English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Glycation in Parkinson's disease and Alzheimer's disease

MPS-Authors
/persons/resource/persons197309

Outeiro,  Tiago F.
Experimental Neurodegeneration, Max Planck Institute of Experimental Medicine, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Miranda, H. V., El-Agnaf, O. M. A., & Outeiro, T. F. (2016). Glycation in Parkinson's disease and Alzheimer's disease. Movement Disorders, 31(6), 782-790. doi:10.1002/mds.26566.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-0E9A-6
Abstract
Glycation is a spontaneous age-dependent posttranslational modification that can impact the structure and function of several proteins. Interestingly, glycation can be detected at the periphery of Lewy bodies in the brain in Parkinson's disease. Moreover, α-synuclein can be glycated, at least under experimental conditions. In Alzheimer's disease, glycation of amyloid β peptide exacerbates its toxicity and contributes to neurodegeneration. Recent studies establish diabetes mellitus as a risk factor for several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases. However, the mechanisms underlying this connection remain unclear. We hypothesize that hyperglycemia might play an important role in the development of these disorders, possibly by also inducing protein glycation and thereby dysfunction, aggregation, and deposition. Here, we explore protein glycation as a common player in Parkinson's and Alzheimer's diseases and propose it may constitute a novel target for the development of strategies for neuroprotective therapeutic interventions. © 2016 International Parkinson and Movement Disorder Society