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Abstract
We study the preparation of topologically ordered states by interpolating between an initial
Hamiltonianwith a unique product ground state and aHamiltonianwith a topologically degenerate
ground state space. By simulating the dynamics for small systems, we numerically observe a certain
stability of the prepared state as a function of the initial Hamiltonian. For small systems or long
interpolation times, we argue that the resulting state can be identified by computing suitable effective
Hamiltonians. For effective anyonmodels, this analysis singles out the relevant physical processes and
extends the study of the splitting of the topological degeneracy by Bonderson (2009Phys. Rev. Lett. 103
110403).We illustrate our findings usingKitaev’sMajorana chain, effective anyon chains, the toric
code and Levin–Wen string-netmodels.

1. Introduction

Topologically ordered phases ofmatter have attracted significant interest in the field of quantum information,
following the seminal work of Kitaev [Kit03]. From the viewpoint of quantum computing, one of theirmost
attractive features is their ground space degeneracy: it provides a natural quantum error-correcting code for
encoding andmanipulating information. Remarkably, the ground space degeneracy is approximately preserved
in the presence of weak staticHamiltonian perturbations [BHM10, BH11,MZ13]. This feature suppresses the
uncontrolled accumulation of relative phases between code states, and thus helps to overcome decoherence.
This is a necessary requirement for the realization ofmany-body quantummemories [DKLP02].

To use topologically ordered systems as quantummemories and for fault-tolerant quantum computation,
concrete procedures for the preparation of specific ground states are required. Suchmechanisms depend on the
modelHamiltonianwhich is being realized aswell as on the particular experimental realization. Early work
[DKLP02] discussed the use of explicit unitary encoding circuits for the toric code. This consideration is natural
for systemswherewe have full access to unitary gates over the underlying degrees of freedom.Wemay call this
the bottom-up approach to quantum computing: here one proceeds by building and characterizing individual
components before assembling them into larger structures. An example are arrays of superconducting qubits
[BKM+14, CGM+14, CMS+15]. Other proposed procedures for state preparation in this approach involve
engineered dissipation [BBK+13,DKP14], measurement-based preparation [LMGH15] or the PEPS preparing
algorithm in [STV+13]. However, achieving the control requirements for experimentally performing such
procedures is quite challenging. They require either (a)independently applying complex sequences of gates on
each of the elementary constituents (b)precisely engineering a dissipative evolution, or (c)performing an
extensive set of localmeasurements and associated non-local classical data processing to determine and execute
a suitable unitary correction operation. Imperfections in the implementation of such protocols pose a severe
problem, especially in cases where the preparation time is extensive [BHV06, KP14].

In fact, these procedures achievemore than is strictly necessary for quantum computation: any ground state
can be prepared in this fashion. That is, they constituteencoders, realizing an isometry from anumber of
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unencoded logical qubits to the ground space of the targetHamiltonian.Wemay ask if the task of preparing
topologically ordered state becomes easier if the goal is to prepare specific states instead of encoding arbitrary
states. In particular, wemay ask this question in the top-down approach to quantum computing, where the
quantum information is encoded in the ground space of a given condensedmatterHamiltonian. An example are
Majoranawires [MZF+12,NPDL+14] or fractional quantumHall substrates [VYPW11]. Indeed, a fairly
standard approach to preparing ground states of aHamiltonian is to cool the systembyweakly coupling it with a
thermal bath at a temperature significantly lower than theHamiltonian gap. Under appropriate ergodicity
conditions, this leads to convergence to a statemainly supported on the ground space. Unfortunately, when
using natural equilibration processes, convergencemay be slow, and the resulting prepared state is generally a
(logical)mixed state unsuitable for computation.

A natural alternativemethod for preparing ground states of a givenHamiltonian is adiabatic evolution: here
one initializes the system in an easy-to-prepare state (e.g., a product state), which is the unique ground state of a
certain initial Hamiltonian (e.g., describing a uniform field). Subsequently, theHamiltonian of the system is
gradually changed (by tuning external control parameters in a time-dependent fashion) until the target
Hamiltonian is reached. If this time-dependent change of theHamiltonian is ‘slow enough’, i.e., satisfies a
certain adiabaticity condition (see section 2), the state of the systemwill closely follow the trajectory of
instantaneous ground states. The resulting state then is guaranteed to bemainly supported on the ground space
of the targetHamiltonian, as desired.

Adiabatic preparation has somedistinct advantages compared to e.g., encodingusing a unitary circuit. For
example, in contrast to the latter, adiabatic evolution guarantees that thefinal state is indeed a ground state of the
actualHamiltonian describing the system, independently of potential imperfections in the realization of the ideal
Hamiltonians. In contrast, a unitary encoding circuit is designed to encode into the ground space of an idealmodel
Hamiltonian, andwill therefore generally not prepare exact ground states of the actual physical system (which only
approximate themodelHamiltonian). Such an encoding into the ideal ground spacemay lead to a negligible
quantummemory time in thepresence of an unknownperturbation [PKSC10]; this is because ideal andnon-ideal
(perturbed) ground statesmaydiffer significantly (this phenomenon is referred to asAnderson’s orthogonality
catastrophe [And67]). Adiabatic evolution, on the other hand, elegantly sidesteps these issues.

The fact that adiabatic evolution can follow the actual ground state of a systemHamiltonianmakes it a
natural candidate for achieving the task of topological code state preparation. An additional attractive feature is
that its experimental requirements are rathermodest: while some time-dependent control is required, this can
be local, and additionally translation-invariant. Namely, the number of external control parameters required
does not scalewith the system size or code distance.

1.1. Summary and outlook
Motivated by these observations, we consider the general problemof preparing topologically ordered states by
whatwe refer to asHamiltonian interpolation.Wewill use this terminology instead of ‘adiabatic evolution’ since
in some cases, itmakes sense to consider scenarios where adiabaticity guarantees cannot be given. For
concreteness, we consider a time-dependentHamiltonianH(t)whichmonotonically sweeps over the path

triv top= - + ÎH t t T H t T H t T1 0, , 1( ) ( ) · · [ ] ( )

i.e., we assume that the interpolation is linear in time and takes overall time6T. Guided by experimental
considerations, we focus on the translation-invariant case: here theHamiltoniansH(t) are translation-invariant
throughout the evolution.More precisely, we consider the process of interpolating between aHamiltonian trivH
with unique ground state jY = Ä0 L( ) and aHamiltonian topH with topologically degenerate ground space
(which is separated from the remainder of the spectrumby a constant gap): the stateY t( ) of the system at
time Ît T0,[ ] satisfies the equation ofmotion

j
¶Y
¶

= - Y Y = Ät

t
H t ti , 0 . 2L( ) ( ) ( ) ( ) ( )

Generally, we consider families ofHamiltonians (ormodels)parametrized by a system sizeL; throughout,wewill
assume thatL is the number of single particles, e.g., the number of qubits (or sites) in a latticewithHilbert space
 = ÄL2( ) . Thedimension of the ground space of topH will be assumed to be independent of the system size.

Our goal is to characterize the set of states which are preparable by suchHamiltonian interpolations starting
fromvarious product states, i.e., by choosing different initial Hamiltonians trivH . To each choice jY = Ä0 L( )
of product state we associate a normalized initial trivialHamiltonian triv -å jH Pj

j≔ ( ) which fully specifies the

interpolating path of equation (1), with j j= ñájP j ∣ ∣( ) being the single particle projector onto the statej at site j.

6
We remark that in some cases, using a non-linearmonotone ‘schedule’ J T: 0, 0, 1[ ] [ ]with J =0 0( ) , J =T 1( ) and smooth

derivativesmay be advantageous (see discussion in section 2). However, formost of our considerations, the simple linear interpolation(1) is
sufficient.
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In the limit  ¥T , onemay think of this procedure as associating an encoded (logical) statei j( ) to any
single-particle statej. However, some caveats are in order: first, the global phase of the statei j( ) cannot be
defined in a consistentmanner in the limit  ¥T , and is therefore notfixed. Second, thefinal state in the
evolution(2) does not need to be supported entirely on the ground space of topH because of non-adiaticity
errors, i.e., it is not a logical (encoded) state itself. To obtain a logical state, we should think of i j( ) as thefinal
state projected onto the ground space of topH . Up to these caveats, our goal is essentially to characterize the
image of the associationi j i j: ( ), as well as its continuity properties.Wewill also define an analogous
mapiT associated tofixed evolution timeT and study it numerically by simulating the corresponding
Schrödinger equation (2) on a classical computer.

While there is a priori no obvious relationship between thefinal statesi jT ( ), i j¢T ( ) resulting fromdifferent
initial (product) statesj j¢Ä Ä,L L, we numerically find that the image ofiT is concentrated around a particular
discrete family of encoded states. In particular, we observe for small system sizes that the preparation enjoys a
certain stability property: variations in the initial Hamiltonian do not significantly affect thefinal state.We
support this through analytic arguments, computing effectiveHamiltonians associated to perturbations around

topH which address the largeT limit. This also allows us to provide a partial prediction of which statesi j( )may
be obtained through such a preparation process.Wefind that under certain general conditions,i j( ) belongs to
a certain finite family of preferred states which depend on the finalHamiltonian topH . Aswewill argue, there is a
natural relation between the corresponding states i j( ) for different system sizes: they encode the same logical
state if corresponding logical operators are chosen (amounting to a choice of basis of the ground space).

Characterizing the set i j j{ ( )} of states preparable using this kind ofHamiltonian interpolation is
important for quantum computation because certain encoded states (referred to as ‘magic states’) can be used as
a resource for universal computation [BK05]. Ourwork provides insight into this question for ‘small’ systems,
whichwe deem experimentally relevant. Indeed, there is a promising degree of robustness for theHamiltonian
interpolation to prepare certain (stabilizer) states. However, a similar preparation ofmagic states seems to
require imposing additional symmetries whichwill in general not be robust.We exemplify our considerations
using various concretemodels, includingKitaev’sMajorana chain [Kit01] (for whichwe can provide an exact
solution), effective anyon chains (related to the so-called golden chain [FTL+07] and the description used by
Bonderson [Bon09]), as well as the toric code [Kit03] and Levin–Wen string-netmodels [LW05] (for whichwe
simulate the time-evolution for small systems, for both the doubled semion and the doubled Fibonaccimodel).

1.2. Priorwork
The problemof preparing topologically ordered states by adiabatic interpolation has been considered prior to
ourwork byHamma and Lidar [HL08]. Indeed, their contribution is one of themainmotivations for our study.
They study an adiabatic evolutionwhere aHamiltonian having a trivial product ground state is interpolated into
a toric codeHamiltonian having a four-fold degenerate ground state space. They found that while the gap for
such an evolutionmust forcibly close, thismay happen through second order phase transitions.
Correspondingly, the closing of the gap is only polynomial in the system size. This allows an efficient
polynomial-timeHamiltonian interpolation to succeed at accurately preparing certain ground states.We revisit
this case in section 2.1 and give further examples of this phenomenon. The authors of [HZHL08] also observed
the stability of the encoded states with respect to perturbations in the preparation process.

Bonderson [Bon09] considered the problemof characterizing the lowest order degeneracy splitting in
topologically orderedmodels. Degeneracy lifting can be associated to tunneling of anyonic charges, part of
whichmay be predicted by the universal algebraic structure of the anyonmodel. Our conclusions associated to
sections 5 and 6 can be seen as supporting this perspective.

1.3. Beyond small systems
In general, the case of larger systems (i.e., the thermodynamic limit) requires a detailed understanding of the
quantumphase transitions [Sac11] occurringwhen interpolating between trivH and topH . Taking the
thermodynamic limit whilemakingT scale as a polynomial of the system size raises a number of subtle points. A
major technical difficulty is that existing adiabatic theorems do not apply, since at the phase transition gaps
associated to either of the relevant phases close. This is alleviated by scaling the interpolation timeTwith the
system size and splitting the adiabatic evolution into two regimes, the second ofwhich can be treated using
degenerate adiabatic perturbation theory [RO10, RO12, RO14]. However, such amethodology still does not
yield complete information about the dynamical effects of crossing a phase boundary.

More generally, it is natural to conjecture that interpolation between different phases yields only a discrete
number of distinct states corresponding to a discrete set of continuous phase transitions in the thermodynamic
limit. Such a conjecture links the problemofHamiltonian interpolation to that of classifying phase transitions
between topological phases. It can bemotivated by the fact that only a discrete set of possible condensate-
induced continuous phase transitions is predicted to exist in the thermodynamic limit [BS09, BSS11].
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2. Adiabaticity and ground states

Thefirst basic question arising in this context is whether the evolution(2) yields a stateY T( ) close to the ground
space of topH . The adiabatic theorem in itsmultiple forms (see e.g., [Teu03]) provides sufficient conditions for
this to hold: these theorems guarantee that given aHamiltonian path  H t t T0{ ( )} satisfying certain
smoothness and gap assumptions, initial eigenstates evolve into approximate instantaneous eigenstates under an
evolution of the form(2). The latter assumptions are usually of the following kind:

(i) Uniform gap: There is a uniform lower bound D D >t 0( ) on the spectral gap ofH(t) for all Ît T0,[ ].
The relevant spectral gapD t( ) is the energy difference between the ground space P t0 ( ) of the
instantaneousHamiltonianH(t) and the rest of its spectrum.Here and below,we denote byP t0 ( ) the
spectral projection onto the ground space7 ofH(t).

(ii) Smoothness: There are constants ¼c c, , M1 such that theM first derivatives ofH(t) are uniformly bounded in
operator norm, i.e., for all j= 1,K,M, we have

 Î
t

H t c t T
d

d
for all 0, . 3

j

j j( ) [ ] ( )

The simplest version of such a theorem is:

Theorem2.1.Given a state Y 0( ) such that Y = YP 0 0 00 ( ) ( ) ( ) and a uniformly gappedHamiltonian pathH(t) for
Ît T0,[ ] given by equation (1), the stateY T( ) resulting from the evolution(2) satisfies

Y - Y = T P T T O T1 .0( ) ( ) ( ) ( )

In other words, in the adiabatic limit of large timesT, the state Y t( ) belongs to the instantaneous eigenspace P T0 ( )
and its distance from the eigenspace is O T1( ).

This version is sufficient to support our analytical conclusions qualitatively. For a quantitative analysis of
non-adiabaticity errors, we performnumerical simulations. Improved versions of the adiabatic theorem (see
[GMC15, LRH09]) provide tighter analytical error estimates for general interpolation schedules at the cost of
involving higher order derivatives of theHamiltonian pathH(t) (see equation (3)), but do not change ourmain
conclusions.

Several facts prevent us fromdirectly applying such an adiabatic theorem to our evolution(1) under
consideration.

Topological ground space degeneracy.Most notably, the gap assumption(i) is not satisfied if we study ground
spaces: we generally consider the case where triv=H H0( ) has a unique ground state, whereas the final
Hamiltonian top=H T H( ) is topologically ordered and has a degenerate ground space (in fact, this degeneracy
is exact and independent of the system size for themodels we consider). Thismeans that ifP t0 ( ) is the projection
onto the ground space ofH(t), there is no uniform lower bound on the gapD t( ).

Wewill address this issue by restricting our attention to times kÎt T0,[ ], where k » 1 is chosen such that
kH T( ) has a non-vanishing gap but still is ‘inside the topological phase’.Wewill illustrate in specific examples

how Y T( ) can indeed be recovered by taking the limitk  1.
We emphasize that the expression ‘inside the phase’ is physically not well-defined at this point sincewe are

considering aHamiltonian of afixed size. Computationally, we take it tomean that theHamiltonian can be
analyzed by a convergent perturbation theory expansion starting from the unperturbedHamiltonian topH . The
resulting lifting of the ground space degeneracy of topH will be discussed inmore detail in section 3.

Dependence on the system size.A second potential obstacle for the use of the adiabatic theorem is the
dependence on the system sizeL (where e.g., L is the number of qubits). This dependence enters in the operator
norms(3), which are extensive inL—this would lead to polynomial dependence ofT on L even if e.g., the gap
were constant (uniformly bounded).

More importantly, the system size enters in the gapD t( ): in the topological phase, the gap (i.e., the splitting
of the topological degeneracy of topH ) is exponentially small inL for constant-strength local perturbations
to topH , as shown for themodels considered here by Bravyi, Hastings andMichalakis [BHM10]. Thus a naïve
application of the adiabatic theoremonly yields a guarantee on the ground space overlap of the final state if the
evolution time is exponentially large inL. This is clearly undesirable for large systems; onemay try to prepare

7
More generally, P t0 ( )may be the sumof the spectral projections ofH(t)with eigenvalues in a given interval, which is separated by a

gapD t( ) from the rest of the spectrum.
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systems faster (i.e., more efficiently) butwould need alternate arguments to ensure that the final state indeed
belongs to the ground space of topH .

For these reasons, we restrict our attention to the following two special cases of theHamiltonian
interpolation(1):

• Symmetry-protected preparation: if there is a set of observables commutingwith both trivH and topH , these will
represent conserved quantities throughout theHamiltonian interpolation. If the initial state is an eigenstate of
such observables, onemay restrict theHilbert space to the relevant eigenvalue, possibly resolving the
topological degeneracy and guaranteeing a uniform gap. This observationwasfirst used in [HL08] in the
context of the toric code: for thismodel, such a restriction allowsmapping the problem to a transverse field
Isingmodel, where the gap closes polynomialy with the system size.We identify important cases satisfying this
condition.While this provides themost robust preparation scheme, the resulting encoded states are
somewhat restricted (see section 2.1).

• Small systems: For systems of relatively small (constant) size L , the adiabatic theorem can be applied as all
involved quantities are essentially constant. In otherwords, although ‘long’ interpolation times are needed to
reach ground states of topH (indeed, thesemay depend exponentially on L), thesemay still be reasonable
experimentally. The consideration of small system ismotivated by current experimental efforts to realize
surface codes [KBF+15]: they are usually restricted to a small number of qubits, and this is the scenario we are
considering here (see section 2.2).

Obtaining a detailed understanding of the general largeL limiting behavior (i.e., the thermodynamic limit) of
the interpolation process(1) is beyond the scope of this work.

2.1. Symmetry-protected preparation
Under particular circumstances, the existence of conserved quantities permits applying the adiabatic theorem
while evading the technical obstacle posed by a vanishing gap in the context of topological order. Such a case was
considered byHamma and Lidar [HL08], who showed that certain ground states of the toric code can be
prepared efficiently.We can formalize sufficient conditions in the following general way (which then is
applicable to a variety ofmodels, as we discuss below).

Observation 2.2.Consider the interpolation process(1) in aHilbert space. Let P T0 ( ) be the projection onto
the ground space P T0 ( ) of top=H T H( ) . Suppose that =Q Q2 is a projection such that

(i) Q is a conserved quantity: top triv= =Q H Q H, , 0[ ] [ ] .

(ii) The initial state Y 0( ) is the ground state of trivH , i.e., Y = YP 0 0 00 ( ) ( ) ( ) and satisfies Y = YQ 0 0( ) ( ).

(iii) Thefinal ground space has support on  ¹QP T 00 ( )

(iv) The restrictionQH(t) of H(t) to Q has gap D t( ) which is bounded by a constantΔ uniformly int, i.e.,
D Dt( ) for all Ît T0,[ ].

Then Y = YQ t t( ) ( ), and the adiabatic theorem can be appliedwith lower boundΔ on the gap,
yielding Y - Y T P T T O T10( ) ( ) ( ) ( ).

The proof of this statement is a straightforward application of the adiabatic theorem (theorem2.1) to the
Hamiltonians trivQH and topQH in the restricted subspace Q . In the following sections, wewill apply
observation 2.2 to various systems. It not only guarantees that the ground space is reached, but also gives us
information about the specific state prepared in a degenerate ground space.

As an example of the situation discussed in observation 2.2, we discuss the case of fermionic parity
conservation in section 4. This symmetry is naturally present in fermionic systems.We expect our arguments to
extend tomore general topologically orderedHamiltonians with additional symmetries. It is well-known that
imposing global symmetries on top of topologicalHamiltonians provides interesting classes of systems. Such
symmetries can exchange anyonic excitations, and their classification aswell as the construction of associated
defect lines in topologicalHamiltonians is a topic of ongoing research [BJQ13, BSW11, KK12]. The latter
problem is intimately related to the realization (see e.g., [Bom15, BMD09]) of transversal logical gates, which
leads to similar classification problems [BBK+14, BK13, Yos15b, Yos15a]. Thuswe expect that there is a close
connection between adiabatically preparable states and transversally implementable logical gates. Indeed, a
starting point for establishing such a connection could be the consideration of interpolation processes respecting
symmetries realized by transversal logical gates.

5
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For later reference, we also briefly discuss a situation involving conserved quantities which—in contrast to
observation 2.2—project onto excited states of the finalHamiltonian. In this case, startingwith certain
eigenstates of the corresponding symmetry operatorQ, the ground space cannot be reached:

Observation 2.3.Assume that triv top YQ H H, , , 0( ) obey properties(i), (ii) and(iv) of observation 2.2. If the
ground space P T0 ( ) of topH satisfies  =QP T 00 ( ) (i.e., is orthogonal to the image ofQ), then the
Hamiltonian interpolation cannot reach the ground space of topH , i.e., áY Y ñ = WT P T T, 10( ) ( ) ( ) ( ).

The proof of this observation is trivial sinceQ is a conserved quantity of the Schrödinger evolution.
Physically, the assumptions imply the occurrence of a level-crossingwhere the energy gap exactly vanishes and
eigenvalue ofQ restricted to the ground space changes.Wewill encounter this scenario in the case of the toric
code on a honeycomb lattice, see section 7.3.

2.2. Small-system case
In amore general scenario, theremay not be a conserved quantity as in observation 2.2. Even assuming that the
ground space is reached by the interpolation process(1), it is a priori unclear which of the ground states is
prepared.Herewe address this question.

As remarked earlier, we focus on systems of a constant sizeL, and assume that the preparation timeT is large
compared toL. Generically, theHamiltoniansH(t) are then non-degenerate (except at the endpoint, »t T ,
whereH(t) approaches topH ).Withoutfine tuning, wemay expect that there are no exact level crossings in the
spectrumofH(t) along the path t H t( ) (say for some times kÎt T0,[ ], k » 1). For sufficiently large overall
evolution timesT, wemay apply the adiabatic theorem to conclude that the state of the system follows the
(unique) instantaneous ground state (up to a constant error). Since our focus is on small systems, wewill
henceforth assume that this is indeed the case, and summarily refer to this as the adiabaticity assumption. Again,
we emphasize that this is a priori only reasonable for small systems.

Under the adiabaticity assumption, we can conclude that the prepared stateY T( ) roughly coincides with
the state obtained by computing the (unique) ground state yk of kH T( ), and taking the limit k  1. Inwhat
follows, we adopt this computational prescription for identifying prepared states. Indeed, this approach yields
states thatmatch our numerical simulation, and provides the correct answer for certain exactly solvable cases.
Furthermore, the computation of the states yk (in the limit k  1) also clarifies the physicalmechanisms
responsible for the observed stability property of preparation: we can relate the prepared states to certain linear
combination of string-operators (Wilson-loops), whose coefficients depend on the geometry (length) of these
loops, as well as the amplitudes of certain local particle creation/annihilation and tunneling processes.

Since kH T( ) for k » 1 is close to the topologically orderedHamiltonian topH , it is natural to use ground
states (or logical operators) of the latter as a reference to express the instantaneous statesyk. Indeed, the
problem essentially reduces to a systemdescribed by topH , with an additional perturbation given by a scalar
multiple of trivH . Such a local perturbation generically splits the topological degeneracy of the ground space. The
basicmechanism responsible for this splitting for topologically ordered systems has been investigated by
Bonderson [Bon09], who quantified the degeneracy splitting in terms of local anyon-processes.We seek to
identify low-energy ground states: this amounts to considering the effective low-energy dynamics (see section 3).
This will provide valuable information concerning the set i j{ ( )}.

3. EffectiveHamiltonians

As discussed in section 2.2, for small systems (and sufficiently large times T), the state kY T( ) in the
interpolation process(1) should coincide with the ground state of the instantaneousHamiltonian kH T( ). For
k » 1, the latter is a perturbed version of theHamiltonian topH , where the perturbation is a scalarmultiple
of trivH . That is, up to rescaling by an overall constant, we are concernedwith aHamiltonian of the form

+H V , 40 ( )

where top=H H0 is the targetHamitonian and triv=V H is the perturbation. To compute the ground state of a
Hamiltonian of the form(4), we use effectiveHamiltonians. These provide a description of the system in terms of
effective low-energy degrees of freedom.

3.1. Low-energy degrees of freedom
Let us denote by P0 the projection onto the degenerate ground space ofH0. SinceH0 is assumed to have a
constant gap, a perturbation of the form(4) effectively preserves the low-energy subspace P0 for small > 0,
and generates a dynamics on this subspace according to an effectiveHamiltonian eff H ( ).Wewill discuss natural
definitions of this effectiveHamiltonian in section 3.3. For the purpose of this section, it suffices tomention that
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it is entirely supported on the ground space ofH0, i.e., eff eff =H P H P0 0( ) ( ) . As such, it has spectral
decomposition

eff
eff eff  å= P

=

-

H E , 5
k

K

k k
0

1

( ) ( ) ( ) ( )

where eff eff< < ¼E E0 1 , andwhere eff eff P = P Pk k 0( ) ( ) are commuting projections onto subspaces of the
ground space P0 of H0. (Generally, we expect eff H ( ) to be non-degenerate such that =K Pdim 0 .) In
particular, the effectiveHamiltonian(5) gives rise to an orthogonal decomposition of the ground space P0 by
projections eff P =

-
k k

K
0
1{ ( )} . States in eff  P0 ( ) are distinguished by havingminimal energy.We can take the

limiting projections as the perturbation strength goes to0, setting
eff eff 


P = P = ¼ -


k K0 lim for 0, , 1.k k

0
( ) ( )

In particular, the effectiveHamiltonian eff H ( ) has ground space eff P 00 ( ) in the limit  0. Studying

eff H ( ), and, in particular, the space eff P 00 ( ) appears to be of independent interest, as it determines how
perturbations affect the topologically ordered ground space beyond spectral considerations as in [Bon09].

3.2.Hamiltonian interpolation and effectiveHamiltonians
The connection to the interpolation process(1) is then given by the following conjecture. It ismotivated by the
discussion in section 2.2 and deals with the case where there are no conserved quantities (unlike, e.g., in the case
of theMajorana chain, as discussed in section 4).

Conjecture 1.Under suitable adiabaticity assumptions (see section 2.2) the projection of thefinal stateY T( )
onto the ground space of topH belongs to eff P 00 ( ) (up to negligible errors8), i.e., it is a ground state of the
effectiveHamiltonian eff H ( ) in the limit   0.

In addition to the arguments in section 2.2, we provide evidence for this conjecture by explicit examples,
wherewe illustrate how eff P 00 ( ) can be computed analytically.We also verify that conjecture 1 correctly
determines thefinal states by numerically studying the evolution(1).

We remark that the statement of conjecture 1 severly constrains the states that can be prepared by
Hamiltonian interpolation in the largeT limit: wewill argue that the space eff P 00 ( ) has a certain robustness

with respect to the choice of the initialHamiltonian trivH . In fact, the space eff P 00 ( ) is typically one-
dimensional and spanned by a single vectorj0. Furthermore, this vectorj0 typically belongs to afinite
family Ì P0 of states defined solely by topH . In particular, under conjecture 1, the dependence of the final
stateY T( ) on theHamiltonian trivH is very limited: the choice of trivH only determines which of the states in
is prepared.We numerically verify that the resulting target statesY T( ) indeed belong to thefinite family of
states obtained analytically.

3.3. Perturbative effectiveHamiltonians
As discussed in section 3.2, we obtain distinguished final ground states by computation of suitable effective
Hamiltonians eff H ( ), approximating the action of +H V0 on the ground space P0 of H0. Inmany cases of
interest, computing this effectiveHamiltonian (whose definition for the Schrieffer–Wolff-case we present in
appendix A.1) exactly is infeasible (The effectiveHamiltonian for theMajorana chain (see section 4) is an
exception.).

Instead, we seek a perturbative expansion

eff å=
=

¥

H Xn

n

n
n

0

( )

in terms of powers of the perturbation strength . This is particularly natural as we are interested in the
limit  0 anyway (see conjecture 1). Furthermore, it turns out that such perturbative expansions provide
insight into the physicalmechanisms underlying the ‘selection’ of particular ground states.

We remark that there are several differentmethods for obtaining low-energy effectiveHamiltonians. The
Schrieffer–Wolff method [BDL11, SW66] provides a unitaryU such that eff = +H U H V U0( ) † preserves P0

and can be regarded as an effectiveHamiltonian.One systematically obtains a series expansion

å= = -
=

¥

S S S Swhere
n

n
n n n

1

†

8
By negligible, wemean that the errors can bemade to approach zero asT is increased.
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for the anti-Hermitian generator S of =U e ;S this then naturally gives rise to an order-by-order expansion

eff eff å= + +
=

H H P P VP H . 6n

q

n
q

q0 0 0 0
2

, ( )( )

of the effectiveHamiltonian, where P0 is the projection onto the ground space P0 of H0 (explicit expressions
are given in appendix A.2).

Using the Schrieffer–Wolffmethod has several distinct advantages, including the fact that

(i) the resulting effective Hamiltonian effH , as well as the terms effH n( ) are Hermitian, and hence have a clear
physical interpretation. This is not the case e.g., for the Bloch expansion [Blo58].

(ii) There is no need to address certain self-consistency conditions arising e.g., when using the Dyson equation
and corresponding self-energymethods [ABD75, FW03]

Wepoint out that the series resulting by taking the limit  ¥n in(6) has the usual convergence issues
encountered inmany-body physics: convergence is guaranteed only if   D V , whereΔ is the gap ofH0. For
amany-body systemwith extensiveHilbert space (e.g., L spins), the norm = W V L( ) is extensive while the
gapD = O 1( ) is constant, leading to convergence only in a regimewhere  = O L1( ). In this respect, the
Schrieffer–Wolffmethod does not provide direct advantages compared to othermethods. Aswe are considering
the limit  0, this is not an issue (also, for small systems as those considered in our numerics, we do not have
such issues either).

We point out, however, that the results obtained byBravyi et al [BDL11] suggest that considering partial
sums of the form(6) ismeaningful even in cases inwhich the usual convergence guarantees are not given:
indeed, [BDL11, theorem3] shows that the ground state energies of effH n( ) and +H V0 are approximately equal
for suitable choices ofò andn. Another key feature of the Schrieffer–Wolffmethod is the fact that the effective
Hamiltonians effH n( ) are essentially local (for lowordersn)when themethod is applied to certainmany-body
systems, see [BDL11].Wewill not need the corresponding results here, however.

Unfortunately, computing the Schrieffer–WolffHamiltonian effH n( ) generally involves a large amount of
combinatorics (see [BDL11] for a diagrammatic formalism for this purpose). In this respect, othermethodsmay
appear to be somewhatmore accessible. Let usmention in particular themethod involving theDyson equation
(and the so-called ‘self-energy’ operator), whichwas used e.g., in [Kit06, section5.1] to compute 4th order
effectiveHamiltonians. This leads to remarkably simple expressions of the form

-P VG VP 7n
0

1
0( ) ( )

for the nth order term effectiveHamiltonian, where =G G E0( ) is the resolvent operator

= - - --G z I P zI H I P 80 0
1

0( ) ( )( ) ( ) ( )

evaluated at the ground state energyE0 of H0. In general, though, the expression(7) only coincides with the
Schrieffer–Wolff-method (that is, (6))up to the lowest non-trivial order.

3.4. Perturbative effectiveHamiltonians for topological order
Herewe identify simple conditions underwhich the Schrieffer–WolffHamiltonian of lowest non-trivial order
has the simple structure(7).Wewill see that these conditions are satisfied for the systemswe are interested in. In
otherwords, for our purposes, the self-energymethods and the Schrieffer–Wolffmethod are equivalent.While
establishing this statement (see theorem3.2 below) requires somework, this result vastly simplifies the
subsequent analysis of concrete systems.

The conditionwe need is closely related to quantum error correction [KL97]. In fact, this condition has been
identified as one of the requirements for topological quantumorder (TQO-1) in [BHM10]. Tomotivate it,
consider the casewhere P0 is an error-correcting code of distanceL. Then all operatorsT acting on less than L
particles9 have trivial action on the code space, i.e., for suchT, the operatorP TP0 0 is proportional toP0 (which
wewill write as ÎP TP P0 0 0). In particular, thismeans that ifV is aHermitian linear combination of single-
particle operators, then ÎP V P Pn

0 0 0 for all <n L. The conditionwe need is a refinement of this error-
correction criterion that incorporates energies (using the resolvent):

Definition 3.1.We say that the pair H V,0( ) satisfies the topological order conditionwith parameterL if L is the
smallest interger such that for all <n L, we have

9
By particle wemean a physical constituent qubit or qudit degree of freedom.
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Î-P VZ VZ Z VP P 9n0 1 2 1 0 0 ( )

for all ÈÎ ÎZ P Q G m,j
m

0 0{ } { ∣ }. Here P0 is the ground space projection ofH0, = -Q I P0 0 is the
projection onto the orthogonal complement, and =G G E0( ) is the resolvent(8) (supported on Q0 ).

We remark that this definition is easily verified in the systemswe consider: if excitations in the system are
local, the resolvent operators and projection in a product of the form(9) can be replaced by local operators, and
condition(9) essentially reduces to a standard error correction condition for operators with local support.

Assuming this definition, we then have the following result:

Theorem3.2. Suppose that H V,0( ) satisfies the topological order condition with parameterL. Then the nth order
Schrieffer–Wolff effectiveHamiltonian satisfies

eff Î <H P n Lfor all ,n
0

( )

i.e., the effectiveHamiltonian is trivial for these orders, and

eff = +-H P VG VP P .L L
0

1
0 0( )( )

Wegive the proof of this statement in appendix A.

4. TheMajorana chain

In this section, we apply our general results to Kitaev’sMajorana chain.We describe themodel in section 4.1. In
section 4.2, we argue that the interpolation process(2) is an instance of symmetry-protected preparation; this
allows us to identify the resulting final state.We also observe that the effectiveHamiltonian is essentially given by
a ‘string’-operatorF, which happens to be the fermionic parity operator in this case. That is, up to a global
energy shift, we have

eff »H f F·

for a certain constantf depending on the choice of perturbation.

4.1. Themodel
Herewe consider the case where topH is Kitaev’sMajorana chain [Kit01], a systemof spinless electrons confined

to a line of Lsites. In terms of L2 Majorana operators =cp p
L

1
2{ } satisfying the anticommutation relations

d=c c I, 2p q p q,{ } ·

aswell as =c Ip
2 , =c cp p

† , theHamiltonian has the form

top å=
=

-

+H c c
i

2
. 10

j

L

j j
1

1

2 2 1 ( )

Without loss of generality, we have chosen the normalization such that elementary excitations have unit energy.
TheHamiltonian has a two-fold degenerate ground space. TheMajorana operators c1 and c2L correspond to a
complex boundarymode, and combine to form aDirac fermion

= +a c c
1

2
i 11L1 2( ) ( )

which commutes with theHamiltonian. The operator a a† hence provides a natural occupation number
basis ñs sÎg 0,1{∣ } { } for the ground space P0 defined (up to arbitrary phases) by

s sñ = ñ Îs sa a g g for 0, 1 .∣ ∣ { }†

As a side remark, note that the states ñg0∣ and ñg1∣ cannot be used directly to encode a qubit. This is because they
have even and odd fermionic parity, respectively, and thus belong to different superselection sectors. In other
words, coherent superposition between different parity sectors are nonphysical. This issue can be circumvented
by using another fermion or a second chain, see [BK12]. Since the conclusions of the following discussionwill be
unchanged, wewill neglect this detail for simplicity.

We remark that theHamiltonian topH of equation (10) belongs to a one-parameter family of extensively
studied andwell-understood quantum spinHamiltonians. Indeed, the Jordan-Wigner transformof the
Hamiltonian (with Îg an arbitrary parameter)

9

New J. Phys. 18 (2016) 093027 XNi et al



å å= -
=

-

+
=

-H c c
g

c c
i

2

i

2
. 12I g

j

L

j j
j

L

j j,
1

1

2 2 1
1

2 1 2 ( )

is the transverse field Isingmodel

å å¢ = - +
=

-

+
=

H X X
g

Z
1

2 2
I g

j

L

j j
j

L

j,
1

1

1
1

whereXj and Zj are the spin 1/2 Paulimatrices acting on qubitj, j= 1,K, L. This transformation allows
analytically calculating the complete spectrumof the translation invariant chain for both periodic and open
boundary conditions [Pfe70].

TheHamiltonian ¢HI g, has a quantumphase transition at g=1, for which the lowest energymodes in the
periodic chain have an energy scaling as L1 . The open boundary case has been popularized byKitaev as the
Majorana chain and has a unique low energymode a (see equation (11))which has zero energy for g=0 and for
finite < <g0 1, becomes a dressedmodewith exponentially small energy (in L) andwhich is exponentially
localized at the boundaries.

4.2. State preparation by interpolation
The second term in(12)may be taken to be the initialHamiltonian trivH for the interpolation process.More
generally, to prepare ground states of topH , wemay assume that our initialHamiltonian is a quadratic
Hamiltonianwith a unique ground state. That is, trivH is of the form

triv å=
=

H c cV
i

4
,

p q

L

p q p q
, 1

2

,

where V is a real antisymmetric ´L L2 2 matrix.Wewill assume that it is bounded and local (with range r) in
the sense that

 = - >  p q rV V1 and 0 if ,p q, ∣ ∣

where · denotes the operator norm. As shown in [BK12, theorem1], theHamiltonian top triv+H H has two
lowest energy states with exponentially small energy difference, and this lowest-energy space remains separated
from the rest of the spectrumby a constant gap for afixed (constant)perturbation strength > 0. Estimates on
the gap along the complete pathH(t) are, to the best of our knowledge, not known in thismore general situation.

Let us assume that Y 0( ) is the unique ground state of trivH and consider the linear interpolation(2). The
corresponding process is an instance of the symmetry-protected preparation, i.e., observation 2.2 applies in this
case. Indeed, the fermionic parity operator

= -
=

-F c ci , 13
j

L

j j
1

2 1 2( ) ( )

commutes with both trivH and topH . Therefore, the initial ground stateY 0( ) lies either in the even-parity sector,
i.e., Y = YF 0 0( ) ( ), or in the odd-parity sector ( Y = -YF 0 0( ) ( )). (Even parity is usually assumed by
convention, since the fermionic normalmodes used to describe the system are chosen to have positive energy.)
In any case, the±1 eigenvalue of the initial ground state with respect to Fwill persist throughout the full
interpolation. This fixes thefinal state:

Lemma4.1.Under suitable adiabaticity assumptions (see observation 2.2), the resulting state in the evolution(2) is
(up to a phase) given by the ground state ñg0∣ or ñg1∣ , depending onwhether the initial ground stateY 0( ) lies in the
even- or odd-parity sector.

In particular, if triv = - å = -H c c
g

j
L

j j
i

2 1 2 1 2 is given by the second term in(12), we can apply the results of
[Pfe70]: the gap at the phase transition is associatedwith the lowest energymode (which is not protected by
symmetry) and is given by l p¢ = +=H L2 sin 2 1I g2 , 1( ) [ ( )]. In otherwords, it is linearly decreasing in the
system sizeL. Therefore, the total evolution timeT only needs to grow polynomially in the system sizeL for
Hamiltonian interpolation to accurately follow the ground state space at the phase transition.We conclude that
translation-invariantHamiltonian interpolation allows preparing the state ñg0∣ in a timeT polynomial in the
system sizeL and the desired approximation accuracy.

To achieve efficient preparation throughHamiltonian interpolation, one issue thatmust be taken into
account is the effect of disorder (possibly in the formof a random site-dependent chemical potential). In the case
where the system is already in the topologically ordered phase, a small amount ofHamiltonian disorder can
enhance the zero temperaturememory time of theMajorana chainHamiltonian [BK12]. This 1DAnderson
localization effect [And58], while boostingmemory times, was also found to hinder the convergence to the
topological ground space throughHamiltonian interpolation. Indeed, in [CFS07] it was found that the residual

10

New J. Phys. 18 (2016) 093027 XNi et al



energy density µE T L T1 lnres av
3.4[ ( ) ] ( ) averaged over disorder realizations decreases only

polylogarithmically with theHamiltonian interpolation time. Such a slow convergence of the energy density
indicates that in the presence of disorder, the timeT required to accurately reach the ground space scales
exponentially with the system sizeL. For this reason, translation-invariance (i.e., no disorder) is required for an
efficient preparation, and thismay be challenging in practice.

We emphasize that according to lemma 4.1, the prepared state is largely independent of the choice of the
initialHamiltonian trivH (amounting to a different choice of V): we do not obtain a continuumof final states. As
wewill see below, this stability property appears in a similar form in othermodels. The parity operator(13),
which should be thought of as a string-operator connecting the two ends of thewire, plays a particular role—it is
essentially the effectiveHamiltonianwhich determines the prepared ground state.

Indeed, the Schrieffer–Wolff-effectiveHamiltonian can be computed exactly in this case, yielding

eff 
 

= -
D

H
E

I F
2 2

, 140( ) ( ) ( ) ( )

where E0 ( ) is the ground state energy of top triv+H H , and   D = -E E1 0( ) ( ) ( ) is the gap. Expression(14)
can be computed based on the variational expression(55) for the Schrieffer–Wolff transformation, using the
fact that the ground space is two-dimensional and spanned by two states belonging to the even- and odd-parity
sector, respectively. Note that the form(14) can also be deduced (without the exact constants) from the easily
verified fact (see e.g., equation (54)) that the Schrieffer–Wolff unitaryU commutes with the fermionic parity
operatorF, and thus the same is true for eff H ( ). This expression illustrates that conjecture 1 does not directly
apply in the context of preserved quantities, as explained in section 3.2: rather, it is necessary to know the parity
of the initial stateY 0( ) to identify the resulting final stateY T( ) in the interpolation process.

5.General anyon chains

In this section,we generalize the considerations related to theMajorana chain tomore general anyonic systems.
Specifically,we consider a one-dimensional lattice of anyonswithperiodic boundary conditions. This choice
retainsmany features from theMajorana chain such as locally conserved charges and topological degeneracy yet
further elucidates someof the general properties involved in theperturbative lifting of the topological degeneracy.

In section 5.1, we review the description of effectivemodels for topologically ordered systems. A key feature
of thesemodels is the existence of a family Fa a{ } of string-operators indexed by particle labels. Physically, the
operatorsFa correspond to the process of creating a particle–antiparticle pair a a,( ¯), tunneling along the one-
dimensional (periodic) lattice, and subsequent fusion of the pair to the vacuum (see section 5.1.6). These
operators play a fundamental role in distinguishing different ground states.

In section 5.2, we derive ourmain result concerning thesemodels.We consider local translation-invariant
perturbations to theHamiltonian of such amodel, and show that the effectiveHamiltonian is a linear
combination of string-operators, i.e.

eff å»H f F 15
a

a a ( )

up to an irrelevant global energy shift. The coefficients fa a{ } are determined by the perturbation. They can be
expressed in terms of a certain sumof diagrams, as we explain below.While not essential for our argument,
translation-invariance allows us to simplify the parameter dependencewhen expressing the coefficients fa and
may also be important for avoiding the proliferation of small gaps.

We emphasize that the effectiveHamiltonianhas the form(15) independently of the choice of perturbation.The
operators Fa a{ } aremutually commuting, and thushave adistinguished simultaneous eigenbasis (wegive explicit
expressions for the latter in section 5.1.6). The effectiveHamiltonian(15) is therefore diagonal in afixedbasis
irrespective of the consideredperturbation.Togetherwith the general reasoning for conjecture 1, this suggests that
Hamiltonian interpolation canonly prepare a discrete family of different ground states in these anyonic systems.

In section 6, we consider two-dimensional topologically ordered systems and find effectiveHamiltonians
analogous to(15).Wewill also shownumerically thatHamiltonian interpolation indeed prepares
corresponding ground states.

5.1. Background on anyon chains
Themodels we consider here describe effective degrees of freedomof a topologically ordered system.
Concretely, we consider one-dimensional chains with periodic boundary conditions, where anyonic excitations
may be created/destroyed onL sites, andmay hop between neighboring sites. Topologically (that is, the
language of topological quantumfield theory (TQFT)), the system can be thought of as a torus with L punctures
aligned along one fundamental cycle. Physically, thismeans that excitations are confined tomove exclusively
along this cycle (wewill considermore generalmodels in section 6). Awell-known example of such amodel is
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the Fibonacci golden chain [FTL+07]. Variationalmethods for their studywere developed in [KB10, PCB+10],
which also provide a detailed introduction to the necessary formalism. In this section, we establish notation for
anyonmodels and reviewminimal background tomake the rest of the paper self-contained.

5.1.1. Algebraic data of anyonmodels: modular tensor categories
Let us briefly describe the algebraic data defining an anyonmodel. The underlyingmathematical object is a
tensor category. This specifies among other things:

(i) A finite set of particle labels  = ¼a1, ,{ } together with an involution a ā (called particle–anti-
particle exchange/charge conjugation). There is a distinguished particle =1 1̄ called the trivial or vacuum
particle.

(ii) A collection of integersNab
c indexed by particle labels, specifying the so-called fusion multiplicities (as well as

the fusion rules). For simplicity, wewill only consider themultiplicity-free case, where ÎN 0, 1ab
c { } (this

capturesmanymodels of interest). In this case, wewill write d=Nab
c

abc̄ .

(iii) A 6-index tensor  F : 6 (indexed by particle labels) Fabe
cdf which is unitary with respect to the rightmost

two indices (e f, ) and can be interpreted as a change of basis for fusion trees.

(iv) Apositive scalar da for every particle labela, called the quantumdimension.

(v) Aunitary, symmetricmatrix Sij indexed by particle labels such that =S Si j ij¯ .

(vi) A topological phase qei j, q Îj , associated with each particlej. We usually collect these into a diagonal

matrix diag= qT e ;j
i j({ } ) the latter describes the action of a twist in themapping class group representation

associatedwith the torus (see section 6.2).

A list of the algebraic equations satisfied by these objects can be found e.g., in [LW05] (also see [Kit06, LW05,
NSS+08,Wan10] formore details). Explicit examples of such tensor categories can also be found in [LW05],
some ofwhichwe discuss in section 6.3.2.

Here wemention just a fewwhichwill be important inwhat follows: the fusion rulesdijk are symmetric
under permutations of i j k, ,( ). They satisfy

å åd d d d=
m

ijm mk
m

jkm imℓ ℓ¯ ¯ ¯ ¯

which expresses the fact that fusion (as explained below) is associative, as well as

⎧⎨⎩d d= =
=i j1 if

0 otherwise.
16ij ij1 ( )¯

Some of the entries of the tensor F are determined by the fusion rules and the quantumdimensions, that is

d=F
d

d d
. 17j jk

ii k

i j
ijk

1 ( )¯
¯

Another important property is theVerlinde formula

åd = =N
S S S

S
, 18bcd bc

d

a

ba ca da

a1

( )¯
¯

which is often summarized by stating that S ‘diagonalizes the fusion rules’.

5.1.2. TheHilbert space
TheHilbert space of a one-dimensional periodic chain of L anyons is the space associated by a TQFT to a torus
with punctures. It has the form

 @ Ä Ä Ä
¼
¼

-
V V V ,

a a
b b

b
a b

b
a b

b
a b

, ,
, ,

L

L

L

L L

1

0

0

1 1

1

2 2

1
⨁

where the indices a b,j k are particle labels, Vc
ab are the associated finite-dimensional fusion spaces andwe

identify =b bL0 . The latter have dimension =V Ndim c
ab

ab
c . Again, wewill focus on themultiplicity-free case

where d= ÎN 0, 1ab
c

abc { }¯ . In this case, we can give an orthonormal basis ñ
 

 a b, a b,{∣ } ( ) of in terms of
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‘fusion-tree’ diagrams, i.e.

ð19Þ

where = ¼

a a a, , L1( ) and = ¼


b b b, , L1( ) have to satisfy the fusion rules at each vertex, i.e.,

d= =
- -Vdim 1b

a b
a b bj

j j

j j j1 1
¯ for all j= 1,K,L.

The prefactor in the definition of the state(19) involves the quantumdimensions of the particles, and is

chosen in such away that ñ
 
a b,{∣ } is an orthonormal basis with respect to the inner product defined in terms of

the isotopy-invariant calculus of diagrams: the adjoint of ñ
 
a b,∣ is represented as

5.1.3. Inner products and diagramatic reduction rules
Inner products are evaluated by composing diagrams and then reducing, i.e.

ð20Þ

where vac[·] is the coefficient of the empty diagramwhen reducing. Reduction is defined in terms of certain local
moves. These include

(i) Reversal of arrows (together particle–antiparticle involution a ā)

(ii) (Arbitrary) insertions/removals of lines labeled by the trivial particle1. Since =1 1¯ , such lines are not
directed, andwill often be represented by dotted lines or omitted altogether

(iii) Application of the F-matrix in the form

ð21Þ

which leads to a formal linear combination of diagramswhere subgraphs are replaced locally by the figure
on the rhs.
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(iv) Removal of ‘bubbles’ by the substitution rule

ð22Þ

These reductionmoves can be applied iteratively in arbitrary order to yield superpositions of diagrams. An
important example of this computation is the following:

ð23Þ

The series of stepsfirstmakes use of an F-move (21), followed by equation (17) aswell as(22). Together with
property(16) and evaluation of the inner product(20), this particular calculation shows that the flux-
eigenstates(27) aremutually orthogonal.We refer to [LW05] formore details.

5.1.4. Local operators
Operators are also defined by diagrams, and are applied to vectors/multiplied by stacking (attaching) diagrams
on top of the latter. Expressions vanish unless all attachment points have identical direction and labels. Herewe
concentrate on 1- and 2-local operators, although the generalization is straightforward (see [Bon09, KB10]).

A single-site operator Ĥ is determined by coefficients a a{ } and represented at

It acts diagonally in the fusion tree basis, i.e., writingHj for the operatorĤ applied to sitej, we have

ñ = ñ
   

H a b a b, , .j aj∣ ∣

A two-site operatorV̂ acting on two neighboring sites is determined by a tensor aefg
rs

r s e f g, , , ,{ } (where the labels
have to satisfy appropriate fusion rules) via the linear combinations of diagrams

ð24Þ

When applied to sites j and +j 1 it acts as

where the rhs specifies a vector in in terms of the reduction rules. It will be convenient in the following to
distinguish between linear combinations of the form(24) and operators which are scalarmultiplies of a single
diagram (i.e., with only one non-zero coefficient aefg

rs ).We call the latter kind of two-site operator elementary.
We can classify the terms appearing in(24) according to the different physical processes they represent: in

particular, we have pair creation- and annihilation operators

14
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simultaneous annihilation- and creation operators

CA C A=V a b V a V b,ˆ ( ) ˆ ( ) ˆ ( )

left- and right-moving ‘propagation’ terms

aswell asmore general fusion operators such as e.g.,

(We are intentionally writing down a linear combination here.)Note that a general operator of the form (24) also

involves braiding processes since can be resolved to diagrams of the form using theR-matrix

(another object specified by the tensor category).Wewill consider composite processes composed of such two-
local operators in section 5.1.7.

5.1.5. Ground states of anyonic chains
Wewill consider translation-invariantHamiltonians = åH Hj j0

ˆ with local terms of the form

ð25Þ

Such aHamiltonianH0 corresponds to an on-site potential for anyonic excitations, where a particle of typea
has associated energya independently of the sitej.We denote the projection onto the ground space of this
Hamiltonian byP0. This is the space

span = ñ
 

P b b1, 1 particle label 260 {∣ · ∣ } ( )

where = ¼

1 1, , 1( ) and = ¼


b b b1 , ,· ( ). In otherwords, the ground space of H0 is degenerate, with

degeneracy equal to the number of particle labels.
It will be convenient to use the basis ñb b{∣ } of the ground space consisting of the ‘flux’ eigenstates

ñ = ñ
 

b b1, 1 . 27∣ ∣ · ( )

In addition,we candefine a dual basis ¢ñb b{∣ } of the ground space using the S-matrix. The twobases are related by

å¢ñ = ña S b 28
b

ba∣ ∣ ( )

for all particle labels a b, .
Aswe discuss in section 6.3.2, in the case of two-dimensional systems, the dual basis(28) is simply the basis

offlux eigenstates with respect to a ‘conjugate’ cycle.While this interpretation does not directly apply in this one-
dimensional context, the basis ¢ña a{∣ } is nevertheless well-defined and important (see equation (30)).

5.1.6. Non-local string-operators
In the following, certain non-local operators, so-called string-operators, will play a special role. Strictly speaking,
these are only defined on the subspace(26). However, wewill see in section 5.2 that they arise naturally from
certain non-local operators.

The string-operators Fa a{ } are indexed by particle labelsa. In terms of the basis(27) of the ground
space P0 ofH0, the action of Fa is given in terms of the fusion rules as

å ådñ = ñ = ñF b N c c . 29a
c

ab
c

c
abc∣ ∣ ∣ ( )¯

15

New J. Phys. 18 (2016) 093027 XNi et al



The10 operator Fa has the interpretation of creating a particle–antiparticle pair a a,( ¯), moving one around the
torus, and then fusing to vacuum. For later reference, we show that every string-operatorFa is diagonal in the
dual basis ¢ña{∣ }. Explicitly, we have

å= ¢ñá ¢F P
S

S
a a . 30b

a

ba

a
0

1

∣ ∣ ( )

Proof.Wefirst expand P0 into its span and Fb according to equation (29), followed by an expansion ofNbc
d

through theVerlinde formula (18). Finally, we use the unitarity and symmetry of S to transformbra and ket
factors into the dual basis given by equation (28)

å å å å= ñá = ñá = ¢ñá ¢F P N d c
S

S
S S d c

S

S
a a .b

c d
bc
d

a

ba

a c d
ca da

a

ba

a
0

, 1 , 1

∣ ∣ ∣ ∣ ∣ ∣¯

,

5.1.7. Products of local operators and their logical action
Operators preserving the ground space P0 (see (27)) are called logical operators. As discussed in section 5.1.6,
string-operators Fa{ }are an example of such logical operators. Clearly, because they can simultaneously be
diagonalized (see (30)), they do not generate the full algebra of logical operators. Nevertheless, they span the set
of logical operators that are generated by geometrically local physical processes preserving the space P0 .

That is, if = å O Vj k j k, is a linear combinations of products of local operatorsVj k, , then its restriction to
the ground space is of the form

å=P OP o F , 31
a

a a0 0 ( )

i.e., it is a linear combination of string operators (with some coefficients oa). Equation (31) can be interpreted as
an emergent superselection rule for topological charge, which can be seen as the generalization of the parity
superselection observed for theMajorana chain. It follows directly from the diagrammatic formalism for local
operators.

To illustrate this point (andmotivate the following computation), let us consider three examples of such
operators, shown infigures 1(a), (c) and (b).

A L R C= - + + + + +O V a V a V a V aj j j j j j j j1 1, 1, 2 1, 2 , 1
ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) : This processes has trivial action on the ground space: it is

entirely local. It has action =P O P d Pa0 1 0 0, where the proportionality constantda results from
equation (22).

L R C
= - + +O V a V a V aj j j j j j2 1, , 1 , 1

ˆ ( ¯) ˆ ( ) ˆ ( ): This process creates a particles anti-particle pair a a,( ¯) and further separates
these particles. Since the operatormaps ground states to excited states, we have =P O P 00 3 0 .

A R R R C= ¼-O V a V a V a V a V aN N N3 ,1 1, 3,4 2,3 1,2
ˆ ( ¯) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) : This process involves the creation of a pair of

particles a a,( ¯), with subsequent propagation and annihilation. Its logical action is =P O P Fa0 2 0 is given by
the string-operatorFa, by a computation similar to that of(23).

5.2. Perturbation theory for an effective anyonmodel
In this section, we consider a one-dimensional translation-invariant systemof anyons described by the
HamiltonianH0 introduced in(25).We further consider a translation-invariant two-local perturbation
= å +V Vj j j, 1

ˆ with local terms +Vj j, 1
ˆ of the form(24) given by

å åg g t t= + + + +V V a V a V a V a V , 32
a

a
C

a
A

a
a

L
a

R
Rˆ ( ( ) ( )) ( ( ) ( )) ( )

whereVR collects all other two-anyon processes (it will turn out that in lowest order perturbation theory, only
creation and propagation are relevant). The choice of complex conjugate pairs of parameters ensures that the
perturbation is self-adjoint.Wemay think of ga as the ‘creation ampitude’, ta as the ‘propagation amplitude’,
and a as the energy of particle a.

We now compute the formof the effective Schrieffer–Wolff–Hamiltonian.Ourmain result is the following:

10
In fact, the operators Fa a{ } form a representation of theVerlinde algebra, althoughwewill not use this fact here.
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Lemma5.1 (EffectiveHamiltonians for one-dimensional anyon chains).Consider +H V0 , with the
perturbationV as described. Let P0 be the projection onto the ground space of H0. Then the Lth order effective
Hamiltonian has the form

eff  å g t= +H f F cP, , , 33L

a
L a a a a 0( ) ( ) ( )( )

for some constant Îc , and some function fL which is independent of the particle labela and is a homogeneous
polynomial of degree L in ga and ta.

Clearly, the form equation (33) of the effective Hamiltonian is consistent with the topological
superselection rule(31). However, equation (33) provides additional information: for example, the
coefficient of the string-operatorFa only depends on the energya of anyona, as well as its creation/
annihilation (ga respectively ga ) and propagation (ta) amplitudes. There is no dependence on particles
distinct froma (and corresponding braiding processes). Such terms only enter in higher orders of the
perturbative series. This can be thought of as a rigorous derivation of the tunneling amplitude for a particle in
the weak perturbation limit.We note that due to fL being homogeneous of degree L, the dominant tunneling
process will be highly sensitive to the perturbation strengths associated to different anyon labels a for large
system sizesL. In the absence of a symmetry or fine tuning, it should be possible to order the
terms  g tf , ,L a a a( ) by absolute value, with different orders ofmagnitude being expected for each term (see
section 6.1 for further discussion).

Figure 1.Thisfigure illustrates different processes in the diagrammatic formalism. Eachprocess corresponds to anoperator and is a
product of elementaryprocesses (diagrams). Ground spacematrix elements vanish if the process leaves behind excitations

(corresponding to endpoints of open strings). (a)Theoperator
A L

= + + +O V a Vj j j j1 , 1 1, 2
ˆ ( ) ˆ R

+ +a Vj j1, 2( ) ˆ C
+a V a j j, 1( ) ˆ ( ) corresponds to a

processwhere a particle pair a a,( ¯) is created, there is somepropagation, and the particles fuse subsequently. This has trivial actionon the

ground space, i.e., =P OP d Pa0 0 0 is proportional to the identity. (b)Theprocess describedby the operator
L R

= - +O V a Vj j j j2 1, , 1
ˆ ( ¯) ˆ

C
+a V aj j, 1( ) ˆ ( ) leaves behind excitations, hence =P O P 00 3 0 . (c)Theoperator A R= O V a VN3 ,1( ¯) R R

-a V a V a....N N1, 3,4 2,3( ) ( ) ( )
CV a 1,2( ) corresponds to a processwhere a pair a a,( ¯) ofparticles is created, and theypropagate all theway around the chain before

annihilating. Its actionon the ground space is given by the string-operator =P O P Fa0 2 0 .
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Proof. It is easy to check that the conditions of theorem 3.2 are satisfiedwith L equal to the length of the chain.
Indeed, -L 1( )-local terms have trivial action on the ground space as discussed in section 5.1.7. It thus suffices
to consider expressions of the form

-P VG VPL
0

1
0( )

involving L factors ofV. Inserting the definition(32) ofV, and diagrammatically expanding each term as in
section 5.1.4, we are left with a linear combination of terms of the form

a a a aP V GV GV GV P ,0 0L1 2 3

where aV
j
is a local operator given by an elementary (two-anyon) diagram (not a linear combination). Since such

operators aV
j
map eigenstates of H0 to eigenstates, and the energies of excited states reached from the ground

space by applying such operators is independent of the ground state considered, each operatorGmerely adds a
scalar, i.e., we have

q= ¼a a a a a a a a a a P V GV GV GV P V V P V V V V P, ,0 0 0 0L L L1 2 3 1 1 2 3( ) ·

for some constant θ depending on the perturbations aV
j

{ }. But the rhs.of this equation is a product of local
operators as considered in section 5.1.7. According to the expression(31), this is a linear combination of string-
operators, i.e.

å=a a a aP V V V V P o F .
a

a a0 0L1 2 3

Furthermore, since each aV
j
is an elementary two-local operator, andwe consider only products of lengthL, the

only terms a a a aP V V V V P0 0L1 2 3
that have non-trivial action on the ground space are those associatedwith

processes where a single particle (say of type a)winds around thewhole chain.Wewill call such a process
topologically non-trivial. Its action on the ground space is given by a single string-operatorFa.

In summary (rearranging the sum), we conclude that the Lth order effectiveHamiltonian has the form(33),
where the coefficient  g tf , ,L a a a( ) has the form

 åg t q n= ¼ ¼a a a a
¼ ÎQa a

f V V V V, , , , , , ,L a a a
V V, , L a

L L

1

1 1( ) ( ) ( )
( )

andwhere the sum is over the set

Q = ¼ Îa a a aV V P V V P P, ,a 0 0 0L L1 1{( ) ∣ }

of all length-L-topologically non-trivial processes (consisting of elementary terms) involving particlea. The
coefficient n ¼a aV V, ,

L1
( ) is defined by n= ¼a a a aP V V P V V F, , a0 0L L1 1

( ) . Furthermore, n ¼a aV V, ,
L1

( ) can
only be non-zerowhen all L operators aV

j
are either pair creation/anihilation or hopping terms involving the

particlea. This implies the claim. ,

6. 2D topological quantumfield theories

Asdiscussed in section 4, adding a local perturbation to aMajorana chain leads to an effectiveHamiltonian given
by theparity (string)-operator. Similarly, in the case of a general anyonchain (discussed in section 5), the effective
Hamiltonian is a linear combinationof string-operatorsFa, associatedwith different particle labelsa. Herewe
generalize these considerations to arbitrary systemsdescribedby a two-dimensionalTQFTand subsequently
specialize tomicroscopicmodels, including the toric code and the Levin–Wen string-netmodels [LW05].

Briefly, a TQFT associates a ‘ground space’S to a two-dimensional surfaceΣ—this is e.g., the ground
space of amicroscopicmodel of spins embedded inΣwith geometrically local interactions given by some
HamiltonianH0 (see section 6.3). In otherwords, ÌS Sphys, is generally a subspace of a certain
space Sphys, of physical degrees of freedom embedded inΣ. The systemhas localized excitations (anyons)with
(generally)non-abelian exchange statistics. In particular, there are well-defined physical processes involving
creation, propagation, braiding and annihilation of anyons, with associated operators as in the case of one-
dimensional anyon chains (see section 5). Contrary to the latter, however, the particles are not constrained to
move along a one-dimensional chain only, butmaymove arbitrarily on the surfaceΣ. Nevertheless, the
description of these processes is analogous to the case of spin chains, except for the addition of an extra spatial
dimension. For example, thismeans that local operators acting on a region Ì S are now represented by a
linear combination of string-nets (directed trivalent graphswith labels satisfying the fusion rules) embedded
in ´ 0, 1[ ].We refer to e.g., [FKLW03] formore examples of this representation.

As before, there are distinguished ground-space-to-ground-space (or ‘vacuum-to-vacuum’)processeswhich
play a fundamental role. These are processeswhere a particle–anti-particle pair a a,( ¯) is created, and theparticles
fuse after somepropagation (tunneling), i.e., after tracing out a closed loopConΣ. Non-trivial logical operators
must necessarily include topologically non-trivial loopsConΣ in their support (the spatial region inwhich they are
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physically realized). In particular, for any such loopC, there is a collection F Ca a{ ( )} of string-operators associated
withdifferent particle labels.Moreprecisely, a loop is amap  SC : 0, 1[ ] satisfying =C C0 1( ) ( ). Reversing
directionof the loop gives a new loop -C t C t1¯ ( ) ≔ ( ), and this is equivalent to interchangingparticle- and
antiparticle labels: we have the identity =F C F Ca a( ) ( ¯ )¯ . In section 6.2,we state somegeneral properties of the
string-operators F Ca a{ ( )} , and, inparticular, explainhow to express them in suitable bases of the ground space.

6.1. Perturbation theory forHamiltonians corresponding to aTQFT
In general, the anyonmodel associatedwith a TQFT is emergent from amicroscopic spinHamiltonian H0. The
anyon notion of site, as discussed in section 5, does not necessarily coincide with the spin notion of site
associatedwith themicroscopic spinmodel. Nevertheless, the following statements are true:

(i) Any non-trivial logical operatormust include at least one non-contractible loop in its support.

(ii) Given a perturbationV consisting of geometrically local operators, there exists some minimum integer L
such that H V,0 satisfy the topologically ordered conditionwith parameterL.

In general, the value of Lwill depend on the length of the shortest non-contractible loop(s), and the resulting
effectiveHamiltonianwill be of the form

eff   å= +
=

H f a C F C c P, , 34L L

a C C L
L a

, :
0( ) ( ) ( ) ( ) ( )( )

∣ ∣

where the dependence on H0 and the coefficients inV has been left implicit. The sum is over all non-trivial
loopsC of lengthL (where length is defined in terms of the spinmodel), as well as all particle labelsa.

Computing the coefficients f a C,L{ ( )}may be challenging in general. Herewe discuss a special case, where
anyon processes associatedwith a single particlea (respectively its antiparticle ā) are dominant (compared to
processes involving other particles). That is, let us assume thatwe have a translation-invariant perturbationV of
the form

å h= +
¢

¢ ¢V V V ,
j j

j j j j
,

,
1

,
2( ˆ )

( )

( ) ( )

where the sum is over all pairs ¢j j,( ) of nearest-neighbor (anyonic) sites, and =¢V Vj j,
1 1ˆ ˆ( ) ( )

and =¢V Vj j,
2 2ˆ ˆ( ) ( )

are
both 1- and 2-local operators on the same anyon site lattice—this is a straightforward generalization of anyon
chains to 2D.Our specialization consists in the assumption that all local creation, propagation and annihilation

processes constituting the operator =¢V Vj j,
1 1ˆ ˆ( ) ( )

only correspond to a single anyon type a (and ā), and that these

processes are dominant in the sense that the remaining terms satisfy h    V V
2 1ˆ ˆ( ) ( )

. In the limith  0,
perturbation theory in thismodel only involves the particles a a,( ¯).

Assuming that the shortest non-contractible loops have lengthL in this anyonic lattice, we claim that

eff eff

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟  å h= + +

=

H f a C F C G c P, , 35L L

C C L
L a

L L

:
0( ) ( ) ( ) ( ) ( )( )

∣ ∣

( )

where effG L( ) is an effectiveHamiltonianwith the same form as eff H L ( )( ) , but only contains string operatorsFb(C)
with ¹b a. The reason is that in order to generate a string operatorFb(C) inL steps (i.e., at Lth order in
perturbation theory), we need to apply local operators corresponding to anyon b L times, as discussed in
lemma 5.1. Such local operators can only be found inhV2, therefore we obtain the coefficient hL of effG L( ). Thus if
wefix the system size and slowly increaseη from0, the (relative) change of the total effectiveHamiltonian is
exponentially small with respect toL. This implies that the ground state of the effectiveHamiltonian is stable
when η is in a neighborhood of 0.Wewill see in section 7 that the final states ofHamiltonian interpolation are
indeed stable in some regions of initialHamiltonians. The above discussion can be viewed as a partial
explanation11 for this phenomenon.

6.2. String-operators, flux bases and themapping class group
In the following, we explain how to compute effectiveHamiltonians of the form(35) in the casewhere the
perturbation is isotropic, resulting in identical coefficients = ¢f a C f a C, ,L L( ) ( ) for all loopsC of identical
length. This will be guaranteed by symmetries.We give explicit examples in section 7.

For this purpose, we need amore detailed description of the action of string-operators on the ground space.
Consider afixed (directed) loop  SC : 0, 1[ ] embedded in the surfaceΣ. The process of creating a particle-
anti-particle pair a a,( ¯), then propagating a alongC, and subsequently fusingwithā defines an operatorFa(C)
which preserves the ground spaceS. The family of operators F Ca a{ ( )} ismutually commuting and defines a

11
Note that in the cases we consider in section 7, V

1ˆ ( )
and V

2ˆ ( )
often do not live on the same anyon site lattice.
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representation of theVerlinde algebra. It is sometimes convenient to consider the associated (images of the)
idempotents, which are explicitly given by (as a consequence of theVerlinde formula (18))

å=P C S S F C .a a
b

ba b1( ) ( )

The operatorsPa(C) aremutually orthogonal projections d=P C P C P Ca b ab a( ) ( ) ( ). The inverse relationship
(using the unitarity of S) reads

å=F C
S

S
P C 36b

a

ba

a
a

1

( ) ( ) ( )

and is the generalization of (30): indeed, specializing to the case whereΣ is the torus (this will be ourmain
example of interest), andC is a fundamental loop, the operatorsPa(C) are rank-one projections (when restricted
to the ground space), and determine (up to phases) an orthonormal basis of  = ñaC C a{∣ } ofS by

= ñáP C a aa C C( ) ∣ ∣. In physics language, the state ñaC∣ has ‘flux a’ through the loopC. (More generally, onemay
define ‘fusion-tree’ basis for higher-genus surfacesΣ by considering certain collections of loops and the
associated idempotents, see e.g., [KKR10]. However, wewill focus on the torus for simplicity.)

Consider now a pair of distinct loopsC and ¢C . Both families F Ca a{ ( )} and ¢F Ca a{ ( )} of operators act on the
ground space, and it is natural to ask how they are related. There is a simple relationship between these operators
if J¢ =C C( ) is the image ofC under an element J S  S: of themapping class groupMCGS ofΣ (i.e., the
group of orientation-preserving diffeomorphisms of the surface): the TQFTdefines a projective unitary
representation MCG U S SV : ( ) of this group onS, andwe have

J J J¢ = ¢ =F C V F C V a C Cfor all if .a a( ) ( ) ( ) ( ) ( )†

In general, while the topology of themanifold is invariant under themapping class group, the specific lattice
realizationmay not be. For this reason, if we desire to lift the representationV to the full Hilbert space
 ÉS Sphys, , such that the resulting projective unitary representation preserves themicroscopicHamiltonian
H0 under conjugation, wemay need to restrict to a finite subgroup of themapping class groupMCGS. If the
lattice has sufficient symmetry, such as for translation-invariant square or rhombic lattices, onemay exploit
these symmetries tomake further conclusions about the resulting effectiveHamiltonians.

6.2.1. String-operators and themapping class group for the torus
For the torus, themapping class groupMCGS is the group SL 2,( ). To specify how a group elementmaps the
torus to itself, it is convenient to parametrize the latter as follows: we fix complex numbers e e,1 2( ) and identify
pointsz in the complex plane according to

º + + Îz z n e n e n nfor , .1 1 2 2 1 2

In otherwords, e e,1 2( ) defines a lattice in, whose unit cell is the torus (with opposite sides identified). A group

element ⎜ ⎟
⎛
⎝

⎞
⎠ = ÎA a b

c d
SL 2,( ) then defines parameters ¢ ¢e e,1 2( ) by

¢ = +
¢ = +

e ae be

e ce de ,
1 1 2

2 1 2

which a priori appear to be associatedwith a new torus. However, the constraint that ÎA SL 2,( ) ensures that
¢ ¢e e,1 2( ) and e e,1 2( ) both define the same lattice, and this therefore defines amap from the torus to itself: the

action ofA is given by a b a b+ ¢ + ¢e e e e1 2 1 2 for a b Î, , i.e., it is simply a linearmap determined byA.
The group  = á ñSL t s2, ,( ) is generated by the two elements

p= =
-

t sDehn twist 1 1
0 1

and 2 rotation 0 1
1 0

37( ) ( ) ( )

which are equivalent to theMöbius transformations t t + 1and t t- 1 . Clearly, tfixese1 andhence the
loop =C t C t te: 1( ) , Ît 0, 1[ ]on the torus (this loop is one of the fundamental cycles). Thematrices
representing the unitariesV(t) andV(s) in the basis = ñaC C a{∣ } ofS (where ñaC∣ is an eigenstate of

= ñáP C a aa C C( ) ∣ ∣) are denotedT and S, respectively. Thesematrices are given by themodular tensor category:T is
a diagonalmatrixwith = qT eaa

i a (where qa is the topological phase of particlea), whereas S is the usualS-matrix.
This defines themapping class group representationon theHilbert spaceS associatedwith the torusΣ.

In the following, we compute explicit relationships between string-operators ofminimal length.We
consider two cases: a square torus and a rhombic torus. This allows us to express terms such as those appearing
in equation (34) in afixed basis.

Square torus.Herewe have

= =e e i1 and .1 2
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There are (up to translations) two loops ofminimal length,

=
= -

C t te
C t t e1 ,

1 1

2 2

( )
( ) ( )

whichmay be traversed in either of two directions namely for Ît 0, 1[ ], see figure 2. Since = -se e1 2 and
=se e2 1, we conclude that

= = = =C t s C t C t s C t C t s C t C t s C t2 1 1
2

1 2
3

1 1
4

1( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( ) ( ( ))
In particular, expressed in the basis1

, we have

å å+ =
= =

-F C F C S F C S . 38
j

a j a j
j

j
a

j

1,2 0

3

1( ( ) ( )) ( ) ( )

Thus, when the lattice andHamiltonian H0 obey a p 2 rotation symmetry, the effective perturbation
Hamiltonianwill be proportional to(38). This is the case for the toric code on a square lattice.

Rhombic torus.We set

p p= = +e e1 and cos 2 6 isin 2 6 .1 2 ( ) ( )

Minimal loops of interest are shown infigure 3 and can be defined as

=
= + -
= -

C t te
C t e t e e
C t t e1 .

1 1

2 1 2 1

3 2

( )
( ) ( )
( ) ( )

for Ît 0, 1[ ]. Observe that these can be related by a p 3 rotationu (if we use the periodicity of the lattice), i.e.

= = =
= = =

C t u C t C t u C t C t u C t

C t u C t C t u C t C t u C t .
3 1 2

2
1 1

3
1

3
3

1 2
5

1 1
6

1

( ) ( ( )) ( ) ( ( )) ( ) ( ( ))
( ) ( ( )) ( ) ( ( )) ( ) ( ( ))

Since such a rotationumaps e e,1 2 to

¢ =
¢ = -

e e

e e e ,
1 2

2 2 1

it is realized by the element =
-

Îu SL0 1
1 1

2,( ) ( ), which decomposes into the generators(37) as =u ts ts3 .

We conclude that, expressed in the basis1
, we have

å å+ = =
= =

-F C F C U F C U U TS TSwhere . 39
j

a j a j
j

j
a

j

1

3

0

5

1
3( ( ) ( )) ( ) ( )

Again, if the lattice andHamiltonian H0 are invariant under a p 3 rotation, wemay conclude that the effective
perturbationHamiltonianwill have the form(39). This is the case for the Levin–Wenmodel on a honeycomb
lattice embedded in a rhombic torus (see also section 7.2).

Figure 2.Minimal loops on the square torus.

Figure 3.Minimal loops on the rhombic torus.
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6.3.Microscopicmodels
The purpose of this section is two-fold:first, we briefly review the construction of themicroscopicmodels we use
in our numerical experiments in section 7: these include the toric code (see section 6.3.1) aswell as the doubled
semion and the doubled Fibonaccimodel, both instantiations of the Levin–Wen construction (see section 6.3.2).
Second, we define single-qubit operators in thesemodels and discuss their action on quasi-particle excitations
(i.e., anyons). This translation of local terms in themicroscopic spinHamiltonian into operators in the effective
anyonmodels is necessary to apply the perturbative arguments presented in section 6.1.Wewill use these local
terms to define translation-invariant perturbations (respectively trivial initial Hamiltonians) in section 7).

6.3.1. The toric code
Kitaev’s toric code [Kit03] is arguably the simplest exactly solvablemodel which supports anyons. It can be
defined on a variety of lattices, including square and honeycomb lattices. Herewewill introduce the
Hamiltonian corresponding to honeycomb lattice. On each edge of the lattice resides a qubit. TheHamiltonian
consists of two parts and takes the form

top å å= - -H A B , 40
v

v
p

p ( )

where = ÄB Xp
6 is the tensor product of Pauli-X operators on the six edges of the plaquettep, and = ÄA Zv

3 is
the tensor product of Pauli-Z operators on the three edges connected to the vertexv.

Note that in terms of its anyonic content, the toric code is described by the double of ;2 hence amodel with
the same type of topological order could be obtained following the prescription given by Levin andWen (see
section 6.3.2). Herewe are not following this route, but instead exploit that this has the structure of a quantum
double (see [Kit03]). The resulting construction, given by(40), results in a simpler plaquette termBp as opposed
to the Levin–Wen construction.

The anyonic excitations supported by the toric code are labeled by e m1, , ,{ }. The e anyon or electric
excitation corresponds to vertex term excitations. The m anyon ormagnetic excitations correspond to plaquete
term excitations. Finally, the  anyon corresponds to an excitation on both plaquete and vertex and has the
exchange statistics of a fermion.We canwrite down the string operators Fa(C) for a closed loopC on the lattice
explicitly (see [Kit03]).Without loss of generality, we can set = ÎF C P X Pe i C i0 0( ) ⨂ and

= ÎF C P Z Pm i D i0 0( ) ⨂ , whereD is a closed loop on the dual lattice corresponding toC. Finally, the operator

 = ´F C F C F Ce m( ) ( ) ( ) can bewritten as a product ofF Ce ( ) andF Cm ( ), sincee andm always fuse to .With
respect to the ordering e m1, , ,( ) of the anyons, the S- andT-matrices described in section 5.1.1 are given by

diag

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟= - = - -

- -
- -

T S1, 1, 1, 1 1 2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

41( ) ( )

for the toric code.
Local spin operators.Anatural basis of (Hermitian) operators on a single qubit is given by the Pauli operators.

For the toric code, each of these operators has a natural interpretation in terms of the underlying anyonmodel.
Consider for example a single-qubitZ-operator. The ‘anyonic lattice’ associatedwith m-anyons is the dual

lattice (i.e., these anyons ‘live’ on plaquettes), and a single-qubitZ-operator acts by either creating or
annihilating a =m m m m, ,( ¯ ) ( ) on the neighboring plaquettes, or propagating an existing m fromone
plaquette to the other. That is, in the terminology of section 5.1.4, aZ-operator acts as a local term

C A L R+ + +m m m mZ V V V V 42⟷ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )

in the effective anyonmodel. An analogous identity holds forX, which is associatedwithe-anyons: the latter live
on vertices of the spin lattice. Finally,Y-operators act on -anyons in the samemanner; these anyons live on
‘supersites’, consisting of a plaquette and and an adjacent vertex.

6.3.2. Short introduction to the Levin–Wenmodel
Levin andWen [LW05] define a family of frustration-free commutingHamiltonianwith topologically ordered
ground space and localized anyonic excitations. Their construction is based on interpreting the state of spins
residing on the edges of a trivalent lattice (such as a honeycomb lattice) as configurations of string-nets.

To specify a string-netmodel, we need algebraic data associatedwith an anyonmodel as described in
section 5.1.1. This specifies, in particular, a set of anyon labels  = ai{ }, associated fusion rules, as well as S- and
F-matrices. The Levin–Wenmodel then associates a qudit to each edge of the lattice, where the local dimension
of each spin corresponds to the number of anyon labels in . One chooses an orthonormal basis


ñ ÌÎa a{∣ } indexed by anyon labels; in the following, we usually simplywritea instead of ña∣ to specify a

state of a spin in themicroscopicmodel. The Levin–Wen spinHamiltonian can be divided into two parts,
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top å å= - -H A B , 43
v

v
p

p ( )

where eachBp is a projector acting on the 12edges around a plaquettep, and eachAv is a projector acting on
the3 edges around a vertex v. In particular, we can construct the spinHamiltonian for the doubled semion and
the doubled Fibonaccimodels in this way by choosing different initial data.

As long as all the particles in the underlyingmodel  are their own antiparticles (i.e., the involution a ā is
the identity), it is not necessary to assign an orientation to each edge of the lattice. This affords us an important
simplification, which is justified for themodels under consideration: these only have a single non-trivial anyon
label, which is itself its own antiparticle (recall that the trivial label satisfies =1 1¯ ).With this simplification,
whichwewill use throughout the remainder of this paper, the vertex operatorAv can bewritten as

where d = 1abc if a and b can fuse to c and d = 0abc otherwise. The plaquette operatorBp ismore complicated
compared toAv.Wewill give its formwithout further explanation

where ds is the quantumdimension of the anyon label s, and = åD dj j
2 is the total quantumdimension.

Having specified the spinHamiltonian, we stress that the anyon labels used in this construction should
not be confusedwith the anyon labels D ( ) describing the local excitations in the resultingHamiltonian(43).
The latter can be described as ‘pairs’ of anyons from , i.e.,  = ÎD a a,i j a a,i j

( ) {( )} . Their fusion, twist and
braiding properties are described by the double of the original theory. The SD ( )- and FD ( )-matrices of D ( )
can be obtained from the S- andT-matrix associatedwith  (see [LW05]). String operatorsF Ca a,i j

( ) acting on
the spin lattice have also been explicitly constructed in [LW05]

Below, we present some of the specifics of twomodels constructed in this way: the doubled semion and
doubled Fibonaccimodel. In addition toKitaev’s toric codes D 2( ), these are the onlymodels defined on two
labels (i.e., withmicroscopic qubit degrees of freedom).

6.3.3. The doubled semionmodel
The underlying string-netmodel of the doubled semionmodel only consists of one non-trivial label s and the
trivial label 1. To specify the spinHamiltonian, we have =d 1s , and d = 1abc if and only if an even number
ofa b c, , are s. The F-matrix is given by = -F 1ss

ss
1
1 and otherwiseFabc

def is 0 or 1 depending onwhether
a b c d e f, , , , ,( ) is a legal configuration (see [Kit06] formore detailed explanation). Aswe explained above, to
construct a spinHamiltonian, we put a qubit on each edge of the lattice with orthonormal basis ñ ñs1 ,∣ ∣ . The spin
Hamiltonian obtained this way is similar to the toric code and it also supports Abelian anyons. The excitations of
the spinmodel can be labeled by  = s s s s1 1 1 1D , , , , , , ,( ) {( ) ( ) ( ) ( )}, which is the quantumdouble of
 = s1,{ }.With respect to the given ordering of anyons, the S- andT-matrices of these excitations are given by

diag

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟= - -

- -
- -

= -S T i i1 2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1, , , 1 . 44( ) ( )

Local operators. Identifying ñ1∣ with the standard basis state ñ0∣ and ñs∣ with ñ1∣ , we can again use Pauli operators
to parametrize single-spinHamiltonian terms

Here wewill discuss the effect of single qubit operatorsX andZ on the ground states of the resulting
topologically orderedHamiltonian. The goal is to interpret single spin operators in terms of effective anyon
creation, annihilation and hopping operators.

WhenZ-operator is applied to an edge of the system in a ground state, only the neighboring plaquete
projectorsBpwill become excited.More specifically, a pair of s s,( ) anyons are created if nonewere present.
Since s s,( ) is an abelian anyon, in fact a boson, and is the anti-particle of itself, aZ operator could alsomove an
s s,( ) anyon or annihilate two such particles if they are already present. Thuswe conclude that single-qubitZ-
operators have a similar action as in the toric code (see (42)), withs playing the role of the anyonm.
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When anX operator is applied on edge of the system in a ground state, it excites the two neighboring vertex
termsAv (in the sense that the state is no longer a+1-eigenstate any longer). Since the plaquete termsBp are only
definedwithin the subspace stabilized byAv, the four plaquette termsBp terms around the edge also become
excited. It is unclear how to provide a full interpretation ofX operators in terms of an effective anyon language.
In order to provide this, a full interpretation of the spinHilbert space and its operators in the effective anyonic
language is required; such a description is currently not known.

In summary, this situation is quite different from the case of the toric code, whereX andZ are dual to each
other.

6.3.4. The doubled Fibonacci
Again, the underlying string-netmodel of doubled Fibonacci contains only one non-trivial labelt , with
quantumdimension j=td , wherej = +1 5

2
. The fusion rules are given byd = 0abc if only one of the a b c, ,

ist , and otherwised = 1abc . Non-trivial values of F are

j j
j j

= =
= = -

tt
tt

ttt
tt

tt
ttt

ttt
ttt

- -

- -

F F

F F

,

, ,
1
1 1

1

1 1 2

1 2 1

and otherwise Fabc
def is either 0 or 1 depending onwhether a b c d e f, , , , ,( ) is a legal configuration.

Many aspects of the doubled Fibonacci spinHamiltonian are similar to the doubled semionmodel:

• There is one qubit on each edge, with orthonormal basis states associatedwith the anyon labels  t= 1,{ }.

• The anyons supported by the spinHamiltonian carry labels  t t t t= 1 1 1 1D , , , , , , ,( ) {( ) ( ) ( ) ( )}.

With respect to the given ordering of anyons, the S- andT-matrices are given by

diag

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

j j j
j j j
j j j
j j j

j=
- -

- -
- -

+ = p p-S T

1

1

1

1

1 1, e , e , 1 . 45

2

2

2

2

2 4 5 4 5( ) ( ) ( )

A substantial difference to the doubled semionmodel is that the non-trivial anyons supported by themodel
are non-abelian. Onemanifestation of this fact we encounter concerns the t t,( )-anyon:

• While t t,( ) is its own anti-particle, it is not an abelian particle so in general two t t,( ) particles will not
necessarily annihilate with each other. In otherwords, the dimension of the subspace carrying two localized
t t,( ) charges is larger than the dimension of the charge-free subspace.

• Two intersecting string operators t tF C, 1( )( ) and t tF C, 2( )( ) corresponding to the t t,( ) particle do not
commutewith each other.

Neither of these properties holds for the s s,( )-anyon in the case of the doubled semionmodel.
Local operators. Similarly, as before, we identify ñ1∣ with the standard basis state ñ0∣ and tñ∣ with ñ1∣ , enabling

us to express single-qubit operators in terms of the standard Pauli operators.
Again, wewant to consider the effect of single qubit operators in terms of anyons. This is generally rather

tricky, but for single-qubitZ-operators, we can obtain partial information from an analysis presented in
appendix B: let yñ∣ be a ground state. Then y y jñ = ñ + ñZ 1

5

4

5
∣ ∣ ∣ , where jñ∣ is aψ-dependent excited state

with a pair of t t,( ) on the plaquettes next to the edgeZ acts on. Thus the resulting state after application of a
singleZ operator has support both on the excited and as well as the ground subspace. Again, this is in contrast to
the doubled semionmodel, where a single-qubitZ operator applied to the ground space always results in an
excited eigenstate of theHamiltonian.

7.Numerics

In this section, we present results obtained by numerically simulatingHamiltonian interpolation for small
systems. Specifically, we consider three topologically ordered systems on the 12-qubit honeycomb lattice offig 4:
the toric code, the doubled semion and the doubled Fibonacci Levin–Wenmodels. That is, the target
Hamiltonian topH is given either by(40) (with stabilizer plaquette- and vertex-operatorsAv andBp) in the toric
code case, and expression(43) specified in section 6.3.2 (with projection operatorsAv andBp) for the doubled
semion and the doubled Fibonacci case. As initialHamiltonian trivH , we choose certain translation-invariant
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Hamiltonians consisting of single-qubit Pauli-X, Pauli-Y andPauli-Z operators (see sections 6.3.3 and 6.3.4 for
their definition and a discussion of the effect of these operators in the two Levin–Wenmodels.) For concreteness
and ease of visualization, wewill consider the following families of suchHamiltonians: the one-parameter family

triv å åq q q= +H Z Xcos sin 46
j

j
j

j( ) ( )

where q pÎ 0, 2[ ], and two two-parameter families of the form

triv å å å= +  - -H a b a X b Y a b Z, 1 , 47
j

j
j

j
j

j
2 2 1 2( ) ( ) ( )

where Îa b, 2( ) belongs to the unit disc, +a b 12 2 . (In some instances, wewill permute the roles ofX,Y
andZ, and use an additional superscript to indicate this.)

For different parameter choices θ respectively (a, b), we studyHamiltonian interpolation (i.e., the
evolution (2)) along the linear interpolation pathH(t) (see (1))with a total evolution time T. In order to
numerically simulate the evolution under the time-dependent Schrödinger equation, we perform a time-
dependent Trotter expansion using the approximation

triv top⎜ ⎟⎛
⎝

⎞
⎠ ò » »

=

D
D D D D D-

H s sexp i d e and e e e . 48
t

j

T t
H j T t H t t H t H t

0 1

i i i iT t
T

t
T( ) ( )

⌊ ⌋
( · ) ( ) ( )

Unless otherwise specified, the time discretization is taken to be D =t 0.1.

7.1.Quantities of interest and summary of observations
Recall that our initial state jY = Ä0 12( ) is the unique 12-qubit ground state of the chosen trivial
Hamiltonian trivH .We are interested in the states Y t( ) along the evolution, and, in particular, thefinal
state Y T( ) for a total evolution time T. For notational convenience, wewill write Yq t( ), respectively Y ta b, ( ) to
indicate which of the initial Hamiltonians trivH is considered (see (46) and (47)).We consider the following two
aspects:

–We investigate whether the stateY t( ) follows the instantanenous ground space along the evolution(2).We
quantify this using the adiabaticity error, whichwe define (for afixed total evolution time T, whichwe
suppress in the notation) as

  - áY Y ñt t P t t t T1 for 0 , 49adia 0
2( ) ≔ ∣ ( )∣ ( )∣ ( ) ∣ ( )

where P t0 ( ) is the projection onto the ground space ofH(t) (note that except for t = T, where P T0 ( ) projects
onto the degenerate ground space of topH , this is generally a rank-one projection). The function t tadia ( )
quantifies the overlapwith the instantaneous ground state ofH(t) along theHamiltonian inter-
polation t H t( ), and hence directly reflects adiabaticity.

Figure 4.The 12-qubit-torusweuse for numerical simulation (qubits are numbered 1 to 12. It is a rhombic torus andwe can identify
threeminimal loops 1, 2 , 5, 7 , 9, 11{ } { } { } (and their inverses)which are related by p 3 rotations.
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Ultimately, we are interested inwhether the evolution reaches a ground state of topH . This ismeasured by the
expression Tadia ( ), which quantifies the deviation of the final stateY T( ) from the ground space of topH .
Clearly, the quantity Tadia ( ) depends on the choice of initialHamiltonian trivH (i.e., the parameters θ
respectively (a, b)) and the total evolution timeT. For sufficiently large choices of the latter, we expect the
adiabaticity assumption underlying conjecture 1 to be satisfied, and this is directly quantifiable bymeans of
the adiabaticity error.Wewill also discuss situationswhere, as discussed in observation 2.3, symmetries
prevent reaching the ground space of topH as reflected in a value of Tadia ( ) close to1.

Logical state:– assuming the ground space of topH is reached (as quantified by  Tadia ( )), wewill identify the
logical stateY T( ) and investigate its stability under perturbations of the the initial
Hamiltonian trivH (i.e., changes of the parameters θ respectively (a, b)). For this purpose, we
employ the followingmeasures:

• Weargue (see section 7.2) that symmetries constrain the projection of the resulting stateY T( ) onto the
ground space of topH to a two-dimensional subspace (see section 7.2). For the toric code, the state is then fully
determined by the expectation valuesá ñYX T¯ ( ), á ñYZ T¯ ( ) of two logical operators X̄ and Z̄ . To investigate
stability properties of the prepared state, we can therefore consider á ñ á ñY YX Z,T T( ¯ ¯ )( ) ( ) as a function of
parameters of the initial Hamiltonian.

• for the Levin–Wenmodels, we proceed as follows: we pick a suitable reference state y ñ Î Ä
R

2 12∣ ( ) in the
ground space of topH , and then study how the overlap yáY ñ Ta b R,

2∣ ( )∣ ∣ changes as the parameters(a, b) of the
initial Hamiltonian are varied. In particular, if we fix a pair a b,0 0( ) and choose y ñR∣ as the normalized
projection of the state Y ñ Ta b,0 0

∣ ( ) onto the ground space of topH , this allows us to study the stability of the

prepared state Y ñ Ta b,∣ ( ) as a function of theHamiltonian parameters(a, b) in the neighborhood of a b,0 0( ).
According to the reasoning in section 3.2 (see conjecture 1), the specific target state y ña b,

ref
0 0

∣ chosen in this way

should correspond to the ground state of top + H H a b,0 0( ) in the limit  0 of infinitesimally small
perturbations (or,more precisely, the corresponding effectiveHamiltonian). Furthermore, according to the
reasoning in section 6.1, the family of effectiveHamiltonians associatedwith top + H H a b,( ) has a very
specific form. This should give rise to a certain stability of the ground space as a function of the parameters(a,
b).
To support this reasoning, we numerically compute the (exact) ground state y ña b,

pert∣ of top + H H a b,( ) for
the choice = 0.001 (as a proxy for the effectiveHamiltonian), and study the overlap y yá ña b a b,

pert
,

ref 2
0 0

∣ ∣ ∣ as a
function of the parameters(a, b) in the neighborhood of a b,0 0( ).

The results of our numerical experiments support the following two observations:

• Hamiltonian interpolation is generically able to prepare approximate ground states of these topological
models for sufficiently long total evolution timesT.

• Specificfinal state(s) show a certain degree of stability with respect to changes in the initialHamiltonian. The
theoretical reasoning based on perturbation theory presented in section 6 provides a partial explanation of this
phenomenon.

7.2. A symmetry of the 12-qubit rhombic torus
As discussed in section 6.3, the ground space of topH on a torus is four-dimensional for the toric code, the
doubled semion- and the Fibonaccimodel. In this section, we argue that adiabatic interpolation starting froma
translation-invariantHamiltonian (as considered here) yields states belonging to a two-dimensional subspace of
this ground space, thus providing a simplification.

Consider again the 12-qubit rhombic torus illustrated infigure 4. A p 3 rotation permuting the physical
qubits according to

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 5, 7, 8, 6, 9, 12, 11, 10, 2, 4, 1, 3( ) ( )

defines a unitary pU 3 on Ä12. Because of translation-invariance, this is a symmetry of the trivial Hamiltonian,

triv triv=p pU H U H3 3
† , and it can easily be verified that for themodels considered here, the unitary pU 3 also

commutes with topH . Because of the product formof the initial stateY 0( ), it thus follows that Y = YpU t t3 ( ) ( )
along thewhole trajectory Yt t( ) of adiabatic interpolation. In particular, the projection of thefinal
stateY T( ) onto the ground space of topH is supported on the+1-eigenspaces space of pU 3.

As discussed in section 6.2.1, a p 3-rotation of the rhombic torus corresponds to themodular
transformationts3ts. Since pU 3 realizes this transformations, its restriction to the ground space of topH can be
computed from theT and S-matrices. That is, expressed in the flux bases discussed in section 6.3, the action of
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pU 3 on the ground space is given by thematrixTS TS3 , where (S,T) are given by(41) for the toric code, as well
as(44) and(45) for the doubled semion and Fibonaccimodels, respectively. The specific formofTS TS3 or its
eigenvectors is not particularly elucidating, butmay be computed explicitly.

Importantly, the+1eigenspace ofTS TS3 is two-dimensional for the toric code, the doubled semion and the
Fibonaccimodels. (In the case of the toric code, it can be verified that this eigenspace is contained in the logical
symmetric subspace. The latter is the subspace invariant under swapping the two logical qubits in the standard
computational basis.)As a result, the projection of the stateY T( ) onto the ground space of topH belongs to a
known two-dimensional subspacewhich can be explicitly computed. Thismeans that wemay characterize the
resulting state in terms of a restricted reduced set of logical observables, a fact wewill exploit in section 7.3.

7.3. The toric code
As discussed in section 6.3.1, for the toric code on the honeycomb lattice (see figure 4), theHamiltonian of the
model is top = - å + åH B Ap p v v( ), where = ÄB Xp

6 is a tensor product of Pauli-Xoperators on the six edges

of the plaquettep, and = ÄA Zv
3 is a tensor product of Pauli-Zoperators on the three edges incident on the

vertexv.We point out that the toric code on a honeycomb lattice has several differences compared to a toric
code on a square lattice (which is often considered in the literature). Assuming that both lattices are definedwith
periodic boundary conditions,

(i) there are twice as many vertices compared to plaquettes on a honeycomb lattice (as opposed to the same
number on a square lattice)

(ii) the vertex terms = ÄA Zv
3 of the Hamiltonian have odd weights (as opposed to even weight for the square

lattice)

(iii) the weight of a logical minimal X̄ -string operator (i.e. the number of spins it acts on) is roughly twice as
large compared to the correspondingminimal Z̄-string operator on the dual lattice (as opposed to the
square lattice, where both operators have the sameweight). For the 12-qubit code offigure 4, an example of
such a pair X Z,( ¯ ¯ ) of lowest-weight logical operators is given below in equation (51).

Properties (i) and (ii) imply that the usual symmetries «X Z andZ↔−Z of the toric code on the square
lattice are not present in this case. The absence of these symmetries is reflected in our simulations. Property(iii)
also directly affects thefinal state, as can be seen by the perturbative reasoning of section 6.1: Z̄-string operators
appear in lower order in perturbation theory compared to X̄ -string operators.

(Non)-adiabaticity.Wefirst present the adiabaticity error  Tadia ( ) for theHamiltonian triv qH ( ) given
by(46) (for different values of θ) as a function of the total evolution timeT. Figure 5 illlustrates the result. It
shows that for sufficiently long total evolution timesT, theHamiltonian interpolation reaches the ground space
of the toric codewhen the initial Hamiltonian is triv q p= = -åH Z ;i i( ) this is also the
case forq p p pÎ 4, 2, 3 4{ }.

However, if the initial Hamiltonian is triv q = = åH Z0 i i( ) , then the final stateY T( ) is far from the ground
space of the toric codeHamiltonian topH . This phenomenon has a simple explanation along the lines of

Figure 5.This figure gives the adiabaticity error  = - áY Y ñT T P T T1adia 0( ) ( )∣ ( )∣ ( ) (see (49)) as a function of the total evolution
timeT and the initial Hamiltonian chosen. For the latter, we consider the one-parameter family triv qH ( ) given by(46). For q = 0, the
adiabatic evolution is not able to reach thefinal ground space because initially á ñ = -A 1v for every vertex operator = ÄA Zv

3, and
this quantity is conserved during the evolution. This is a feature of the honeycomb lattice because the vertex termsAvhave odd
weights. For other values ofθ, the ground space is reached for sufficiently large total evolution timesT.
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observation 2.3. Indeed, ifq = 0, then every vertex terms = ÄA Zv
3 commutes with both trivH as well as topH

(and thus all intermediateHamiltoniansH(t)). In particular, the expectation value of the vertex terms remains
constant throughout thewhole evolution, and this leads to an adiabaticity error Tadia ( ) of1 in the case
of triv q = = åH Z0 i i( ) .

Infigures 6(a) and (b), we consider neighborhoods ofHamiltonians of the form (see (47))

triv triv triv

triv triv triv

å

å

q

q p

= = =

= = = -

+ +

- -

H a b H H Z

H a b H H Z

, around 0, 0 0 and

, around 0, 0 .

j
j

j
j

( ) ( ) ( )

( ) ( ) ( )

The initialHamiltonians triv q =H 0( ) and triv q p=H ( ) correspond to the center points infigure 6(a) and (b),
respectively.

• In thefirst case (figure 6(a)), we observe that for all initial Hamiltonians of the form triv
+H a b,( ) in a small

neighborhood of triv
+H 0, 0( ), the adiabaticity error Tadia ( ) is also large, but drops off quickly outside that

neighborhood. This is consistent with the relevant level crossing(s) being avoided by introducing generic
perturbations to the initial Hamiltonian.

Figure 6.The adiabaticity error = - áY Y ñT T P T T1adia 0( ) ( )∣ ( )∣ ( ) , measuring howwell thefinal stateY T( ) overlapswith the
ground space of the toric code. All three figures are for a total evolution timeT= 120. Infigure 6(a), we consider the family of initial
Hamiltonians triv

+H a b,( ) in the neighborhood of triv triv q= = = å+H H Z0, 0 0 j j( ) ( ) . In contrast,figure 6(b) illustrates different
choices of initial Hamiltonians triv

-H a b,( ) around triv triv q p= = = -å-H H Z0, 0 j j( ) ( ) . The values Ìa b, 2( ) are restricted to the
unit disc +a b 1;2 2 the center points of the twofigures correspond respectively toq = 0 and q p= infigure 5. Finally,figure 6(c)
gives the non-adiabaticity error for initial Hamiltonians of the form triv

-H a b,X ( ) (as defined in equation (50)). (a)The adiabaticity
error Tadia ( ) in the neighborhood around triv = å+H Z0, 0 i i( ) for differentHamiltonians triv

+H a b,( ). As explained, the evolution
cannot reach the ground space of the toric code around =a b, 0, 0( ) ( ) because the expectation values of plaquette-operators are
preserved. (b)The logarithm  Tln adia ( ) of the adiabaticity error in the neighborhood around triv = -å-H Z0, 0 i i( ) for different
Hamiltonians triv

-H a b,( ). Here we use a log-scale because the variation in values is small. The ground space of the toric code
Hamiltonian topH is reached for almost the entire parameter region. (c)The logarithmof adiabaticity error  Tln adia ( ) in the
neighborhood around triv = -å-H X0, 0X

j j( ) for differentHamiltonians triv
-H a b,X ( ). Note that the resulting figurewould look

identical for theHamiltonians triv
+H a b,X ( ) because of the- « +X X symmetry.
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• In contrast, almost all initialHamiltonians in the family triv
-H a b,( ) (around the initial

Hamiltonian triv
-H 0, 0( )) lead to a small adiabaticity error Tadia ( ) (figure 6(b)), demonstrating the stability of

the adiabatic preparation.

In a similar vein, figure 6(c) illustrates the non-adiabaticity for the family ofHamiltonian

triv å å å= - - - + +-H a b a b X b Y a Z, 1 . 50X

j
j

j
j

j
j

2 2 1 2( ) ( ) ( )

The family triv
+H a b,X ( ) (definedwith a positive square root)would behave exactly the same due to the

symmetry+ « -X X .
Logical state. For the 12-qubit rhombic toric code (figure 4), logical observables associatedwith the two

encoded logical qubits can be chosen as

=
=

=
=

X X X X X

Z Z Z

X X X X X

Z Z Z
and .1 7 8 11 12

1 10 12

2 4 0 2 12

2 1 2

¯
¯

¯
¯

Because of the symmetry(7.2), however, these are not independent for a stateY T( ) (ormore precisely, its
projection YP T T0 ( ) ( )) prepared byHamiltonian interpolation froma product state: their expectation values
satisfy the identities

á ñ = á ñ á ñ = á ñZ Z X Xand .1 2 1 2¯ ¯ ¯ ¯

Wewill hence use the two (commuting) logical operators

= = = =X X X X X X Z Z Z Zand 511 7 8 11 12 2 1 2¯ ¯ ¯ ¯ ( )

to describe the obtained logical state.
Infigure 7, we plot the expectation values of Z̄ and X̄ in thefinal stateY T( ) for initial Hamiltonians of the

form (see (47) and (50))

triv triv

triv triv

å

å

= -

= -

- -

- -

H a b H Z

H a b H X

, around 0, 0 ,

, around 0, 0 .

j
j

X X

j
j

( ) ( )

( ) ( )

Weagain discuss the center points inmore detail. It is worth noting that the single-qubit Zi{ }operators
correspond to the local creation, hopping and annihilation of m anyons situated on plaquettes, whereas the
operators Xi{ }are associatedwith creation, hopping and annihilation ofe anyons situated on vertices. In
particular, thismeans that the initialHamiltonians associatedwith the center points in the twofigures each
generate processes involving only either type of anyon.

• For triv = -å-H Z0, 0 i i( ) , we know that á ñ =Z 1¯ during the entire evolution because Z̄ commutes with the
HamiltoniansH(t), and the initial ground stateY 0( ) is a+1eigenstate of Z̄ . Infigures 7(a) and (b), we can
see that there is a large region of initial Hamiltonians triv

-H a b,( ) around triv = -å-H Z0, 0 i i( ) which lead to
approximately the samefinal state.

• On the other hand, as shown infigures 7(c) and (d), the stable region ofHamiltonians triv
-H a b,X ( ) around the

initial Hamiltonian triv = -å-H X0, 0X
i i( ) ismuch smaller. This is due to the fact that the operator X̄ appears

in higher order perturbation expansion compared to Z̄ , and the evolution timeT is taken to be quite long.
Given sufficiently large total evolution timeT, in the neighborhood of triv = -å-H X0, 0X

i i( ) , the lower order
term Z̄ in the effectiveHamiltonianwill dominate the term X̄ associatedwith = -åV Xi i.

However, in both cases considered infigure 7, we observe that one of two specific logical states is prepared
with great precisionwithin a significant fraction of the initial Hamiltonian parameter space.

7.4. The doubled semionmodel
In this section, we present our numerical results forHamiltonian interpolation in the case of the doubled semion
model (see section 6.3.3).

(Non)-adiabaticity.Wefirst consider the total evolution timeTnecessary to reach the final ground space
of topH , for different initial Hamiltonians trivH . Specifically, figure 8 shows the adiabaticity error Tadia ( )
(see (49)) as a function of the total evolution timeT for the three initial Hamiltonians triv qH ( ),
q p p pÎ , 3, 2 3{ } (see (46)). The case of q = 0, corresponding to the initial Hamiltonian triv = åH Z0 j j( ) is
not shown infigure 8 since the situation is the same as in the toric code: no overlapwith the ground space of topH
is achieved because the vertex-operators = ÄA Zv

3 are conserved quantities with á ñ = -A 1v .
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Figure 7.Thesefigures illustrate the expectation valuesá ñX̄ and á ñZ̄ of string-operators (see (51)) of thefinal stateY T( ), for different
choices of the initial Hamiltonian. The total evolution time isT= 120. (a)The expectation value á ñX̄ of thefinal stateY T( ), for initial
Hamiltonians triv

-H a b,( ) in the neighborhood of triv = -å-H Z0, 0 j j( ) . Note that, as illustrated infigure 6(b), the ground space of the
toric code is reached for thewhole parameter range; hence these values, together with the expectation values shown in figure 7(b)
uniquely determine the stateY T( ). (b)The quantity - á ñZln 1( ¯ ) for initial Hamiltonians triv

-H a b,( ) (we plot the logarithmbecause
the variation is small) as infigure 7(a). (c)The quantity - á ñXln 1( ¯ ) for initial Hamiltonians triv

-H a b,X ( ) in the neighborhood of
triv = -å-H X0, 0X

j j( ) . The corresponding adiabaticity error is shown infigure 6(c). (d)The quantity á ñZ̄ for initial

Hamiltonians triv
-H a b,X ( ) as in figure 7(c).

Figure 8.The adiabaticity error Tadia ( ) for the doubled semionmodel as a function of the total evolution timeT. Initial
Hamiltonians triv qH ( )with q p p pÎ 3, 2 3,{ } are considered.
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Infigure 9(a), we plot the adiabaticity error Tadia ( )with initial Hamiltonian among the family of
Hamiltonians triv

+H a b,( ) in the vicinity of triv = å+H Z0, 0 i i( ) . Similarly, figure 9(b) provides the adiabaticity
error for initial Hamiltonians triv

-H a b,( ) in the vicinity of triv = -å-H Z0, 0 i i( ) .
Logical state.To explore the stability of the resulting final state, we consider the family of initial

Hamiltonians triv
H a b,( ) and compute the overlap yáY ñ Ta b R,

2∣ ( )∣ ∣ of the resulting final stateY Ta b, ( )with a
suitably chosen reference stateyR.We choose the latter as follows:yR is the result of projecting thefinal
stateY- T0,0( ) of theHamiltonian interpolation, starting from the initial Hamiltonian triv = -å-H Z0, 0 i i( )
onto the ground space of the doubled semionmodel topH and normalizing, i.e.

y =
Y

Y

-

- 
P T

P T
. 52R

0 0,0

0 0,0

( )
( )

( )

Webriefly remark that the stateyR is uniquely determined (up to a phase) as the unique simultaneous+1-
eigenvector ofTS TS3 (see section 7.2) and the string operator =Z Z Z1 2¯ (which is the string-operator F Cs s, ( )( )
for the associated loopCwhen acting on the ground space of topH ): indeed, the latter operator commutes with
both triv

-H 0, 0( ) and topH .We also point out that, similarly to the toric code, the localZi-operators correspond to
a combination of pair creation, hopping and pair annihilation of s s,( ) anyons.

The preparation stability of the reference state yR with respect to the initialHamiltonians triv
H a b,( )with

negative and positiveZfield component is illustrated infigure 10. For negativeZfield (figure 10(b)) the
resulting stateY- Ta b, ( ) has large overlapwith the reference stateyR for almost the entire parameter range. Even
when starting from initialHamiltonians with positiveZ field component (figure 10(a)), where the final state does
not have a large overlapwith the topological ground space (see figure 9(a)), the ground space contribution comes
almost exclusively from the reference state. Thus, for doubled semionmodel, we identify a single stablefinal
stateyR corresponding to the initialHamiltonian triv = -åH Zi i.

7.5. The doubled Fibonaccimodel
As our last case study ofHamiltonian interpolation, we consider the doubled Fibonaccimodel described in
section 6.3.4.

(Non)-adiabaticity. Figure 11 shows the adiabaticity error Tadia ( ) as a function of the total evolution timeT
for the initialHamiltonians triv = åH Zj j. Note that to achieve the same error, the total evolution timeT
needs to bemuch longer compared to the toric code and the doubled semionmodels. It also illustrates that an
error of around » -T 10adia

3( ) is obtained forT= 320: thefinal stateY T( ) overlaps well with the ground
space of topH .

Infigure 12, we consider the non-adiabaticity t tadia ( ) along the evolution, again for the initial
Hamiltonians triv = åH Zj j. In particular, figure 12(a), which is for a total evolution time ofT=320, we see
that the deviation of the stateY t( ) from the instantaneous ground state ofH(t) can bemuch larger (compared
to the non-adiabaticity  Tadia ( )) along the evolution, evenwhen approaching the end ofHamiltonian
interpolation: we have   -t 10adia

2( ) for »t 280. The fact that the ground space of the finalHamiltonian topH
is reached nevertheless at time »t T is essentially due to the exact degeneracy in the finalHamiltonian topH : In

Figure 9.The adiabaticity error Tadia ( ) for different initial Hamiltonians trivH and the doubled semionmodel as topH . In both cases,
the total evolution time isT= 120. (a)The adiabaticity error Tadia ( ) for differentHamiltonians triv

+H a b,( ) in the vicinity
of triv = å+H Z0, 0 j j( ) . The adiabaticity error ismaximal for the latter because of conserved quantities; however, it decays rapidly
outside this center region. This situation is analogous tofigure 6(a) for the toric code. (b)The logarithmic adiabaticity error  Tln adia ( )
among the family ofHamiltonians triv

-H a b,( ) around triv = -å-H Z0, 0 j j( ) .
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fact, the system is in a state which has a large overlapwith the subspace of ‘low energy’ (corresponding to the
4-fold degenerate subspace of topH ) along the trajectory, but not necessarily with the unique instantaneous
ground state ofH(t) for <t T . For t=T, the state has a large overlapwith the ground space of topH since the
latter is higher-dimensional.

This illustrates that the adiabaticity error t tadia ( ) along the evolution (i.e., for <t T ) does not provide
sufficient information to conclude that the ground space of topH is reached at the end of the evolution. Due to
the small energy splittingwithin the topological ‘phase’ it ismore fruitful to view the part of the interpolation
close to »t T in terms of degenerate adiabatic perturbation theory [RO14] instead of the traditional adiabatic
theorem.

figure 12(a) also shows that forT= 320, changing the Trotter time stepsDt (see (48)) fromD =t 0.1 to
D =t 0.01does not significantly change the behavior, particularly for the initial Hamiltonianå Zi i. On the
other hand, by increasing theHamiltonian interpolation time for triv = åH Zi i toT= 1280, as infigure 12(b),

Figure 10.The overlaps yáY ñ Ta b R,
2∣ ( )∣ ∣ between thefinal states Y Ta b, ( ) ofHamiltonian interpolation and the reference state yR

(see (52)). Observe that the same reference state is used in bothfigures even thoughyR is naturally associatedwith the centerpoint in
figure 10(b). The total evolution time isT= 120 in both cases. Comparingwith figures 9(a) and (b), we conclude that throughout the
regionwhere the ground space of topH is reached, approximately same state is prepared. (a)The overlap yáY ñ+ Ta b R,

2∣ ( )∣ ∣ for initial
Hamiltonians triv

+H a b,( ) around triv = å+H Z0, 0 i i( ) .We observe that outside the center region (where the ground space of topH is
not reached, see figure 9(a)), the prepared stateY+ Ta b, ( ) is not too far from the reference stateyR . Note that definition of the latter
does not correspond to anyHamiltonian in this plot, but rather the centerpoint offigure 10(b). (b)The quantity

y- áY ñ- Tln 1 a b R,
2( ∣ ( )∣ ∣ ) for initial Hamiltonians triv

-H a b,( ) around triv = -å-H Z0, 0 i i( ) .We plot the logarithmof this quantity
because the variation is small. As illustrated, the resulting state is close to the reference stateyR throughoutmost of the parameter
region. Observe that, while yR corresponds to the center point in thisfigure, it still deviates fromY-

a b, since the latter has support
outside the ground space of topH (cffigure 9(b)).

Figure 11.The adiabaticity error Tadia ( )with respect to different total evolution timesT for the Fibonaccimodel. The initial
Hamiltonian trivH is either triv = å+H Z0, 0 i i( ) or triv = -å-H Z0, 0 i i( ) . Note that for this choice of initial Hamiltonians, the vertex
termsAv are conserved quantities (as for example in the toric code). Since both ñÄ1 3∣ and tñÄ3∣ are in the ground space ofAv, both signs
of the pureZ field lead to aHamiltonian interpolationwhich invariantly remains in the ground space ofAv. In other words, the
adiabaticity error stems from the plaquette termsOther fields are computationallymore costly, since they lift the block decomposition
of the interpolatingHamiltoniansH(t) induced by the conserved vertex terms, reducing the sparsity of the unitary evolution.
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we see the evolution closely follows the instantaneous ground state. The discrepancy can be seen as a ‘lag’ or
delay of the evolved state and the instantaneous ground state and is largest at the ‘phase transition’,

top» + åH t H Z1 4 3 4 i i( ) , where the gap closes.

Logical state. Figure 13 provides information about the final stateY Ta b, ( ) ofHamiltonian interpolation, for

the family of initial Hamiltonians triv
H a b,( ) (see (50)). Again, thefigure gives the overlapwith a single reference

stateyR. Similarly as before, we choose the latter as thefinal state ofHamiltonian interpolation, starting with
initialHamiltonian triv = -å-H Z0, 0 i i( ) , and subsequently projected into the ground space and normalized
(see (52)).

Figure 12.The overlap of the stateY t( ) at timetwith the instantaneous ground space ofH(t), as expressed by the adiabaticity error
t tadia ( ) along the evolution. The initial Hamiltonian is either triv = å+H Z0, 0 i i( ) or triv = -å-H Z0, 0 i i( ) , and thefinal

Hamiltonian topH is the doubled Fibonaccimodel. (a)The total evolution time isT= 320. As explained in the text, the fact that the
overlapwith the instantaneous ground state towards the end of the evolution is small does not prevent the system from reaching the
degenerate ground space of thefinalHamiltonian topH (see 11). Changing the Trotter discretization step from D =t 0.1 to
D =t 0.01does not significantly change the behavior. (b) For the initial Hamiltonian triv = åH Zi i and a total evolution time
T= 1280, the system closely follows the instantaneous ground state ofH(t).

Figure 13.Thesefigures show the overlap between thefinal statesY
a b, ofHamiltonian interpolation and the reference stateyR . This

is for the family triv
H a b,( ) of initial Hamiltonians and the double Fibonaccimodel topH as thefinalHamiltonian. The reference

stateyR is chosen in both figures as in(52) (corresponding to the center point infigure 13(b)). The total evolution time isT= 320 in
both cases. (a)The quantity y- áY ñ+ Tln 1 a b R,

2( ∣ ( )∣ ∣ ) for initial Hamiltonian of the form triv
+H a b,( ) around triv = å+H Z0, 0 j j( ) . For

the whole range of parameters(a, b), the adiabaticity error is small,   -T 10adia
4( ) . The reference stateyR corresponds to the center

of figure 13(b) (up to projection onto the ground space of topH and normalization). Thefigure illlustrates that thefinal stateY+ Ta b, ( )
has non-trivial overlapwith the reference state in the region >a 0, but is very sensitive to the choice of parameters(a, b), especially
around =a b, 0, 0( ) ( ). (b)The quantity y- áY ñ- Tln 1 a b R,

2( ∣ ( )∣ ∣ ), for initial Hamiltonians triv
-H a b,( ) around = -å-H Z0, 0 j j( ) .

For thewhole range of parameters(a, b), the adiabaticity error is small,  T 0.005adia ( ) apart from the point on the boundary of the
plot. TheHamiltonian interpolation reaches the reference stateyR essentially for the full parameter range.
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Weobserve significant overlap of the final statewith the reference stateyR for thewhole parameter range for
the initialHamiltonians triv

-H a b,( ) (figure 13(b)). In contrast, for the initial Hamiltonians triv
+H a b,( ), thefinal

state depends strongly on the choice of parameters(a, b) (figure 13(a)).
To relate this to the discussion in section 6 (respectively conjecture 1), let usfirst consider the centerpoint of

figure 13(b) associatedwith the initial Hamiltonian triv = -å-H Z0, 0 j j( ) . These terms correspond to a
combination of local pair creation, hopping and pair annihilation of t t,( ) anyons, as explained in appendix B.
The effectiveHamiltonian can be computed at this point based on expression(35) and the S- andT-matrices
given inequation (45). The result is given numerically in equation (100) in the appendix. Computing the ground
state effy of this effectiveHamiltonian, we observe thatwith respect to the projections t t t tP P P P, , ,1,1 , 1, ,1{ }, the
expectation values of the reference stateyR and effy are similar

eff

y
y

t t t tP P P P

0.5096 0.4838 0.0033 0.0033
0.5125 0.4804 0.0036 0.0036

.R

1,1 , 1, ,1

Moving away from the center point infigure 13(b), we compute the overlaps of the reference stateyR with
the ground states perty a b,( ) of perturbedHamiltonians of the form pert top triv=  H a b H H a b, 0.001 ,( ) ( ), as
illustrated infigure 14 (the latter providing an approximate notion of effectiveHamiltonians). Thefigure
illustrates that these perturbed states have, as expected, a certain degree of stability with respect to the
parameters(a, b). Comparisonwithfigure 13 thus points to a certain discrepancy between the behavior of
perturbed states and states obtained byHamiltonian interpolation: figure 13(a) shows high sensitivity of thefinal
state to initial parameters(a, b) (which is absent in the perturbative prediction), whereasfigure 13(b) shows that
thefinal state is close to the reference stateyR throughout (as opposed to the perturbative prediction, where this
is not the case along the boundary). To rule out that this discrepancy stems from an insufficiently large choice of
the total evolution timeT, we also show that different choices of the total evolution timeT do not significantly
affect the overlapwith the reference state along the lineb= 0, see figure 15.

In summary, we conclude that while for a large parameter range of initial parameters the reference stateyR

is indeed reached, the stability property is less pronounced than for the toric code and the doubled semion
models. In addition, a naïve comparisonwith ground states of perturbedHamiltonians suggests that the
description via effectiveHamiltonians does not capture all relevant features.We conjecture that higher orders in
perturbation theory are needed to providemore information in the case of the Fibonaccimodel: the statemay be
‘locked’ in eigenstates of such higher-orderHamiltonians before the lowest order effectiveHamiltonian
dominates.

8. Conclusion

In this paper, we have studied the feasibility of preparing topologically ordered ground states bymeans of
Hamiltonian interpolation.Our numerical simulations suggest that this is indeed an attractive approach to

Figure 14.To compare with the perturbative prediction, thesefigures give the overlap between the reference stateyR and the ground
state perty a b,( ) of the perturbedHamiltonians pert top triv=  +H a b H H a b, 0.001 ,( ) ( ). (a)The quantity perty y- á ñ+ a bln 1 , R

2( ∣ ( )∣ ∣ )
forHamiltonians pert

+H a b,( ). (b)The quantity perty y- á ñ- a bln 1 , R
2( ∣ ( )∣ ∣ ) forHamiltonians pert

-H a b,( ). The reference state yR has
overlap perty yá ñ »- 0, 0 0.9976R

2∣ ( )∣ ∣ with the ground state of the perturbedHamiltonian pert top= - å-H H Z0, 0 0.001 j j( ) .
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initializing topological quantummemories or computers. In particular, as discussed in the introduction, this
approach compares favorably with other proposedmethods in terms of the required experimental resources.

The considered preparationprocess exhibits a striking feature asweobserve inour simulation: the resulting
final states dependonlyweakly on the chosen initialHamiltonian.Weprovide analytical perturbation theory
argumentswhich elucidate the origin of this stability property. This result has operational consequences: it implies
that straightforwardHamiltonian interpolation can only reach a limited set offinal states, a featurewhichmaybe
undesirable for the initializationof a quantumcomputer. It remains to be seenwhether alternative interpolation
schedules and/or additional operations during the interpolation can lead to additional stablefinal states.

Our focus here is on systems of small size. As a result, we anticipate that ourfindingsmay be reproduced in
actual experiments in the not-so-far future: reasonable control of about a dozen qubits would be sufficient for
this purpose. Ultimately, however, it is desirable toworkwith larger systems, as those exhibit better fault-
tolerance properties. Unfortunately, this is currently not only beyond the reach of experiments, but also appears
to be beyond the current state of the art in terms of computational and analyticalmethods.

Key questions in this regard concern the finite-size scaling of the gap at the critical point: this will determine
the needed preparation time, but it is not well-understood in two-dimensions [Ham00]. In addition, the
perturbation theorymethodwe employed here is not ideal for large-size systems due to convergence issues:
some alternative approaches such as real-space renormalizationwill be needed.More broadly, Hamiltonian
interpolations between trivial and topological phases are naturally related to topological phase transitions.
Progress on characterizing the lattermay provide new insight into the nature of such interpolations.
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AppendixA. Equivalence of the self-energy- and Schrieffer–Wolffmethods for topological
order

As discussed in section 3.4, herewe show that at lowest non-trivial order, the expressions obtained from the self-
energy-method and the Schrieffer–Wolffmethod coincide if theHamiltonian and perturbation satisfies a
certain topological order condition.

Figure 15.This figure shows the overlap pert q yáY ñR
2∣ ( )∣ ∣ for initial Hamiltonians triv q q q= å +H Z Xcos sinj j j( ) along the line of

the horizontal axis infigure 14(a), for different values of the total evolution timeT.We only computeT= 960 on the rightmost region
to show that increasing the total evolution time do not significantly change thefinal states. It also gives the corresponding
overlap pert q yáY ñR

2∣ ( )∣ ∣ between the ground state of pert qH ( ) and the reference state. The figure illustrates that increasing the
evolution timeT does not significantly alter the overlapwith the reference state.
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Webeginwith a reviewof the exact Schrieffer–Wolff transformation (sectionA.1), aswell as the expressions
resulting from the Schrieffer–Wolff perturbative expansion (sectionA.2). In sectionA.3,wepresent somepreliminary
computations. In sectionA.4,we introduce the topological order constraint and establishourmain result.

A.1. Exact-Schrieffer–Wolff transformation
Asmentioned in section 3, the Schrieffer–Wolffmethod provides a unitaryU such that

eff = +H U H V U 530( ) ( )†

preserves the ground space P0 of H0, and can be considered as an effectiveHamiltonian. The definition of the
unitary is as follows: letP be the projection onto the ground space of the perturbedHamiltonian e+H V0 .
Defining the reflections

= -
= -

R P I

R P I

2

2
P

P

00

the (exact) Schrieffer–Wolff transformation is defined by the ‘direct rotation’

=U R R , 54P P0 ( )

where the square root is definedwith a branch cut along the negative real axis. The effectiveHamiltonian is then
given by

eff  e= +H P U H V U P .0 0 0( ) ( ) †

Avariational characterization (see [BDL11]) of the unitaryU (instead of(54)) is oftenmore useful (e.g., for
computing the effectiveHamiltonian in the case of a two-dimensional ground space, such as for theMajorana
chain): we have

= - = U I U U UPU Pargmin unitary and , 552 0{ ∣ } ( )†

where = A A Atr2 ( )† is the Frobenius norm.

A.2. The perturbative SWexpansion
Since the transforming unitary(54), as well as expression(53), are difficult to compute in general, a standard
approach is to derive systematic series in the parameterò (the perturbation strength). In this section, we
summarize the expressions for this explicit perturbative expansion of the Schrieffer–Wolff effective
Hamiltonian obtained in [BDL11]. The perturbation is split into diagonal and off-diagonal parts according to

= +V P VP Q VQ V , 56d 0 0 0 0 ≕ ( ) ( )

= +V P VQ Q VP V , 57od 0 0 0 0 ≕ ( ) ( )

where P0 is the projection onto the ground space of H0, and = -Q I P0 0 the projection onto the orthogonal
complement. Assuming that ñi i{∣ } is the eigenbasis of H0 with energies ñ = ñH i E ii∣ ∣ , one introduces the
superoperator




å=
á ñ

-
ñáX

i X j

E E
i j .

i j i j,

( ) ∣ ( )∣ ∣ ∣

Then the operators Sj are defined recursively as

Ad

Ad




 

å

=
=-

=- +- -

S V
S S

S S a S V

,
,

, 58

V

n V n
j

j
j

n

1 od

2 1

1
1

2
2

od 1

d

d

( )
( ( ))

( ( )) ( ˆ ( ) ) ( )

where

Ad Ad


å=
¼

å ==

S V V , 59
k

m
n n

n m

S Sod
, , 1

od
k

r
k

r

n nk
1

1

1
ˆ ( ) ( ) ( )

andwhere Ad =X S X,S ( ) [ ]. The constants are = bam m

2m
m

! , where bm is themth Bernoulli number. Observe that

= >S V k m0 for .
k

mod
ˆ ( )

The qth order term in the expansion(6) is

36

New J. Phys. 18 (2016) 093027 XNi et al



eff
 
å= -

-
-H b P S V P , 60q

j q
j

j
q,

1 2
2 1 0

2 1
od 1 0

ˆ ( ) ( )
⌊ ⌋

where = b
-

-b n n2 1
2 2 1

2

n
n2( )

( )!
.

Since ourmain goal is to apply the perturbation theory to topologically ordered (spin) systems, we can try to
utilize their properties. In particular, one defining property of such systems is that, if an operator is supported on
a topological trivial region, then it acts trivially inside the ground space. A commonnon-trivial operation in the
ground space corresponds to the virtual process of tunneling an anyon around the torus. This property will allow
us to simplify the computationwhenwewant to compute the lowest order effectiveHamiltonian. In the
following subsections, wewill show that although Sn is defined recursively based on ¼ -S S, , n1 1, only thefirst
term Ad- -SV n 1d

( ( )) on the rhs of(58)would contribute to the lowest order effectiveHamiltonian. The

intuition behind this claim is that the other term å -a S Vj j
j

n1 2
2

od 1( ˆ ( ) ) corresponds to virtual processes which
go through the ground space excited space ground space cyclemultiple times (larger than one). It is
intuitive that such virtual processes would not happenwhenwewant to consider the lowest order perturbation.

A.3. Somepreparatory definitions and properties
Let

= - -G z zI H0
1( ) ( )

be the resolvent of the unperturbedHamiltonian H0. LetE0 be the ground space energy ofH0.We set

= = =G G E G E Q Q G E Q ,0 0 0 0 0 0( ) ( ) ( )
i.e., the inverse is taken on the image of Q0. Then  can bewritten as

 = -X P XG GXP . 610 0( ) ( )

To organize the terms appearing in the perturbative Schrieffer–Wolff expansion, it will be convenient to
introduce the following subspaces of operators.

DefinitionA.1. For each În , let G n( ) be the linear span of operators of the form

-Z VZ VZ Z VZ , 62n n0 1 2 1 ( )

where for each = ¼j n0, , , the operator Zj is either one of the projections P0 or Q0, or a positive power ofG,
i.e., ÈÎ ÎZ P Q G m,j

m
0 0{ } { ∣ }.

Let G Ì Gn n( ) ( ) the span of operators of the form(62)which additionally satisfy the condition

= =Z Z Z Z 0,n n0 0

i.e., Z0 and Zn are orthogonal.

For later reference, we remark that operators in G n( ) a linear combinations of certain termswhich are off-
diagonal with respect the ground space ofH0 (and its orthogonal complement). In particular, any product of an
even number of these operators is diagonal.

Thefirst observation is that the summands the effectiveHamiltonian(60)have this particular form.

LemmaA.2.Wehave
Î GV 1 63od ( ) ( )

and
 Î G ÎS n nfor every 64n ( ) ( )

Furthermore

Î G +S V m 1 65
k

mod
ˆ ( ) ( ) ( )

for all k m, .

Proof.The definition of G n( ) immediately implies that

Î G + Î G Î GXY n n X n Y nfor and . 661 2 1 2( ) ( ) ( ) ( )

Thus

Ad Î G + Î G Î GY n n X n Y nfor and .X 1 2 1 2( ) ( ) ( ) ( )
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Furthermore, inspecting theDefinitions(57) and(56), we immediately verify that

Î G Î GV V1 and 1 . 67od d( ) ( ) ( )

Similarly,(63) follows directly from the definitions.
Wefirst argue that

Î G Î GS S1 and 2 . 681 2( ) ( ) ( )

Inserting the definition ofVod and  (that is, (61)), we have

= +
= + - +
= -

S P VQ Q VP
P P VQ Q VP G G P VQ Q VP P
P VG GVP , 69

1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0

( )
( ) ( )

( )

wherewe used the fact = =GQ Q G G0 0 and that Q0, P0 are orthogonal projections. This proves the claim(64)
for n= 1 and, in particular, shows that Î GS 11 ( ).

Similarly, for n= 2, using the definition ofVd, a straightforward calculation (using (69)) gives

Ad = - +S P VP VG Q VGVP h.c.V 1 0 0 0 0d ( ) ( )

(where h.c. denotes theHermitian conjugate of the previous expression) and thuswith(61)

= + -S P VP VG GVGVP h.c..2 0 0
2

0( )
Weconclude that(64) holds n= 2 and, in particular, Î GS 22 ( ), as claimed (equation (68)).

With(67) and(68), we can use the composition law(66) to show inductively that

Î G ÎS n nfor all . 70n ( ) ( )

Indeed,(70) holds for n= 1,2. Furthermore, assuming Î GS mm ( ) for all  -m n 1, we can apply(66)
and(67) to theDefinition(59) of -S V

j
n

2
od 1

ˆ ( ) , obtaining

AdÎ G Î G- -S V n S nand .
j

n V n
2

od 1 1d
ˆ ( ) ( ) ( ) ( )

Thus(70) follows by definition(58) of Sn, the easily verified fact (see (61)) that  G Ì Gn n( ( )) ( ), and linearity.
Finally, observe that(61) also implies

 G Ì Gn n , 71( ( )) ( ) ( )

hence(64) followswith(70).
The claim(65) is then immediate from the composition law(66), as well as(70) and(67). ,

A.4. Topological-order constraint
In the following, wewill assume that

G Ì <P n P P n Lfor all . 800 0 0( ) ( )

which amounts to saying that H V,0( ) satisfies the topological order conditionwith parameterL (see definition
3.1). In sectionA.4.1, we argue that this implies that the effectiveHamiltonian is trivial (i.e., proportional to P0)
for all orders <n L. In sectionA.4.2, we then compute the non-trivial contribution of lowest order.

A.4.1. Triviality of effectiveHamiltonian at orders <n L. A simple consequence of definitionA.1 then is the
following.

LemmaA.3. Suppose that G ÌP n P P0 0 0( ) for all <n L. Then for any k2 -tuple of integers ¼ În n, , k1 2 with

å <
=

n L,
j

k

j
1

2

and all Î GT nn jj
( ), = ¼j k1, , 2 , we have




Î
Î




T T P P

P T T P .
n n

n n

0 0

0 0

k

k

1 2

1 2

Proof. It is easy to check that because of property(66), the expression T T Pn n 0k1 2
is contained in GP n P0 0( ) ,

where = å =n nj
k

j1
2 . The claim follows immediately. The argument for P T Tn n0 k1 2

is identical. ,

LemmaA.4.Assume that G ÌP n P P0 0 0( ) for all <n L. Then




Î <

Î >

-
-

-
-

P S V P P j n L

P S V P P j

for all and all .

for all 1. 72

j
n

j
L

0
2 1

od 1 0 0

0
2 1

od 1 0 0

ˆ ( )
ˆ ( ) ( )
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lemmaA.4 suffices to show that the nth order effectiveHamiltonian effH n( ) is trivial (i.e., proportional to P0) for
any order <n L (see theorem3.2 below).

Proof.The claim(72) is an immediate consequence of the assumption since Î G-
-S V n

j
n

2 1
od 1

ˆ ( ) ( ) according
to(65) of lemmaA.2.

For >j 1, we use the definition

Ad Ad


å=

å

-
-

¼

= -

-

=
-

-
S V V .

j
L

n n

n L

S S
2 1

od 1
, , 1

1

od
j

r

j
r

n n j
1 2 1

1

2 1

1 2 1
ˆ ( ) ( )

First summing over n1 (using the linearity of AdSn1
), we obtain

Ad

Ad Ad




å

å

=

=

å

-
-

¼

= - -

-

=
-

-


S V Y

Y V

where

.

j
n

n
S n

n
n n

n L n

S S

2 1
od 1

1

, , 1

1

od

n

j

r

j
r

n n j

1

1 1

1

2 2 1

2

2 1
1

2 2 1

ˆ ( ) ( )

( )

Observe that Yn1
is a linear combination of products -T T j1 2 1of an odd number -j2 1of elements =

-Tr r
j

1
2 1{ } ,

where ¼ -T T, , j1 2 1( ) is a permutation of ¼ -S S V, , ,n n odj2 2 1
( ). By linearity, it suffices to show that

Ad Î-P T T P PS j0 1 2 1 0 0n1
( ) for such a product.

Wewill argue that

= Î G < --T T P TP T m m L nfor some with and 73j1 2 1 0 0 1( ) ( )

= ¢ ¢ Î G ¢ ¢ < --P T T P T T m m L nfor some with . 74j0 1 2 1 0 1( ) ( )

This implies the claim since

Ad



= -

= - ¢
Î

- - -  P T T P P S T T P P T T S P

P S TP P T S P

P ,

S j n j j n

n n

0 1 2 1 0 0 1 2 1 0 0 1 2 1 0

0 0 0 0

0

n1 1 1

1 1

( )

wherewe used that Î G +S T n mn 11
( ) and ¢ Î G + ¢T S n mn 11

( ), + <n m L1 , + ¢ <n m L1 and our
assumption in the last step.

To prove(73) (the proof of (74) is analogous and omitted here), we use that Î GS nn jj
( ) and Î GV 1od ( )

according to lemmaA.2. In otherwords, there are numbers ¼ -m m, , 1j1 2 1 with

å = + å = - <=
-

=
-m n L n L1r

j
r r

j
r1

2 1
2

2 1
1 such that Î GT mr r( ) for = ¼ -r j1, , 2 1. In particular, with

lemmaA.3, we conclude that


=
Î

- - T T P T T T P

T P .
j j1 2 1 0 1 2 2 1 0

1 0

( )

Since = - - å < -=
-m L n m L nr

j
r1 1 2

2 1
1, the claim(73) follows. ,

A.4.2. Computation of the first non-trivial contribution. LemmaA.4 also implies that thefirst (potentially)non-
trivial term is of orderL, and given by -P S V PL0

1
od 1 0

ˆ ( ) . Computing this term requires some effort.
Let us define the superoperator Ad = -d Vd

◦ , that is

 = -X XV V X .d d d( ) ( )

For later reference, we note that this operator satisfies

  G Ì G +n n 1 . 75d( ( )) ( ) ( )

As an immediate consequence of(71).
We also define the operators



å= -B a S V 76n
j

j
j

n
1

2
od 1( ˆ ( ) ) ( )

Thenwe can rewrite the recursive definition(58) of the operators Sn as



 
=
= + = +-

S V

S S B A B nfor 2,n d n n n n

1 od

1

( )
( )

wherewe also introduced

 = -A S nfor 2. 77n d n 1( ) ( )

Similarly to lemmaA.4, we can show the following:
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LemmaA.5. Suppose that G ÌP n P P0 0 0( ) for all <n L. Then for any

⎧⎨⎩=
>
=

-
Y

Z V Z V Z Z V Z for m

Z for m

0

0
m m0 d 1 d 2 1 d

0

where ÈÎ ÎZ P Q G k,j
k

0 0{ } { ∣ }, we have

 Î ÎP B YV P P and P V YB P P 780 od 0 0 0 od 0 0 ( )ℓ ℓ

for all m,ℓ satisfying + - <m L1ℓ .

Proof.By definition(76), Bℓ is a linear combination of terms of the form  -S V
j2

od 1( ˆ ( ) )ℓ with j 1, which in
turn (see (59)) is a linear combination of expressions of the form

Ad Ad å = -
=

 V nwhere 1.S S
r

j

rod
1

2

n n j1 2
ℓ( ( ))

It hence suffices to show that

Ad Ad ÎP V YV P P . 79S S0 od od 0 0n n j1 2
( ( )) ( )

(The proof of the second statement in (78) is identical and omitted here.)
By definition of, the claim is true if =Z P0 0, since in this case the lhs.vanishes as =P V P 00 od 0 .

Furthermore, for general ÈÎ ÎZ Q G kk
0 0{ } { ∣ }, the claim(79) follows if we can show that

Ad Ad ÎP V YV P P ,S S0 od od 0 0n n j1 2
( ( ))

i.e., we can omit from these considerations. This follows by inserting the expression(61) for.
Observe that Ad Ad VS S odn n j1 2

( ) is a linear combination of products +T T j1 2 1of +j2 1operators

=
+Tr r

j
1

2 1{ } , where ¼ +T T, , j1 2 1( ) is a permutation of ¼S S V, , ,n n odj1 2
( ). That is, it suffices to show that for each such

+j2 1-tuple of elements =
+Tr r

j
1

2 1{ } , we have

Î+P T T T YV P P . 80j j0 1 2 2 1 od 0 0 ( )

By lemmaA.2, *Î GT mr r( ) for some integers m 1r satisfying å = + å = + -=
+

=m n1 1 1r
j

r r
r

r1
2 1

1
2 ℓ . This

implies (by our assumption + - <m L1ℓ ) that

å = - <
=

m L1 , 81
r

j

r
1

2

ℓ ( )

and thus ÎP T T Pj0 1 2 0 according to lemmaA.3.We conclude that




Î
Î G + +

+ +

+

P T T T YV P P T YV P

P m m P1 .
j j j

j

0 1 2 2 1 od 0 0 2 1 od 0

0 2 1 0( )

But by(81) and the because j 1, we have

 

å+ + = - - + +

- - + + + - <

+
=

m m m m

j m m L

1 1 1

1 2 1 2

j
r

j

r2 1
1

2

ℓ

ℓ ℓ

( ) ( ) ( )

( ) ( )

by assumption on m,ℓ and L, hence(80) follows from the assumption(80). ,

LemmaA.6. Suppose that G ÌP n P P0 0 0( ) for all <n L. Then for any m,ℓ satisfying + - <m L1ℓ , we have

  Î ÎP B V P P P V B P Pand . 82d
m

d
m

0 od 0 0 0 od 0 0( ) ( ) ( )ℓ ℓ
◦ ◦

In particular, for every <q L, we have

Ad Î+
-P V P P 83B0 od 0 0d

k
q k

1 ( ) ( )( )◦

for all = ¼ -k q0, , 2. Furthermore

Ad  ÎP V P P Lfor all . 84B0 od 0 0 ℓ( ) ( )ℓ

Proof.By definition of  ,d the expression  Bd
m( )ℓ

◦ is a linear combination of terms of the form

=
=

-

+ + +




A B A
A Z V Z Z V Z

A Z V Z Z V Z
whereL R

L
r r

R
r r m m

0 d 1 1 d

1 d 2 d 1
ℓ

and each ÈÎ ÎZ P Q G m,j
m

0 0{ } { ∣ }. SinceAL only involves diagonal operators and the number of
factorsVd is equal to <r L, we have = Î G ÎP A P A P P r P PL L

0 0 0 0 0 0( ) . In particular
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ÎP A B A V P P B A V P .L R R
0 od 0 0 od 0( )ℓ ℓ

But

ÎP B A V P P ,R
0 od 0 0ℓ

wherewe applied lemmaA.5with =Y AR (note thatAR involvesm− r factors Vd, and + - - <m r L1ℓ ( )
by assumption).We conclude that

ÎP A B A V P P ,L R
0 od 0 0( )ℓ

and since P B V Pd
m

0 od 0( )ℓ
◦ is a linear combination of such terms, thefirst identity in(82) follows. The second

identity is shown in an analogousmanner.
The claim(83) follows by setting = +m k 1and = -q kℓ , and observing that + - = <m q L1ℓ .
Finally, consider the claim(84).We have

= Î
=

P B V P P B Q V P P
P V B P P V Q B P

0 od 0 0 0 od 0 0

0 od 0 0 od 0 0

ℓ ℓ

ℓ ℓ

for allℓwith - < L1ℓ by lemmaA.5, hence the claim follows. ,

LemmaA.7. Suppose that G ÌP n P P0 0 0( ) for all <n L. Then

Ad Ad   Î +P V P P V P P .A V0 od 0 0 od 0 0d q d
q

od( ) ( )( ) ( ( ))◦

for all <q L.

Proof.Wewill show that for = ¼ -k q1, , 2, we have the identity

Ad Ad  Î ++ -
+

-P V P P V P P . 85A A0 od 0 0 od 0 0d
k

q k d
k

q k1
1( ) ( ) ( )( ) ( )◦ ◦

(Notice that the expression on the rhs. is obtained from the lhs by substituting +k 1 for k.) Iteratively applying
this implies

Ad Ad  Î +-P V P P V P P ,A A0 od 0 0 od 0 0d q d
q 1

2
( ) ( )( ) ( )◦

fromwhich the claim follows since  =A Vd2 od( ( )).
To prove(85), observe that by definition(77) ofAn, we have by linearity of d

   = = ++ -
+

-
+

-
+

-A S A B .d
k

q k d
k

q k d
k

q k d
k

q k1
1 1 1( ) ( ) ( ) ( )◦ ◦ ◦ ◦

By linearity of themap AdX P V PX0 od 0( ) , it thus suffices to show that

Ad Î+
-P V P PB0 od 0 0d

k
q k

1 ( )( )◦

for all = ¼ -k q1, , 2. This follows from(83) of lemmaA.6. ,

LemmaA.8. Suppose that G ÌP n P P0 0 0( ) for all <n L. Then

Ad  = + < +- -P S V P P V P P n Lfor all 2. 86n V0
1

od 1 0 0 od 0 0d
n 2

od
ˆ ( ) ( ) ( )( ( ))◦

Proof.By definition(59) and the linearity of Ad·, we have

Ad Ad Ad= = +- - - -S V V V V .n S A B
1

od 1 od od odn n n1 1 1
ˆ ( ) ( ) ( ) ( )

But by definition of -An 1, we have if - <n L2

Ad Ad
Ad Ad
Ad



 

  

=
= +
Î +

- -

- -

-

P V P P V P

P V P P V P

P V P P ,

A S

A B

V

0 od 0 0 od 0

0 od 0 0 od 0

0 od 0 0

n d n

d n d n

d
n

1 2

2 2

2
od

( ) ( )
( ) ( )

( )

( )

( ) ( )

( ( ))◦

wherewe again used the linearity of the involved operations in the second step and lemmasA.6 andA.7 in the last
step (with k = 0 and = -q n 2).

Similarly, we have (again by lemmaA.6) if - <n L2 .

Ad =-P V P P .B0 od 0 0n 1 ( )

The claim(86) follows. ,

LemmaA.9. Suppose that G ÌP n P P0 0 0( ) for all <n L. Then

=- P S V P P VGVG GVP2 ,L0
1

od 1 0 0 0
ˆ ( )

where there are L factorsV on the rhs.
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Proof.Wewillfirst show inductively for = ¼ -k n1, , 2 that

  = - - + Î G+V GV P T T kh.c. for some . 87d
k k

k kod
1

0( ( )) (( ) ) ( ) ( )◦

By straightforward computation, we have





 

= -
=- + +
=- - +

V P V G

V V GV P V V GV P

V GV GV P T

h.c.

, h.c.

h.c. ,d

od 0 od

od d od 0 d d od 0

od d od 0 1

( )
[ ( ) ]

( ( )) ( )

where = -T G V P V P h.c.1
2

od 0 d 0 . By assumption, = ÎP V P P V P P0 d 0 0 d 0 0. Thus *Î GT 11 ( ), and the claim(87)
is verified for k= 1 (since =GV GV P GVGVPd od 0 0).

Now assume that(87) holds for some  -k n 1.Wewill show that it is also valid for k replaced by +k 1.
With the assumption, we have

    

 

=

=- - +

+

+

V V

GV P Th.c. .
d
k

d d
k

d
k

d k

1
od od

1
0

( ( )) ( ( ( )))
(( ) ) ( )

◦ ◦

But

 = -
=- +
=- +

+ + +

+ +

+ +

GV P GV P V V GV P

G GV P V P GV GV P

G GV P VP GV P

d
k k k

k k

k k

1
0

1
0 d d

1
0

1
0 d 0 d

1
0

1
0 0

2
0

(( ) ) (( ) ( ) )
( ) ( )
( ) ( )

and by doing a similar computation for theHermitian conjugatewe find

 



=- - +

= - +

+ +
+

+
+

V GV P T

T G GV P VP T

h.c. where

h.c. .
d
k k

k

k
k

d k

1
od

2
0 1

1
1

0 0

( ( )) (( ) )
( ( ) ) ( )

◦

Weclaim that Î G ++T k 1k 1 ( ). Indeed, by assumptionwe have Î G ÌP VP P P P10 0 0 0 0( ) , hence
Î Ì G ++ +G GV P VP G GV P k 1k k1

0 0
1

0( ) ( ) ( ) and the same reasoning applies to theHermitian conjugate.
Furthermore, for Î GT kk ( ), we have  Î G +T k 1d k( ) ( ) by(75).

This concludes the proof of(87), whichwe now applywith = -k L 2 to get

Ad      = -

= +
+ -

- -

- -

- -

-P V P P V V P P V V P

P VG V P P V GV P
P T V P P V T P .

V d
L

d
L

L L

L L

0 od 0 0
2

od od 0 0 od
2

od 0

0
1

od 0 0 od
1

0

0 2 od 0 0 od 2 0

d
L 2

od
( ) ( ( )) ( ( ))

( ) ( )
( ( ))

◦ ◦◦

Since -P T V PL0 2 od 0 and -P V T PL0 od 2 0 are elements of G -P L P10 0( ) , we conclude that

Ad     


= -

= + +

- -

- -

-P V P P V V P P V V P

P VG V V GV P P.

V d
L

d
L

L L

0 od 0 0
2

od od 0 0 od
2

od 0

0
1 1

0

d
L 2

od
( ) ( ( )) ( ( ))

(( ) ( ) )
( ( ))

◦ ◦◦

Finally, with the expression obtained by lemmaA.8 (with n = L), we get

Ad 


=

= +
-

-

-P S V P P V P

P VG VP P2 ,

L V

L

0
1

od 1 0 0 od 0

0
1

0

d
L 2

od
ˆ ( ) ( )

( )
( ( ))◦

as claimed. ,

A.4.3. Equivalence of self-energymethod and Schrieffer–Wolff transformation. With lemmasA.6, A.7 andA.9, we
nowhave the expressions necessary to obtain effectiveHamiltonians.

TheoremA.10 (Theorem3.2 in themain text). Suppose that G ÌP n P P0 0 0( ) for all <n L. Then the nth order
Schrieffer–Wolff effectiveHamiltonian satisfies

eff Î <H P n Lfor all , 88n
0 ( )( )

i.e., the effectiveHamiltonian is trivial for these orders, and

eff = +-H b P VG VP P2 , 89L L
1 0

1
0 0( ) ( )( )

andwhere there are L factors V involved.

Proof.Consider the definition(60) of the nth order term effH n, in the expansion(6): we have

eff
 
å= -

-
-H b P S V P .n

j n
j

j
n,

1 2
2 1 0

2 1
od 1 0

ˆ ( )
⌊ ⌋

For <n L, each term -
-P S V P

j
n0

2 1
od 1 0

ˆ ( ) is proportional to P0 (see (72) of lemmaA.4), hence the claim(88)
follows.
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On the other hand, for n= L, we have

⎧⎨⎩
Î >

=
-

- 
P S V P

P j

P VGVGV GVP j

if 1

if 1
j

L0
2 1

od 1 0
0

0 0

ˆ ( )

according to lemmasA.4 andA.9, hence(89) follows. ,

Appendix B.On a class of single-qudit operators in the Levin–Wenmodel

In this appendix, we consider the action of certain single-qudit operators and discuss how they affect states in the
Levin–Wenmodel. For simplicity, wewill restrict our attention tomodels where each particle satisfies =a a¯ ,
i.e., is its own antiparticle. Similar local operators were previously considered (for example, in [BSS11]).We
introduce the operators in section B.1 and compute the associated effectiveHamiltonians in section B.2

B.1.Definition and algebraic properties of certain local operators
Recall that for each qudit in the Levin–Wenmodel, there is an orthonormal basis ñ Îa a{∣ } indexed by particle
labels. For each particle Îa , we define an operator acting diagonally in the orthonormal basis as

ñ = ñ ÎO b
S

S
b bfor all . 90a

ab

b1

∣ ∣ ( )

As an example, consider the Pauli-Z operator defined in section 6.3.3 for the doubled semionmodel.
Because the S-matrix of the semionmodel is given by (see e.g., [Sch13, section 2.4])

⎡
⎣⎢

⎤
⎦⎥=

-
S

1

2
1 1
1 1

with respect to the (ordered) basis ñ ñs1 ,{∣ ∣ }, the operatorO s takes the form

diag= - =O Z1, 1 91s ( ) ( )

according to(90).
As another example, we can use the fact that the Fibonaccimodel has S-matrix (with respect to the basis
tñ ñ1 ,{∣ ∣ })

⎡
⎣⎢

⎤
⎦⎥j

j
j

=
+ -

S
1

1

1
12

to obtain

diag j j= -tO , 1 .( )

Therefore, the Pauli-Z-operator in the doubled Fibonaccimodel takes the form

j
j

=
+

- + tZ I O
2

2 , 92( ) ( )

where I is the identitymatrix.
Wewill write =O Oa

e
a

( ) for the operatorOa applied to the qudit on the edgee of the lattice. To analyze the
action of such an operatorOa

e( ) on ground states of the Levin–Wenmodel, we used the ‘fattened honeycomb’
description of (superpositions) of string-nets: this gives a compact representation of the action of certain
operators (see the appendix of [LW05]), as well as a representation of ground states (see [KKR10]). In this
picture, states of themany-spin system are expressed as superpositions of string-nets (ribbon-graphs) embedded
in a surfacewhere each plaquette is punctured. Coefficients in the computational basis of the qudits can be
obtained by a process of ‘reduction to the lattice’, i.e., the application of F-moves, removal of bubbles etc.similar
to the discussion in section 5. Importantly, the order of reduction does not play a role in obtaining these
coefficients as a result ofMacLane’s theorem (see the appendix of [Kit06]). Note, however, that this
diagrammatic formalism onlymakes sense in the subspace

 y y y= ñ ñ = ñA vfor all verticesvvalid {∣ ∣ ∣ ∣ }
spanned by valid string-net configurations, since otherwise reduction is not well-defined.

This provides a significant simplification for certain computations. For example, application of a plaquette
operatorBp corresponds—in this terminology—to the insertion of a ‘vacuum loop’ times a factor D1 . The

latter is itself a superposition of strings, where each string of particle typej carries a coefficient
d

D

j .Wewill

represent such vacuum strings by dotted lines below:
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Crucial properties of this superposition are (see [KKR10, lemmaA.1])

and the pulling-through rule

Similarly, a single-qudit operatorOa
e( ) of the form(90) can be expressed in this language, and takes the form

of adding a ‘ring’ around a line: we have

(The color is only used to emphasize the application of the operator, but is otherwise of no significance.)

LemmaB.1. Let ¹a 1, and let Oa
e( ) be anoperator of the form(90) acting an an edgee of the qudit lattice. Let ¢p p, be

the two plaquettes adjacent to the edgee, and let ¢B B,p p be the associated operators. Then for any yñ Î valid∣ , we have

y y y

y y y

ñ = ñ  ñ =

ñ = ñ  ñ =¢ ¢

B B O

B B O

0,

0.

p p a
e

p p a
e

∣ ∣ ( ∣ )

∣ ∣ ( ∣ )

( )

( )

For example, for any ground state yñ∣ of the Levin–Wenmodel topH , yñOa
e ∣( ) is an eigenstate of topH with

energy2. Furthermore, for any ground state yñ∣ , and any edges ¼e e, , n1 which (pairwise) do not belong to the
same plaquette, the state yñO Oa

e
a

en1 ∣( ) ( ) is an eigenstate (with energy n2 ) of topH . The case where the edges
belong to the same plaquette will be discussed below in lemmaB.2.

Proof. For concreteness, consider the plaquette operatorBp ‘on the left’ of the edge (the argument for the other
operator is identical). Because yñ∣ is a ground state, we have y yñ = ñBp∣ ∣ . Using the graphical calculus (assuming
that the state yñ∣ is expressed as a string-net embedded in the gray lattice), we obtain

,

LemmaB.2. Let ¹e e1 2 be two edges lying on the same plaquette p, and let us assume that they lie on opposite sides
of the plaquette p (this assumption is for concreteness only and can be dropped). Let Oa

e1( ) and Oa
e2( ) be the associated

single-qudit operators (with ¹a 1). Then for all yñ Î valid∣ , we have
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y yñ = ñB O O B
d

D
B O B ,p a

e
a
e

p
a

p a
e e

p
1 2 1 2∣ ∣( ) ( ) ( )

where the operator Oa
e e1 2( ) is defined by

in the diagrammatic formalism. In other words, Oa
e e1 2( ) adds a single loop of typea around the edgese e,1 2.

Proof. Let yñ Î valid∣ . Thenwe have by a similar computation as before

as claimed. ,

Clearly, the reasoning of lemmaB.2 can be applied inductively to longer sequences of
products O O Oa

e
a

e
a

ek1 2( ) ( ) ( ) if the edges ¼e e, , k1{ } correspond to a path on the dual lattice, giving rise to certain
operators Oa

e ek1( ) with a nice graphical representation: we have for example

= P O O O P c P O Pa
e

a
e

a
e

a
e e

0 0 0 0
k k1 2 1·( ) ( ) ( ) ( )

for some constantc, where P0 is the projection onto the ground space of the Levin–Wenmodel andwhere
Oa

e ek1( ) is the operator given in the diagrammatic formalism as

ð93Þ

Using this fact, we can relate certain products of operators to the string-operatorF Ca a, ( )( ) associatedwith
the (doubled) anyon(a,a). That is, assume that the edges ¼e e, , L1{ }cover a topologically non-trivial loopC on
the (dual) lattice (e.g., 10, 12{ } in the 12-qudit torus offigure 4). Thenwe have
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=P O O O P c F C 94a
e

a
e

a
e

a a0 0 ,
L1 2( ) · ( ) ( )( ) ( ) ( )

for some constantc. This follows by comparing(93)with the graphical representation of the string-operators of
the doubledmodel as discussed in [LW05], see figure 16.Note also that by the topological order condition,
operators of the form P O O O Pa

e
a

e
a

e
0 0

k1 2( ) ( ) ( ) are proportional toP0 if <k L.

B.2. EffectiveHamiltonians for translation-invariant perturbation
According to(91) and(92), a translation-invariant perturbation of the form = åV Zj j for the doubled semion
or Fibonaccimodels (as considered in section 7) is, up to a global energy shift and a proportionality constant,
equivalent to a perturbation of the form

å=V O , 95
e

a
e ( )( )

where ¹a 1 and the sum is over all edgese of the lattice (Here = sa in the doubled semionmodel and t=a
in the Fibonaccimodel).We show the following:

LemmaB.3. For the perturbation(95) to the Levin–WenmodelH0, the Lth order effectiveHamiltonian is given by

eff

⎛
⎝⎜

⎞
⎠⎟å= +H c F C c P , 96L

C
a a1 , 2 0( ) ( )( )

( )

where c1 and c2 are constants, and the sum is over all topologically non-trivial loopsC of lengthL.

Proof.According to theorem3.2, the Lth order effectiveHamiltonian is proportional to

å=-

¼

P VG VP P O GO G GO PL

e e
a
e

a
e

a
e

0
1

0
, ,

0 0

L

L

1

1 2( ) ( ) ( ) ( )

up to an energy shift. By the topological order constraint, the only summands on the rhs.which can have a non-
trivial action on the ground space are those associatedwith edges ¼e e, , L1{ }constituting a non-trivial loopC on
the (dual) lattice. Note that for such a collection of edges, every plaquettep has atmost two edges

Î ¼e e e e, , ,j k L1{ }as its sides, a fact wewill use below.Our claim follows if we show that for any such collection
of edges, we have

=P O GO G GO P cF C 97a
e

a
e

a
e

a a0 0 ,
L1 2 ( ) ( )( ) ( ) ( )

( )

for some constantc.
We show(97) by showing that the resolvent operatorsG only contribute a global factor; the claim then

follows from(94). The reason is that the local operatorsOa
e( )ℓ create localized excitations, and these cannot be

removed unless operators acting on the edges of neighboring plaquettes are applied. Thus a process as the one on
the lhs.(94) is equivalent to onewhich goes through a sequence of eigenstates of the unperturbed
HamiltonianH0.

The proof of this statement is a bitmore involved since operatorsOa
e( )ℓ can also create superpositions of

excited and ground states.We proceed inductively. Let us set

L = G =

L = G =

L = G = = ¼ -

L = G =

- +

-




 


P O GO GO G GO P

P O G O GO G GO P

P O GO O G O GO G GO P k L

P O GO O G O P

for 3, , 1

.

a
e

a
e

a
e

a
e

a
e

a
e

a
e

a
e

k a
e

a
e

a
e

k a
e

a
e

a
e

L a
e

a
e

a
e

L a
e

1 0 1 0

2 0 2 0

0 0

0 0

L

L

k k k L

L L

1 2 3

1 2 3

1 2 1 1

1 2 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

such that

= L G = ¼ -P O GO G GO P k Lfor 1, , 1. 98a
e

a
e

a
e

k k0 0
L1 2 ( )( ) ( ) ( )

Let yñ∣ be a ground state of the Levin–WenmodelH0.We claim that for every = ¼ -k L1, , 1, there is a set of
plaquettesk and a constantck (independent of the chosen ground state) such that

(i) y yL G ñ = L  ñÎ c B O Ok k k k p p a
e

a
e

k

k L∣ · ( ) ∣( ) ( ) .

(ii) The (unnormalized) state  y ñÎ B O Op p a
e

a
e

k

k L( ) ∣( ) ( ) is an eigenstate ofH0. Its energyk is independent

of the state yñ∣ .

(iii) The set k only contains plaquettes which have two edges in commonwith ¼e e, ,k L{ }.

Note that for k= 1, this implies = P O GO G GO P c P O O O Pa
e

a
e

a
e

a
e

a
e

a
e

0 0 1 0 0
L L1 2 1 2·( ) ( ) ( ) ( ) ( ) ( ) because

=P B Pp0 0, and the claim(97) followswith(94)
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Properties(i) and (ii)hold for k= L, with  = ÆL and  = 2L : we have for any ground state yñ∣

y yG ñ = ñOL a
eL∣ ∣( )

and this is an eigenstate of H0 with energy2 according to lemmaB.1.
Assume now that(i) and (ii)hold for some Îk L2,{ }. Thenwe have according to(98)













y y

y

y

y

L G ñ= L G ñ

= L ñ

= L ñ

= L ñ

- -

Î

-
Î

- -
Î

-

-







c B O O

c O G B O O

c O B O O ,

k k k k

k k
p

p a
e

a
e

k k a
e

p
p a

e
a
e

k k a
e

p
p a

e
a
e

1 1

1

1 1

k

k L

k

k

k L

k

k

k L

1

1

∣ ∣
( ) ∣

( )( ) ∣

· ( ) ∣

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

where

⎪

⎧⎨
⎩


=

>
- -c

Eif ,

0 otherwise.
k

c

E k
1

0
k

k0

It hence suffices to show that for some choice of plaquettes -k 1, we have

(a)  y yL  ñ = L  ñ- Î - Î
-

-
- O B O O B O Ok a

e
p p a

e
a

e
k p p a

e
a

e
1 1

k

k

k L

k

k L1

1

1( ) ∣ ( ) ∣( ) ( ) ( ) ( ) ( ) .

(b)  y ñÎ -
- B O Op p a

e
a

e
k

k L

1

1( ) ∣( ) ( ) is an eigenstate of H0 with energy  -k 1 (independent of yñ∣ ).

(c) That the set  -k 1only contains plaquettes sharing two edges with ¼-e e, ,k L1{ }.

By assumption(iii) and the particular choice of ¼e e, , L1{ }, none of the plaquettes Îp k contains the
edge -ek 1. Therefore, we can commute the operator -Oa

ek 1( ) through, getting

 
 y yñ = ñ
Î Î

- - O B O O B O O O . 99a
e

p
p a

e
a
e

p
p a

e
a
e

a
ek

k

k L

k

k k L1 1( ) ∣ ( ) ∣ ( )( ) ( ) ( ) ( ) ( ) ( )

We then consider two cases:

• If -ek 1does not lie on the same plaquette as any of the edges ¼e e, ,k L{ }, then application of -Oa
ek 1( ) creates a

pair of excitations according to lemmaB.1 and the state(99) is an eigenstate ofH0 with
energy = + >- E2k k1 0. In particular, setting  =-k k1 , properties(a)–(c) follow.

• If there is an edgeeℓ,  kℓ such that -ek 1 and eℓ belong to the same plaquette p̃, then the state(99) is a
superposition of states with Bp̃ excited/not excited, that is, we have


j y j jñ = ñ = - ñ + ñ
Î

- B O O O I B B .
p

p a
e

a
e

a
e

p p

k

k k L1∣ ( ) ∣ ( )∣ ∣( ) ( ) ( )
˜ ˜

However, an excitation at p̃ cannot disappear by applying the operators ¼ -O O, ,a
e

a
ek1 2( ) ( ) since these do not

share an edgewith p̃, hence jL - ñ =- I B 0k p1( )∣˜ (recall that L = L- -Pk k1 0 1 includes a projection onto the
ground space). Thus setting   È=- pk k1 {˜}, we can verify that(a)–(c) indeed are satisfied. (The casewhere
there are two such plaquettes p̃ can be treated analogously.) ,

Let us compute the effectiveHamiltonian(96) for the case of the rhombic torus, ormore specifically, the
lattice we use in the numerical simulation, figure 4. It has three inequivalent weight-2 loops:

Figure 16.The graphical representation of certain anyonic string-operators in the doubledmodel. The dashed line is inside the torus.
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10, 12 , 1, 2 , 5, 7{ } { } { }. Follow the recipe in section 6.2, respectively section 7.2, these three loops are related by
a 120◦ rotation. The corresponding unitary transformation for this rotation is given by the product of
matricesA=TSwhen expressed in the flux basis discussed in section 6.2 (for the doubled Fibonaccimodel, the
latter twomatrices are given by (45)). Similarly, we can express the action of F Ca a, ( )( ) in this basis using(36),
getting amatrixF. By(39), the effectiveHamiltonian for the perturbation - å Zj j is then proportional to
(when expressed in the same basis)

eff ~ - + +- -H F A FA A FA .1 2 2( )

Note that the overall sign of the effectiveHamiltonian is not specified in(34), but can be determined to be
negative here by explicit calculation. For example, substituting in the Smatrix (equation (45)) of the doubled
Fibonaccimodel, we have diag j j= + - - +F 1, 1, 1, 1( ) for the Fibonaccimodel. It is then straightfor-
ward to obtain the ground state of effH , which is

t t t tñ + - ñ + + ñ + ñi i0.715 1, 1 0.019 0.057 , 1 0.019 0.057 1, 0.693 , , 100∣( ) ( )∣( ) ( )∣( ) ∣( ) ( )

where ña b,∣( ) is aflux basis vector, i.e., the image of P Ca b, ( )( ) (see section 6.2) up to somephase.
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