a scalar
multiple of Hyy. Such alocal perturbation generically splits the topological degeneracy of the ground space. The
basic mechanism responsible for this splitting for topologically ordered systems has been investigated by
Bonderson [Bon09], who quantified the degeneracy splitting in terms of local anyon-processes. We seek to
identify low-energy ground states: this amounts to considering the effective low-energy dynamics (see section 3).
This will provide valuable information concerning the set {+ () }.

3. Effective Hamiltonians

As discussed in section 2.2, for small systems (and sufficiently large times T), the state W(xT) in the
interpolation process (1) should coincide with the ground state of the instantaneous Hamiltonian H (xT'). For
k = 1, thelatter is a perturbed version of the Hamiltonian Hjep, where the perturbation is a scalar multiple

of Hyiy. Thatis, up to rescaling by an overall constant, we are concerned with a Hamiltonian of the form

H() + €V, (4)

where Hy = Hiqp is the target Hamitonian and V' = Hyqy is the perturbation. To compute the ground state of a
Hamiltonian of the form (4), we use effective Hamiltonians. These provide a description of the system in terms of
effective low-energy degrees of freedom.

3.1. Low-energy degrees of freedom

Let us denote by Py the projection onto the degenerate ground space of Hy. Since Hj is assumed to have a
constant gap, a perturbation of the form (4) effectively preserves the low-energy subspace PyH for small ¢ > 0,
and generates a dynamics on this subspace according to an effective Hamiltonian Heg (€ ). We will discuss natural
definitions of this effective Hamiltonian in section 3.3. For the purpose of this section, it suffices to mention that
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itis entirely supported on the ground space of Hy, i.e., Heff (€) = PyHeff (€) Py. As such, it has spectral
decomposition

K-1

Hefi(€) = Y EF" ()T (), ©)
k=0

where EST < EST < .. and where IT$ (¢) = T1$" (¢) Py are commuting projections onto subspaces of the

ground space PyH of Hy. (Generally, we expect Hef (€ ) to be non-degenerate such that K = dimPyH.) In

particular, the effective Hamiltonian (5) gives rise to an orthogonal decomposition of the ground space Py’H by

projections {TT$"(¢) }K- /L. Statesin ITE" (€)M are distinguished by having minimal energy. We can take the

limiting projections as the perturbation strength goes to 0, setting

1% (0) = lim II$" (¢) fork=0,..,K — 1.
e—0

In particular, the effective Hamiltonian Heg (€ ) has ground space HS“ (0)H in thelimit € — 0. Studying
Heft (¢), and, in particular, the space TIS™ (0)H appears to be of independent interest, as it determines how
perturbations affect the topologically ordered ground space beyond spectral considerations as in [Bon09].

3.2. Hamiltonian interpolation and effective Hamiltonians

The connection to the interpolation process (1) is then given by the following conjecture. It is motivated by the
discussion in section 2.2 and deals with the case where there are no conserved quantities (unlike, e.g., in the case
of the Majorana chain, as discussed in section 4).

Conjecture 1. Under suitable adiabaticity assumptions (see section 2.2) the projection of the final state W(T')
onto the ground space of Hiop belongs to T1%(0) H (up to negligible errors®), i.e., it is a ground state of the
effective Hamiltonian Heg (¢) in the limit ¢ — 0.

In addition to the arguments in section 2.2, we provide evidence for this conjecture by explicit examples,
where we illustrate how IIE" (0)H can be computed analytically. We also verify that conjecture 1 correctly
determines the final states by numerically studying the evolution (1).

We remark that the statement of conjecture 1 severly constrains the states that can be prepared by
Hamiltonian interpolation in the large T'limit: we will argue that the space I18" (0)'H has a certain robustness
with respect to the choice of the initial Hamiltonian Hyi,. In fact, the space IIS" (0)H is typically one-
dimensional and spanned by a single vector ¢,. Furthermore, this vector ¢, typically belongs to a finite
family A C Py’H of states defined solely by Hiop. In particular, under conjecture 1, the dependence of the final
state W(T') on the Hamiltonian Hyiy is very limited: the choice of Hyy, only determines which of the statesin A4
is prepared. We numerically verify that the resulting target states W(T') indeed belong to the finite family A of
states obtained analytically.

3.3. Perturbative effective Hamiltonians
As discussed in section 3.2, we obtain distinguished final ground states by computation of suitable effective
Hamiltonians Heg (¢ ), approximating the action of Hy + €V on the ground space Py’H of Hy. In many cases of
interest, computing this effective Hamiltonian (whose definition for the Schrieffer—Wolft-case we present in
appendix A.1) exactly is infeasible (The effective Hamiltonian for the Majorana chain (see section 4) is an
exception.).

Instead, we seek a perturbative expansion

00
HY = Y e'X,
n=0

in terms of powers of the perturbation strength €. This is particularly natural as we are interested in the
limit ¢ — 0 anyway (see conjecture 1). Furthermore, it turns out that such perturbative expansions provide
insight into the physical mechanisms underlying the ‘selection’ of particular ground states.

We remark that there are several different methods for obtaining low-energy effective Hamiltonians. The
Schrieffer—Wolff method [BDL11, SW66] provides a unitary Usuch that Hegr = U (Hy + €V)UT preserves PyH
and can be regarded as an effective Hamiltonian. One systematically obtains a series expansion

-
S=>€"S,  whereS] =-S5,
n=1

8 .. ..
By negligible, we mean that the errors can be made to approach zero as T'is increased.
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for the anti-Hermitian generator S of U = e5; this then naturally gives rise to an order-by-order expansion

n
HY = HoPy + €PoVPy + > ¢ Heff . (6)
q=2

of the effective Hamiltonian, where P is the projection onto the ground space Py’H of Hy (explicit expressions
are given in appendix A.2).
Using the Schrieffer—Wolff method has several distinct advantages, including the fact that

(i) the resulting effective Hamiltonian Heg, as well as the terms Hé;’f) are Hermitian, and hence have a clear
physical interpretation. This is not the case e.g., for the Bloch expansion [Blo58].

(i) There is no need to address certain self-consistency conditions arising e.g., when using the Dyson equation
and corresponding self-energy methods [ABD75, FW03]

We point out that the series resulting by taking the limit # — oo in (6) has the usual convergence issues
encountered in many-body physics: convergence is guaranteed only if | V|| < A, where A isthe gap of Hy. For
amany-body system with extensive Hilbert space (e.g., L spins), the norm || V|| = Q(L) is extensive while the
gap A = O(1) is constant, leading to convergence only in a regime where ¢ = O(1/L). In this respect, the
Schrieffer—Wolff method does not provide direct advantages compared to other methods. As we are considering
thelimit € — 0, thisis not an issue (also, for small systems as those considered in our numerics, we do not have
such issues either).

We point out, however, that the results obtained by Bravyi et al [BDL11] suggest that considering partial
sums of the form (6) is meaningful even in cases in which the usual convergence guarantees are not given:
indeed, [BDLI11, theorem 3] shows that the ground state energies of H, é;’f) and Hy + €V areapproximately equal
for suitable choices of e and n. Another key feature of the Schrieffer—Wolff method is the fact that the effective
Hamiltonians H, éﬁ) are essentially local (for low ordersn) when the method is applied to certain many-body
systems, see [BDL11]. We will not need the corresponding results here, however.

Unfortunately, computing the Schrieffer—Wolff Hamiltonian H, é%) generally involves a large amount of
combinatorics (see [BDL11] for a diagrammatic formalism for this purpose). In this respect, other methods may
appear to be somewhat more accessible. Let us mention in particular the method involving the Dyson equation
(and the so-called ‘self-energy’ operator), which was used e.g., in [Kit06, section 5.1] to compute 4th order
effective Hamiltonians. This leads to remarkably simple expressions of the form

Py (VG)"~ VP, (7)
for the nth order term effective Hamiltonian, where G = G (E,) is the resolvent operator
G(2) = (I — Po)(zl — Ho) '(I — Py) )

evaluated at the ground state energy E, of Hy. In general, though, the expression (7) only coincides with the
Schrieffer—Wolff-method (that is, (6)) up to the lowest non-trivial order.

3.4. Perturbative effective Hamiltonians for topological order

Here we identify simple conditions under which the Schrieffer—Wolff Hamiltonian of lowest non-trivial order
has the simple structure (7). We will see that these conditions are satisfied for the systems we are interested in. In
other words, for our purposes, the self-energy methods and the Schrieffer—Wolff method are equivalent. While
establishing this statement (see theorem 3.2 below) requires some work, this result vastly simplifies the
subsequent analysis of concrete systems.

The condition we need is closely related to quantum error correction [KL97]. In fact, this condition has been
identified as one of the requirements for topological quantum order (TQO-1) in [BHM10]. To motivate it,
consider the case where PyH is an error-correcting code of distance L. Then all operators Tacting onless than L
particles” have trivial action on the code space, i.e., for such T, the operator P, TP, is proportional to P, (which
we will writeas PyTPy € CPy). In particular, this means thatif Visa Hermitian linear combination of single-
particle operators, then P, V"P, € CP, forall n < L. The condition we need is a refinement of this error-
correction criterion that incorporates energies (using the resolvent):

Definition 3.1. We say that the pair (Hy, V') satisfies the topological order condition with parameter Lif Lis the
smallest interger such that forall n < L, we have

? By particle we mean a physical constituent qubit or qudit degree of freedom.

8



10P Publishing

NewJ. Phys. 18 (2016) 093027 X Nietal

Pz, VZy - Z,_1VPy € CP, )

forall Z; € {Py, Qy} U {G™ | m € N}. Here Py is the ground space projection of Hy, Qo = I — Pyisthe
projection onto the orthogonal complement, and G = G (E) is the resolvent (8) (supported on QyH).

We remark that this definition is easily verified in the systems we consider: if excitations in the system are
local, the resolvent operators and projection in a product of the form (9) can be replaced by local operators, and
condition (9) essentially reduces to a standard error correction condition for operators with local support.

Assuming this definition, we then have the following result:

Theorem 3.2. Suppose that (Hy, V') satisfies the topological order condition with parameter L. Then the nth order
Schrieffer—Wolff effective Hamiltonian satisfies

Hé?f) e CP, foralln < L,

i.e., the effective Hamiltonian is trivial for these orders, and

HY) = Py(VG)L-'VP, + CP,.

€

We give the proof of this statement in appendix A.

4. The Majorana chain

In this section, we apply our general results to Kitaev’s Majorana chain. We describe the model in section 4.1. In
section 4.2, we argue that the interpolation process (2) is an instance of symmetry-protected preparation,; this
allows us to identify the resulting final state. We also observe that the effective Hamiltonian is essentially given by
a ‘string’-operator F, which happens to be the fermionic parity operator in this case. That is, up to a global
energy shift, we have

Hef = f- F
for a certain constant fdepending on the choice of perturbation.

4.1. The model
Here we consider the case where Hiqp is Kitaev’s Majorana chain [Kit01], a system of spinless electrons confined
toalineof L sites. In terms of 2L Majorana operators {c, }f,Lzl satisfying the anticommutation relations

{cps cq} = 20y - 1

aswell as cj =1, c; = ¢, the Hamiltonian has the form

. L—1
1
Htop = E ZCsz2j+1. (10)
j=1

Without loss of generality, we have chosen the normalization such that elementary excitations have unit energy.
The Hamiltonian has a two-fold degenerate ground space. The Majorana operators ¢ and ¢,; correspond to a
complex boundary mode, and combine to form a Dirac fermion

1 .
a= E(Cl + i61) (11)

which commutes with the Hamiltonian. The operator a’a hence provides a natural occupation number
basis {|g,) } »c (0,1} for the ground space Py’H defined (up to arbitrary phases) by

aalg) = olg,) foro € {0, 1}.

As aside remark, note that the states |g,) and |g) cannot be used directly to encode a qubit. This is because they
have even and odd fermionic parity, respectively, and thus belong to different superselection sectors. In other
words, coherent superposition between different parity sectors are nonphysical. This issue can be circumvented
by using another fermion or a second chain, see [BK12]. Since the conclusions of the following discussion will be
unchanged, we will neglect this detail for simplicity.

We remark that the Hamiltonian Higp of equation (10) belongs to a one-parameter family of extensively
studied and well-understood quantum spin Hamiltonians. Indeed, the Jordan-Wigner transform of the
Hamiltonian (with ¢ € R an arbitrary parameter)

9



10P Publishing

NewJ. Phys. 18 (2016) 093027 X Nietal

i L-1 gl L
Hpg = — E QjQj+1 — — E Qj-10j. (12)
2 & 2 =
i j
is the transverse field Ising model

1 L=l ¢ d
Hip === XiXj + 2> Z;

2 = 25
where Xjand Z; are the spin 1/2 Pauli matrices acting on qubit j, j= 1,..., L. This transformation allows
analytically calculating the complete spectrum of the translation invariant chain for both periodic and open
boundary conditions [Pfe70].

The Hamiltonian Hj ¢ hasa quantum phase transition atg = 1, for which the lowest energy modes in the
periodic chain have an energy scaling as 1,/L. The open boundary case has been popularized by Kitaev as the
Majorana chain and has a unique low energy mode a (see equation (11)) which has zero energy for ¢ = 0 and for
finite 0 < g < 1,becomes a dressed mode with exponentially small energy (in L) and which is exponentially
localized at the boundaries.

4.2. State preparation by interpolation
The second term in (12) may be taken to be the initial Hamiltonian Hyy, for the interpolation process. More
generally, to prepare ground states of Hjop, we may assume that our initial Hamiltonian is a quadratic
Hamiltonian with a unique ground state. Thatis, Hyiy is of the form
;oA
Hyiy = Z E Vp,qcp Cq>
pa=1

where V isareal antisymmetric 2L x 2L matrix. We will assume that it is bounded and local (with range r) in
the sense that

V| <1 and Vg =0if|p —gq|l >,

where ||-|| denotes the operator norm. As shown in [BK12, theorem 1], the Hamiltonian Hiep + €Hyiy has two
lowest energy states with exponentially small energy difference, and this lowest-energy space remains separated
from the rest of the spectrum by a constant gap for a fixed (constant) perturbation strength ¢ > 0. Estimates on
the gap along the complete path H(#) are, to the best of our knowledge, not known in this more general situation.

Let us assume that W(0) is the unique ground state of Hyjy and consider the linear interpolation (2). The
corresponding process is an instance of the symmetry-protected preparation, i.e., observation 2.2 applies in this
case. Indeed, the fermionic parity operator

L

F= H (*i)Czj—lfzja (13)
=1

commutes with both Hyy and Hiop. Therefore, the initial ground state W(0) lies either in the even-parity sector,

i.e., FU(0) = ¥(0), or in the odd-parity sector (F¥(0) = —W(0)). (Even parity is usually assumed by

convention, since the fermionic normal modes used to describe the system are chosen to have positive energy.)

In any case, the +1 eigenvalue of the initial ground state with respect to F will persist throughout the full

interpolation. This fixes the final state:

Lemma 4.1. Under suitable adiabaticity assumptions (see observation 2.2), the resulting state in the evolution (2) is
(up to a phase) given by the ground state |g,) or |g,), depending on whether the initial ground state W (0) lies in the
even- or odd-parity sector.

In particular, if Hyjy = — %Z]L»Zl 6j— 106 is given by the second term in (12), we can apply the results of
[Pfe70]: the gap at the phase transition is associated with the lowest energy mode (which is not protected by
symmetry) and is given by A, (H] ¢—1) = 2sin[7/(2L + 1)]. In other words, it is linearly decreasing in the
system size L. Therefore, the total evolution time T only needs to grow polynomially in the system size L for
Hamiltonian interpolation to accurately follow the ground state space at the phase transition. We conclude that
translation-invariant Hamiltonian interpolation allows preparing the state |g,) in a time T polynomial in the
system size L and the desired approximation accuracy.

To achieve efficient preparation through Hamiltonian interpolation, one issue that must be taken into
account is the effect of disorder (possibly in the form of a random site-dependent chemical potential). In the case
where the system is already in the topologically ordered phase, a small amount of Hamiltonian disorder can
enhance the zero temperature memory time of the Majorana chain Hamiltonian [BK12]. This 1D Anderson
localization effect [And58], while boosting memory times, was also found to hinder the convergence to the
topological ground space through Hamiltonian interpolation. Indeed, in [CFS07] it was found that the residual
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energy density [Ere (T)/Llay o< 1/In*4(T) averaged over disorder realizations decreases only
polylogarithmically with the Hamiltonian interpolation time. Such a slow convergence of the energy density
indicates that in the presence of disorder, the time Trequired to accurately reach the ground space scales
exponentially with the system size L. For this reason, translation-invariance (i.e., no disorder) is required for an
efficient preparation, and this may be challenging in practice.

We emphasize that according to lemma 4.1, the prepared state is largely independent of the choice of the
initial Hamiltonian Hyj, (amounting to a different choice of V): we do not obtain a continuum of final states. As
we will see below, this stability property appears in a similar form in other models. The parity operator (13),
which should be thought of as a string-operator connecting the two ends of the wire, plays a particular role—it is
essentially the effective Hamiltonian which determines the prepared ground state.

Indeed, the Schrieffer—Wolft-effective Hamiltonian can be computed exactly in this case, yielding

Ey(€),  Ale)
2

Heff(€) = F, (14)
where E (¢) is the ground state energy of Hiop + €Hyiy, and A(e) = E;j(e) — Eg(¢)is the gap. Expression (14)
can be computed based on the variational expression (55) for the Schrieffer—Wolff transformation, using the
fact that the ground space is two-dimensional and spanned by two states belonging to the even- and odd-parity
sector, respectively. Note that the form (14) can also be deduced (without the exact constants) from the easily
verified fact (see e.g., equation (54)) that the Schrieffer—Wolff unitary U commutes with the fermionic parity
operator F, and thus the same is true for Hef (€ ). This expression illustrates that conjecture 1 does not directly
apply in the context of preserved quantities, as explained in section 3.2: rather, it is necessary to know the parity
of the initial state W(0) to identify the resulting final state W(T') in the interpolation process.

5. General anyon chains

In this section, we generalize the considerations related to the Majorana chain to more general anyonic systems.
Specifically, we consider a one-dimensional lattice of anyons with periodic boundary conditions. This choice
retains many features from the Majorana chain such as locally conserved charges and topological degeneracy yet
further elucidates some of the general properties involved in the perturbative lifting of the topological degeneracy.

In section 5.1, we review the description of effective models for topologically ordered systems. A key feature
of these models is the existence of a family {F,}, of string-operators indexed by particle labels. Physically, the
operators F, correspond to the process of creating a particle—antiparticle pair (a, ), tunnelingalong the one-
dimensional (periodic) lattice, and subsequent fusion of the pair to the vacuum (see section 5.1.6). These
operators play a fundamental role in distinguishing different ground states.

In section 5.2, we derive our main result concerning these models. We consider local translation-invariant
perturbations to the Hamiltonian of such a model, and show that the effective Hamiltonian is a linear
combination of string-operators, i.e.

Hefr ~ Zfa E, (15)
a
up to an irrelevant global energy shift. The coefficients { f, }, are determined by the perturbation. They can be
expressed in terms of a certain sum of diagrams, as we explain below. While not essential for our argument,
translation-invariance allows us to simplify the parameter dependence when expressing the coefficients f, and
may also be important for avoiding the proliferation of small gaps.

We emphasize that the effective Hamiltonian has the form (15) independently of the choice of perturbation. The
operators {F,}, are mutually commuting, and thus have a distinguished simultaneous eigenbasis (we give explicit
expressions for the latter in section 5.1.6). The effective Hamiltonian (15) is therefore diagonal in a fixed basis
irrespective of the considered perturbation. Together with the general reasoning for conjecture 1, this suggests that
Hamiltonian interpolation can only prepare a discrete family of different ground states in these anyonic systems.

In section 6, we consider two-dimensional topologically ordered systems and find effective Hamiltonians
analogous to (15). We will also show numerically that Hamiltonian interpolation indeed prepares
corresponding ground states.

5.1. Background on anyon chains

The models we consider here describe effective degrees of freedom of a topologically ordered system.
Concretely, we consider one-dimensional chains with periodic boundary conditions, where anyonic excitations
may be created/destroyed on L sites, and may hop between neighboring sites. Topologically (that is, the
language of topological quantum field theory (TQFT)), the system can be thought of as a torus with L punctures
aligned along one fundamental cycle. Physically, this means that excitations are confined to move exclusively
along this cycle (we will consider more general models in section 6). A well-known example of such a model is
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the Fibonacci golden chain [FTL07]. Variational methods for their study were developed in [KB10, PCB10],
which also provide a detailed introduction to the necessary formalism. In this section, we establish notation for
anyon models and review minimal background to make the rest of the paper self-contained.

5.1.1. Algebraic data of anyon models: modular tensor categories
Let us briefly describe the algebraic data defining an anyon model. The underlying mathematical objectis a
tensor category. This specifies among other things:

(i) A finite set of particle labels A = {1, g, ...} together with an involution a — a (called particle—anti-
particle exchange/charge conjugation). There is a distinguished particle 1 = 1 called the trivial or vacuum
particle.

(ii) A collection of integers N, indexed by particle labels, specifying the so-called fusion multiplicities (as well as
the fusion rules). For simplicity, we will only consider the multiplicity-free case, where N, € {0, 1} (this
captures many models of interest). In this case, we will write Nj, = Oy

(iii) A 6-indextensor F : A° — C (indexed by particle labels) F;,Z}E which is unitary with respect to the rightmost
two indices (e, f) and can be interpreted as a change of basis for fusion trees.

(iv) A positive scalar d, for every particle label a, called the quantum dimension.
(V) Aunitary, symmetric matrix S;; indexed by particle labels such that S;; = Sj;.

(vi) A topological phase €', 0; € R, associated with each particle j. We usually collect these into a diagonal
matrix T = diag({e' };); the latter describes the action of a twist in the mapping class group representation
associated with the torus (see section 6.2).

Alist of the algebraic equations satisfied by these objects can be found e.g., in [LWO05] (also see [Kit06, LWO05,
NSS 08, Wan10] for more details). Explicit examples of such tensor categories can also be found in [LW05],
some of which we discuss in section 6.3.2.

Here we mention just a few which will be important in what follows: the fusion rules §;; are symmetric
under permutations of (4, j, k). They satisfy

> Giinbmke =Y OjnOime

which expresses the fact that fusion (as explained below) is associative, as well as

61'171 _ 51] _ {1 if i =] (16)

0 otherwise.
Some of the entries of the tensor F are determined by the fusion rules and the quantum dimensions, that is

i d
Tk = ﬁ bijk- 7)
idj

Another important property is the Verlinde formula

Sped = N = Zsbi—sd (18)
la

a

which is often summarized by stating that S ‘diagonalizes the fusion rules’.

5.1.2. The Hilbert space
The Hilbert space of a one-dimensional periodic chain of L anyons is the space associated by a TQFT to a torus
with punctures. It has the form

~ arb; ayb, arby
H =~ aI’E”B’u’ Vi '@ V22 @ - @ VL,
bo, ..., by
where the indices aj, by are particle labels, fob are the associated finite-dimensional fusion spaces and we

identify by = by. The latter have dimension dimV® = N,. Again, we will focus on the multiplicity-free case
where Ny, = duz € {0, 1}. In this case, we can give an orthonormal basis {|d, b) } ; 5, of H in terms of
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‘fusion-tree’ diagrams, i.e.
a @ a1 a

2.3} = (det,,)‘/“ . +b +b +b +b (19)
L 1 2 L-1 L

whered = (ay,...,a;) and b= (by, ..., by) have to satisfy the fusion rules at each vertex, i.e.,
. b, )
dlme‘;i; = Ogp5,., = 1forallj=1,...,L.
The prefactor in the definition of the state (19) involves the quantum dimensions of the particles, and is
chosen in such a way that {|d, b) } is an orthonormal basis with respect to the inner product defined in terms of
the isotopy-invariant calculus of diagrams: the adjoint of |4, b )isrepresented as

5.1.3. Inner products and diagramatic reduction rules
Inner products are evaluated by composing diagrams and then reducing, i.e.

. by by b BL\—I B\/L
@ blaby = [ ds )" I 640, ta fareeee g ta (20)
J Jj=1 b, b, b, b,y b, dvac

where [-]yac is the coefficient of the empty diagram when reducing. Reduction is defined in terms of certain local
moves. These include

(i) Reversal of arrows (together particle—antiparticle involution a +— a)

(ii) (Arbitrary) insertions/removals of lines labeled by the trivial particle 1. Since T = 1, such lines are not
directed, and will often be represented by dotted lines or omitted altogether

(iii) Application of the F-matrix in the form
c b c b
abe
b4 =Y ry } 7 1)
d e a / d a

which leads to a formal linear combination of diagrams where subgraphs are replaced locally by the figure
on therhs.
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(iv) Removal of ‘bubbles’ by the substitution rule

C

d,d
a b =06y ‘;, b %c (22)

/

c

These reduction moves can be applied iteratively in arbitrary order to yield superpositions of diagrams. An
important example of this computation is the following:

(23)

The series of steps first makes use of an F-move (21), followed by equation (17) as well as (22). Together with
property (16) and evaluation of the inner product (20), this particular calculation shows that the flux-
eigenstates (27) are mutually orthogonal. We refer to [LW05] for more details.

5.1.4. Local operators
Operators are also defined by diagrams, and are applied to vectors/multiplied by stacking (attaching) diagrams
on top of the latter. Expressions vanish unless all attachment points have identical direction and labels. Here we
concentrate on 1- and 2-local operators, although the generalization is straightforward (see [Bon09, KB10]).

A single-site operator H is determined by coefficients { ¢,}, and represented at

a=3 % a
a
It acts diagonally in the fusion tree basis, i.e., writing H; for the operator H applied tosite j, we have
Hjld, b) = e,ld, b).

A two-site operator V acting on two neighboring sites is determined by a tensor {0fe} 1,5,0,1,g (Where the labels
have to satisfy appropriate fusion rules) via the linear combinations of diagrams

V=% o x en
e.f.g
X e f

When applied tosites jand j + litactsas

. a4 a1 a
Vjjild b) = Z AeygBe.a;0f.a5. :f f cees . f f
e.f.g
by by by by by

b

where the rhs specifies a vector in H in terms of the reduction rules. It will be convenient in the following to
distinguish between linear combinations of the form (24) and operators which are scalar multiplies of a single
diagram (i.e., with only one non-zero coefficient o, ). We call the latter kind of two-site operator elementary.

We can classify the terms appearing in (24) accordmg to the different physical processes they represent: in
particular, we have pair creation- and annihilation operators
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a
V(a) = \/ and Vi@ = (V@)=

simultaneous annihilation- and creation operators

VA4, b) = V@V (b)

left- and right-moving ‘propagation’ terms

V) :a\ and VR(a) = (Iﬂ“(at))]L :/a

as well as more general fusion operators such as e.g.,

c
I}a,b,c = Z (I)gb,L
a,b,c
a
c
+(I)ab,R

a

(Weare intentionally writing down a linear combination here.) Note that a general operator of the form (24) also
a

involves braiding processes since u (\/ pcan beresolved to diagrams of theform  Jg using the R-matrix
a
(another object specified by the tensor category). We will consider composite processes composed of such two-

local operators in section 5.1.7.

5.1.5. Ground states of anyonic chains
We will consider translation-invariant Hamiltonians Hy = i Hj with local terms of the form

H:Zfa'f‘a with ¢, > Ofora = 1 and ¢ = 0. (25)
a

Such a Hamiltonian Hj corresponds to an on-site potential for anyonic excitations, where a particle of type a
hasassociated energy ¢, independently of the site j. We denote the projection onto the ground space of this
Hamiltonian by P,. Thisis the space

PyH = span{|1, b - 1) | b particle label} (26)

where T = (1,...,1)andb - 1= (b, ..., b). In other words, the ground space of Hy is degenerate, with
degeneracy equal to the number of particle labels.
It will be convenient to use the basis {|b) }; of the ground space consisting of the ‘flux’ eigenstates

by =|1,b- 1). (27)
In addition, we can define a dual basis {|b’) } ;, of the ground space using the S-matrix. The two bases are related by

la") = Spalb) (28)
b

for all particle labels a, b.

Aswe discuss in section 6.3.2, in the case of two-dimensional systems, the dual basis (28) is simply the basis
of flux eigenstates with respect to a ‘conjugate’ cycle. While this interpretation does not directly apply in this one-
dimensional context, the basis {|a’) } , is nevertheless well-defined and important (see equation (30)).

5.1.6. Non-local string-operators
In the following, certain non-local operators, so-called string-operators, will play a special role. Strictly speaking,
these are only defined on the subspace (26). However, we will see in section 5.2 that they arise naturally from
certain non-local operators.

The string-operators { F,}, are indexed by particle labels a. In terms of the basis (27) of the ground
space PyH of Hy, theaction of F, is given in terms of the fusion rules as

Fa|b> = ZN§b|C> = Zéubz|(3>- (29)
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The'’ operator F, has the interpretation of creating a particle—antiparticle pair (a, ), moving one around the
torus, and then fusing to vacuum. For later reference, we show that every string-operator F,, is diagonal in the
dual basis {|a’) }. Explicitly, we have

S a _/ !/
F,Py = Zsila ) {(a']. (30)

a Pla

Proof. We first expand P, into its span and F, according to equation (29), followed by an expansion of N,
through the Verlinde formula (18). Finally, we use the unitarity and symmetry of S to transform bra and ket
factors into the dual basis given by equation (28)

FyPo = S NE|d) (c] = Z% > SeaSaald) (c| = Z%w) (a.

c,d a Pla ¢d a Cla

5.1.7. Products of local operators and their logical action

Operators preserving the ground space PyH (see (27)) are called logical operators. As discussed in section 5.1.6,

string-operators {F,} are an example of such logical operators. Clearly, because they can simultaneously be

diagonalized (see (30)), they do not generate the full algebra of logical operators. Nevertheless, they span the set

of logical operators that are generated by geometrically local physical processes preserving the space PyH.
Thatis,if O = 37 []; Vjisalinear combinations of products of local operators Vj, then its restriction to

the ground space is of the form

PyOPy = > "0,E, (3D

i.e., itis alinear combination of string operators (with some coefficients o,). Equation (31) can be interpreted as
an emergent superselection rule for topological charge, which can be seen as the generalization of the parity
superselection observed for the Majorana chain. It follows directly from the diagrammatic formalism for local
operators.

To illustrate this point (and motivate the following computation), let us consider three examples of such
operators, shown in figures 1(a), (c) and (b).

A AL ~R N . .. . .

O1="V;_1j @)V 1j2@) Vi () Ve (@); j+1: This processes has trivial action on the ground space: it is
entirely local. It has action PyO, Py = d, Py, where the proportionality constant d, results from
equation (22).

AL ~R ~C . . . . .
O, = V;_j(@)V;;1(a)V;(a): This process creates a particles anti-particle pair (a, @) and further separates
these particles. Since the operator maps ground states to excited states, we have Py O Py = 0.

0; = VA (@)1 vR (@N_1N --- pR (a)s4 pR (a)23 Ve (a)12: This process involves the creation of a pair of
particles (a, a), with subsequent propagation and annihilation. Its logical action is Py O, Py = F, is given by
the string-operator F,, by a computation similar to that of (23).

5.2. Perturbation theory for an effective anyon model

In this section, we consider a one-dimensional translation-invariant system of anyons described by the
Hamiltonian H,introducedin (25). We further consider a translation-invariant two-local perturbation
V= Ej \7},]4_1 with local terms \7},]4,1 of the form (24) given by

V=3V +mVi@) + Y (Vi@ + V@) + (32)

where V7 collects all other two-anyon processes (it will turn out that in lowest order perturbation theory, only
creation and propagation are relevant). The choice of complex conjugate pairs of parameters ensures that the
perturbation is self-adjoint. We may think of , as the ‘creation ampitude’, 7, as the ‘propagation amplitude’,
and ¢, as the energy of particle a.

We now compute the form of the effective Schrieffer—Wolff~Hamiltonian. Our main result is the following:

0 fact, the operators { F, }, form a representation of the Verlinde algebra, although we will not use this fact here.
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Vjéj«i»l (a)

L
Vj+1,j+2(a’) 7 ‘

VjL—l,j(é)
Vij—l,j+2 (a)

R
Vj+1,j+2("’>

V()

VJ'(,:J'H (a)

Figure 1. This figure illustrates different processes in the diagrammatic formalism. Each process corresponds to an operator and is a

product of elementary processes (diagrams). Ground space matrix elements vanish if the process leaves behind excitations
(corresponding to endpoints of open strings). (a) The operator O; = \7]@ 1(a) \7]!1 1j+2 (@) \7;11)1 1o (@) Ve (); j4+1 correspondstoa

process where a particle pair (a, a) is created, there is some propagation, and the particles fuse subsequently. This has trivial action on the
ground space, i.e., PyOPy = d, P, is proportional to the identity. (b) The process described by the operator O, = \7)!', 1, (@ \7]5 1

(a) V]Fjﬂ(a) leaves behind excitations, hence PyO3 Py = 0. (c) The operator O; = VA (@)1 -+ VR (@)ny_1.n .. VR(@)34VR(0)13
VC(a), , corresponds to a process where a pair (a, @) of particles is created, and they propagate all the way around the chain before
annihilating. Its action on the ground space is given by the string-operator P, O, P = E,.

Lemma 5.1 (Effective Hamiltonians for one-dimensional anyon chains). Consider Hy + €V, with the
perturbation V as described. Let P, be the projection onto the ground space of Hy. Then the Lth order effective
Hamiltonian has the form

HY () = 3 °f; (e Y T B + cPo, (33)
a

for some constant ¢ € R, and some function f; which is independent of the particle label a and is a homogeneous
polynomial of degree L in ~, and 7,.

Clearly, the form equation (33) of the effective Hamiltonian is consistent with the topological
superselection rule (31). However, equation (33) provides additional information: for example, the
coefficient of the string-operator F, only depends on the energy ¢, ofanyon g, as well as its creation/
annihilation (v, respectively 7, ) and propagation (7,) amplitudes. There is no dependence on particles
distinct from a (and corresponding braiding processes). Such terms only enter in higher orders of the
perturbative series. This can be thought of as a rigorous derivation of the tunneling amplitude for a particle in
the weak perturbation limit. We note that due to f; beinghomogeneous of degree L, the dominant tunneling
process will be highly sensitive to the perturbation strengths associated to different anyon labels a for large
system sizes L. In the absence of a symmetry or fine tuning, it should be possible to order the
terms f; (€4, ,» 72) by absolute value, with different orders of magnitude being expected for each term (see
section 6.1 for further discussion).
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Proof. Itis easy to check that the conditions of theorem 3.2 are satisfied with L equal to the length of the chain.
Indeed, (L — 1)-local terms have trivial action on the ground space as discussed in section 5.1.7. It thus suffices
to consider expressions of the form

Py (VG)L-1VP,

involving L factors of V. Inserting the definition (32) of V, and diagrammatically expanding each term as in
section 5.1.4, we are left with a linear combination of terms of the form

Po Ve, GVa, GVa, -+ GV, Po,

where V, isalocal operator given by an elementary (two-anyon) diagram (not a linear combination). Since such
operators V,, map eigenstates of Hy to eigenstates, and the energies of excited states reached from the ground
space by applying such operators is independent of the ground state considered, each operator G merelyaddsa
scalar, i.e., we have

Py Vo, GVa,, GVa, -+ GV, Po = 0 (Vo .., Vo)~ Po Vi, Vi, Vay -+ Va, Po

L

for some constant ¢ depending on the perturbations { V,, }. But the rhs. of this equation is a product of local
operators as considered in section 5.1.7. According to the expression (31), this is alinear combination of string-
operators, i.e.

PO‘/(Y

1 V(yz V(y; ‘/(,\LPO = ZOuEJ-
a

Furthermore, since each V,,, is an elementary two-local operator, and we consider only products of length L, the
onlyterms Py V,, Vo, Vi, -+ V,, Py that have non-trivial action on the ground space are those associated with
processes where a single particle (say of type a) winds around the whole chain. We will call such a process
topologically non-trivial. Its action on the ground space is given by a single string-operator F,,.

In summary (rearranging the sum), we conclude that the Lth order effective Hamiltonian has the form (33),
where the coefficient f; (¢, 7, 7,) has the form

fL(fm Ya> Ta) = Z 9(%1,..., ‘/Oq_)y(‘/ap“-: ‘/oq_);
Vo Vo) €O,

and where the sum is over the set
Oy = {(Vap-.s Vo) | PoViy, -+ Vi Py € CPy}

of all length-L-topologically non-trivial processes (consisting of elementary terms) involving particle a. The
coefficient v (V,,, ..., V,,) isdefined by By V,,, --- V,,, By = v(V,, ..., V) K. Furthermore, v (V,, ..., V,,) can
only be non-zero when all L operators V,, are either pair creation/anihilation or hopping terms involving the
particle a. This implies the claim. O

6. 2D topological quantum field theories

As discussed in section 4, adding a local perturbation to a Majorana chain leads to an effective Hamiltonian given
by the parity (string)-operator. Similarly, in the case of a general anyon chain (discussed in section 5), the effective
Hamiltonian is a linear combination of string-operators F,, associated with different particle labels a. Here we
generalize these considerations to arbitrary systems described by a two-dimensional TQFT and subsequently
specialize to microscopic models, including the toric code and the Levin—Wen string-net models [LW05].

Briefly, a TQFT associates a ‘ground space’ Hy, to a two-dimensional surface ¥ —thisis e.g., the ground
space of a microscopic model of spins embedded in 3 with geometrically local interactions given by some
Hamiltonian Hj (see section 6.3). In other words, Hy, C Hppys,x is generally a subspace of a certain
space Hpys - of physical degrees of freedom embedded in 3. The system has localized excitations (anyons) with
(generally) non-abelian exchange statistics. In particular, there are well-defined physical processes involving
creation, propagation, braiding and annihilation of anyons, with associated operators as in the case of one-
dimensional anyon chains (see section 5). Contrary to the latter, however, the particles are not constrained to
move along a one-dimensional chain only, but may move arbitrarily on the surface ¥. Nevertheless, the
description of these processes is analogous to the case of spin chains, except for the addition of an extra spatial
dimension. For example, this means that local operators acting on aregion R C 3 are now represented by a
linear combination of string-nets (directed trivalent graphs with labels satisfying the fusion rules) embedded
in R x [0, 1]. Werefer to e.g., [FKLWO03] for more examples of this representation.

As before, there are distinguished ground-space-to-ground-space (or ‘vacuum-to-vacuum’) processes which
play a fundamental role. These are processes where a particle—anti-particle pair (a, a) is created, and the particles
fuse after some propagation (tunneling), i.e., after tracing out a closed loop Con ¥. Non-trivial logical operators
must necessarily include topologically non-trivial loops Con ¥ in their support (the spatial region in which they are
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physically realized). In particular, for any such loop C, thereisa collection {F, (C) }, of string-operators associated
with different particle labels. More precisely, aloopisamap C : [0, 1] — X satisfying C (0) = C(1). Reversing
direction of the loop givesanewloop C(t) :== C(1 — t),and thisis equivalent to interchanging particle- and
antiparticle labels: we have the identity F,(C) = F;(C). In section 6.2, we state some general properties of the
string-operators {F, (C) },, and, in particular, explain how to express them in suitable bases of the ground space.

6.1. Perturbation theory for Hamiltonians corresponding to a TQFT

In general, the anyon model associated with a TQFT is emergent from a microscopic spin Hamiltonian Hy. The
anyon notion of site, as discussed in section 5, does not necessarily coincide with the spin notion of site
associated with the microscopic spin model. Nevertheless, the following statements are true:

(i) Anynon-trivial logical operator must include at least one non-contractible loop in its support.

(if) Given a perturbation V consisting of geometrically local operators, there exists some minimum integer L
such that Hy, V satisfy the topologically ordered condition with parameter L.

In general, the value of L will depend on the length of the shortest non-contractible loop(s), and the resulting
effective Hamiltonian will be of the form

Hg(e)=¢" 3> fi(a, OK(C) + c(e)Py, (34)
a,C:|C|=L
where the dependence on Hj and the coefficients in V' has been left implicit. The sum is over all non-trivial
loops Coflength L (wherelength is defined in terms of the spin model), as well as all particle labels a.
Computing the coefficients { f; (a, C) } may be challenging in general. Here we discuss a special case, where

anyon processes associated with a single particle a (respectively its antiparticle @) are dominant (compared to
processes involving other particles). That is, let us assume that we have a translation-invariant perturbation Vof
the form

(1)
(i

. NP . Do A (1 - A2
where the sum is over all pairs (j, j’) of nearest-neighbor (anyonic) sites, and Vj() j,) = VPand V% =

\}(2)
= are
both 1- and 2-local operators on the same anyon site lattice—this is a straightforward generalization of anyon
chains to 2D. Our specialization consists in the assumption that all local creation, propagation and annihilation
processes constituting the operator \7](;? =y only correspond to a single anyon type a (and a), and that these

processes are dominant in the sense that the remaining terms satisfy ||n\7(2)|| <l \7(1)||. In thelimit » — 0,
perturbation theory in this model only involves the particles (a, a).
Assuming that the shortest non-contractible loops have length L in this anyonic lattice, we claim that

HE(e) = e[ 3 fi(a, OFC) + n'GR| + c(e)P, (35)
C:|C|=L

where Ge(%f) is an effective Hamiltonian with the same form as H, gf) (¢), but only contains string operators F,(C)
with b = a. Thereason is thatin order to generate a string operator F,(C)in L steps (i.e., at Lth order in
perturbation theory), we need to apply local operators corresponding to anyon b L times, as discussed in

lemma 5.1. Such local operators can only be found in 7V5, therefore we obtain the coefficient n' of Géﬁf). Thusif
we fix the system size and slowly increase 7 from 0, the (relative) change of the total effective Hamiltonian is
exponentially small with respect to L. This implies that the ground state of the effective Hamiltonian is stable
when 7 is in a neighborhood of 0. We will see in section 7 that the final states of Hamiltonian interpolation are
indeed stable in some regions of initial Hamiltonians. The above discussion can be viewed as a partial
explanation'' for this phenomenon.

6.2. String-operators, flux bases and the mapping class group

In the following, we explain how to compute effective Hamiltonians of the form (35) in the case where the
perturbation is isotropic, resulting in identical coefficients f; (a, C) = f; (a, C’) forallloops Cofidentical
length. This will be guaranteed by symmetries. We give explicit examples in section 7.

For this purpose, we need a more detailed description of the action of string-operators on the ground space.
Consider a fixed (directed) loop C : [0, 1] — X embedded in the surface X. The process of creating a particle-
anti-particle pair (a, @), then propagating a along C, and subsequently fusing with @ defines an operator F,(C)
which preserves the ground space Hy,. The family of operators {F, (C) }, is mutually commuting and defines a

11 . . . . ~ ~ . . .
Note that in the cases we consider in section 7, VY and V@ often do not live on the same anyon site lattice.
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representation of the Verlinde algebra. It is sometimes convenient to consider the associated (images of the)
idempotents, which are explicitly given by (as a consequence of the Verlinde formula (18))

P(C) = Sia ) _SuaFs (C).
b

The operators P,(C) are mutually orthogonal projections P, (C) P, (C) = 8,, P, (C). The inverse relationship
(using the unitarity of S) reads

Fy(C) = Z%PQ(C) (36)

a la
and is the generalization of (30): indeed, specializing to the case where ¥ is the torus (this will be our main
example of interest), and Cis a fundamental loop, the operators P,(C) are rank-one projections (when restricted
to the ground space), and determine (up to phases) an orthonormal basis of B¢ = {|ac) } , of Hs by
P,(C) = |ac) {ac|- In physics language, the state |ac) has ‘flux a’ through the loop C. (More generally, one may
define ‘fusion-tree’ basis for higher-genus surfaces 3 by considering certain collections of loops and the
associated idempotents, see e.g., [KKR10]. However, we will focus on the torus for simplicity.)

Consider now a pair of distinct loops Cand C'. Both families {F,(C)}, and {F,(C") }, of operators act on the
ground space, and it is natural to ask how they are related. There is a simple relationship between these operators
if C" = ¥ (C) is the image of Cunder an element ¢ : ¥ — X of the mapping class group MCGy; of X (i.e., the
group of orientation-preserving diffeomorphisms of the surface): the TQFT defines a projective unitary
representation V : MCGy — U(Hy) of this group on Hy, and we have

E(C) = VWEQ V@) foralaifC =d9(C).

In general, while the topology of the manifold is invariant under the mapping class group, the specific lattice
realization may not be. For this reason, if we desire to lift the representation V'to the full Hilbert space

Hs: D Hphys,x» such that the resulting projective unitary representation preserves the microscopic Hamiltonian
Hj under conjugation, we may need to restrict to a finite subgroup of the mapping class group MCGgy. If the
lattice has sufficient symmetry, such as for translation-invariant square or rhombic lattices, one may exploit
these symmetries to make further conclusions about the resulting effective Hamiltonians.

6.2.1. String-operators and the mapping class group for the torus

For the torus, the mapping class group MCGy: is the group SL (2, Z). To specify how a group element maps the
torus to itself, it is convenient to parametrize the latter as follows: we fix complex numbers (e;, e;) and identify
points zin the complex plane according to

Z=2z+ me + me for ny, n, € Z.
In other words, (ej, ;) definesalatticein C, whose unit cell is the torus (with opposite sides identified). A group

element A = (a Z) € SL(2, Z) then defines parameters (e[, e;) by
c

!
e; = ae; + be,

!
e, = ce; + dey,

which a priori appear to be associated with a new torus. However, the constraint that A € SL (2, Z) ensures that

(e/, e;)and (e, ;) both define the same lattice, and this therefore defines a map from the torus to itself: the

action of Ais givenby ae, + Be, — e/ + fe, for a, 3 € R, i.e., itis simplyalinear map determined by A.
The group SL(2, Z) = (t, s) is generated by the two elements

t = Dehn twist (1 1) and /2 rotation s = ( 0 1) (37)
01 -1 0

which are equivalent to the Mobius transformations 7 +— 7 + land 7 — —1/7. Clearly, t fixes e; and hence the

loop C : t — C(t) = tey, t € [0, 1] on the torus (thisloop is one of the fundamental cycles). The matrices

representing the unitaries V(¢) and V(s) in the basis B¢ = {|ac) } , of Hs, (where |ac) is an eigenstate of

P,(C) = |ac) (ac|) are denoted Tand S, respectively. These matrices are given by the modular tensor category: T'is

a diagonal matrix with T,, = e% (where 6), is the topological phase of particle a), whereas S is the usual S-matrix.

This defines the mapping class group representation on the Hilbert space Hy, associated with the torus 3.

In the following, we compute explicit relationships between string-operators of minimal length. We
consider two cases: a square torus and a rhombic torus. This allows us to express terms such as those appearing
in equation (34) in a fixed basis.

Square torus. Here we have

eg=1 and e = 1.
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Figure 2. Minimal loops on the square torus.
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Figure 3. Minimal loops on the rhombic torus.

There are (up to translations) two loops of minimal length,

G (1) = tey
C2(t) = (1 - t)eZ)
which may be traversed in either of two directions namely for t € [0, 1], see figure 2. Since se; = —e, and

se, = ey, we conclude that
G =s(G®) G =s(GM1) GO =s(G@1) G =s"(C(1)
In particular, expressed in the basis B¢, we have
3
> E(C) + E(C)) = Y S'R(G)S. (3%)
=12 =0

Thus, when the lattice and Hamiltonian H, obey a /2 rotation symmetry, the effective perturbation
Hamiltonian will be proportional to (38). This is the case for the toric code on a square lattice.
Rhombic torus. We set

e =1 and e, = cos(2m/6) + isin(27/6).
Minimal loops of interest are shown in figure 3 and can be defined as

G (1) =te
Gt)=e +t(ex—e)
C(t)=(1 — t)e,.

for t € [0, 1]. Observe that these can be related by a /3 rotation u (if we use the periodicity of the lattice), i.e.

G5 (1) = u(Ci(1)) Cy(t) = w*(G(1)) G =uw(G®)
Cs (1) = (Gi(1)) Gy (1) = v’ (Gi(1)) Gi(1) = us (G (1))
Since such arotation u maps ey, e, to
e/ =e;
ey =¢e; — e,

0 1
—11
We conclude that, expressed in the basis B, we have

itis realized by the element u = ( ) € SL(2, Z),which decomposes into the generators (37)as u = ts’s.

3 5

Z(Fa (C) + E(C)) = ZUjFa(Cl) U/ where U= TSTS. (39)
j=1 j=0

Again, if the lattice and Hamiltonian H, are invariant under a 7w /3 rotation, we may conclude that the effective

perturbation Hamiltonian will have the form (39). This is the case for the Levin—-Wen model on a honeycomb

lattice embedded in a rhombic torus (see also section 7.2).
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6.3. Microscopic models

The purpose of this section is two-fold: first, we briefly review the construction of the microscopic models we use
in our numerical experiments in section 7: these include the toric code (see section 6.3.1) as well as the doubled
semion and the doubled Fibonacci model, both instantiations of the Levin—Wen construction (see section 6.3.2).
Second, we define single-qubit operators in these models and discuss their action on quasi-particle excitations
(i.e., anyons). This translation of local terms in the microscopic spin Hamiltonian into operators in the effective
anyon models is necessary to apply the perturbative arguments presented in section 6.1. We will use these local
terms to define translation-invariant perturbations (respectively trivial initial Hamiltonians) in section 7).

6.3.1. The toric code

Kitaev’s toric code [Kit03] is arguably the simplest exactly solvable model which supports anyons. It can be
defined on a variety of lattices, including square and honeycomb lattices. Here we will introduce the
Hamiltonian corresponding to honeycomb lattice. On each edge of the lattice resides a qubit. The Hamiltonian
consists of two parts and takes the form

Hip = —Y Ay, — > By, (40)
v p

where B, = X“®is the tensor product of Pauli-X operators on the six edges of the plaquette p,and A, = Z®?is
the tensor product of Pauli-Z operators on the three edges connected to the vertex v.

Note that in terms of its anyonic content, the toric code is described by the double of Z,; hence a model with
the same type of topological order could be obtained following the prescription given by Levin and Wen (see
section 6.3.2). Here we are not following this route, but instead exploit that this has the structure of a quantum
double (see [Kit03]). The resulting construction, given by (40), results in a simpler plaquette term B, as opposed
to the Levin—Wen construction.

The anyonic excitations supported by the toric code are labeled by {1, e, m, €}. The e anyon or electric
excitation corresponds to vertex term excitations. The m anyon or magnetic excitations correspond to plaquete
term excitations. Finally, the € anyon corresponds to an excitation on both plaquete and vertex and has the
exchange statistics of a fermion. We can write down the string operators F,,(C) for a closed loop C on the lattice
explicitly (see [Kit03]). Without loss of generality, we can set E, (C) = Py Qicc X; P and
En(C) = PyQicp Zi Py, where Dis a closed loop on the dual lattice corresponding to C. Finally, the operator
E.(C) = E(C) X E,(C)canbewritten as a product of F,(C)and F,(C),since e and m always fuseto €. With
respect to the ordering (1, e, m, €) of the anyons, the S- and T-matrices described in section 5.1.1 are given by

1 1 1 1
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1

T=diag(1,1,1, —-1) S=1/2 (41)

for the toric code.
Local spin operators. A natural basis of (Hermitian) operators on a single qubit is given by the Pauli operators.
For the toric code, each of these operators has a natural interpretation in terms of the underlying anyon model.
Consider for example a single-qubit Z-operator. The ‘anyonic lattice’ associated with m-anyons is the dual
lattice (i.e., these anyons ‘live’ on plaquettes), and a single-qubit Z-operator acts by either creating or
annihilatinga (m, m) = (m, m) on the neighboring plaquettes, or propagating an existing m from one
plaquette to the other. That s, in the terminology of section 5.1.4, a Z-operator acts as a local term

Z — VC(m) + VAm) + V-(m) + V" (m) (42)

in the effective anyon model. An analogous identity holds for X, which is associated with e-anyons: the latter live
on vertices of the spin lattice. Finally, Y-operators act on €-anyons in the same manner; these anyons live on
‘supersites’, consisting of a plaquette and and an adjacent vertex.

6.3.2. Short introduction to the Levin—Wen model
Levin and Wen [LWO05] define a family of frustration-free commuting Hamiltonian with topologically ordered
ground space and localized anyonic excitations. Their construction is based on interpreting the state of spins
residing on the edges of a trivalent lattice (such as a honeycomb lattice) as configurations of string-nets.

To specify a string-net model, we need algebraic data associated with an anyon model as described in
section 5.1.1. This specifies, in particular, a set of anyon labels F = {a;}, associated fusion rules, as well as S- and
F-matrices. The Levin—Wen model then associates a qudit to each edge of the lattice, where the local dimension
of each spin corresponds to the number of anyon labels in . One chooses an orthonormal basis
{la) } ser C C¥lindexed by anyon labels; in the following, we usually simply write a instead of |a) to specify a
state of a spin in the microscopic model. The Levin—Wen spin Hamiltonian can be divided into two parts,
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Htop = *ZAV - ZBP’ (43)
v P

where each B, is a projector acting on the 12 edges around a plaquette p, and each A, is a projector acting on
the 3 edges around a vertex v. In particular, we can construct the spin Hamiltonian for the doubled semion and
the doubled Fibonacci models in this way by choosing different initial data.

Aslong as all the particles in the underlying model F are their own antiparticles (i.e., the involution a — ais
the identity), it is not necessary to assign an orientation to each edge of the lattice. This affords us an important
simplification, which is justified for the models under consideration: these only have a single non-trivial anyon
label, which is itself its own antiparticle (recall that the trivial label satisfies T = 1). With this simplification,
which we will use throughout the remainder of this paper, the vertex operator A, can be written as

a b a b
" \‘/>:6abc \(>

where 6, = lifaand b can fuse to cand &, = 0 otherwise. The plaquette operator B, is more complicated
compared to A,. We will give its form without further explanation

d . . A
_ y agl bhg cih dji ekj flk
- : : D? Fsl/g’Fsg/h/FSh/i/Fsi'_j' st’k/Fsk/l/

s.g’h'
l-/yj/,k/‘l/

where d, is the quantum dimension of the anyon labels,and D = /3 ]-d]-2 is the total quantum dimension.

Having specified the spin Hamiltonian, we stress that the anyon labels F used in this construction should
not be confused with the anyon labels D (F) describing the local excitations in the resulting Hamiltonian (43).
The latter can be described as ‘pairs’ of anyons from F,i.e., D(F) = {(a;, a;) Yayaie F- Their fusion, twist and
braiding properties are described by the double of the original theory. The Sp x - and Fp z - matrices of D (F)
can be obtained from the S- and T-matrix associated with F (see [LWO05]). String operators Fa,q,(C)actingon
the spin lattice have also been explicitly constructed in [LWO05]

Below, we present some of the specifics of two models constructed in this way: the doubled semion and
doubled Fibonacci model. In addition to Kitaev’s toric codes D(Z,), these are the only models defined on two
labels (i.e., with microscopic qubit degrees of freedom).

6.3.3. The doubled semion model

The underlying string-net model of the doubled semion model only consists of one non-trivial label s and the
trivial label 1. To specify the spin Hamiltonian, we have d; = 1,and ¢,; = 1ifand only ifan even number

of a, b, care s. The F-matrix is given by F] = —1and otherwise ijf is 0 or 1 depending on whether

(a, b, ¢, d, e, f)isalegal configuration (see [Kit06] for more detailed explanation). As we explained above, to
construct a spin Hamiltonian, we put a qubit on each edge of the lattice with orthonormal basis |1), |s). The spin
Hamiltonian obtained this way is similar to the toric code and it also supports Abelian anyons. The excitations of
the spin model can belabeled by D(F) = {(1, 1), (1, s), (s, 1), (s, s) }, which is the quantum double of

F = {1, s}. Withrespect to the given ordering of anyons, the S- and T-matrices of these excitations are given by

1 1
T = diag(1, i, —i, 1). (44)

Local operators. Identifying |1) with the standard basis state |0) and |s) with |1), we can again use Pauli operators
to parametrize single-spin Hamiltonian terms

Here we will discuss the effect of single qubit operators X and Z on the ground states of the resulting
topologically ordered Hamiltonian. The goal is to interpret single spin operators in terms of effective anyon
creation, annihilation and hopping operators.

When Z-operator is applied to an edge of the system in a ground state, only the neighboring plaquete
projectors B, will become excited. More specifically, a pair of (s, s) anyons are created if none were present.
Since (s, s) is an abelian anyon, in facta boson, and is the anti-particle of itself, a Z operator could also move an
(s, s) anyon or annihilate two such particles if they are already present. Thus we conclude that single-qubit Z-
operators have a similar action as in the toric code (see (42)), withs playing the role of the anyon m.
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When an X operator is applied on edge of the system in a ground state, it excites the two neighboring vertex
terms A, (in the sense that the state is no longer a 4-1-eigenstate any longer). Since the plaquete terms B, are only
defined within the subspace stabilized by A,, the four plaquette terms B, terms around the edge also become
excited. Itis unclear how to provide a full interpretation of X operators in terms of an effective anyon language.
In order to provide this, a full interpretation of the spin Hilbert space and its operators in the effective anyonic
language is required; such a description is currently not known.

In summary, this situation is quite different from the case of the toric code, where X and Zare dual to each
other.

6.3.4. The doubled Fibonacci

Again, the underlying string-net model of doubled Fibonacci contains only one non-trivial label 7, with
quantum dimension d, = ¢, where o = # The fusion rules are given by ¢,, = 0 ifonlyoneofthe a, b, ¢
is 7,and otherwise &, = 1. Non-trivial values of F are

FIl = o7\, FIIl= 7172
= P = =g

and otherwise Fﬁffc iseither 0 or 1 depending on whether (a, b, ¢, d, e, f)isalegal configuration.
Many aspects of the doubled Fibonacci spin Hamiltonian are similar to the doubled semion model:

+ Thereis one qubit on each edge, with orthonormal basis states associated with the anyon labels F = {1, 7}.

+ Theanyons supported by the spin Hamiltonian carrylabels D(F) = {(1, 1), (1, 7), (7, 1), (7, T7) }.
With respect to the given ordering of anyons, the S- and T-matrices are given by

1 o ¢ ¢?

-1 s02

s=|" 7 TPla ey T =diag(, e 5, e, 1), (45)
o —¢

e —p —p 1
A substantial difference to the doubled semion model is that the non-trivial anyons supported by the model
are non-abelian. One manifestation of this fact we encounter concerns the (7, 7)-anyon:

+ While (7, 7) is its own anti-particle, it is not an abelian particle so in general two (7, T) particles will not
necessarily annihilate with each other. In other words, the dimension of the subspace carrying two localized
(7, T) charges is larger than the dimension of the charge-free subspace.

+ Two intersecting string operators F ;)(C) and F; ;) (C,) corresponding to the (7, 7) particle do not
commute with each other.

Neither of these properties holds for the (s, s)-anyon in the case of the doubled semion model.

Local operators. Similarly, as before, we identify |1) with the standard basis state |0) and |7) with |1), enabling
us to express single-qubit operators in terms of the standard Pauli operators.

Again, we want to consider the effect of single qubit operators in terms of anyons. This is generally rather
tricky, but for single-qubit Z-operators, we can obtain partial information from an analysis presented in
appendix B:let [¢)) be a ground state. Then Z|¢)) = %l@/}) + glgo), where |¢) is a 1)-dependent excited state
with a pair of (7, ) on the plaquettes next to the edge Zacts on. Thus the resulting state after application of a
single Z operator has support both on the excited and as well as the ground subspace. Again, this is in contrast to
the doubled semion model, where a single-qubit Z operator applied to the ground space always results in an
excited eigenstate of the Hamiltonian.

7. Numerics

In this section, we present results obtained by numerically simulating Hamiltonian interpolation for small
systems. Specifically, we consider three topologically ordered systems on the 12-qubit honeycomb lattice of fig 4:
the toric code, the doubled semion and the doubled Fibonacci Levin-Wen models. That is, the target
Hamiltonian Higp, is given either by (40) (with stabilizer plaquette- and vertex-operators A, and B,) in the toric
code case, and expression (43) specified in section 6.3.2 (with projection operators A, and B,) for the doubled
semion and the doubled Fibonacci case. As initial Hamiltonian Hy;jy, we choose certain translation-invariant
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Figure 4. The 12-qubit-torus we use for numerical simulation (qubits are numbered 1 to 12. Itis a rhombic torus and we can identify
three minimal loops {1, 2}, {5, 7}, {9, 11} (and their inverses) which are related by 7 /3 rotations.

Hamiltonians consisting of single-qubit Pauli-X, Pauli-Y and Pauli-Z operators (see sections 6.3.3 and 6.3.4 for
their definition and a discussion of the effect of these operators in the two Levin—-Wen models.) For concreteness
and ease of visualization, we will consider the following families of such Hamiltonians: the one-parameter family
Hiiv (0) = cosﬁz Zi + sin@ZXj (46)
J J

where 6 € [0, 27], and two two-parameter families of the form

Hga, b) =ad X; + b> Y, £ (1 — a> — b)Y 7, (47)
j j j

where (a, b) € R2belongs to the unit disc, a*> + b? < 1. (In some instances, we will permute the roles of X, Y
and Z, and use an additional superscript to indicate this.)

For different parameter choices 0 respectively (g, b), we study Hamiltonian interpolation (i.e., the
evolution (2)) along the linear interpolation path H(#) (see (1)) with a total evolution time T. In order to
numerically simulate the evolution under the time-dependent Schrodinger equation, we perform a time-
dependent Trotter expansion using the approximation

t [T/At]
T exp (lf H(S)ds) ~ H eHGATIAL g elHOAL oy ol Hiny AtgifHiop At (48)
0 .
j=1

Unless otherwise specified, the time discretization is taken to be At = 0.1.

7.1. Quantities of interest and summary of observations

Recall that our initial state ¥'(0) = ¢®12 is the unique 12-qubit ground state of the chosen trivial

Hamiltonian Hyjy. We are interested in the states W () along the evolution, and, in particular, the final

state W(T) for a total evolution time T. For notational convenience, we will write Wy(t), respectively \Ifai H(f) to
indicate which of the initial Hamiltonians Hyy is considered (see (46) and (47)). We consider the following two
aspects:

—We investigate whether the state W () follows the instantanenous ground space along the evolution (2). We
quantify this using the adiabaticity error, which we define (for a fixed total evolution time T, which we
suppress in the notation) as

€adia (1) =1 — [(T(O [P ()T (@®)) ] for0 <r< T, (49)

where Py (t) is the projection onto the ground space of H(f) (note that except for t = T, where Py (T') projects
onto the degenerate ground space of Hiqp, this is generally a rank-one projection). The function ¢ — €,qia (£)
quantifies the overlap with the instantaneous ground state of H(#) along the Hamiltonian inter-

polation t — H (t), and hence directly reflects adiabaticity.
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Ultimately, we are interested in whether the evolution reaches a ground state of Hiop. This is measured by the
expression €,4i, (T'), which quantifies the deviation of the final state W(T') from the ground space of Hiqp.
Clearly, the quantity €,q;, (T') depends on the choice of initial Hamiltonian Hysy (i-e., the parameters 6
respectively (a, b)) and the total evolution time T. For sufficiently large choices of the latter, we expect the
adiabaticity assumption underlying conjecture 1 to be satisfied, and this is directly quantifiable by means of
the adiabaticity error. We will also discuss situations where, as discussed in observation 2.3, symmetries
prevent reaching the ground space of Hip as reflected in a value of €45, (T') close to 1.

Logical state:— assuming the ground space of Hiop is reached (as quantified by e,4;, (1)), we will identify the
logical state W(T') and investigate its stability under perturbations of the the initial
Hamiltonian Hy,y (i-e., changes of the parameters 0 respectively (a, b)). For this purpose, we
employ the following measures:

+ Weargue (see section 7.2) that symmetries constrain the projection of the resulting state W(T') onto the
ground space of Higp to a two-dimensional subspace (see section 7.2). For the toric code, the state is then fully
determined by the expectation values (X)y (1), (Z)w(r) of two logical operators X and Z. To investigate
stability properties of the prepared state, we can therefore consider ((X)y(r), (Z)w(r)) as a function of
parameters of the initial Hamiltonian.

+ for the Levin~-Wen models, we proceed as follows: we pick a suitable reference state |¢z) € (C*)®!2in the
ground space of Higp, and then study how the overlap | <\I/ff »(T)|0r) |> changes as the parameters (a, b) of the
initial Hamiltonian are varied. In particular, if we fix a pair (ao, bo) and choose |t/g) as the normalized
projection of the state |\Ifai0, »(T)) onto the ground space of Hiop, this allows us to study the stability of the

prepared state |\I/ui,b(T) ) as a function of the Hamiltonian parameters (g, b) in the neighborhood of (ay, by).

ref

o b,) Chosen in this way

According to the reasoning in section 3.2 (see conjecture 1), the specific target state |1
should correspond to the ground state of Hiop + €H*(ay, bp) in thelimit ¢ — 0 of infinitesimally small
perturbations (or, more precisely, the corresponding effective Hamiltonian). Furthermore, according to the
reasoning in section 6.1, the family of effective Hamiltonians associated with Hiop + €H*(a, b) hasa very
specific form. This should give rise to a certain stability of the ground space as a function of the parameters (g,
b).

To support this reasoning, we numerically compute the (exact) ground state |¢5’eb“> of Hiop + eH*(a, b)for

ert), s ref

the choice ¢ = 0.001 (as a proxy for the effective Hamiltonian), and study the overlap | ()25 |45 ;.
function of the parameters (a, b) in the neighborhood of (ag, by).

Y[asa

The results of our numerical experiments support the following two observations:

+ Hamiltonian interpolation is generically able to prepare approximate ground states of these topological
models for sufficiently long total evolution times T.

+ Specific final state(s) show a certain degree of stability with respect to changes in the initial Hamiltonian. The
theoretical reasoning based on perturbation theory presented in section 6 provides a partial explanation of this
phenomenon.

7.2. A symmetry of the 12-qubit rhombic torus
As discussed in section 6.3, the ground space of Hiop on a torus is four-dimensional for the toric code, the
doubled semion- and the Fibonacci model. In this section, we argue that adiabatic interpolation starting from a
translation-invariant Hamiltonian (as considered here) yields states belonging to a two-dimensional subspace of
this ground space, thus providing a simplification.

Consider again the 12-qubit thombic torus illustrated in figure 4. A 7/3 rotation permuting the physical
qubits according to

1,2,3,4,5,6,7,8,9, 10, 11, 12) — (5, 7, 8, 6, 9, 12, 11, 10, 2, 4, 1, 3)

defines a unitary Uy /3 on C®!2. Because of translation-invariance, this is a symmetry of the trivial Hamiltonian,
U /3 Hiriv U;f /3 = Heivs and it can easily be verified that for the models considered here, the unitary U; /3 also
commutes with Higp. Because of the product form of the initial state W(0), it thus follows that U ;3 W (¢) = W(¢)
along the whole trajectory t — W(t) of adiabatic interpolation. In particular, the projection of the final
state W(T') onto the ground space of Hiqp is supported on the 4-1-eigenspaces space of Uy /3.

As discussed in section 6.2.1, a w/3-rotation of the rhombic torus corresponds to the modular
transformation £sts. Since U, /5 realizes this transformations, its restriction to the ground space of Hiop can be
computed from the Tand S-matrices. That is, expressed in the flux bases discussed in section 6.3, the action of
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Figure 5. This figure gives the adiabaticity error €,4;, (T) = 1 — (U(T)|Po(T)|¥(T)) (see (49)) as a function of the total evolution
time Tand the initial Hamiltonian chosen. For the latter, we consider the one-parameter family Hy;y, (6) given by (46). For 6 = 0, the
adiabatic evolution is not able to reach the final ground space because initially (A,) = — 1 for every vertex operator A, = Z®* and
this quantity is conserved during the evolution. This is a feature of the honeycomb lattice because the vertex terms A, have odd
weights. For other values of 6, the ground space is reached for sufficiently large total evolution times T.

Uy /3 on the ground space is given by the matrix TS’TS, where (S, T) are given by (41) for the toric code, as well
as (44)and (45) for the doubled semion and Fibonacci models, respectively. The specific form of TS*TS or its
eigenvectors is not particularly elucidating, but may be computed explicitly.

Importantly, the +1 eigenspace of TS*TS is two-dimensional for the toric code, the doubled semion and the
Fibonacci models. (In the case of the toric code, it can be verified that this eigenspace is contained in the logical
symmetric subspace. The latter is the subspace invariant under swapping the two logical qubits in the standard
computational basis.) As a result, the projection of the state W(T') onto the ground space of Hjop belongsto a
known two-dimensional subspace which can be explicitly computed. This means that we may characterize the
resulting state in terms of a restricted reduced set of logical observables, a fact we will exploit in section 7.3.

7.3. The toric code

As discussed in section 6.3.1, for the toric code on the honeycomb lattice (see figure 4), the Hamiltonian of the
modelis Higp = — By + 32, A0)s where B, = X®®isa tensor product of Pauli-X operators on the six edges
of the plaquette p,and A, = Z®? isatensor product of Pauli-Z operators on the three edges incident on the
vertex v. We point out that the toric code on a honeycomb lattice has several differences compared to a toric
code on a square lattice (which is often considered in the literature). Assuming that both lattices are defined with
periodic boundary conditions,

(i) there are twice as many vertices compared to plaquettes on a honeycomb lattice (as opposed to the same
number on a square lattice)

(i) the vertex terms A, = Z®3 of the Hamiltonian have odd weights (as opposed to even weight for the square
lattice)

(i) the weight of a logical minimal X -string operator (i.e. the number of spins it acts on) is roughly twice as
large compared to the corresponding minimal Z-string operator on the dual lattice (as opposed to the
square lattice, where both operators have the same weight). For the 12-qubit code of figure 4, an example of
such a pair (X, Z) of lowest-weight logical operators is given below in equation (51).

Properties (i) and (ii) imply that the usual symmetries X < Z and Z«< —Zofthe toric code on the square
lattice are not present in this case. The absence of these symmetries is reflected in our simulations. Property (iii)
also directly affects the final state, as can be seen by the perturbative reasoning of section 6.1: Z-string operators
appear in lower order in perturbation theory compared to X -string operators.

(Non)-adiabaticity. We first present the adiabaticity error €,q;, (T') for the Hamiltonian Hyyy, (0) given
by (46) (for different values of 0) as a function of the total evolution time T. Figure 5 illlustrates the result. It
shows that for sufficiently long total evolution times T, the Hamiltonian interpolation reaches the ground space
of the toric code when the initial Hamiltonian is Hyjy (§ = 7) = —)_, Z;; thisisalso the
casefor 0 € {w/4, /2, 37 /4}.

However, if the initial Hamiltonian is Hyjy (6 = 0) = >, Z;, then the final state W(T') is far from the ground
space of the toric code Hamiltonian Higp. This phenomenon has a simple explanation along the lines of
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Figure 6. The adiabaticity error 6,41, (T) = 1 — (¥(T)|Py(T)|¥(T)), measuring how well the final state ¥ (T) overlaps with the
ground space of the toric code. All three figures are for a total evolution time T'= 120. In figure 6(a), we consider the family of initial
Hamiltonians H, (4, b) in the neighborhood of H,(0, 0) = Hyiy (0 = 0) = Zj Z;.In contrast, figure 6(b) illustrates different
choices of initial Hamiltonians Hy;,(a, b) around Hy;, (0, 0) = Hyiy (0 = 7) = — Zj Z;. Thevalues (a, b) C R*arerestricted to the
unitdisc a? + b? < 1; the center points of the two figures correspond respectively to # = 0and 6 = 7 in figure 5. Finally, figure 6(c)
gives the non-adiabaticity error for initial Hamiltonians of the form Hyx (a, b) (as defined in equation (50)). (a) The adiabaticity
error €,j, (T) in the neighborhood around Hyf, (0, 0) = Y°; Z; for different Hamiltonians Hyf (a, b). As explained, the evolution
cannot reach the ground space of the toric code around (a, b) = (0, 0) because the expectation values of plaquette-operators are
preserved. (b) The logarithm In ¢,4;, (T) of the adiabaticity error in the neighborhood around Hy;,(0, 0) = —3"; Z; for different
Hamiltonians Hyg;,(a, b). Here we use alog-scale because the variation in values is small. The ground space of the toric code
Hamiltonian Hjop, is reached for almost the entire parameter region. (c) The logarithm of adiabaticity error In €,qi, (T)) in the
neighborhood around Hyix (0, 0) = —X_; X; for different Hamiltonians Heis (a, b). Note that the resulting figure would look

identical for the Hamiltonians Hyy (a, b) because of the —X < +X symmetry.

observation 2.3. Indeed, if § = 0, then every vertex terms A, = Z%3 commutes with both Hysy, as well as Higp
(and thus all intermediate Hamiltonians H(¢)). In particular, the expectation value of the vertex terms remains
constant throughout the whole evolution, and this leads to an adiabaticity error €,q;, (T) of 1 in the case
of Hyiy (0 = 0) = Zi Z;.

In figures 6(a) and (b), we consider neighborhoods of Hamiltonians of the form (see (47))

Hi(a, b) around Hyi (0, 0) = Hyiy (8 = 0) = > Z; and

j
Hg(a, b) around Hi(0, 0) = Hyyy (0 = ) = —z Z;.
j

The initial Hamiltonians Hyy (6 = 0) and Hyjy (0 = 7) correspond to the center points in figure 6(a) and (b),
respectively.

+ Inthe first case (figure 6(a)), we observe that for all initial Hamiltonians of the form Hyjj,(a, b) in a small
neighborhood of Hyf, (0, 0), the adiabaticity error e,qi, (T) is also large, but drops off quickly outside that
neighborhood. This is consistent with the relevant level crossing(s) being avoided by introducing generic
perturbations to the initial Hamiltonian.
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+ Incontrast, almost all initial Hamiltonians in the family Hy;,(a, b) (around the initial
Hamiltonian Hy;,(0, 0))lead to a small adiabaticity error €,4;, (T) (figure 6(b)), demonstrating the stability of
the adiabatic preparation.

In asimilar vein, figure 6(c) illustrates the non-adiabaticity for the family of Hamiltonian

Hgid(a, b) = —(1 — a2 = b2 X, + b Y + a3 Z;. (50)
j j j

The family Hyjy (a, b) (defined with a positive square root) would behave exactly the same due to the
symmetry +X < —X.

Logical state. For the 12-qubit rhombic toric code (figure 4), logical observables associated with the two
encoded logical qubits can be chosen as

Xl = X7X8X11X12 a XZ = X4X0X2X12
Zl = ZlOZU ZZ = ZIZZ

Because of the symmetry (7.2), however, these are not independent for a state W(T') (or more precisely, its
projection Py (T)W(T)) prepared by Hamiltonian interpolation from a product state: their expectation values
satisfy the identities

(21) = (Z) and (X1) = (X).
We will hence use the two (commuting) logical operators
X = Xl = X7X8X11X12 and Z_ = Z_z = lez (51)

to describe the obtained logical state.
In figure 7, we plot the expectation values of Z and X in the final state ¥(T') for initial Hamiltonians of the
form (see (47) and (50))

Hyi(a, b) around Hy (0, 0) = 3" Z;,
j
Hyy (a, b) around Hyd (0, 0) = =S X,
j

We again discuss the center points in more detail. It is worth noting that the single-qubit {Z;} operators
correspond to the local creation, hopping and annihilation of m anyons situated on plaquettes, whereas the
operators {X;}are associated with creation, hopping and annihilation of e anyons situated on vertices. In
particular, this means that the initial Hamiltonians associated with the center points in the two figures each
generate processes involving only either type of anyon.

+ For Hy;, (0, 0) = =Y, Z;, weknow that (Z) = 1 during the entire evolution because Z commutes with the
Hamiltonians H(#), and the initial ground state W(0)isa+1 eigenstate of Z.In figures 7(a) and (b), we can
see that there is a large region of initial Hamiltonians Hy,,(a, b) around Hy;,(0, 0) = —>_, Z; whichlead to
approximately the same final state.

+ Onthe other hand, as shown in figures 7(c) and (d), the stable region of Hamiltonians Hyy (a, b) around the
initial Hamiltonian Hyiy (0, 0) = —3, X; is much smaller. This is due to the fact that the operator X appears
in higher order perturbation expansion compared to Z, and the evolution time T'is taken to be quite long.
Given sufficiently large total evolution time T, in the neighborhood of Hyjy (0, 0) = —3° ; X;, the lower order
term Z in the effective Hamiltonian will dominate the term X associated with V = —37; X;.

However, in both cases considered in figure 7, we observe that one of two specific logical states is prepared
with great precision within a significant fraction of the initial Hamiltonian parameter space.

7.4. The doubled semion model
In this section, we present our numerical results for Hamiltonian interpolation in the case of the doubled semion
model (see section 6.3.3).

(Non)-adiabaticity. We first consider the total evolution time T necessary to reach the final ground space
of Hiop, for different initial Hamiltonians Hyy. Specifically, figure 8 shows the adiabaticity error €,4i, (T)
(see (49)) as a function of the total evolution time T for the three initial Hamiltonians Hyy (0),
0 € {m, /3, 21w/3} (see (46)). The case of # = 0, corresponding to the initial Hamiltonian Hyy (0) = Zj Zjis
not shown in figure 8 since the situation is the same as in the toric code: no overlap with the ground space of Hjop
isachieved because the vertex-operators A, = Z%? are conserved quantities with (A,) = —1.
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Figure 7. These figures illustrate the expectation values (X)and (Z) of string-operators (see (51)) of the final state W(T), for different
choices of the initial Hamiltonian. The total evolution time is T'= 120. (a) The expectation value (X) of the final state W(T), for initial
Hamiltonians Hygy(a, b) in the neighborhood of Hy;,(0, 0) = —37; Z;. Note that, as illustrated in figure 6(b), the ground space of the
toric code is reached for the whole parameter range; hence these values, together with the expectation values shown in figure 7(b)
uniquely determine the state W(T). (b) The quantity In(1 — (Z)) for initial Hamiltonians Hg,(a, b) (we plot the logarithm because
the variation is small) as in figure 7(a). (c) The quantity In(1 — (X)) for initial Hamiltonians Hyx (4, b) in the neighborhood of
Hyid (0,0) = =% X The corresponding adiabaticity error is shown in figure 6(c). (d) The quantity (Z) for initial
Hamiltonians Hgjy (a, b) as in figure 7(c).
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Figure 8. The adiabaticity error ¢,q;, (T) for the doubled semion model as a function of the total evolution time T. Initial
Hamiltonians Hy, (0) with 6 € {7 /3, 27/3, 7} are considered.
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Figure 9. The adiabaticity error €,gi, (T) for different initial Hamiltonians Hyy and the doubled semion modelas Higp. In both cases,
the total evolution time is T'= 120. (a) The adiabaticity error €,4;, (T) for different Hamiltonians Hyf (a, b) in the vicinity
of H;,(0,0) = 32; Zj. The adiabaticity error is maximal for the latter because of conserved quantities; however, it decays rapidly
outside this center region. This situation is analogous to figure 6(a) for the toric code. (b) The logarithmic adiabaticity error In €,4;, (T)
among the family of Hamiltonians H;,(a, b) around Hy;,(0, 0) = 72]- Z;.

In figure 9(a), we plot the adiabaticity error €,q4;, (T') with initial Hamiltonian among the family of
Hamiltonians Hy(a, b) in the vicinity of H, (0, 0) = 3, Z;. Similarly, figure 9(b) provides the adiabaticity
error for initial Hamiltonians Hyg,(a, b) in the vicinity of Hy;, (0, 0) = =X, Z;.

Logical state. To explore the stability of the resulting final state, we consider the family of initial
Hamiltonians Hi5,(a, b) and compute the overlap | (\I/ff »(T)|¢r) |? of the resulting final state \IfgE H(T)witha
suitably chosen reference state 1)z. We choose the latter as follows: 1)y, is the result of projecting the final
state W o(T) of the Hamiltonian interpolation, starting from the initial Hamiltonian Hy;,(0, 0) = =3, Z;
onto the ground space of the doubled semion model Hiop and normalizing, i.e.

PoWo(T)

= et oD

(52)

We briefly remark that the state vy is uniquely determined (up to a phase) as the unique simultaneous +1-
eigenvector of TS*TS (see section 7.2) and the string operator Z = 7, Z, (which is the string-operator Fi,5(C)
for the associated loop Cwhen acting on the ground space of Hiop): indeed, the latter operator commutes with
both H;,(0, 0) and Hip. We also point out that, similarly to the toric code, the local Z;-operators correspond to
acombination of pair creation, hopping and pair annihilation of (s, s) anyons.

The preparation stability of the reference state 1 with respect to the initial Hamiltonians Hg,(a, b) with
negative and positive Z field component is illustrated in figure 10. For negative Z field (figure 10(b)) the
resulting state W, ;(T') has large overlap with the reference state i for almost the entire parameter range. Even
when starting from initial Hamiltonians with positive Z field component (figure 10(a)), where the final state does
not have a large overlap with the topological ground space (see figure 9(a)), the ground space contribution comes
almost exclusively from the reference state. Thus, for doubled semion model, we identify a single stable final
state 1 corresponding to the initial Hamiltonian Hyjy = —>_; Z;.

7.5. The doubled Fibonacci model
As our last case study of Hamiltonian interpolation, we consider the doubled Fibonacci model described in
section 6.3.4.

(Non)-adiabaticity. Figure 11 shows the adiabaticity error ¢,4;, (T') as a function of the total evolution time T
for the initial Hamiltonians Hg;, = +3° ;Zj- Note that to achieve the same error, the total evolution time T
needs to be much longer compared to the toric code and the doubled semion models. It also illustrates that an
error ofaround €,q4;, (T) &~ 1072 is obtained for T = 320: the final state WU(T') overlaps well with the ground
space of Hip.

In figure 12, we consider the non-adiabaticity t — ¢,4;, (t) along the evolution, again for the initial
Hamiltonians Hif, = +3° ;Zj- In particular, figure 12(a), which is for a total evolution time of T = 320, we see
that the deviation of the state W(#) from the instantaneous ground state of H(#) can be much larger (compared
to the non-adiabaticity €,q;, (T')) along the evolution, even when approaching the end of Hamiltonian
interpolation: we have €,4;, (f) 2 1072 for &~ 280. The fact that the ground space of the final Hamiltonian Hjqp
isreached nevertheless at time ¢ & T is essentially due to the exact degeneracy in the final Hamiltonian Hip: In
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Figure 10. The overlaps | (\I!;fb(T) |{hr) > between the final states \I/;fb(T) of Hamiltonian interpolation and the reference state r
(see (52)). Observe that the same reference state is used in both figures even though 1/ is naturally associated with the centerpoint in
figure 10(b). The total evolution time is T = 120 in both cases. Comparing with figures 9(a) and (b), we conclude that throughout the
region where the ground space of Higp is reached, approximately same state is prepared. (a) The overlap | (U}, (T)|¢x) [* for initial
Hamiltonians Hg,(a, b) around H, (0, 0) = 3_; Z;. We observe that outside the center region (where the ground space of Higp is
notreached, see figure 9(a)), the prepared state \I/Ib(T) is not too far from the reference state 1r. Note that definition of the latter
does not correspond to any Hamiltonian in this plot, but rather the centerpoint of figure 10(b). (b) The quantity
In(1 — [(¥ (T)¢r) *) for initial Hamiltonians Hg;y(a, b) around He, (0, 0) = —3; Z;. We plot the logarithm of this quantity
because the variation is small. As illustrated, the resulting state is close to the reference state 1 throughout most of the parameter
region. Observe that, while ¢ corresponds to the center point in this figure, it still deviates from W, since the latter has support
outside the ground space of Hiop (cf figure 9(b)).
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Figure 11. The adiabaticity error e,q;, (T) with respect to different total evolution times T for the Fibonacci model. The initial
Hamiltonian Hyy is either Hyf;, (0, 0) = X, Z; or Hy;y(0, 0) = —3°; Z;. Note that for this choice of initial Hamiltonians, the vertex
terms A, are conserved quantities (as for example in the toric code). Since both |1)*? and |7)®? are in the ground space of A,, both signs
of the pure Z field lead to a Hamiltonian interpolation which invariantly remains in the ground space of A,. In other words, the
adiabaticity error stems from the plaquette terms Other fields are computationally more costly, since they lift the block decomposition
of the interpolating Hamiltonians H(f) induced by the conserved vertex terms, reducing the sparsity of the unitary evolution.

fact, the system is in a state which has a large overlap with the subspace of ‘low energy’ (corresponding to the
4-fold degenerate subspace of Hiop) along the trajectory, but not necessarily with the unique instantaneous
ground state of H(#) for t < T'.For t= T, the state has alarge overlap with the ground space of Hiqp since the
latter is higher-dimensional.

This illustrates that the adiabaticity error ¢ — €,q5, () along the evolution (i.e., for t < T') does not provide
sufficient information to conclude that the ground space of Hiop, is reached at the end of the evolution. Due to
the small energy splitting within the topological ‘phase’ it is more fruitful to view the part of the interpolation
closeto t = T interms of degenerate adiabatic perturbation theory [RO14] instead of the traditional adiabatic
theorem.

figure 12(a) also shows that for T'= 320, changing the Trotter time steps At (see (48)) from At = 0.1to
At = 0.01 does not significantly change the behavior, particularly for the initial Hamiltonian ), Z;. On the
other hand, by increasing the Hamiltonian interpolation time for Hyjy = 3, Z; to T'= 1280, as in figure 12(b),
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Figure 12. The overlap of the state W(¢) attime #with the instantaneous ground space of H(¢), as expressed by the adiabaticity error
t— €dia (t) along the evolution. The initial Hamiltonian is either Hf, (0, 0) = Y=, Z; or Hyz, (0, 0) = =, Z;, and the final
Hamiltonian Hjgp, is the doubled Fibonacci model. (a) The total evolution time is T'= 320. As explained in the text, the fact that the
overlap with the instantaneous ground state towards the end of the evolution is small does not prevent the system from reaching the
degenerate ground space of the final Hamiltonian Higp (see 11). Changing the Trotter discretization step from At = 0.1to

At = 0.01 does not significantly change the behavior. (b) For the initial Hamiltonian Hyy = Y-, Z; and a total evolution time

T = 1280, the system closely follows the instantaneous ground state of H(t).
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Figure 13. These figures show the overlap between the final states W>, of Hamiltonian interpolation and the reference state 1/z. This
is for the family Hy,(a, b) of initial Hamiltonians and the double Fibonacci model Hiop as the final Hamiltonian. The reference

state g is chosen in both figures as in (52) (corresponding to the center point in figure 13(b)). The total evolution time is T'= 320 in
both cases. (a) The quantity In(1 — [(¥},(T)[¢r) ?) for initial Hamiltonian of the form H (a, b) around Hg; (0, 0) = 3% Z;. For
the whole range of parameters (a, b), the adiabaticity error is small, €,4;, (T) < 10~*. The reference state g corresponds to the center
of figure 13(b) (up to projection onto the ground space of Hiop and normalization). The figure illlustrates that the final state \I/Zb(T)
has non-trivial overlap with the reference state in the region a > 0, but is very sensitive to the choice of parameters (g, b), especially
around (a, b) = (0, 0). (b) The quantity In(1 — [(W ,(T)|4r) [*), for initial Hamiltonians Hy;,(a, b) around H~(0, 0) = =X Z;
For the whole range of parameters (a, b), the adiabaticity error is small, €,4;, (T') < 0.005 apart from the point on the boundary of the
plot. The Hamiltonian interpolation reaches the reference state 1 essentially for the full parameter range.

we see the evolution closely follows the instantaneous ground state. The discrepancy can be seen as a ‘lag’ or
delay of the evolved state and the instantaneous ground state and is largest at the ‘phase transition’,
H(t) =~ 1/4Hiop + 3/4>°; Z;, where the gap closes.

Logical state. Figure 13 provides information about the final state W7 ,(T) of Hamiltonian interpolation, for
the family of initial Hamiltonians Hi;,(a, b) (see (50)). Again, the figure gives the overlap with a single reference
state 1. Similarly as before, we choose the latter as the final state of Hamiltonian interpolation, starting with
initial Hamiltonian Hy;,(0, 0) = —3_; Z;, and subsequently projected into the ground space and normalized
(see (52)).
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Figure 14. To compare with the perturbative prediction, these figures give the overlap between the reference state v/ and the ground
state 1pert (@, b) of the perturbed Hamiltonians Hpie,t(a, b) = Higp & 0.001H (a, b). (a) The quantity In(1 — | (w;en(a, b)|vr)?)
for Hamiltonians H;'eﬁ(a, b). (b) The quantity In(1 — [(Ypert(a, b) [r) [?) for Hamiltonians Hyer(a, b). The reference state 1) has
overlap | (Yipert(0, 0)[¢/r) [> ~ 0.9976 with the ground state of the perturbed Hamiltonian Hpert(0, 0) = Hiop — 0.0013; Z;.

We observe significant overlap of the final state with the reference state 1/ for the whole parameter range for
the initial Hamiltonians Hy;,(a, b) (figure 13(b)). In contrast, for the initial Hamiltonians Hy,(a, b), the final
state depends strongly on the choice of parameters (g, b) (figure 13(a)).

To relate this to the discussion in section 6 (respectively conjecture 1), let us first consider the centerpoint of
figure 13(b) associated with the initial Hamiltonian Hy;, (0, 0) = =X Zj. These terms correspond to a
combination oflocal pair creation, hopping and pair annihilation of (7, 7) anyons, as explained in appendix B.
The effective Hamiltonian can be computed at this point based on expression (35) and the S- and T-matrices
givenin equation (45). The result is given numerically in equation (100) in the appendix. Computing the ground
state e of this effective Hamiltonian, we observe that with respect to the projections { P, ;, B, ;, Py ;, B 1}, the
expectation values of the reference state g and )i are similar

| Pl,l PT,’T‘ Pl,’T P’T,l

g | 0.5096 0.4838 0.0033 0.0033.
Yerr | 0.5125 0.4804 0.0036 0.0036

Moving away from the center point in figure 13(b), we compute the overlaps of the reference state 1r with
the ground states w;eﬂ(a, b) of perturbed Hamiltonians of the form Hpien(a, b) = Hiop = 0.00 1Hg (a, b), as
illustrated in figure 14 (the latter providing an approximate notion of effective Hamiltonians). The figure
illustrates that these perturbed states have, as expected, a certain degree of stability with respect to the
parameters (g, b). Comparison with figure 13 thus points to a certain discrepancy between the behavior of
perturbed states and states obtained by Hamiltonian interpolation: figure 13(a) shows high sensitivity of the final
state to initial parameters (a, b) (which is absent in the perturbative prediction), whereas figure 13(b) shows that
the final state is close to the reference state 1 throughout (as opposed to the perturbative prediction, where this
is not the case along the boundary). To rule out that this discrepancy stems from an insufficiently large choice of
the total evolution time T, we also show that different choices of the total evolution time T do not significantly
affect the overlap with the reference state along the line b =0, see figure 15.

In summary, we conclude that while for a large parameter range of initial parameters the reference state x
is indeed reached, the stability property is less pronounced than for the toric code and the doubled semion
models. In addition, a naive comparison with ground states of perturbed Hamiltonians suggests that the
description via effective Hamiltonians does not capture all relevant features. We conjecture that higher orders in
perturbation theory are needed to provide more information in the case of the Fibonacci model: the state may be
‘locked’ in eigenstates of such higher-order Hamiltonians before the lowest order effective Hamiltonian
dominates.

8. Conclusion

In this paper, we have studied the feasibility of preparing topologically ordered ground states by means of
Hamiltonian interpolation. Our numerical simulations suggest that this is indeed an attractive approach to
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Figure 15. This figure shows the overlap | (Wpert(0) [1) |* for initial Hamiltonians Hiiy (0) = 32;cos 0Z; + sin 0X; along the line of
the horizontal axis in figure 14(a), for different values of the total evolution time T. We only compute T = 960 on the rightmost region
to show that increasing the total evolution time do not significantly change the final states. It also gives the corresponding
overlap | (Wpert(0)[¢r) I between the ground state of Hpert (0) and the reference state. The figure illustrates that increasing the
evolution time T does not significantly alter the overlap with the reference state.

initializing topological quantum memories or computers. In particular, as discussed in the introduction, this
approach compares favorably with other proposed methods in terms of the required experimental resources.

The considered preparation process exhibits a striking feature as we observe in our simulation: the resulting
final states depend only weakly on the chosen initial Hamiltonian. We provide analytical perturbation theory
arguments which elucidate the origin of this stability property. This result has operational consequences: itimplies
that straightforward Hamiltonian interpolation can only reach a limited set of final states, a feature which may be
undesirable for the initialization of a quantum computer. It remains to be seen whether alternative interpolation
schedules and/or additional operations during the interpolation can lead to additional stable final states.

Our focus here is on systems of small size. As a result, we anticipate that our findings may be reproduced in
actual experiments in the not-so-far future: reasonable control of about a dozen qubits would be sufficient for
this purpose. Ultimately, however, it is desirable to work with larger systems, as those exhibit better fault-
tolerance properties. Unfortunately, this is currently not only beyond the reach of experiments, but also appears
to be beyond the current state of the art in terms of computational and analytical methods.

Key questions in this regard concern the finite-size scaling of the gap at the critical point: this will determine
the needed preparation time, but it is not well-understood in two-dimensions [Ham00]. In addition, the
perturbation theory method we employed here is not ideal for large-size systems due to convergence issues:
some alternative approaches such as real-space renormalization will be needed. More broadly, Hamiltonian
interpolations between trivial and topological phases are naturally related to topological phase transitions.
Progress on characterizing the latter may provide new insight into the nature of such interpolations.
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Appendix A. Equivalence of the self-energy- and Schrieffer—Wolff methods for topological
order

As discussed in section 3.4, here we show that at lowest non-trivial order, the expressions obtained from the self-
energy-method and the Schrieffer—-Wolff method coincide if the Hamiltonian and perturbation satisfies a
certain topological order condition.
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We begin with a review of the exact Schrieffer—Wolff transformation (section A.1), as well as the expressions
resulting from the Schrieffer—Wolff perturbative expansion (section A.2). In section A.3, we present some preliminary
computations. In section A.4, we introduce the topological order constraint and establish our main result.

A.1. Exact-Schrieffer—Wollff transformation
As mentioned in section 3, the Schrieffer—Wolff method provides a unitary U such that

Het = U(Hy + €V)UT (53)

preserves the ground space Py H of Hy, and can be considered as an effective Hamiltonian. The definition of the
unitary is as follows: let Pbe the projection onto the ground space of the perturbed Hamiltonian H, + €V.
Defining the reflections

Rp,=2P — I
Rp=2P — 1

the (exact) Schrieffer—Wolff transformation is defined by the ‘direct rotation’

U= \/Rp,Rp, (54)
where the square root is defined with a branch cut along the negative real axis. The effective Hamiltonian is then
given by

Hef(¢) = PoU (Hy + eV)UTP,,.

A variational characterization (see [BDL11]) of the unitary U (instead of (54)) is often more useful (e.g., for
computing the effective Hamiltonian in the case of a two-dimensional ground space, such as for the Majorana
chain): we have

U = argmin{||I — Ul|; | U unitary and UPU" = P}, (55)
where ||All, = /tr(ATA) is the Frobenius norm.

A.2.The perturbative SW expansion

Since the transforming unitary (54), as well as expression (53), are difficult to compute in general, a standard
approach is to derive systematic series in the parameter € (the perturbation strength). In this section, we
summarize the expressions for this explicit perturbative expansion of the Schrieffer—Wolff effective
Hamiltonian obtained in [BDL11]. The perturbation is split into diagonal and off-diagonal parts according to

Vi = PyVPy 4+ Qo VQq = D(V), (56)
Voa = PoVQo + Qo VP, = O(V), (57)

where P, is the projection onto the ground space of Hy, and Qy = I — P, the projection onto the orthogonal
complement. Assuming that {|7) } ; is the eigenbasis of H with energies H|i) = Ei), one introduces the
superoperator

oo = S HODIR

i,j E; — E;
Then the operators S;are defined recursively as
S1 = L(Voa)s
82 = - ‘C(AdVd(Sl)))
Sy =— LAy (Su-1) + > a5 LS (Voa)u-1)» (58)
j>1
where
ok
SVoddm= Y. Ads, -+ Ads, (Voa)s (59)
[T n=>1
Zl::l ny=m
and where Adg(X) = [S, X]. The constants are a,,, = 2"’;?‘"1 ,where 3,, is the mth Bernoulli number. Observe that

§k(\/;d)m =0 for k > m.

The gth order term in the expansion (6) is
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Hefty = > by 1PoS” (Vaa)g-1Po, (60)
1<j<q/2]

where b,,_| = Z(Z(T;?M

Since our main goal is to apply the perturbation theory to topologically ordered (spin) systems, we can try to
utilize their properties. In particular, one defining property of such systems is that, if an operator is supported on
atopological trivial region, then it acts trivially inside the ground space. A common non-trivial operation in the
ground space corresponds to the virtual process of tunneling an anyon around the torus. This property will allow
us to simplify the computation when we want to compute the lowest order effective Hamiltonian. In the
following subsections, we will show that although S, is defined recursivelybased on Sy, ..., S, — 1, only the first
term — £ (Ady, (S,_1)) on the rhs of (58) would contribute to the lowest order effective Hamiltonian. The

intuition behind this claim is that the other term 1% LS & (V) —1) corresponds to virtual processes which
go through the ground space — excited space — ground space cycle multiple times (larger than one). Itis
intuitive that such virtual processes would not happen when we want to consider the lowest order perturbation.

A.3. Some preparatory definitions and properties
Let

G(2) = (zI — Hp)™!
be the resolvent of the unperturbed Hamiltonian Hj. Let E, be the ground space energy of Hy. We set
G = G(Ep) = G(Ep) Qo = QoG(Ep)Qos
i.e., the inverse is taken on the image of Qy. Then £ can be written as
LX) = PyXG — GXP,. (61)

To organize the terms appearing in the perturbative Schrieffer—Wolff expansion, it will be convenient to
introduce the following subspaces of operators.

Definition A.1. For each n € N, let I'(n) be the linear span of operators of the form
ZoVILVZy +or Zy 1V, (62)

where foreach j = 0, ..., n, the operator Zjis either one of the projections Py or Q, or a positive power of G,
ie, Zj € {Py, Q} U {G™ |m € N}.
Let I'*(n) C I'(n) the span of operators of the form (62) which additionally satisfy the condition
202y = Z,Zo =0,

i.e., Zpand Z, are orthogonal.
For later reference, we remark that operators in I'*(n) a linear combinations of certain terms which are oft-
diagonal with respect the ground space of Hj (and its orthogonal complement). In particular, any product of an

even number of these operators is diagonal.
The first observation is that the summands the effective Hamiltonian (60) have this particular form.

Lemma A.2. We have

Voa € T*(1) (63)
and
Sy € I'*(n) foreveryn € N (64)
Furthermore
$*(Voa)m € T(m + 1) (65)
forall k, m.

Proof. The definition of I' (1) immediately implies that

XY eT'(n + m) forXeTl'(m)and Y € I'(m) . (66)
Thus

Adx(Y) € I'(ny + my) forX e T'(m)and Y € I'(my).
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Furthermore, inspecting the Definitions (57) and (56), we immediately verify that

Voa € T'(1) and VaeI'(1). (67)
Similarly, (63) follows directly from the definitions.
We first argue that
S er() and S, € T'(2). (68)

Inserting the definition of V 4 and £ (thatis, (61)), we have

S1=L(PVQq + Qo VPy)
=Py(PyVQo + Qo VPy)G — G(PyVQo + Qo VPy) Py
— P,VG — GVP,, (69)

where we used the fact GQy = QG = G and that Q,, Py are orthogonal projections. This proves the claim (64)
for n=1and, in particular, shows that §; € T'(1).
Similarly, for n =2, using the definition of Vj, a straightforward calculation (using (69)) gives

Ady,(S) = (PyVPyVG — Qo VGVPy) + h.c.
(where h.c. denotes the Hermitian conjugate of the previous expression) and thus with (61)
Sz = (P() VPO VG2 + GVGVP()) — h.c..

We conclude that (64) holds n =2 and, in particular, S, € I'(2), as claimed (equation (68)).
With (67) and (68), we can use the composition law (66) to show inductively that

S, € I'(n) foralln € N. (70)
Indeed, (70) holds for n = 1,2. Furthermore, assuming S,,, € I'(m) forallm < n — 1, we canapply (66)
and (67) to the Definition (59) of § & (Vod)u_1, Obtaining
S (Vow1 €T(n)  and  Ady,(S,_1) € ['(n).
Thus (70) follows by definition (58) of S,,, the easily verified fact (see (61)) that L(I"(n)) C I'(n), and linearity.
Finally, observe that (61) also implies
LT (n)) C T*(n), (71)
hence (64) follows with (70).
The claim (65) is then immediate from the composition law (66), as well as (70) and (67). O

A.4. Topological-order constraint
In the following, we will assume that

PyI'(n) Py C CPy for all n < L.(80)

which amounts to saying that (H,, V) satisfies the topological order condition with parameter L (see definition
3.1). In section A.4.1, we argue that this implies that the effective Hamiltonian is trivial (i.e., proportional to Py)
forall orders n < L.Insection A.4.2, we then compute the non-trivial contribution of lowest order.

A.4.1. Triviality of effective Hamiltonian at ordersn < L. A simple consequence of definition A.1 then is the
following.

Lemma A.3. Suppose that PyI"(n)Py C CP, foralln < L. Then for any 2k-tuple of integers ny, ..., nyx € N with
2k
an <L,
j=1

andall T, € T*(n;), j = 1,..., 2k, we have
Tnl TnZkPO e CP,

P()Tn1 e Tﬂzk e CP,.
Proof. It is easy to check that because of property (66), the expression T, - T, Pyis contained in PyI' (1) Py,

Mok
2k

wheren = 373, n;. The claim follows immediately. The argument for Py T, - T, is identical. 0

Mok

Lemma A.4. Assume that PyI"(n)Py C CP, foralln < L. Then
P0§2j71(\/0d)n,1P0 e CP, foralljandalln < L.
PoS (Vo) _1Py € TP, forallj > 1. (72)
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lemma A.4 suffices to show that the nth order effective Hamiltonian H, é?f) is trivial (i.e., proportional to Py) for
anyorder n < L (see theorem 3.2 below).

Proof. The claim (72) is an immediate consequence of the assumption since § y-1 (Vod)u—1 € T'(n)according
to (65) oflemma A.2.
For j > 1, we use the definition

P = T A e Ads (V)
My .oes 121
Efj:l] nr=L-1

First summing over n, (using the linearity of Ads, ), we obtain

S (Vowdwo1 = S Ads, ()  where

n=1

Y= Y Ads, o Ads, (Vao).

2j-1
Zr:Z ny=L—1-m

Observe that Y, is alinear combination of products T; -+ T;_; ofan odd number 2j — 1ofelements { T,}f’:ll,
where (Tj, ..., Tyj_1) is a permutation of (S,,, ..., Sy Vod)- By linearity, it suffices to show that
PyAds, (T; -+ Tj—1)Py € CPyforsuchaproduct.

We will argue that
T - Thj—1Py = TP, forsome T € I'(m) with m < L — n; and (73)
PyTy -+ Thj_y = Py T’ for some T’ € T'(m’) withm’ < L — n. (74)

This implies the claim since
PyAds, (Ti -+ Thj - 1)Po=PoSy, Ty -+ Thj 1Py — Po'li -+ Thj—1S4, Po

= PyS,, TPy — PoT'S,, Py

€ CPy,
whereweusedthat S, T € I'(ny + m)and T'S,, € T'(m; + m’), m; + m < L, + m’ < Land our
assumption in the last step.

To prove (73) (the proof of (74) is analogous and omitted here), we use that S,,, € I'*(nj) and Voq € (1)
according to lemma A.2. In other words, there are numbers m;, ..., my 21 with
ij;ll m, =1+ ij;; n, =L — m < LsuchthatT, € I (m,)forr = 1,...,2j — 1. Inparticular, with
lemma A.3, we conclude that
T Ty 1 Po=T(L - T )P
€ CLP,.

Sincem; =L — n — ij:zl m, < L — ny,the claim (73) follows. O
A.4.2. Computation of the first non-trivial contribution. Lemma A.4 also implies that the first (potentially) non-

trivial termis of order L, and given by Py s (Voa)r—1Py- Computing this term requires some effort.
Let us define the superoperator V; = —L o Ady,, thatis

VaX) = LXVa — VaX).

For later reference, we note that this operator satisfies

Vi(T*(n)) C T'*(n + 1). (75)
As an immediate consequence of (71).
We also define the operators
B, = > a; L (Vag)u-1) (76)
=1

Then we can rewrite the recursive definition (58) of the operators S, as

S = L(Voa)

Sn = Vd(snfl) + B, = An + By for n = 2,
where we also introduced

A, = Vi(Suo0) forn > 2. (77)

Similarly to lemma A.4, we can show the following:

39



10P Publishing

NewJ. Phys. 18 (2016) 093027 X Nietal

Lemma A.5. Suppose that PyI'(n) Py C CP, foralln < L. Then for any
v {Zo\/leVde oo Ty A VaZy for m >0
Zy for m =20
where Z; € {Py, Qo} U {G* |k € N}, wehave
PoB;YVjaPy € CPy,  and  PyVigYB,P, € CP, (78)
forall¢, msatisfying? + m — 1 < L.

Proof. By definition (76), B, is alinear combination of terms of the form £($ % (Voa)e—1p) with j > 1,whichin
turn (see (59)) is alinear combination of expressions of the form

2j
L(Ads,, - Adgnzj(%d)) where Zn, =7 -1
r=1

It hence suffices to show that

PoL(Ads,, -+ Ads,, (Voa)) YVoa Po € CPy. (79)

(The proof of the second statement in (78) is identical and omitted here.)
By definition of £, the claimis trueif Zy = Py, since in this case the lhs. vanishesas Py V4P, = 0.
Furthermore, for general Z, € {Qy} U {G* | k € N}, the claim (79) follows if we can show that

Py(Ads,, -+ Ads,, (Voa)) YVeaPo € CPy,
i.e.,wecanomit £ from these considerations. This follows by inserting the expression (61) for L.
Observe that Adg, -+ AdSnzj (Vo) is alinear combination of products T; -+ Tpj41 of 2j + 1operators
{ T,}fjjll, where (T, ..., Tj41) is a permutation of (S, ..., Sy,
2j + 1-tuple of elements { T,}fjjll, we have
PoTy -+ T Thj1YVoa Py € CPy. (80)

Via)- That s, it suffices to show that for each such

25

Bylemma A.2, T, € T"*(m,) for some integers m, > 1satisfying ij:ll m, =1+ Zf’zl n, =1+ ¢ — 1.This
implies (by our assumption ¢ + m — 1 < L)that

2j
>om=¢-1<1, (81)
r=1
andthus Py T; --- T,; € CPyaccording tolemma A.3. We conclude that
Py - Ty Thj 1 YVoaPo € CPy T 11 YVoa Py
€ CPyI'(myj11 + m + 1)P,.

Butby (81)and the because j > 1, we have
2j
M+ (m A D= — 1= 3 m) + (m + 1)
r=1
SE-1-2)4+m+1)<f+m-2<L

by assumption on #, m and L, hence (80) follows from the assumption (80). O

Lemma A.6. Suppose that Py (n)Py C CPy foralln < L. Then forany ¢, m satisfying¢ + m — 1 < L, wehave

PyV"(By) Vog Py € CPy and Py Vo V" (B) Py € CP,. (82)

In particular, for every q < L, we have
PoAdys+is, ) (Vod) Po € CPo (83)

forallk = 0,...,q — 2. Furthermore
PyAdp, (Vog) Py € CPy forall # < L. (84)

Proof. By definition of V), the expression V3" (By) is alinear combination of terms of the form

Al = ZoVaZy -+ Zy A\ a2,

ALB, AR where X
AN = Zr+1Ver+2 ZdeZerl

andeach Z; € {Py, Qo} U {G™ |m € N}.SinceALonlyinvolves diagonal operators and the number of
factors Vjisequalto r < L,wehave P)AL = PyALP, € P,I'(r)P, € CP,.In particular
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Py(ALB,AR) Vog Py € CPyBy AR Vg P,
But

POBfAR VoaPo € CPy,
where we applied lemma A.5 with Y = AR (note that A® involves m — rfactors Vy,and ¢ + (m — r) — 1 < L
by assumption). We conclude that

Py(AB,AR) Voq Py € CP,,
and since Py V3" (Bg) Voa Py is a linear combination of such terms, the first identity in (82) follows. The second
identity is shown in an analogous manner.
The claim (83) follows by settingm = k + land £ = q — k,and observingthatZ + m — 1 = g < L.
Finally, consider the claim (84). We have

PyBy Voa Py = PyBr Qo Voa Py € CPy

Py VoqBe Py = Py Voa QoBe Py
forall#with # — 1 < Lbylemma A.5, hence the claim follows. O
Lemma A.7. Suppose that PyI'(n) Py C CP, foralln < L. Then

PoAdy,a,)(Voa) Po € PoAdyeac v,y (Voa) Po + CPo.
forallq < L.
Proof. We will show thatfor k = 1,...,q — 2, we have the identity
PoAdysia, ., (Vod) Po € PoAdyersia, y(Voa) Po + CPo. (85)

(Notice that the expression on the rhs. is obtained from the lhs by substituting k + 1 for k.) Iteratively applying
this implies

PoAdy,a,) (Voa) Po € PoAdyei-1(a,)(Vod) Py + CPo,

from which the claim follows since A, = V(L (V,q)).
To prove (85), observe that by definition (77) of A,,, we have by linearity of 1

FAgr1-p) = VF S = VI A + VI (B
By linearity of the map X — PyAdy (Voq) By, it thus suffices to show that
PoAdysi+i, ) (Voa) Po € CPo
forallk = 1,...,q — 2. This follows from (83) of lemma A.6. O
Lemma A.8. Suppose that PyI"(n)Py C CP, foralln < L. Then
PyS' (Vaa)n—1Po = PoAdysr—2(2vy (Voa)Po + CP foralln < L + 2. (86)
Proof. By definition (59) and the linearity of Ad., we have
§' (Voadn—1 = Ads, (Vo) = Ada, (Vo) + Ads, ,(Vo)-
Butby definition of A, _;, wehaveifn — 2 < L
PoAda,_,(Voa) Po = PyAdys, 5 (Vod) Po

= PyAdy,a, (Vo) Po + PoAdy,s, ,)(Voa) Po
€ PoAdyor—2(2v,9)) (Voa) Py + CPy,

where we again used the linearity of the involved operations in the second step and lemmas A.6 and A.7 in the last
step (withk = Oand g = n — 2).
Similarly, we have (again bylemma A.6)ifn — 2 < L.

PyAdp, ,(Voa) Py = CPy.
The claim (86) follows. O
Lemma A.9. Suppose that PyI"(n)Py C CP, foralln < L. Then
PyS' (Voa)r 1Py = 2P, VGVG --- GVP,,

where there are L factors V on the rhs.
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Proof. We will first show inductively for k = 1,...,n — 2 that
V;k(ﬁ(Vod)) = —((GV)M1Py — h.e) + Ti for some T € I'* (k). (87)
By straightforward computation, we have

L(Vog) = PyVodG — h.c.
[£L(Voa), Val = —GVoaPo Vg + VaGVoaPy + h.c.
V(L (Voa)) = —(GVgGVoaPy — hoc)) + T,

where T} = G*V,qP, V3P, — h.c.. Byassumption, P, V3 Py = PyV4Py € CP,. Thus T, € I'*(1), and the claim (87)
is verified for k = 1 (since GV GV g Py = GVGVP,).

Now assume that (87) holds for some k < n — 1. We will show that itis also valid for k replaced by k + 1.
With the assumption, we have

Vi (L (Voa)) = ViV L (Vo))
= =Va((GV)*"'Py — h.c) + Va(Th).
But
Va((GV)FH1Pg) = L(GV)F 1P Va — Va(GV)FH1Py)
= —G(GV)M1IP,VaPy + GV (GV)FFIP,
= —G(GV)F1p, VP, + (GV)kt+2p,
and by doing a similar computation for the Hermitian conjugate we find
VIUL(Vo)) = —((GV)**?Py — hc) + Tyr  where
Tiyr = (G(GV)* Py VP, — hic) + Vi(Th).

We claim that Ti.; € I'*(k + 1).Indeed, by assumption we have P, VP, € P,I"(1) Py C CPy, hence
G(GV)**'PyVPy € CG(GV)**'Py C T'*(k + 1)and the same reasoning applies to the Hermitian conjugate.
Furthermore, for T € T'*(k), we have V;(T;) € I'*(k + 1) by (75).

This concludes the proof of (87), which we now applywith k = L — 2 to get

PoAdyet2z vy (Vod) Po = PoVIE (L (Vaa)) VaaPo — PoVea VI (L (Voa)) Py

= Py (VG 4Py + Py Vo (GV)L1P,
+ PyTy 5 VogPy — Py Voa Tp 2 Po.

Since Py T;_, Voq Py and Py V,q T; _, Py are elements of PyI"(L — 1) P, we conclude that
PoAdyst-2(2v,0) (Vod) Po = PoVi 2 (L (Vo)) VoaPo — PoVoa Vi ™ *(L (Voa)) Po
=Py (VAL 'V + V(GV)I-HP, + CP.
Finally, with the expression obtained by lemma A.8 (withn = L), we get
PoS' (Voa)r-1Po = PoAdyst-22 v, (Voa) Po
= 2Py (VG)L-1VP, + CP,
as claimed. O

A.4.3. Equivalence of self-energy method and Schrieffer—Wolff transformation. With lemmas A.6, A.7 and A.9, we
now have the expressions necessary to obtain effective Hamiltonians.

Theorem A.10 (Theorem 3.2 in the main text). Suppose that PyI"(n)Py C CP, foralln < L. Then the nth order
Schrieffer—Wolff effective Hamiltonian satisfies
HY{ eCPy  foralln <L, (88)
i.e., the effective Hamiltonian is trivial for these orders, and
HY) = 2b,Py(VG)}~'VP, + CP, (89)
and where there are L factors V involved.
Proof. Consider the definition (60) of the nth order term Heff ,, in the expansion (6): we have

Az‘f
Hefin = >, byj_1PyS” ' (Vo)n—1Po-

Forn < L,eachterm PyS 41 Vod)n-1Py s i)%%lgft?ijonal to P, (see (72) of lemma A.4), hence the claim (88)
follows.
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On the other hand, for n = L, we have

A2 e CPy lf] > 1
PoSY ™ (Voa)r 1P,
057 (edkitPoy b vy .. Gva, ifj =1
according to lemmas A.4 and A.9, hence (89) follows. O

Appendix B. On a class of single-qudit operators in the Levin—-Wen model

In this appendix, we consider the action of certain single-qudit operators and discuss how they affect states in the
Levin—Wen model. For simplicity, we will restrict our attention to models where each particle satisfies a = a,
i.e., is its own antiparticle. Similar local operators were previously considered (for example, in [BSS11]). We
introduce the operators in section B.1 and compute the associated effective Hamiltonians in section B.2

B.1. Definition and algebraic properties of certain local operators
Recall that for each qudit in the Levin—Wen model, there is an orthonormal basis {|a) } . 7 indexed by particle
labels. For each particle a € F, we define an operator acting diagonally in the orthonormal basis as

O.lb) = %Ha) forallb € F. (90)

Sib
As an example, consider the Pauli-Z operator defined in section 6.3.3 for the doubled semion model.

Because the S-matrix of the semion model is given by (see e.g., [Sch13, section 2.4])

s=L[1 1]
N
with respect to the (ordered) basis {|1), |s) }, the operator O s takes the form

0, = diag(1, —1) = Z 1)

accordingto (90).
As another example, we can use the fact that the Fibonacci model has S-matrix (with respect to the basis

{11), Im)H

1
S:;[ w]
J14+ 2 le 1

to obtain
O, = diag(p, —1/¢).

Therefore, the Pauli-Z-operator in the doubled Fibonacci model takes the form

Z=—% _(“1+20,), (92)
o+ 2

where I is the identity matrix.

Wewill write O = O, for the operator O, applied to the qudit on the edge e of the lattice. To analyze the
action of such an operator O on ground states of the Levin-Wen model, we used the ‘fattened honeycomb’
description of (superpositions) of string-nets: this gives a compact representation of the action of certain
operators (see the appendix of [LW05]), as well as a representation of ground states (see [KKR10]). In this
picture, states of the many-spin system are expressed as superpositions of string-nets (ribbon-graphs) embedded
in a surface where each plaquette is punctured. Coefficients in the computational basis of the qudits can be
obtained by a process of ‘reduction to the lattice’, i.e., the application of F-moves, removal of bubbles etc. similar
to the discussion in section 5. Importantly, the order of reduction does not play a role in obtaining these
coefficients as a result of MacLane’s theorem (see the appendix of [Kit06]). Note, however, that this
diagrammatic formalism only makes sense in the subspace

Huyatia = {[1) | Aylyp) = [¢) for all vertices v}
spanned by valid string-net configurations, since otherwise reduction is not well-defined.

This provides a significant simplification for certain computations. For example, application of a plaquette
operator B, corresponds—in this terminology—to the insertion of a ‘vacuum loop’ times a factor 1/D. The
latter is itself a superposition of strings, where each string of particle type j carries a coefficient %. Wewill
represent such vacuum strings by dotted lines below:
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:%de j
J

Crucial properties of this superposition are (see [KKR10,lemma A.1])

. - .

LAV oS | >
VK =D K
\."

J

S =Doj|J

*
Ctaunst

j :%-z@f

Similarly, a single-qudit operator O of the form (90) can be expressed in this language, and takes the form
of adding a ‘ring’ around a line: we have

and the pulling-through rule

b’
5 a
0@ = <>
[
(The color is only used to emphasize the application of the operator, but is otherwise of no significance.)

LemmaB.1. Leta = 1, andlet O bean operator of the form (90) acting an an edge e of the qudit lattice. Let p, p' be
the two plaquettes adjacent to the edge e, and let B,, B, bethe associated operators. Then for any [1)) € Hyajd, we have

Blg) = 10) = By ) =0,
Byly) = W) = By(OIY)) = 0.
For example, for any ground state [t) of the Levin—-Wen model Hiop, O 1)) is an eigenstate of Hiop with

energy 2. Furthermore, for any ground state |¢), and any edges e;, ..., e, which (pairwise) do not belong to the

same plaquette, the state O{) .- O’ |¢)) is an eigenstate (with energy 2n) of Hiop. The case where the edges
belong to the same plaquette will be discussed below in lemma B.2.

Proof. For concreteness, consider the plaquette operator B, ‘on the left’ of the edge (the argument for the other
operator is identical). Because [¢)) is a ground state, we have B,|1)) = [1)). Using the graphical calculus (assuming
that the state |1)) is expressed as a string-net embedded in the gray lattice), we obtain

B,0YB,lY) = —

— 6a,ﬂzb>
O

LemmaB.2. Let e; = e, be two edges lying on the same plaquette p, and let us assume that they lie on opposite sides

of the plaquette p (this assumption is for concreteness only and can be dropped). Let O’ and O be the associated
single-qudit operators (with a = 1). Then for all |1)) € Hyaiiq, we have
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Bpoa Oa Bpl"/)> - BBPOa Bp|¢>’

where the operator O\%% is defined by

0" =

;

in the diagrammatic formalism. In other words, 0% adds a single loop of type a around the edges e;, ;.

Proof. Let |[¢)) € Hyqa. Then we have by a similar computation as before

1 aa
= BPB ZFaal%

k
QO
A N

1
= TBONVB ),

a
as claimed. O

Clearly, the reasoning of lemma B.2 can be applied inductively to longer sequences of
products OO ... O ifthe edges {ey, ..., et} correspond to a path on the dual lattice, giving rise to certain
operators O "* with a nice graphical representation: we have for example

P00 - OWPy = ¢ - PO VP,

for some constant ¢, where P, is the projection onto the ground space of the Levin—-Wen model and where
0@ %) is the operator given in the diagrammatic formalism as

€ € €k

0[(1e1-~ek) |¢> _ 93)

Using this fact, we can relate certain products of operators to the string-operator F, 4(C) associated with
the (doubled) anyon (a,a). That is, assume that the edges {ej, ..., e} cover a topologically non-trivial loop Con
the (dual) lattice (e.g., {10, 12} in the 12-qudit torus of figure 4). Then we have
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Py(OLOf -+ Of)Py = ¢ - 1 (C) (94)

for some constant c. This follows by comparing (93) with the graphical representation of the string-operators of
the doubled model as discussed in [LW05], see figure 16. Note also that by the topological order condition,
operators of the form P,O 0% ... O/’ P, are proportional to Pyif k < L.

B.2. Effective Hamiltonians for translation-invariant perturbation

Accordingto (91)and (92), a translation-invariant perturbation of the form V = Zj Z; for the doubled semion
or Fibonacci models (as considered in section 7) is, up to a global energy shift and a proportionality constant,
equivalent to a perturbation of the form

V=>09, (95)
e

where a = 1and the sum is over all edges e of the lattice (Here a = s in the doubled semion modeland a = 7
in the Fibonacci model). We show the following:

Lemma B.3. For the perturbation (95) to the Levin—Wen model Hy, the Lth order effective Hamiltonian is given by
HY = a (Z F(a,u)(c)] + o Po, (96)
c

where ¢ and ¢, are constants, and the sum is over all topologically non-trivial loops C oflength L.

Proof. According to theorem 3.2, the Lth order effective Hamiltonian is proportional to

Po(VG): VP = > PyOGOG -+ GOFVP,

up to an energy shift. By the topological order constraint, the only summands on the rhs. which can have a non-
trivial action on the ground space are those associated with edges {ey, ..., e} constituting a non-trivial loop Con
the (dual) lattice. Note that for such a collection of edges, every plaquette p has at most two edges

ej, ex € {ey,...,er} asits sides, a fact we will use below. Our claim follows if we show that for any such collection
of edges, we have

PyO GO G -+ GOLPPy = cFiaa)(C) (97)

for some constant c.

We show (97) by showing that the resolvent operators G only contribute a global factor; the claim then
follows from (94). The reason is that the local operators O{*’ create localized excitations, and these cannot be
removed unless operators acting on the edges of neighboring plaquettes are applied. Thus a process as the one on
thelhs. (94) is equivalent to one which goes through a sequence of eigenstates of the unperturbed
Hamiltonian H,,.

The proof of this statement is a bit more involved since operators O can also create superpositions of
excited and ground states. We proceed inductively. Let us set

A= Py L= OGO GOMG -+ GOI™P,
A= P0G L= O GOXG -+ GO P,
Ay = PoOGO ... 0% VG Ty = OWGOEIG ... GOP, fork =3,...,L — 1
AL _ Poo(el)Go(ez) O(eL—l)G I = O(eL)PO.
such that
PyOGOMG - GOYPy = ATy fork=1,...,L — 1. (98)

Let [¢)) be a ground state of the Levin-Wen model Hy. We claim thatforeveryk = 1,...,L — 1, thereisasetof
plaquettes Py and a constant ¢ (independent of the chosen ground state) such that

() MTkl) = - A([Tpep, Bp) O -+ OLP14h).

(ii) The (unnormalized) state ([]
of the state |1)).

peP, B,)O/ -+ OfP|y) is an eigenstate of Hy. Its energy e is independent

(iii) The set Py only contains plaquettes which have two edges in common with {ey,...,er}.

Note that for k = 1, this implies PyO*’GO{?'G --- GO Py = ¢ - B,O O ... O P, because
PyB, = Py, and the claim (97) follows with (94)
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(@) Fa,0)(C) () Fl1,)(C) (©) Fa,1)(C)

Figure 16. The graphical representation of certain anyonic string-operators in the doubled model. The dashed line is inside the torus.

Properties (i) and (ii) hold for k= L, with P, = @ and ¢; = 2: we have for any ground state |1))
TLly) = OFy)

and this is an eigenstate of Hy with energy 2 according to lemma B.1.
Assume now that (i) and (ii) hold for some k € {2, L}. Then we have accordingto (98)

AT alth) = Alily)
= A ( H BP)O;E") OLSEL)lw>

PEP

= (M 1O "G(J] B O -+ O 1Y)
PEPx

= Cp_1 - Ak_10£ek71)( H Bp)oéek) O{geL)lrL/)>)
PEPK

where
Ck .
= Fo— o if € > E(),
0 otherwise.

It hence suffices to show that for some choice of plaquettes Py_1, we have

@ A 1O (e, B O - OFP1) = M 1Ty, Bp) O - OV
(b) (Ipep, , Bp) ol ... ol [1)) is an eigenstate of H, with energy ¢;_; (independent of |4))).

(c) That the set Px_ only contains plaquettes sharing two edges with {ex_1,...,er}.

By assumption (iii) and the particular choice of {ej, ..., e;}, none of the plaquettes p € Pj contains the
edge e;_ . Therefore, we can commute the operator O'%-" through, getting

O V(] BpOW™ - Of 1) = (I Bp OO - OFV[4)). (99)
PEPx PEPr

We then consider two cases:

+ If e;_, does not lie on the same plaquette as any of the edges {e, ..., e; }, then application of O{%? creates a
pair of excitations according to lemma B.1 and the state (99) is an eigenstate of H, with
energy €q_; = € + 2 > Ey. Inparticular, setting Py_; = Py, properties (a)—(c) follow.

+ Ifthereisanedge es, £ > ksuchthat e;_; and e, belong to the same plaquette p, then the state (99)isa
superposition of states with B 5 excited/not excited, that is, we have
o) = (I BpOf 08 - Of1) = (I = Bp)ly) + Bjle).
PEPk

However, an excitation at j cannot disappear by applying the operators O, ..., 0% since these do not
share an edge with p,hence Ay (I — Bj)|p) = 0 (recall that Ay_; = PyA;_;includes a projection onto the
ground space). Thus setting P_; = Py U {p}, we can verify that (a)—(c) indeed are satisfied. (The case where
there are two such plaquettes p can be treated analogously.) 0

Let us compute the effective Hamiltonian (96) for the case of the rhombic torus, or more specifically, the
lattice we use in the numerical simulation, figure 4. It has three inequivalent weight-2 loops:
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{10, 12}, {1, 2}, {5, 7}. Follow the recipe in section 6.2, respectively section 7.2, these three loops are related by
a120° rotation. The corresponding unitary transformation for this rotation is given by the product of

matrices A = TS when expressed in the flux basis discussed in section 6.2 (for the doubled Fibonacci model, the
latter two matrices are given by (45)). Similarly, we can express the action of F, 4)(C) in this basis using (36),
gettinga matrix F. By (39), the effective Hamiltonian for the perturbation — 3, Z; is then proportional to
(when expressed in the same basis)

Heff ~ —(F + A"'FA + A“2FA?).

Note that the overall sign of the effective Hamiltonian is not specified in (34), but can be determined to be
negative here by explicit calculation. For example, substituting in the S matrix (equation (45)) of the doubled
Fibonacci model, we have F = diag(p + 1, —1, —1, ¢ + 1) for the Fibonacci model. It is then straightfor-
ward to obtain the ground state of Hegr, which is

0.715|(1, 1)) 4 (0.019 — 0.0571)|(7, 1)) + (0.019 + 0.057)|(1, 7)) + 0.693|(7, 7)), (100)

where | (a, b)) is a flux basis vector, i.e., the image of Py, ;,(C) (see section 6.2) up to some phase.
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