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Abstract

In this paper, we will give a C1,β-regularity result on the boundary
for two dimensional sliding almost minimal sets. This effect may lead to
the existence of a solution to the Plateau problem with sliding boundary
conditions proposed by Guy David in [4].

1 Introduction
In [4], Guy David proposed to consider the Plateau Problem with sliding bound-
ary conditions, since it is very natural to soap films and has some advantages
to consider the boundary regularity.

Jean Taylor, in [10], proved a C1,β-regularity theorem for Almgren almost
minimal sets of dimensional two in an open set U ⊂ R3, and Guy David, in [2],
given a new proof and generalized it to any codimension.

In [6], we proved a Hölder regularity of two dimensional sliding almost mini-
mal set at the boundary. That is, suppose that Ω ⊂ R3 is a closed domain with
boundary ∂Ω a C1 manifold of dimension 2, E ⊂ Ω is a 2 dimensional sliding
almost minimal set with sliding boundary ∂Ω, and that ∂Ω ⊂ E. Then E, at
the boundary, is locally biHölder equivalent to a sliding minimal cone in the
upper half space Ω0. In this paper, we will generalized the biHölder equivalence
to a C1,β equivalence when the gauge function h satisfies that h(t) ≤ Ctα. Let
us refer to Theorem 1.2 for details. In our case, the list of sliding minimal cones
is known: they are ∂Ω0 and ∂Ω0 ∪ Z, where Z are half planes or cones of type
Y+, which meet ∂Ω0 perpendicularly.

Let us introduce some notation and definitions before state our main the-
orem. A gauge function is a nondecreasing function h : [0,∞) → [0,∞] with
limt→0 h(t) = 0. Let Ω be a closed domain of R3, L be a closed subset in R3,
E ⊂ Ω be a given set. Let U ⊂ R3 be an open set. A family of mappings
{ϕt}0≤t≤1, from E into Ω, is called a sliding deformation of E in U if following
properties hold:

ϕt(x) = x for x ∈ E \ U,ϕt(x) ⊂ U for x ∈ E ∩ U, 0 ≤ t ≤ 1,

ϕt(x) ∈ L for x ∈ E ∩ L, 0 ≤ t ≤ 1,
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the mapping
[0, 1]× E → Ω, (t, x) 7→ ϕt(x)

is continuous, and
ϕ1 is Lipschitz and ψ0 = idE .

Definition 1.1. We say that an nonempty set E ⊂ Ω is locally sliding almost
minimal at x ∈ E with sliding boundary L and with gauge function h, called
(Ω, L, h) locally sliding almost at x ∈ E for short, if H2 E is locally finite, and
for any sliding deformation {ϕt}0≤t≤1 of E in B(0, r), we have that

H2(E ∩B(x, r)) ≤ H2(ϕ1(E) ∩B(x, r)) + h(r)r2.

We say that E is sliding almost minimal with sliding boundary L and gauge
function h, denote by SAM(Ω, L, h) the collection of all such sets, if E is locally
sliding almost minimal at all points x ∈ E.

Theorem 1.2. Let Ω ⊂ R3 be a closed connected set such that the boundary
∂Ω is a 2-dimensional manifold of class C1,α for some α > 0. Let E ⊂ Ω be a
closed set such that E ⊃ ∂Ω and E is a sliding almost minimal set with sliding
boundary ∂Ω and with gauge function h satisfying that

h(t) ≤ Chtα1 , 0 < t ≤ t0, for some Ch > 0, α1 > 0 and t0 > 0.

Then for any x0 ∈ ∂Ω, there is a unique tangent cone of E at x0; moreover, there
exist a radius r > 0, a sliding minimal cone Z in Ω0 with sliding boundary ∂Ω0,
and a mapping Φ : Ω0 ∩ B(0, 1) → Ω of class C1,β, which is a diffeomorphism
between its domain and image, such that Φ(0) = x0, |Φ(x) − x0 − x| ≤ 10−2r
for x ∈ B(0, 2r), and

E ∩B(x0, r) = Φ(Z) ∩B(x0, r).

Theorem 1.2 and Jean Taylor’s theorem imply that any set E as in above
theorem is lipschitz neighborhood retract. This effect gives the existence of a
solution to the Plateau problem with sliding boundary conditions in a special
case, see Theorem 6.1.

2 Lower bound of the decay for the density
In this section, we will consider a simple case that Ω is a half space and L is its
boundary; without loss of generality, we assume that Ω is the upper half space,
and change the notation to be Ω0 for convenience, i.e.

Ω0 = {(x1, x2, x3) ∈ R3 | x3 ≥ 0}, L0 = ∂Ω0.

It is well known that for, any 2-rectifiable set E, there exists an approximate
tangent plane Tan2(E, y) of E at y for H2-a.e. y ∈ E. We will denote by
θ(y) ∈ [0, π/2] the angle between the segment [0, y] and the plane Tan2(E, y), by
θx(y) ∈ [0, π/2] the angle between the segment [x, y] and the plane Tan2(E, y),
for x ∈ R3.
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In this section, we assume that there is a number rh > 0 such that∫ rh

0

h(2t)

t
dt <∞, (2.1)

and put

h1(t) =

∫ t

0

h(2s)

s
ds, for 0 ≤ t ≤ rh.

Lemma 2.1. Let E ⊂ Ω0 be any 2-rectifiable set. Then, by putting u(r) =
H2(E ∩B(x, r)), we have that u is differentiable almost every r > 0, and that

H1(E ∩ ∂B(x, r)) ≤ u′(r)

for such r.

Proof. Considering the function ψ : R3 → R defined by ψ(y) = |y− x|, we have
that, for any y 6= x and v ∈ R3,

Dψ(y)v =

〈
y − x
|y − x|

, v

〉
,

thus

ap J1(ψ|E)(y) = sup{|Dψ(y)v| : v ∈ TxE, |v| = 1} = cos θx(y). (2.2)

Employing Theorem 3.2.22 in [7], we have that, for any 0 < r < R <∞,∫ R

r

H1(E ∩ ∂B(x, t))dt =

∫
E∩B(x,R)\B(x,r)

cosx(y)dH2(y) ≤ u(R)− u(r),

we get so that, for almost every r ∈ (0,∞),

H1(E ∩ ∂B(x, t)) ≤ u′(r)

Lemma 2.2. Let E be a 2-rectifiable (Ω0, L0, h) locally sliding almost minimal
at some point x ∈ E. If x ∈ E ∩ L0, then for H1-a.e. r ∈ (0,∞),

H2(E ∩B(x, r)) ≤ r

2
H1(E ∩ ∂B(x, r)) + h(2r)(2r)2. (2.3)

If x ∈ E \ L0, then inequality (2.2) holds for H1-a.e. r ∈ (0,dist(x, L0)).

Proof. If H2(E ∩ ∂B(x, r)) > 0, then H1(E ∩ ∂B(x, r)) =∞, and nothing need
to do. We assume so that H2(E ∩ ∂B(x, r)) = 0.

Let f : [0,∞) → [0,∞) be any Lipschitz function, we let φ : Ω0 → Ω0 be
defined by

φ(y) = f(|y − x|) y − x
|y − x|

.
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Then, for any y 6= x and any v ∈ R3, by putting ỹ = y − x, we have that

Dφ(y)v =
f(|ỹ|)
|ỹ|

v +
|ỹ|f ′(|ỹ|)− f(|ỹ|)

|ỹ|2

〈
ỹ

|ỹ|
, v

〉
ỹ

If the tangent plane Tan2(E, y) of E at y exists, we take v1, v2 ∈ Tan2(E, y)
such that |v1| = |v2| = 1, v1 is perpendicular to y = x, and that v2 is perpen-
dicular to v1, let v3 be a vector in R3 which is perpendicular to Tan2(E, y) and
|v3| = 1, then

ỹ = 〈ỹ, v2〉v2 + 〈ỹ, v3〉v3 = |ỹ| cos θx(y)v2 + |ỹ| sin θx(y)v3,

and

Dφ(y)v1 ∧Dφ(y)v2 =
f(|ỹ|)2

|ỹ|2
v1 ∧ v2 +

|ỹ|f ′(|ỹ|)f(|ỹ|)− f(|ỹ|)2

|ỹ|3
cos θx(y)v1 ∧ ỹ,

thus

ap J2(φ|E)(y) = ‖Dφ(y)v1 ∧Dφ(y)v2‖

=
f(|ỹ|)
|ỹ|

(
f ′(|ỹ|)2 cos2 θx(y) +

f(|ỹ|)2

|ỹ|2
sin2 θx(y)

)1/2

.

We consider the function ψ : R3 → R defined by ψ(y) = |y − x|. Then, by
(2), we have that

ap J1(ψ|E)(y) = cos θx(y).

For any ξ ∈ (0, r/2), we consider the function f defined by

f(t) =


0, 0 ≤ t ≤ r − ξ
r
ξ (t− r + ξ), r − ξ < t ≤ r
t, t > r.

Then we have that

ap J2(φ|E)(y) ≤ f(|ỹ|)f ′(|ỹ|)
|ỹ|

cos θx(y) +
f(|ỹ|)2

|ỹ|2
sin θx(y).

Applying Theorem 3.2.22 in [7], by putting Aξ = E ∩ B(0, r) \ B(0, r − ξ), we
get that

H2(φ(E ∩B(0, r))) ≤
∫
Aξ

r2

ξ2
· |ỹ| − r + ξ

|ỹ|
cos θx(y)dH2(y) +

r2

(r − ξ)2
H2(Aξ)

=

∫ r

r−ξ

r2(t− r + ξ)

ξ2t
H1(E ∩ ∂B(x, t))dt+ 4H2(Aξ),

thus

H2(E ∩B(0, r)) ≤ (2r)2h(2r) + lim
ξ→0+

r2

∫ r

r−ξ

t− r + ξ

tξ2
H1(E ∩ ∂B(x, t))dt.

Since the function g(t) = H1(E ∩ B(x, t))/t is a measurable function, we have
that, for almost every r,

lim
ξ→0+

∫ ξ

0

tg(t− r + ξ)

ξ2
dt =

1

2
g(r),
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thus for such r,

H2(E ∩B(x, r)) ≤ (2r)2h(2r) +
r

2
H1(E ∩B(x, r)).

For any set E ⊂ R3, we set

ΘE(x, r) =
1

r2
H2(E ∩B(x, r)), for any r > 0,

and denote by ΘE(x) = limr→0+ ΘE(x, r) if the limit exist, we may drop the
script E if there is no danger of confusion.

Theorem 2.3. Let E be a 2-rectifiable (Ω0, L0, h) locally sliding almost minimal
at x ∈ E. If x ∈ L0, then Θ(x, r) + 8h1(r) is nondecreasing as r ∈ (0, rh); if
x 6∈ L0, then Θ(x, r) + 8h1(r) is nondecreasing as r ∈ (0,min{rh,dist(x, L)}).

Proof. From Lemma 2.2 and Lemma 2.1, by putting u(r) = H2(E ∩ B(x, r)),
we get that, if x ∈ L,

u(r) ≤ r

2
u′(r) + h(2r)(2r)2, (2.4)

for almost every r ∈ (0,∞); if x 6∈ L, then (2) holds for almost every r ∈
(0,min{rh,dist(x, L)}).

We put v(r) = r−2u(r), then v′(r) ≥ −8r−2h(2r), we get that Θ(x, r) +
8h1(r) is nondecreasing.

Remark 2.4. Let E be a 2-rectifiable (Ω0, L0, h) locally sliding almost minimal
at some point x ∈ E. Then by Theorem 2.3, we get that ΘE(x) exists.

3 Estimation of upper bound
Let Z be a collection of cones. We say that a set E ⊂ R3 is locally Ck,α-
equivalent (resp. Ck-equivalent) to a cone in Z at x ∈ E for some nonnegative
integer k and some number α ∈ (0, 1], if there exist %0 > 0 and τ0 > 0 such
that for any τ ∈ (0, τ0) there is % ∈ (0, %0), a cone Z ∈ Z and a mapping
Φ : B(0, 2%)→ R3, which is a homeomorphism of class Ck,α (resp. Ck) between
B(0, 2%) and its image Φ(B(0, 2%)) with Φ(0) = x, satisfying that

‖Φ− id− Φ(0)‖∞ ≤ %τ (3.1)

and
E ∩B(x, %) ⊂ Φ (Z ∩B (0, 2%)) ⊂ E ∩B(x, 3%). (3.2)

Similarly, if Ω ⊂ R3 is a closed domain with the boundary ∂Ω is a 2-dimensional
smooth manifold, a set E ⊂ Ω is called locally Ck,α-equivalent to a sliding
minimal cone Z in Ω0 at x ∈ E ∩ ∂Ω, if there exist %0 > 0 and τ0 > 0 such that
for any τ ∈ (0, τ0) there is % ∈ (0, %0) and a mapping Φ : B(0, 2%) ∩ Ω0 → Ω,
which is a diffeomorphism of class Ck,α between B(0, 2%) ∩ Ω0 and its image
Φ(B(0, 2%) ∩ Ω0) with Φ(0) = x satisfying that Φ(L0 ∩ B(0, 2%)) ⊂ ∂Ω and (3)
and (3).
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Jean Taylor proved, in [10], that if E is a 2-dimensional almost minimal
set in an open set U ⊂ R3 with gauge function h satisfying h(r) ≤ crα, then
E is locally C1,β-equivalent to a minimal cone at each point x ∈ E for some
β > 0. In [2, Theorem 1.15], Guy David gave a different proof of this result
and generalized it to high dimensional ambient space. In [6], we got that, when
Ω ⊂ R3 is a closed domain with the boundary ∂Ω is a 2-dimensional smooth
manifold, any sliding almost minimal set E ⊃ ∂Ω in Ω with sliding boundary ∂Ω
and with gauge function h satisfying (2), is locally C0,β-equivalent to a sliding
minimal cone in Ω0 at x ∈ E ∩ ∂Ω.

3.1 Approximation of E ∩ ∂B(0, r) by rectifiable curves
For any sets X,Y ⊂ R3, any z ∈ R3 and any r > 0, we denote by dz,r a
normalized local Hausdorff distances defined by

dz,r(X,Y ) =
1

r
sup

x∈X∩B(z,r)

dist(x, Y ) +
1

r
sup

y∈Y ∩B(z,r)

dist(y,X).

A cone Z ⊂ Ω0 is called of type P+ is if it is a half plane perpendicular to
L0; a cone Z ⊂ Ω0 is called of type Y+ is if Z = Ω0 ∩ Y , where Y is a cone
of type Y+ perpendicular to L0; for convenient, we will also use the notation
P+, to denote the collection of all of cones of type P+, and Y+ to denote the
collection of all of cones of type Y+.

For any set E ⊂ Ω0 with 0 ∈ E and r > 0, we set

εP (r) = inf{d0,r(E,Z) : Z ∈ P+}
εY (r) = inf{d0,r(E,Z) : Z ∈ Y+}.

and set Kr = E ∩ ∂B(0, r). If E is 2-rectifiable and H2(E) < ∞, then Kr is
1-rectifiable and H1(Kr) < ∞ for H1-a.e. r ∈ (0,∞); we consider the function
u : (0,∞)→ R defined by u(r) = H2(E ∩B(0, r)), then u is nondecreasing, and
u is differentiable for H1-a.e.; we will denote by R the set r ∈ (0,∞) such that
H1(Kr) <∞ and u is differentiable at r.

Lemma 3.1. Let E ⊂ R3 be a connected set. If H1(E) < ∞, then E is path
connected.

For a proof, see for example Lemma 3.12 in [5]

Lemma 3.2. Let X be a locally connected and simply connected compact metric
space. Let A and B be two connected subsets of X. If F is a closed subset of
X such that A and B are contained in two different connected components of
X \ F , then there exists a connected closed set F0 ⊂ F such that A and B still
lie in two different connected components of X \ F0.

Proof. See for example 52.III.1 on page 335 in [9].

For any r > 0, we put Zr = (0, 0, r) ∈ R3.

Lemma 3.3. Let E ⊂ Ω0 be a 2-rectifiable set with H2(E) <∞. Suppose that
0 ∈ E, and that E is locally C0-equivalent to a sliding minimal cone of type P+

at 0. Then there exist r = r(τ) > 0 such that, for any r ∈ (0, r) and ε > εP (r),
we can find yr ∈ E ∩ ∂B(0, r) \L , Xr,1,Xr,2 ∈ E ∩L∩ ∂B(0, r) and two simple
curves γr,1, γr,2 ⊂ E ∩ ∂B(0, r) satisfying that
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(1) |yr − Zr| ≤ εr and |zr,1 − zr,2| ≥ (2− 2ε)r;

(2) γr,i joins yr and Xr,i, i = 1, 2;

(3) γr,1 and γr,2 are disjoint except for point yr.

Proof. Since E is locally C0-equivalent to a sliding minimal cone of type P+ at
0, there exist τ > 0, % > 0, sliding minimal cone Z of type P+, and a mapping
Φ : Ω0 ∩ B(0, 2%)→ Ω0 which is a homeomorphism between Ω0 ∩ B(0, 2%) and
Φ(Ω0 ∩B(0, 2%)) with Φ(0) = 0 and Φ(∂Ω0 ∩B(0, 2%)) ⊂ ∂Ω0 such that (3) and
(3) hold. We new take r = %. Then for any r ∈ (0, r),

Φ−1 [E ∩ ∂B(0, r)] ⊂ Z ∩B(0, 3%).

Without loss of generality, we assume that Z = {(x1, 0, x3) | x1 ∈ R, x3 ≥ 0}.
Applying Lemma 3.2 with X = Z ∩ B(0, 3%), F = Φ−1 [E ∩ ∂B(0, r)], A = {0}
and B = Z ∩ ∂B(0, 3%), we get that there is a connected closed set F0 ⊂ F
such that A and B lie in two different connected components of A \ F0, thus
φ(F0) ⊂ E ∩ ∂B(0, r) is connected. We put a1 = {(x1, 0, 0) | x1 < 0} and
a2 = {(x1, 0, 0) | x1 > 0}. Then F0 ∩ ai 6= ∅, i = 1, 2; otherwise A and B are
contained in a same connected component of X \ F0. We take zr,i ∈ F0 ∩ ai,
and let Xr,i = φ(zr,i) ∈ E ∩ ∂B(0, r). Then |Xr,1 − Xr,2| ≥ (2− 2ε)r.

Since F0 is connected andH1(F0) <∞, by Lemma 3.1, F0 is path connected.
Let γ be a simple curve which joins zr,1 and zr,2. We see that B(Zr, εr)∩γ 6= ∅,
because εP (r) < ε and Zr ∈ Z for sliding minimal cone Z of type P+. We take
yr ∈ B(Zr, εr) ∩ γ.

Lemma 3.4. Let E ⊂ Ω0 be a 2-rectifiable set with H2(E) <∞. Suppose that
0 ∈ E, and that E is locally C0-equivalent to a sliding minimal cone of type Y+

at 0. Then there exist r = r(τ) > 0 such that, for any r ∈ (0, r) and ε > εY (r),
we can find yr ∈ E ∩ ∂B(0, r) \ L , Xr,1,Xr,2,Xr,3 ∈ E ∩ L ∩ ∂B(0, r) and three
simple curves γr,1, γr,2, γr,3 ⊂ E ∩ ∂B(0, r) satisfying that

(1) |Zr−yr| ≤ πr/6, and there exists Z ∈ Y+ with dist(x, Z) ≤ εr for x ∈ γ;

(2) γr,i join yr and Xr,i;

(3) γr,i and γr,j are disjoint except for point yr.

Proof. Since E is locally C0-equivalent to a sliding minimal cone of type Y+ at
0, there exist τ > 0, % > 0, sliding minimal cone Z of type Y+, and a mapping
Φ : Ω0 ∩ B(0, 2%)→ Ω0 which is a homeomorphism between Ω0 ∩ B(0, 2%) and
Φ(Ω0 ∩B(0, 2%)) with Φ(0) = 0 and Φ(∂Ω0 ∩B(0, 2%)) ⊂ ∂Ω0 such that (3) and
(3) hold. We new take r = %. Then for any r ∈ (0, r),

Φ−1 [E ∩ ∂B(0, r)] ⊂ Z ∩B(0, 3%).

Applying Lemma 3.2 with X = Z ∩ B(0, 3%), F = Φ−1 [E ∩ ∂B(0, r)], A = {0}
and B = Z ∩ ∂B(0, 3%), we get that there is a connected closed set F0 ⊂ F
such that A and B lie in two different connected components of A \ F0, thus
φ(F0) ⊂ E∩∂B(0, r) is connected. We let ai, i = 1, 2, 3, be the there component
of Z ∩ L0 \ A. Then F0 ∩ ai 6= ∅, i = 1, 2, 3; otherwise A and B are contained
in a same connected component of X \ F0. We take zr,i ∈ F0 ∩ ai, and let
Xr,i = φ(zr,i) ∈ E ∩ ∂B(0, r). Then |Xr,1 − Xr,2| ≥ (

√
3− 2ε)r.

Since F0 is connected andH1(F0) <∞, by Lemma 3.1, F0 is path connected.
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3.2 Approximation of rectifiable curves in S2 by Lipschitz
graph

We denote by S2 the unit sphere in R3. We say that a simple rectifiable curve
γ ⊂ S2 is a Lipschitz graph with constant at most η, if it can be parametrized
by

z(t) =
(√

1− v(t)2 cos θ(t),
√

1− v(t)2 sin θ(t), v(t)
)
,

where v is Lipschitz with Lip(v) ≤ η.
Lemma 3.5. Let T ∈ [π/3, 2π/3] be a number, and γ : [0, T ] → S2 a simple
rectifiable curve given by

γ(t) =
(√

1− v(t)2 cos θ(t),
√

1− v(t)2 sin θ(t), v(t)
)
,

where v is a continuous function with v(0) = v(T ) = 0, θ is a continuous
function with θ(0) = 0 and θ(T ) = T . Then there is a small number τ0 ∈ (0, 1)
such that whenever |v(t)| ≤ τ0, we have that

|v(t)| ≤ 10
√
H1(γ)− T .

Proof. We let A = γ(0) = (1, 0, 0), B = γ(T ) = (cosT, sinT, 0), and let C =
γ(t0) be a point in γ such that

|v(t0)| = max{|v(t)| : t ∈ [0, T ]}.

We let γi, i = 1, 2, be two curve such that γ1(0) = A, γ1(1) = C, γ2(0) = B
and γ2(1) = C, and let s ∈ [0, 1] be the smallest number such that γ1(s) 6∈ γ2,
and put D = γ1(s). Then, by setting C1, C2 and C3 the arc AD, BD and CD
respectively, we have that

H1(γ) ≥ H1(γ1 ∪ γ2) ≥ H1(C1) +H1(C2) +H1(C3).

We see that C1 ∪ C2 is a simple Lipschitz curve joining A and B, and let
γ3 : [0, `]→ S2 giving by

γ3(t) =
(√

1− w(t)2 cos θ(t),
√

1− w(t)2 sin θ(t), w(t)
)

be its parametrization by length. We assume that γ3(t1) = D, then w′(t) > 0

on (0, t1), or w′(t) < 0 on (0, t1), thus |w(t)| =
∫ t1

0
|w′(t)|dt.

We let our τ0 to be the small number τ1 < 1 as in Lemma 7.8 in [2]. If
H1(γ)− T ≤ τ0, then we have that∫ `

0

|w′(t)|2dt ≤ 14(`− T ),

thus

|w(t1)| =
∫ t1

0

|w′(t)|dt ≤
(
t1

∫ t1

0

|w′(t)|2dt
)1/2

≤
√

14`(`− T ).

We get so that

|v(t0)| ≤ H1(C3) + |w(t1)| ≤ (H1(γ)− `) +
√

14`(`− T )

≤
√

14H1(γ)(H1(γ)− T ) ≤ 10
√
H1(γ)− T .

If H1(γ)− T > τ0, then v(t) ≤ τ0 ≤ 10
√
τ0 ≤ 10

√
H1(γ)− T .
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Lemma 3.6. Let a and b be two points in Ω0 ∩ ∂B(0, 1) satisfying

π

3
≤ distS2(a, b) ≤ 2π

3
.

Let γ be a simple rectifiable curve in Ω0 ∩ ∂B(0, 1) which joins a and b, and
satisfies

length(γ) ≤ distS2(a, b) + τ0,

where τ0 > 0 is as in Lemma 3.5. Then there is a constant C > 0 such that, for
any η > 0, we can find a simple curve γ∗ in Ω0 ∩ ∂B(0, 1) which is a Lipschitz
graph with constant at most η joining a and b, and satisfies that

H1(γ∗ \ γ) ≤ H1(γ \ γ∗) ≤ Cη−2(length(γ)− distS2(a, b)).

The proof will be the same as in [2, p.875-p.878], so we omit it.

3.3 Compare surfaces
Let Γ be a Lipschitz curve in S2. We assume for simplicity that its extremities
a and b lie in the horizontal plane. Let us assume that a = (1, 0, 0) and b =
(cosT, sinT, 0) for some T ∈ [π/3, 2π/3]. We also assume that Γ is a Lipschitz
graph with constant at most η, i.e. there is a Lipschitz function s : [0, T ] → R
with s(0) = s(T ) = 0 and Lip(s) ≤ η, such that Γ is parametrized by

z(t) = (w(t) cos t, w(t) sin t, s(t)) for t ∈ [0, T ],

where w(t) = (1− |s(t)|2)1/2.
We set

DT = {(r cos t, r sin t)| | 0 < r < 1, 0 < t < T},

and consider the function v : DT → R defined by

v(r cos t, r sin t) =
rs(t)

w(t)
for 0 ≤ r ≤ 1 and 0 ≤ t ≤ T.

For any function f : DT → R, we denote by Σf the graphs of f over DT .

Lemma 3.7. There is a universal constant κ > 0 such that we can find a
Lipschitz function u on DT satisfying that

Lip(u) ≤ Cη,

u(r, 0) = u(r cosT, r sinT ) = 0, for 0 ≤ r ≤ 1, 0 ≤ t ≤ T,

u(r cos t, r sin t) = v(r cos t, r sin t) for 0 ≤ r ≤ 1, 0 ≤ t ≤ T,

u(r cos t, r sin t) = 0, for 0 ≤ r ≤ 2κ, 0 ≤ t ≤ T

and
H2(Σv)−H2(Σu) ≥ 10−4(H1(Γ)− T ).

The proof is the same as Lemma 8.8 in [2], we omit it.
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3.4 Retractions
We let µr : R3 → R3 be the mapping defined by µr(x) = rx for any r > 0,
and let Π : R3 \ {0} → S2 be the projection defined by Π(x) = x/|x|. In
this subsection, we will construct a neighborhood retraction of set E, which
satisfying the following conditions: E ⊂ Ω0 is a 2-rectifiable set with H2(E) <
∞, 0 ∈ E, and E is locally (Ω0, L0, h) sliding almost minimal at 0, E is locally
C0-equivalent to a sliding minimal cone of type P+ or Y+ at 0.

For convenient, we will denote

j(r) =
1

r
H1(E ∩ ∂B(0, r))−H1(X ∩ ∂B(0, 1)),

and denote by R1 the set {r ∈ R : j(r) ≤ τ0}, where τ0 is the small number
considered as in Lemma 3.5.

For any r ∈ (0, r) ∩ R1, we take Xr ⊂ E ∩ B(0, r) ∩ L as following: if E
is locally C0-equivalent to a sliding minimal cone of type P+, we let Xr,1 and
Xr,2 be the same as in Lemma 3.3, and let Xr = {Xr,1,Xr,2}; if E is locally
C0-equivalent to a sliding minimal cone of type Y+, we let Xr,1, Xr,2 and Xr,3
be the same as in Lemma 3.4, and let Xr = {Xr,1,Xr,2,Xr,3}.

We take yr as in Lemma 3.3 and Lemma 3.4. For any x ∈ Xr, we let γx be
the curve which joins x and yr as in Lemma 3.3 and Lemma 3.4, let Dx,yr be
the sector determined by points 0, yr and x. We denote by Px,yr the plane that
contains 0, x and yr, let Rx,yr be a rotation such that Rx,yr (yr) = (r, 0, 0) and
Rx(yr) = (r cosTx, r sinTx, 0), where Tx ∈ [π/3, 2π/3].

For any x ∈ Xr, γx is a simple rectifiable curve in Ω0 ∩ ∂B(0, r), thus
the curve Γx = Π(γx) is a simple rectifiable curve in Ω0 ∩ ∂B(0, 1), let Γx∗
be the corresponding curve with respect to Γx as in Lemma 3.6. Let z(t) =
(w(t) cos t, w(t) sin t, s(t)) be a parametrization of Rx,yr (Γx∗), where w(t) =√

1− s(t)2. Let Σxv and Σxu be the same as in Lemma 3.7. We put T =∑
x∈Xr Tx, and put

X =
⋃
x∈Xr

Dx,yr , Γ∗ =
⋃
x∈Xr

Γx∗ , M =
⋃
x∈Xr

Σxv , and Σ =
⋃
x∈Xr

Σxu. (3.3)

By Lemma 3.7, we get that

H2(M)−H2(Σ) ≥ 10−4
(
H1(Γ∗)− T

)
. (3.4)

Lemma 3.8. Let δ, ε < 1/2 be positive numbers. Let v1, v2, v3 ∈ R3 be unit
vectors such that |〈v2, vi〉| ≤ δ for i = 1, 3. Then we have that

|〈v, v3〉 − 〈v1, v3〉〈v, v2〉| ≤ (ε+ δ)|v|

and
|〈v, v1〉| ≥ (1− ε− δ)|v|

for any v ∈ R3 with 〈v, v2〉 = 0 and dist(v, span{v1, v2}) ≤ ε|v|; when 〈v1, v3〉 <
1 and δ < 10−2(1− 〈v1, v3〉)2, we have that

|w1|+ |w2| ≤
√

2/
(

1− 〈v1, v3〉 − 10
√
δ
)
|w1 − w2|

for any w1, w3 ∈ R3 with 〈vi, wi〉 ≥ (1− δ)|wi|, i = 1, 3.
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Proof. We write v = v⊥ + λ1v1 + λ2v2, λi ∈ R, 〈v⊥, vi〉 = 0.
Since 〈v, v2〉 = 0, we have that λ2 = −λ1〈v1, v2〉, thus

λ1 =
〈v, v1〉

1− 〈v1, v2〉2
, λ2 = −〈v, v1〉〈v1, v2〉

1− 〈v1, v2〉2
,

we get so that

v = v⊥ +
〈v, v1〉v1 − 〈v, v1〉〈v1, v2〉v2

1− 〈v1, v2〉2
, (3.5)

and then
〈v, v3〉 = 〈v⊥, v3〉+

〈v1, v3〉 − 〈v2, v3〉〈v1, v2〉
1− 〈v1.v2〉2

〈v, v1〉,

thus

|〈v, v3〉 − 〈v1, v3〉〈v, v1〉| ≤ ε|v|+
δ2 + δ

1− δ2
|v| ≤ (ε+ 2δ)|v|.

We get also, from (3.4), that

|v| ≤ |v⊥|+ 1 + |〈v1.v2〉|
1− 〈v1, v2〉2

|〈v, v1〉| ≤ ε|v|+
1

1− δ
|〈v, v1〉|,

thus
|〈v, v1〉| ≥ (1− ε)(1− δ)|v| ≥ (1− ε− δ)|v|.

Lemma 3.9. For any r ∈ (0.r) ∩R1, we let Σ be as in (3.4). Then there is a
Lipschitz mapping p : Ω0 → Σ with Lip(p) ≤ 50, such that p(z) ∈ L for z ∈ L,
and that p(z) = z for z ∈ Σ.

Proof. By definition, we have that

Σ \B (0, 9/10) =M\B (0, 9/10) ,

and that
Σ ∩B(0, 2κ) = X ∩B(0, 2κ).

For any z ∈ Ω0 \{0}, we denote by `(z) the line which is through 0 and z. Then
∂Dx,yr = `(x) ∪ `(yr). We fix any σ ∈ (0, 10−3), put

Rx = {z ∈ Ω0 | dist(z,Dx,yr ) ≤ σ dist(z, ∂Dx,yr )},
Rx1 = {z ∈ Ω0 | dist(z,Dx,yr ) ≤ σ dist(z, `(yr))},

and
R =

⋃
x∈Xr

Rx, R1 =
⋃
x∈Xr

Rx1 .

Then we see that Rx ⊂ Rx1 , and that both of them are cones,

Rxi ∩Rxj = Rxi1 ∩R
xj
1 = `(yr) for xi, xj ∈ Xr, xi 6= xj .

Since Σxu is a small Lipschitz graph over Dx,yr bounded by two half lines of
∂Dx,yr with constant at most η, there is a constant η̄ such that

Σxu ⊂ Rx,
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when 0 < η < η̄.
We will construct a Lipschitz retraction p0 : Ω0 → R1 such that p0(z) = z

for z ∈ R1, p0(z) ∈ L for z ∈ L, and Lip(p0) ≤ 3. We now distinguish two cases,
depending on cardinality of Xr.

Case 1: card(Xr) = 2. We assume that Xr = {x1, x2}. Then |yr| = |x1| =
|x2| = r, and

0 ≤ 〈x1, x2〉+ r2 ≤ 2ε2r2.

Since |yr − Zr| ≤ εr, we have that |〈yr, x〉| ≤ εr2 for any x ∈ L ∩ ∂B(0, r).
We now let e1 and e2 be two unit vectors in L such that 〈x1, e1〉 = 〈x2, e1〉 ≥ 0

and e2 = −e1. Then
0 ≤ 〈xi, e1〉 ≤ εr.

We let Ω′1 and Ω′2 be the two connected components of Ω0 \(∪iDxi,yr ) such that
ei ∈ Ω′i. We put Ωi = Ω′i \R1. We claim that

|〈z1 − z2, ei〉| ≤ 5(σ + ε)|z1 − z2|

whenever z1, z2 ∈ ∂Ωi, z1 6= z2, i ∈ {1, 2}.
Without loss of generality, we assume z1, z2 ∈ ∂Ω1, because for another case

we will use the same treatment. We see that

dist(zi, Dxj ,yr ) = σ dist(zi, `(yr)).

z1

z2

0

yr

z′1

z′2z′2

z′2

Dx,yr

w1 w2

Figure 1: the angle between z1 − z2 and Dx,yr is small.

(1) In case z1, z2 ∈ ∂Rxi1 ∩Ω1, without loss of generality, we assume that z1, z2 ∈
∂Rx1

1 ∩ Ω1. We let z̃i ∈ Dx1,yr be such that

zi − z̃i = dist(zi, Dx1,yr ), i = 1, 2,

and let z′i ∈ `(yr) be such that

|zi − z′i| = dist(zi, `(yr)),

and put
w1 = z1 − z̃1 + z̃2, w2 = z1 − z′1 + z′2,
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then we get that z1 − z2 = (z1 − w2) + (w2 − z2). Moreover, we have that
z1 − w2 is perpendicular to w2 − z2 and parallel to yr. Thus |w2 − z2| ≤
|z1 − z2|, |z1 − w2| ≤ |z1 − z2| and

dist(w2 − z2, span{x1, yr}) = σ|w2 − z2|.

We apply Lemma 3.8 to get that

|〈z1 − w2, e1〉| ≤ ε|z1 − w2|

and
|〈w2 − z2, e1〉| ≤ (σ + 3ε) |w2 − z2|,

thus

|〈z1 − z2, e1〉| ≤ |〈z1 − w2, e1〉|+ |〈w2 − z2, e1〉| ≤ (σ + 4ε) |z1 − z2|.

(2) In case z1 ∈ ∂Rx1 ∩ Ω1, z2 ∈ ∂Rx2 ∩ Ω1. We let z̃i ∈ Dxi,yr be such that

|zi − z̃i| = dist(zi, Dxi,yr ), i = 1, 2,

and let z′i ∈ `(yr) be such that

|zi − z′i| = dist(zi, `(yr)), i = 1, 2.

Then by Lemma 3.8, we have that〈
zi − z′i,

xi
|xi|

〉
≥ (1− σ − ε)|zi − z′i|, i = 1, 2.

Since z1 − z2 = (z1 − z′1) + (z′2 − z2) + (z′1 − z′2),

|〈z′1 − z′2, e1〉| ≤ ε|z′1 − z′2| ≤ ε|z1 − z2|

and
|〈zi − z′i, e1〉| ≤ (σ + ε) |zi − z′i|,

we get that

|〈z1 − z2, e1〉| ≤ |〈z1 − z′1, e1〉|+ |〈z′2 − z2, e1〉|+ |〈z′1 − z′2, e〉|
≤ 2 · (σ + ε) (|z1 − z′1|+ |z2 − z′2|) + ε|z1 − z2|.

Since z′1 − z′2 is perpendicular to z1 − z′1 and z2 − z′2, and〈
zi − z′i,

xi
|xi|

〉
≥ (1− σ − ε)|zi − z′i|, i = 1, 2,

and 〈
x1

|x1|
,
x2

|x2|

〉
≤ −1 + 2ε2,

we get, by Lemma 3.8, that

|z1−z′1|+|z2−z′2| ≤
(

1

1− ε2 − 5
√
σ + ε

)1/2

|(z1−z′1)−(z2−z′2)| ≤ 2|z1−z2|.

Thus
〈z1 − z2, e〉 ≤ (4σ + 5ε)|z1 − z2|.
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We now define p0 : Ω0 → R1 as follows: for any z ∈ Ωi, we let p0(z) be the
unique point in ∂Ωi such that p0(z)− z parallels e; and for any z ∈ R1, we let
p0(z) = z. Since p0(z) − z parallels e, we see that p0(L) ⊂ L. We will check
that

p0 is Lipschitz with Lip(p0) ≤ 2

1− 5(σ + ε)
.

Indeed, for any z1, z2 ∈ Ω0, we put

p0(zi) = zi + tie, ti ∈ R,

then
|t1 − t2| = |〈(t1 − t2)e, e〉|

≤ |〈p0(z1)− p0(z2), e〉|+ |〈z1 − z2, e〉|
≤ 5(σ + ε)|p0(z1)− p0(z2)|+ |z1 − z2|,

and

|p0(z1)− p0(z2)| ≤ |z1 − z2|+ |t1 − t2| ≤ 5(σ + ε)|p0(z1)− p0(z2)|+ 2|z1 − z2|,

thus
|p0(z1)− p0(z2)| ≤ 2

1− 5(σ + ε)
|z1 − z2|.

Case 2: card(Xr) = 3. We assume that Xr = {x1, x2, x3}, then

|〈xi, yr〉| ≤ εr2,

(
−
√

3ε− 1

2

)
r2 ≤ 〈xi, xj〉 ≤

(
−1

2
+ 2ε

)
r2.

We put
e1 =

x2 + x3

|x2 + x3|
, e2 =

x1 + x3

|x1 + x3|
, e3 =

x2 + x1

|x2 + x1|
,

and let Ω′1, Ω′2 and Ω′3 be the three connected components of Ω0 \ (∪iDxi,yr )
such that ei ∈ Ω′i. By putting Ωi = Ω′i \R1, we claim that(

1

2
− 5(σ + ε)

)
|z1 − z2| ≤ |〈z1 − z2, ei〉| ≤

(
1

2
+ 5(σ + ε)

)
|z1 − z2|

whenever z1, z2 ∈ ∂Ωi, z1 6= z2, i ∈ {1, 2, 3}.
Indeed, we only need to check the case z1, z2 ∈ ∂Ω1, and the other two

cases will be the same. Since −
√

3ε − 1/2 ≤ 〈xi, xj〉 ≤ 1/2 + 2ε, we have that
(1/2− ε)r ≤ 〈xi, e1〉 ≤ (1/2 + ε)r for i = 2, 3.

If z1, z2 ∈ ∂Rx2
1 ∩Ω1 or z1, z2 ∈ ∂Rx3

1 ∩Ω1, we assume that z1, z2 ∈ ∂Rx2
1 ∩Ω1,

and let z̃i ∈ Dx2,yr be such that

zi − z̃i = dist(zi, Dx2,yr ), i = 1, 2,

and let z′i ∈ `(yr) be such that

|zi − z′i| = dist(zi, `(yr)),

and put
w1 = z1 − z̃1 + z̃2, w2 = z1 − z′1 + z′2,
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then we get that z1 − w2 is perpendicular to w2 − z2 and parallel to yr. Since
z1−z2 = (z1−w2)+(w2−z2), we have that |w2−z2| ≤ |z1−z2|, |z1−w2| ≤ |z1−z2|
and

dist(w2 − z2, span{x1, yr}) = σ|w2 − z2|.

We apply Lemma 3.8 to get that

|〈z1 − w2, e1〉| ≤ ε|z1 − w2|

and
|〈w2 − z2, e1〉| ≤

(
1

2
+ ε+ σ + ε

)
|w2 − z2|,

thus

|〈z1 − z2, e1〉| ≤ |〈z1 − w2, e1〉|+ |〈w2 − z2, e1〉| ≤
(

1

2
+ σ + 3ε

)
|z1 − z2|.

If z1 ∈ ∂Rx2 ∩ Ω1, z2 ∈ ∂Rx3 ∩ Ω1, we let z̃i ∈ Dxi,yr be such that

|z1 − z̃1| = dist(z1, Dx2,yr ), |z2 − z̃2| = dist(z2, Dx3,yr )

and let z′i ∈ `(yr) be such that

|zi − z′i| = dist(zi, `(yr)), i = 1, 2.

Since z1 − z2 = (z1 − z′1) + (z′2 − z2) + (z′1 − z′2),

|〈z′1 − z′2, e1〉| ≤ ε|z′1 − z′2| ≤ ε|z1 − z2|

and
|〈zi − z′i, e1〉| ≤

(
1

2
+ ε+ σ + ε

)
|zi − z′i|,

we get that

|〈z1 − z2, e1〉| ≤ |〈z1 − z′1, e1〉|+ |〈z′2 − z2, e1〉|+ |〈z′1 − z′2, e〉|

≤
(

1

2
+ σ + 2ε

)
(|z1 − z′1|+ |z2 − z′2|) + ε|z1 − z2|.

(3.6)

By Lemma 3.8, we have that〈
z1 − z′1,

x2

|x2|

〉
≥ (1− σ − ε)|z1 − z′1|

and 〈
z2 − z′2,

x3

|x3|

〉
≥ (1− σ − ε)|z2 − z′2|.

Applying Lemma 3.8 with 〈x2/|x2|, x3/|x3|〉 ≤ −1/2 + 2ε, we get that

|z1 − z′1|+ |z2 − z′2| ≤
(

2

1 + 1/2− 2ε− 10
√
σ + ε

)1/2

|(z1 − z′1)− (z2 − z′2)|

≤ 2√
3

(
1− 2ε+ 10

√
σ + ε

3

)
|z1 − z2|.
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We get, from (3.4), that

|〈z1 − z2, e1〉| ≤
2

3
|z1 − z2|.

For any z ∈ Ωi, we now let p0(z) be the unique point in ∂Ωi such that
p0(z) − z parallels e; and for z ∈ R1, we let p0(z) = z. Then p0(L) ⊂ L. We
will check that

p0 is Lipschitz with Lip(p0) ≤ 6.

For any z1, z2 ∈ Ωi, we put

p0(zj) = zj + tjei, ti ∈ R, j = 1, 2,

then
|t1 − t2| = |〈(t1 − t2)ei, ei〉|

≤ |〈p0(z1)− p0(z2), ei〉|+ |〈z1 − z2, ei〉|

≤ 2

3
|p0(z1)− p0(z2)|+ |z1 − z2|,

and

|p0(z1)− p0(z2)| ≤ |z1 − z2|+ |t1 − t2| ≤
2

3
|p0(z1)− p0(z2)|+ 2|z1 − z2|,

thus
|p0(z1)− p0(z2)| ≤ 6|z1 − z2|.

By the definition of Rx and Rx1 , we have that

Rx = {z ∈ Rx1 | dist(z,Dx,yr ) ≤ σ dist(z, `(x))}.

Similar as above, we can that, for any z1, z2 ∈ Rx1∩∂Rx with [z1, z2]∩Dx,yr = ∅,
if card(Xr) = 2 then

|〈z1 − z2, ei〉| ≤ 5(σ + ε)|z1 − z2|;

if card(Xr) = 3 then

|〈z1 − z2, ei〉| ≤
(

1

2
+ σ + 3ε

)
|z1 − z2|,

where ei is the vector in 3.4 such that z1, z2 ∈ Ωi.
We now consider the mapping p1 : R1 → R defined by

p1(z) =

{
z, for z ∈ R,
z − tei ∈ ∂R ∩ Ωi, for z ∈ Ωi.

By the same reason as above, we get that

Lip(p1) ≤ 2

1− 1/2− σ − 3ε
≤ 5.

We define a mapping p2 : R ∩ B(0, 1) → Σ as follows: we know Σxu is the
graph of u over Dx,yr , thus for any z ∈ Rx, there is only one point in the
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intersection of Σxu and the line which is perpendicular to Dx,yr and through z,
we define p2(z) to be the unique intersection point. That is, p2(z) is the unique
point in Σxu such that p2(z)− z is perpendicular to Dx,yr . We will show that p2

is Lipschitz and Lip(p2) ≤ 1 + 104η. Indeed, for any points z1, z2 ∈ Rx, we let
z̃i, i = 1, 2, be the points in Dx,yr such that zi − z̃i is perpendicular to Dx,yr ,
then

|(p2(z1)−z1)−(p2(z2)−z2)| = |u (z̃1)− u (z̃2)| ≤ Lip(u)|z̃1−z̃2| ≤ Lip(u)|z1−z2|,

thus

|p2(z1)− p2(z2)| ≤ (1 + Lip(u))|z1 − z2| ≤ (1 + 104η)|z1 − z2|.

Let p3 : R3 → R3 be the mapping defined by

p3(x) =

{
x, |x| ≤ 1
x
|x| , |x| > 1.

Then p = p3 ◦ p2 ◦ p3 ◦ p1 ◦ p0 is our desire mapping.

Lemma 3.10. For any r ∈ (0.r) ∩R1, we let Σ be as in (3.4), and let Σr be
given by µr(Σ). Then we have that

H2(E ∩B(0, r)) ≤ H2(Σr) + 2550

∫
E∩∂B(0,r)

dist(z,Σr)dH1(z) + (2r)2h(2r).

Proof. For any ξ > 0, we consider the function ψξ : [0,∞)→ R defined by

ψξ(t) =


1, 0 ≤ t ≤ 1− ξ
− t−1

ξ , 1− ξ < t ≤ 1

0, t > 1,

and the mapping φξ : Ω0 → Ω0 defined by

φξ(z) = ψξ(|z|)p(z) + (1− ψξ(|z|))z.

Then we get that φξ(L) ⊂ L. For any t ∈ [0, 1], we put

ϕt(z) = trφξ (z/r) + (1− t)z, for z ∈ Ω0.

Then {ϕt}0≤t≤1 is a sliding deformation, and we get that

H2(E ∩B(0, r)) ≤ H2(ϕ1(E) ∩B(0, r)) + (2r)2h(2r).

Since ψξ(t) = 1 for t ∈ [0, 1− ξ], we get that

ϕ1(E ∩B(0, (1− ξ)r)) = p(E ∩B(0, (1− ξ)r)) ⊂ Σr.

We set Aξ = B(0, r) \B(0, (1− ξ)r). By Theorem 3.2.22 in [7], we get that

H2(ϕ1(E ∩Aξ)) ≤
∫
E∩Aξ

ap J2(ϕ1|E)(z)dH2(z). (3.7)
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For any z ∈ Aξ and v ∈ R3, we have, by setting z′ = z/r, that

Dϕ1(z)v = ψξ(|z′|)Dp(z′)v + (1− ψξ(|z′|))v + ψ′ξ(|z′|)〈z/|z|, v〉(rp(z′)− z).

For any z ∈ Aξ ∩ E, we let v1, v2 ∈ TzE be such that

|v1| = |v2| = 1, v1 ⊥ z and v2 ⊥ v1,

then we have that 〈z/|z|, v〉 = cos θ(z), and that

|ψξ(|z′|)Dp(z′)vi + (1− ψξ(|z′|))vi| ≤ |Dp(z′)vi| ≤ Lip(p),

thus
ap J2(ϕ1|E)(z) = |Dϕ1(z)v1 ∧Dϕ1(z)v2|

≤ Lip(p)2 +
1

ξ
Lip(p) cos θ(z)|rp(z′)− z|.

(3.8)

Since p(z̃) = z̃ for any z̃ ∈ Σ, we have that

|p(z′)− z′| = |p(z′)− p(z̃) + z̃ − z′| ≤ (Lip(p) + 1)|z̃ − z′|,

then we get that
|p(z′)− z′| ≤ (Lip(p) + 1) dist(z,Σ).

We now get, from (3.4), that

ap J2(ϕ1|E)(z) ≤ Lip(p)2 +
1

ξ
Lip(p)(Lip(p) + 1) dist(z,Σr) cos θ(z),

plug that into (3.4) to get that

H2(ϕ1(E ∩Aξ)) ≤ 2500H2(E ∩Aξ) +
2550

ξ

∫
E∩Aξ

dist(z,Σr) cos θ(z)dH2(z)

≤ 2500H2(E ∩Aξ) +
2550

ξ

∫ r

(1−ξ)r

∫
E∩∂B(0,t)

dist(z,Σr)dH1(z)dt,

we let ξ → 0+, then we get that, for almost every r,

lim
ξ→0+

H2(ϕ1(E ∩Aξ)) ≤ 2550r

∫
E∩∂B(0,r)

dist(z,Σr)dH1(z),

for such r, we have that

H2(E ∩B(0, r)) ≤ H2(Σr) + 2550r

∫
E∩∂B(0,r)

dist(z,Σr)dH1(z) + (2r)2h(2r).

3.5 The main comparison statement
For any x, y ∈ Ω0 ∩ ∂B(0, 1), if |x − y| < 2, we denote by gx,y the geodesic on
Ω0 ∩ ∂B(0, 1) which join x and y.
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Lemma 3.11. Let τ ∈ (0, 10−4) be a given. Then there is a constant ϑ > 0
such that the following hold. Let a ∈ ∂B(0, 1) and b, c ∈ L ∩ ∂B(0, 1) be such
that dist(a, (0, 0, 1)) ≤ τ , dist(b, (1, 0, 0)) ≤ τ and dist(c, (−1, 0, 0)) ≤ τ . Let X
be the cone over ga,b∪ga,c. Then there is a Lipschitz mapping ϕ : Ω0 → Ω0 with
ϕ(E ∩ L) ⊂ L, |ϕ(z)| ≤ 1 when |z| ≤ 1, and ϕ(z) = z when |z| > 1, such that

H2(ϕ(X) ∩B(0, 1)) ≤ (1− ϑ)H2(X) +
ϑπ

2
.

Proof. The proof will be similar to the proof of Lemma 14.4 in [2].

Lemma 3.12. Let τ ∈ (0, 10−4) be a given. Then there is a constant ϑ > 0 such
that the following hold. Let a ∈ ∂B(0, 1) and b, c, d ∈ L ∩ ∂B(0, 1) be such that
dist(a, (0, 0, 1)) ≤ τ , dist(b, (−1/2,

√
3/2, 0)) ≤ τ , dist(c, (−1/2,−

√
3/2, 0)) ≤ τ

and dist(d, (1, 0, 0)) ≤ τ . Let X be the cone over ga,b ∪ ga,c ∪ ga,d. Then there is
a Lipschitz mapping ϕ : Ω0 → Ω0 with ϕ(E ∩ L) ⊂ L, |ϕ(z)| ≤ 1 when |z| ≤ 1,
and ϕ(z) = z when |z| > 1, such that

H2(ϕ(X) ∩B(0, 1)) ≤ (1− ϑ)H2(X) +
3ϑπ

4
.

Proof. The proof will be similar to the proof of Lemma 14.6 in [2].

Let E ⊂ Ω0 be a 2-rectifiable set with H2(E) < ∞ and 0 ∈ E. Suppose
that E is locally (Ω0, L0, h) sliding almost minimal at 0, and that E is locally
C0-equivalent to a sliding minimal cone of type P+ or Y+ at 0.

We will denote by R2 the set{
r ∈ R1 : ε(r) + 10j(r)1/2 ≤ 10200−1(1− 2 · 10−4)

}
,

and denote by Bt the open ball B(0, t) sometimes for short for any t > 0.

Lemma 3.13. For any r ∈ (0, r) ∩R2, we have that

H2(E ∩Br) ≤ (1− 2 · 10−4)
r

2
H1(E ∩ ∂Br) + (2 · 10−4 − ϑκ2)

r2

2
H1(X ∩ ∂B1)

+ ϑκ2r2Θ(0) + (2r)2h(2r).

Proof. Without loss of generality, we assume that x = 0. Let Σ, Σr, ξ, ψξ, φξ
and {ϕt}0≤t≤1 be the same as in the proof of Lemma 3.10.

We see that

ϕ1(E ∩B(0, (1− ξ)r)) = p(E ∩B(0, (1− ξ)r)) ⊂ Σr,

and that Σ ∩ B(0, 2κ) = X ∩ B(0, 2κ), where X is a cone defined in (3.4).
We see that if Θ(0) = π/2, then X satisfies the conditions in Lemma 3.11; if
Θ(0) = 3π/4, then X satisfies the conditions in Lemma 3.12. Thus we can find
a Lipschitz mapping Ω0 → Ω0 with ϕ(E ∩L) ⊂ L, |ϕ(z)| ≤ 1 when |z| ≤ 1, and
ϕ(z) = z when |z| > 1, such that

H2(ϕ(X) ∩B(0, 1)) ≤ (1− ϑ)H2(X ∩B(0, 1)) + ϑΘ(x).
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Let ϕ̃ : Ω0 → Ω0 be the mapping defined by ϕ̃(x) = rϕ(x/r), then

H2(E ∩B(0, r)) ≤ H2(ϕ̃ ◦ ϕ1(E) ∩B(0, r)) + (2r)2h(2r)

≤ H2(ϕ̃ ◦ ϕ1(E ∩B(0, (1− ξ)r))) +H2(ϕ1(E ∩Aξ))

≤ H2(Σr \B(0, κr)) + (1− ϑ)(κr)2H2(X ∩B(0, 1))

+ ϑ · (κr)2Θ(0) +H2(ϕ1(E ∩Aξ)).

But we see that Σr = {rx : x ∈ Σ}, Σ ∩B(0, 2κ) = X ∩B(0, 2κ), and

lim
ξ→0+

H2(ϕ1(E ∩Aξ)) ≤ 2550

∫
E∩∂B(0,r)

dist(z,Σr)dH1(z),

we have that

H2(Σr \B(0, κr)) = r2
(
H2(Σ)−H2(X ∩B(0, κ))

)
,

and that

H2(E ∩B(0, r)) ≤ r2H2(Σ)− (κr)2H2(X ∩B(0, 1))

+ (1− ϑ)(κr)2H2(X ∩B(0, 1)) + (κr)2ϑ ·Θ(0)

+ 2550

∫
E∩∂B(0,r)

dist(z,Σr)dH1(z) + (2r)2h(2r).

By (3.4), we get that

H2(Σ) ≤ H2(M)− 10−4(H1(Γ∗)− T )

= (1/2− 10−4)H1(Γ∗) + 10−4H1(X ∩ ∂B(0, 1)),

and then

H2(E ∩Br) ≤ (1/2− 10−4)r2H1(Γ∗) + (10−4 − ϑκ2/2)r2H1(X ∩ ∂B1)

+ ϑκ2r2Θ(0) + 2550

∫
E∩∂Br

dist(z,Σr)dH1(z) + (2r)2h(2r).

For any ε > ε(r), there exists cone Z of type P+ or Y+ such that

d0,r(E,Z) ≤ ε,

by the construction of X andM, we see that

d0,r(X,Z) ≤ ε,

thus
d0,r(E,X) ≤ 2ε.

By Lemma ??, we have that

d0,1(M, X) ≤ 10j(r)1/2.

We get that for any z ∈ E ∩ ∂B(0, r),

dist(µ1/r(z),M) ≤ 2ε(r) + 10j(r)1/2,
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thus

dist(z,Σr) = r dist(µ1/r(z),Σ) = r dist(µ1/r(z),M) ≤ 2rε(r) + 20rj(r)1/2,

because Σ \B(0, 9/10) =M\B(0, 9/10). We get that∫
E∩∂B(0,r)

dist(z,Σr)dH1(z) ≤ 2r(ε(r) + 10j(r)1/2)H1(E ∩ ∂B(0, r) \ Σr)

≤ 2r(ε(r) + 20j(r)1/2)(H1(E ∩ ∂Br)− rH1(Γ∗)).

By Lemma 3.6, we have that

H1(Γ∗ \ Γ) ≤ H1(Γ \ Γ∗) ≤ Cη2(H1(Γ)−H1(X ∩ ∂B(0, 1))),

so that

H1(X ∩ ∂B(0, 1)) ≤ H1(Γ∗) ≤ H1(Γ) ≤ H1(µ1/r(E ∩ ∂Br)),

thus

H2(E ∩Br) ≤ (1/2− 10−4)r2H1(Γ∗) + (10−4 − ϑκ2/2)r2H1(X ∩ ∂B1)

+ 5100(ε(r) + 10j(r)1/2)r(H1(E ∩ ∂Br)− rH2(Γ∗))

+ ϑκ2r2Θ(0) + (2r)2h(2r).

Since r ∈ (0, r) ∩R2, we have that

5100
(
ε(r) + 10j(r)1/2

)
≤ 1

2
(1− 2 · 10−4)

thus

H2(E ∩Br) ≤ (1− 2 · 10−4)
r

2
H1(E ∩ ∂Br) + (2 · 10−4 − ϑκ2)

r2

2
H1(X ∩ ∂B1)

+ ϑκ2r2Θ(0) + (2r)2h(2r).

Theorem 3.14. There exist λ, µ ∈ (0, 10−3) and r1 > 0 such that, for any
0 < r < r1,

H2(E∩Br) ≤ (1−µ−λ)
r

2
H1(E∩∂Br)+µ

r2

2
H1(X∩∂B1)+λΘ(0)r2+4r2h(2r).

Proof. We put τ1 = min{τ0, 10−12(1− ϑκ2)2}, and take δ such that

κ < δ < κ+ (8ϑ)−1(1− 2 · 10−4)Θ(0)τ1. (3.9)

We see that ε(r) → 0 as r → 0+, there exist r1 ∈ (0, r) such that, for any
r ∈ (0, r1),

ε(r) ≤ 10−1 min{τ1, ϑ(δ2 − κ2)}. (3.10)

If r ∈ (0, r1) and j(r) ≤ τ1, then r ∈ R2, then by Lemma 3.13, we have that

H2(E ∩Br) ≤ (1− 2 · 10−4)
r

2
H1(E ∩ ∂Br) + (2 · 10−4 − ϑκ2)

r2

2
H1(X ∩ ∂B1)

+ ϑκ2r2Θ(0) + (2r)2h(2r).
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We only need to consider the case r ∈ (0, r1), j(r) > τ1 and H1(E∩∂Br) < +∞,
thus

H1(X ∩ ∂B1) + τ1 ≤
1

r
H1(E ∩B(0, r)). (3.11)

By the construction of X, we see that X ∩B(0, 1) is Lipschitz neighborhood
retract, let U be a neighborhood of X ∩ B(0, 1) and ϕ0 : U → X ∩ B(0, 1)
be a retraction such that |ϕ0(x) − x| ≤ r/2. We put U1 = µ8r/9(U), ϕ1 =
µ8r/9 ◦ ϕ0 ◦ µ9/(8r), and let s : [0,∞)→ [0, 1] be a function given by

s(t) =


1, 0 ≤ t ≤ 3r/4,

−(8/r)(t− 7r/8), 3r/4 < t ≤ 7r/8,

0, t > 7r/8.

We see that there exist sliding minimal cone Z such that d0,1(X,Z) ≤ ε(r),
thus d0,r(E,X) ≤ 2ε(r), then for any x ∈ E ∩B(0, r) \B(0, 3r/4),

dist(x,X) ≤ 2ε(r)r ≤ 8ε(r)

3
|x|.

We consider the mapping ψ : Ω0 → Ω0 defined by

ψ(x) = s(|x|)ϕ1(x) + (1− s(|x|))x,

then ψ(L) = L and ψ(x) = x for |x| ≥ 8r/9.
We take r1 > 0 such that, for any r ∈ (0, r1),

{x ∈ Ω0 ∩B(0, 1) : dist(x,X) ≤ 3ε(r)} ⊂ U.

Then we get that ψ(x) ∈ X for any x ∈ E ∩B(0, 3r/4);

dist(ψ(x), X) ≤ 3ε(r)|x| for any x ∈ E ∩B(0, r) \B(0, 3r/4);

and Ψ(E ∩Br) ∩B(0, r/4) = X ∩B(0, r/4).
We now consider the mapping Π1 : Ω0 → Ω0 defined by

Π1(x) = s(4|x|)x+ (1− s(4|x|))Π(x),

and the mapping ψ1 : Ω0 → Ω0 defined by

ψ1(x) =

{
Π1 ◦ ψ(x), |x| ≤ r,
x, |x| ≥ r.

We have that ψ1 is Lipschitz, ψ1(L) = L and ψ1(B(0, r)) ⊂ B(0, r),

ψ1(E ∩B(0, r)) ⊂ X ∩B(0, r) ∪ {x ∈ ∂Br : dist(x,X) ≤ 3rε(r)}.

Let ϕ be the same as in Lemma 3.11 and Lemma 3.12, and let ψ2 = µδ ◦ϕ ◦
µ1/δ ◦ ψ1. Then we have that

H2(E ∩B(0, r)) ≤ H2(ψ2(E ∩B(0, r))) + (2r)2h(2r)

≤ (1− ϑδ2)H2(X ∩B(0, r)) + ϑδ2Θ(0)r2 + 4r2h(2r)

+H2({x ∈ ∂Br : dist(x,X) ≤ 3rε(r)})
≤ (1− ϑδ2)H2(X ∩B(0, r)) + ϑδ2Θ(0)r2

+ 4rε(r)H1(X ∩ ∂Br) + 4r2h(2r)

≤ (1− ϑδ2 + 8ε(r))
r2

2
H1(X ∩ ∂B1) + ϑδ2Θ(0)r2 + 4r2h(2r)

(3.12)
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We take µ = 2 · 10−4 − ϑκ2 and λ = ϑκ2, then by (3.5) and (3.5), we have
that

8ε(r) < ϑ(δ2 − κ2)

and
ϑ(δ2 − κ2)Θ(0) ≤ (1− 2 · 10−4)

τ1
2
.

We get from (3.5) and (3.5) that

H2(E ∩Br) ≤ (1− 2 · 10−4)
r2

2
(H1(X ∩ ∂B1) + τ1)− (1− 2 · 10−4)

τ1r
2

2

+ µ
r2

2
H1(X ∩ ∂B1) + ϑκ2Θ(0)r2 + 4r2h(2r)

+ (8ε(r)− ϑδ2 + ϑκ2)
r2

2
H1(X ∩ ∂B1) + (ϑδ2 − ϑκ2)Θ(0)r2

≤ (1− λ− µ)
r

2
H1(E ∩ ∂Br) + µ

r2

2
H1(X ∩ ∂B1) + λΘ(0)r2 + 4r2h(2r).

For convenient, we put λ0 = λ/(1 − λ), f(r) = Θ(0, r) − Θ(0) and u(r) =
H1(E∩B(0, r)) for r > 0. Since f(r) = r−2u(r)−Θ(0) and u is a nondecreasing
function, we have that, for any λ1 ∈ R and 0 < r ≤ R < +∞,

Rλ1f(R)− rλ1f(r) ≥
∫ R

r

(
tλ1f(t)

)′
dt,

thus

f(r) ≤ r−λ1Rλ1f(R) + r−λ1

∫ R

r

(
tλ1f(t)

)′
dt. (3.13)

Corollary 3.15. If the gauge function h satisfy

h(t) ≤ Chtα, 0 < t ≤ r1 for some Ch > 0, α > 0,

then for any 0 < β < min{α, 2λ0}, there is a constant C = C(λ0, α, β, r1, Ch) >
0 such that

|Θ(0, ρ)−Θ(0)| ≤ Cρβ (3.14)

for any 0 < ρ ≤ r1.

Proof. For any r > 0, we put u(r) = H2(E ∩ B(0, r)). Then u is differentiable
for H1-a.e. r ∈ (0,∞).

Recall that R is the set r ∈ (0,∞) such that H1(E ∩B(0, r)) <∞ and u is
differentiable at r, and we have that H1((0,∞) \R) = 0.

By Theorem 3.14 and Lemma 2.1, we have that for any r ∈ (0, r1) ∩R,

u(r) ≤ (1− λ)
r

2
H1(E ∩ ∂B(0, r)) + λΘ(0)r2 + 4r2h(2r)

≤ (1− λ)
r

2
u′(r) + λΘ(0)r2 + 4r2h(2r),

thus

rf ′(r) ≥ 2λ

1− λ
f(r)− 8

1− λ
h(2r) = 2λ0f(r)− 8(1 + λ0)h(2r),
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and (
r−2λ0f(r)

)′
= r−1−2λ0 (rf ′(r)− 2λ0) ≥ −8(1 + λ0)r−1−2λ0h(2r).

We get, from (3.5), so that, for any 0 < r < R ≤ r1,

f(r) ≤ r2λ0R−2λ0f(R) + 8(1 + λ0)r2λ0

∫ R

r

t−1−2λ0h(2t)dt. (3.15)

Since h(t) ≤ Chtα, we have that

f(r) ≤ (r/R)−2λ0f(R) + 23+α(1 + λ0)Chr
2λ0

∫ R

r

tα−2λ0−1dt.

If α > 2λ0, then

f(r) ≤
(
f(R) + 23+α(1 + λ0)(1 + λ0)(α− 2λ0)−1ChR

α
)

(r/R)2λ0 ; (3.16)

if α = 2λ0, then

f(r) ≤ f(R)(r/R)α + 2α+3(1 + λ0)Chr
α ln(R/r),

thus, for any β ∈ (0, α),

f(r) ≤ f(R)rα + 2α+3(1 + λ0)Chr
βRα−β

ln(R/r)

(R/r)α−β

≤
(
f(R) + 2α+3(1 + λ0)Ch(α− β)−1e−1Rα

)
(r/R)β ;

(3.17)

if α < 2λ0, then

f(r) ≤ f(R)(r/R)2λ0 + 2α+3(1− λ0)Chr
2λ0 · (2λ0 − α)−1

(
rα−2λ0 −Rα−2λ0

)
≤
(
(r/R)2λ0−αf(R) + 2α+3(1− λ0)Ch(2λ0 − α)−1Rα

)
(r/R)α.

(3.18)
Hence (3.15) follows from (3.5), (3.5), (3.5) and Theorem 2.3. Indeed, there is
a constant C1(α, β, λ0) > 0 such that

r2λ0

∫ R

r

tα−2λ0−1dt ≤ C1(α, β, λ0)Rα · (r/R)β , (3.19)

and there is a constant C2(α, β, λ0) > 0 such that

f(r) ≤ (f(R) + C2(α, β, λ0)Ch ·Rα) (r/R)α.

Remark 3.16. If the gauge function h satisfy that

h(t) ≤ C
(

ln

(
A

t

))−b
for some A, b, C > 0, then (3.5) implies that there exist R > 0 and constant
C(R, λ, b) such that

f(r) ≤ C(R, λ, b)

(
ln

(
A

r

))−b
for 0 < r ≤ R.
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4 Approximation of E by cones
In this section, we also assume that E ⊂ Ω0 is a 2-rectifiable set withH2(E) <∞
and 0 ∈ E, and that E is locally (Ω0, L0, h) sliding almost minimal at 0. Suppose
in addition that E is locally C0-equivalent to a sliding minimal cone of type P+

or Y+ at 0. We let ε(r) = εP (r) if E is locally C0-equivalent to a sliding minimal
cone of type P+; and let ε(r) = εY (r) if E is locally C0-equivalent to a sliding
minimal cone of type Y+.

For any r > 0, we put

f(r) = Θ(0, r)−Θ(0), F (r) = f(r) + 8h1(r), F1(r) = F (r) + 8h1(r),

and put
Ξ(r) = rf ′(r) + 2f(r) + 16h(2r) + 32h1(r),

if r ∈ R.
We denote by X(r) and Γ(r), respectively, the cone X and the set Γ which

are defined in (3.4), and by γ(r) the set µr(Γ(r)). For any r2 > r1 > 0, we put

A(r1, r2) = {x ∈ R3 : r1 ≤ |x| ≤ r2}.

Lemma 4.1. For any 0 < r < R <∞ with H2(E ∩ ∂Br) = H2(E ∩ ∂BR) = 0,
we have that ∫

E∩A(r,R)

1− cos θ(x)

|x|2
dH2(x) ≤ F (R)− F (r), (4.1)

and
H2 (Π(E ∩A(r,R))) ≤

∫
E∩A(r,R)

sin θ(x)

|x|2
dH2(x). (4.2)

Proof. We see that for H2-a.e. x ∈ E, the tangent plane Tan2(E, x) exists, we
will denote by θ(x), the angle between the line [0, x] and the plane Tan2(E, x).
For any t > 0, we put u(t) = H2(E ∩ B(0, t)), then u : (0,∞) → [0,∞] is a
nondecreasing function. By Lemma 2.2, we have that

u(t) ≤ t

2
H1(E ∩ ∂B(0, t)) + 4t2h(2t),

for H1-a.e. t ∈ (0,∞). Considering the mapping φ : R3 → [0,∞) given by
φ(x) = |x|, we have, by (2), that

ap J1(φ|E)(x) = cos θ(x)

for H2-a.e. x ∈ E.
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Apply Theorem 3.2.22 in [7], we get that∫
E∩A(r,R)

1

|x|2
cos θ(x)dH2(x) =

∫ R

r

1

t2
H1(E ∩ ∂B(0, t)ddt

≥ 2

∫ R

r

u(t)

t3
dt− 8

∫ R

r

h(2t)

t
dt

= 2

∫ R

r

1

t3

∫
E∩B(0,t)

dH2(x)dt− 8(h1(R)− h1(r))

= 2

∫
E∩B(0,R)

∫ R

max{r,|x|}

1

t3
dtdH2(x)− 8(h1(R)− h1(r))

=

∫
E∩A(r,R)

1

|x|2
dH2(x) + r−2u(r)−R−2u(R)− 8(h1(R)− h1(r)),

thus (4.1) holds.
By a simple computation, we get that

ap J2Π(x) =
sin θ(x)

|x|2
,

we now apply Theorem 3.2.22 in [7] to get (4.1).

We get from above Lemma that

H2(Π(E ∩A(r,R))) ≤ r2

r1
(2Θ(0, R))

1/2
(F (R)− F (r))

1/2

Lemma 4.2. For any r ∈ (0, r1) ∩R, if Ξ(r) ≤ µτ0, then

dH(Γ(r), X(r) ∩ ∂B(0, 1)) ≤ µ−1/2Ξ(r)1/2.

Proof. By lemma 2.1, we get that

1

r
H1(E ∩ ∂B(0, r)) ≤ 2Θ(0) + rf ′(r) + 2f(r),

By Theorem 3.14, we get that

r2Θ(0, r) ≤ (1− λ− µ)
r

2
H1(E ∩ ∂Br) + µ

r2

2
H1(X ∩ ∂B1) + λΘ(0)r2 + 4r2h(2r)

≤ 1

2
(1− λ− µ)r2(2Θ(0) + rf ′(r) + 2f(r)) + µ

r2

2
H1(X ∩ ∂B1)

+ λΘ(0)r2 + 4r2h(2r),

thus

H1(X ∩ ∂B1) ≥ 2Θ(0) +
2(λ+ µ)

µ
f(r)− 1− λ− µ

µ
rf ′(r)− µ

8
h(2r).

Hence
j(r) =

1

r
H1(E ∩Br)−H1(X ∩ ∂B1)

≤ 1− λ
µ

rf ′(r)− 2λ

µ
f(r) +

8

µ
h(2r)

≤ 1

µ
(rf ′(r) + 16h1(r) + 16h(2r)).
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Since

H1(X ∩ ∂B1) ≤ H1(Γ∗(r)) ≤ H1(Γ(r)) ≤ H1(µ1/r(E ∩ ∂Br)),

we have that

0 ≤ H1(Γ(r))−H1(X ∩B1) ≤ j(r) ≤ 1

µ
Ξ(r),

by Lemma 3.5, we get that for any z ∈ Γ(r),

dist (z,X ∩ ∂B(0, 1)) ≤
(

Ξ(r)

µ

)1/2

.

Lemma 4.3. For any 0 < r1 < r2 < (1 − τ)r, if P is a plane such that
H1(E ∩ P ∩ Br) < ∞ and P ∩ Xr = ∅ for any r ∈ [r1, r2], then there is a
compact path connected set

CP,r1,r2 ⊂ E ∩ P ∩A(r2, r1)

such that
CP,r1,r2 ∩ γ(t) 6= ∅ for r1 ≤ t ≤ r2.

Proof. We let % be the same as in 3. Since ‖Φ− id‖∞ ≤ τ%, we get that

Φ−1
(
E ∩B(0, r2)

)
⊂ Z0,% ∩B(0, r2 + τ%).

We put
X = Z0,% ∩B(0, r2 + τ%),

F = X ∩ Φ−1(E ∩ Pz).

We take x1, x2 ∈ Xr, x2 6= x1, such that Φ−1(x1) and Φ−1(x2) are contained in
two different connected components of X\F . By Lemma 3.2, there is a connected
closed subset F0 of F such that Φ−1(x) and Φ−1(x2) are still contained in two
different connected components of X\F0. Then F0∩φ−1(γ(t)) 6= ∅ for 0 < t ≤ r2;
otherwise, if F0 ∩ φ−1(γ(t0)) = ∅, then x1 and x2 are in the same connected
component of Φ(X)\Φ(F0), thus Φ−1(x1) and Φ−1(x2) are in the same connected
component of X \ F0, absurd!

Since H1(Φ(F0)) ≤ H1(E ∩ Pz ∩ B%) < ∞, we get that Φ(F0) is path
connected. We take z1 ∈ Φ(F0) ∩ γ(r1) and z2 ∈ Φ(F0) ∩ γ(r2), and let
g : [0, 1] → Φ(F0) be a path such that g(0) = z1 and g(1) = z2. We take
t1 = sup{t ∈ [0, 1] : |g(t)| ≤ r1} and t2 = inf{t ∈ [t1, 1] : |g(t)| ≥ r2}. Then
Cz,r1,r2 = g([t1, t2]) is our desire set.

Lemma 4.4. Let T ∈ [π/4, 3π/4] and ε ∈ (0, 1/2) be given. Suppose that F a
2-rectifiable set satisfying

F ⊂ ∂B(0, 1) ∩ {(t cos θ, t sin θ, x3) ∈ R3 | t ≥ 0, |θ| ≤ T/2, |x3| ≤ ε}.

Then we have, by putting Pθ = {(t cos θ, t sin θ, x3) | t ≥ 0, x3 ∈ R}, that∫ T/2

−T/2
H1(F ∩ Pθ)dθ ≤ (1 + ε)H2(F )
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Proof. For any x = (x1, x2, x3) ∈ F , we have that x2
1 +x2

2 +x2
3 = 1 and |x3| ≤ ε,

thus x2
1 + x2

2 ≥ 1 − ε2. Since |θ| ≤ T/2 ≤ 3π/8, we get that the mapping
φ : F → R given by

φ(x1, x2, x3) = arctan
x2

x1

is well defined and Lipschitz. Moreover, we have that

ap J1φ(x) = (x2
1 + x2

2)−1/2 ≤ (1− ε2)−1/2 ≤ 1 + ε.

Hence ∫ T/2

−T/2
H1(F ∩ Pθ)dθ =

∫
F

ap J1φ(x)dH2(x) ≤ (1 + ε)H2(F ).

For any 0 < t1 ≤ t2, we put

Et1,t2 = Π ({x ∈ E : t1 ≤ |x| ≤ t2}) .

For any t > 0, we put
ε̄(t) = sup{ε(r) : r ≤ t}.

Lemma 4.5. If r2 > r1 > 0 satisfy that 8(1 + r2/r1)ε̄(r2) < 1/2, then we have
that ∫

X(t)∩∂B(0,1)

H1 (Pz ∩ Er1,r2) dH1(z) ≤ 2H2 (Er1,r2) , ∀r1 ≤ t ≤ r2.

Proof. For any δ > 0, we can find sliding minimal cone Z in Ω0 with sliding
boundary L such that

d0,r(E,Z) ≤ 2ε(r),

thus
d0,r(X(r), Z) ≤ 2ε(r)

and
d0,r(E,X(r)) ≤ 4ε(r).

We get that

d0,t(X(t), X(r2)) ≤ d0,t(E,X(t)) + d0,t(E,X(r2))

≤ 4ε̄(r2) + 4
r2

t
ε̄(r2).

But
dist(x,X(r2)) ≤ 4r2ε(r2), for any x ∈ E ∩B(0, r2),

and
dist(Π(x), X(r2)) ≤ 4r2ε(r2)

|x|
, for any x ∈ E ∩A(r1, r2),

we get so that

dist(Π(x), X(t)) ≤ (8r2/r1 + 4)ε̄(r2) <
1

2
.

We now apply Lemma 4.4 to get the result.

28



Lemma 4.6. Let ε ∈ (0, 1/2) be given. Let A ⊂ ∂B(0, 1) be an arc of a great
circle such that 0 < H1(A) ≤ π and

dist(x, L) ≤ ε,∀x ∈ A.

Then there is a constant C > 0 such that

dist(x, L) ≤ π2

2H1(A)2

∫
A

dist(x, L)dH1(x), ∀x ∈ A.

Proof. We let P be the plane such that A ⊂ P , let v0 ∈ P ∩ L ∩ ∂B(0, 1) and
v2 ∈ P ∩ ∂B(0, 1) be two vectors such that v0 is perpendicular to v1. Then A
can be parametrized as γ : [θ1, θ2]→ A given by

γ(t) = v0 cos t+ v1 sin t,

where θ2−θ1 = H1(A). We write v1 = w+w⊥ with w ∈ L and w⊥ perpendicular
to L. Since ap J1γ(t) = 1 for any t ∈ [θ1, θ2], by Theorem 3.2.22 in [7], we have
that ∫

A

dist(x, L)H1(x) =

∫ θ2

θ1

dist(γ(t), L)dt =

∫ θ2

θ1

|w⊥ sin t|dt

≥ 2|w⊥|
(

1− cos
θ2 − θ1

2

)
≥ 2(θ2 − θ1)2

π2
|w⊥|,

and that

dist(x, L) ≤ |w⊥| ≤ π2

2H1(A)2

∫
A

dist(x, L)dH1(x).

Lemma 4.7. Let r1 and r2 be the same as in Lemma 4.3. If Ξ(ri) ≤ µτ0,
(1 + r2/r1)ε̄(r2) ≤ 1/10, then we have that

d0,1(X(r1), X(r2)) ≤ 30r2

r1
Θ(0, r2)1/2·F (r2)1/2+2πµ−1/2·

(
Ξ(r1)1/2 + Ξ(r2)1/2

)
Proof. For z ∈ X(r2) ∩ ∂B1, if z /∈ {yr} ∪ Xr, we will denote by Pz the plane
which is through 0 and z and perpendicular to Tan(X(r2)∩∂B1, z). By Lemma
4.2, we have that

|z − a| ≤ µ−1/2Ξ(r1)1/2,∀a ∈ Γ(r2) ∩ Pz.

Since CPz,r1,r2 ∩ γ(ri) 6= ∅, i = 1, 2, we take bi ∈ CPz,r1,r2 ∩ γ(ri), then

|Π(b1)−Π(b2)| ≤ H1(Π(CPz,r1,r2)) ≤ H1(Pz ∩ Er1,r2),

thus

dist(z,X(r1) ∩ ∂B1) ≤ |z −Π(b2)|+ |Π(b2)−Π(b1)|+ dist(Π(b1), X(r1) ∩ ∂B1)

≤ H1(Pz ∩ Er1,r2) + µ−1/2
(

Ξ(r1)1/2 + Ξ(r2)1/2
)
.
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For any x ∈ Xr, we let Ax be the arc in ∂B(0, 1) which join Π(x) and Π(yr),
We see that X(r2)∩ ∂B(0, 1) = ∪x∈XrAx, and H1(Ax) ≥ (1/2− ε̄(r2))π ≥ π/4.
Suppose z ∈ Ax, then

dist(z,X(r1)) ≤ π2

2H1(Ax)2

∫
Ax

dist(z,X(r1))dH1(x)

≤ 2π

H1(Ax)

∫
Ax

H1(Pz ∩ Er1,r2)dH1(x) + 2πµ−1/2
(

Ξ(r1)1/2 + Ξ(r2)1/2
)

≤ 16H2(Er1,r2) + 2πµ−1/2
(

Ξ(r1)1/2 + Ξ(r2)1/2
)

≤ 16r2

r1
(2Θ(0, r2))

1/2
F (r2)1/2 + 2πµ−1/2

(
Ξ(r1)1/2 + Ξ(r2)1/2

)

Remark 4.8. For any cones X1 and X2, we see that

dH(X1 ∩ ∂B(0, 1), X2 ∩ ∂B(0, 1)) ≤ 2d0,1(X1, X2).

Since Ξ(r) = [rF1(r)]′ for any r ∈ R, we get that∫ r2

r1

Ξ(t)dt ≤ r2F1(r2)− r1F1(r1),

For any ζ > 2, if r1 ≤ r2 ≤ r, then by Chebyshev’s inequality, we get that,

H1
({
t ∈ [r1, r2]

∣∣∣ Ξ(t) ≤ ζF1(r)2/3
})
≥ r2 − r1 −

1

ζ
rF1(r)1/3,

thus
{
t ∈ [r1, r2]

∣∣ Ξ(t) ≤ ζF1(r)2/3
}
6= ∅ when r2 − r1 > (1/ζ)rF1(r)1/3.

Lemma 4.9. Let R0 < (1− τ)r be a positive number such that F (R0) ≤ µτ0/4
and ε̄(R0) ≤ 10−4. For any r ∈ R ∩ (0, R0), if Ξ(r) ≤ µτ0, then there is a
constant C = C(µ,Θ(0)) such that

dist(x,E) ≤ Cr
(
F1(r)1/3 + Ξ(r)1/2

)
, x ∈ X(r) ∩Br.

Proof. For any k ≥ 0, we take rk = 2−kr. Then there exists tk ∈ [rk, rk−1] such
that

Ξ(tk) ≤
∫ rk−1

rk
Ξ(t)dt

rk−1 − rk
≤ rk−1F1(rk−1)

rk−1/2
= 2F1(rk−1).

We let Xk = X(tk), then for any j > i ≥ 1, we have that

d0,1(Xi, Xj) ≤
j−1∑
k=i

d0,1(Xk, Xk+1)

≤ 60 (Θ(0) + µτ0/4)
1/2

j−1∑
k=i

F1(tk)1/2 + 2πµ−1/2

j−1∑
k=i

(
Ξ(tk)1/2 + Ξ(tk+1)1/2

)

≤
(

60 (Θ(0) + µτ0/4)
1/2

+ 4πµ−1/2
) j−1∑
k=i

2F1(tk)1/2 + F1(tk−1)1/2

≤ C1(µ,Θ(0))(j − i)F1(ri−1)1/2 = C1(µ,Θ(0))F1(ri−1)1/2 log2(ri/rj),
(4.3)
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where C1(µ,Θ(0)) = 3
(

60 (Θ(0) + µτ0/4)
1/2

+ 4πµ−1/2
)
.

For any x ∈ X(r) ∩ Br with Ξ(|x|) ≤ µτ0, we assume that tk+1 ≤ |x| < tk,
then

dist(x,E) ≤ dH(X(r) ∩B|x|, X(|x|) ∩B|x|) + dH(X(|x|) ∩B|x|, γ(|x|))
≤ 2|x|d0,1(X(r), X(|x|)) + µ−1/2|x|Ξ(|x|)1/2

≤ 2|x|(d0,1(X(|x|), Xk) + d0,1(Xk, X1) + d0,1(X1, X(r))) + µ−1/2|x|Ξ(|x|)1/2

≤ (4π + 1)µ−1/2|x|
(

Ξ(|x|)1/2 + Ξ(r)1/2
)

+ C2(µ,Θ(0))|x|F1(r)1/2 log2(r/|x|)

≤ (4π + 1)µ−1/2|x|Ξ(|x|)1/2 + C3(µ,Θ(0))r
(

Ξ(r)1/2 + F1(r)1/2
)

For any 0 ≤ a ≤ b ≤ r, we put

I(a, b) =
{
t ∈ [a, b]

∣∣∣ Ξ(t) ≤ F1(r)2/3
}
,

then I(a, b) 6= ∅ when b− a > rF1(r)1/3. If |x| ∈ I(0, r), then

dist(x,E) ≤ C4(µ,Θ(0))r
(
F1(r)1/3 + Ξ(r)1/2

)
.

We let {si}m+1
i=0 ⊂ [0, r] be a sequence such that

0 = s0 < s1 < · · · < sm < sm+1 = r, si ∈ I(0, r),

and
si+1 − si ≤ 2rF1(r)1/3.

For any x ∈ X(r) ∩Br, if si ≤ |x| < si+1 for some 0 ≤ i ≤ m, we have that

dist(x,E) ≤
∣∣∣∣x− si

|x|
x

∣∣∣∣+ dist

(
si
|x|
x,E

)
≤ (si+1 − si) + C4(µ,Θ(0))r

(
F1(r)1/3 + Ξ(r)1/2

)
≤ (C4(µ,Θ(0)) + 2)r

(
F1(r)1/3 + Ξ(r)1/2

)
.

Definition 4.10. Let U ⊂ R3 be an open set, E ⊂ R3 be a set of Hausdorff
dimension 2. E is called Ahlfors-regular in U if there is a δ > 0 and ξ0 ≥ 1 such
that, for any x ∈ E ∩ U , if 0 < r < δ and B(x, r) ⊂ U , we have that

ξ−1
0 r2 ≤ H2(E ∩B(x, r)) ≤ ξ0r2.

Lemma 4.11. Let R0 be the same as in Lemma 4.9. If E is Ahlfors-regular, and
r ∈ R ∩ (0, R0) satisfies Ξ(r) ≤ µτ0, then there is a constant C = C(µ, ξ0,Θ(0))
such that

dist(x,X(r)) ≤ Cr
(
F1(r)1/4 + Ξ(r)1/2

)
, x ∈ E ∩B(0, 9r/10).
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Proof. Let {Xk}k≥1 be the same as in (4). For any t ∈ R with tk+1 ≤ t < tk,
Ξ(t) ≤ µτ0 and x ∈ γ(t), we have that

dist(x,X(r)) ≤ dH(γ(t), X(|x|) ∩B|x|) + dH(X(|x|) ∩B|x|, X(r))

≤ (4π + 1)µ−1/2|x|Ξ(|x|)1/2 + C3(µ,Θ(0))r
(

Ξ(r)1/2 + F1(r)1/2
)

We put
J(0, r) = {t ∈ [0, r] : Ξ(t) > F1(r)1/2}.

For any x ∈ γ(t) with t ∈ (0, r) \ J(0, r), we have that

dist(x,X(r)) ≤ C5(µ,Θ(0))r
(

Ξ(r)1/2 + F1(r)1/4
)
.

We put

E1 =
⋃

t∈J(0,r)

(E ∩ ∂Bt), E2 =
⋃

t∈(0,r)\J(0,r)

(E ∩Bt \ γ(t)),

and
E3 = E ∩Br \ (E1 ∪ E2) =

⋃
t∈(0,r)\J(0,r)

γ(t).

Then

H2(E1 ∪ E2) =

∫
E∩Br

dH2(x)−
∫
E3

dH2(x)

≤
∫
E∩Br

dH2(x)−
∫
E3

cos θ(x)dH2(x)

=

∫
E∩Br

(1− cos θ(x))dH2(x) +

∫
E1∪E2

cos θ(x)dH2(x)

≤ r2F (r) +

∫ r

0

H1(E1 ∩ ∂Bt)dt+

∫ r

0

H1(E2 ∩ ∂Bt)dt

≤ r2F (r) +

∫
J(0,r)

(2Θ(0) + tf ′(t) + 2f(t))tdt+ µ−1

∫ r

0

tΞ(t)dt

≤ (2 + µ−1)r2F1(r) + 2Θ(0)

∫
{t∈[0,r]:Ξ(t)>F1(r)1/2}

tdt

≤ (2 + µ−1)r2F1(r) +
2Θ(0)

F1(r)1/2

∫ r

0

tΞ(t)dt

≤ C6(µ,Θ(0))r2F1(r)1/2,

where C6(µ,Θ(0)) = (2 + µ−1)(µτ0/4)1/2 + 2Θ(0).
We see that, for any x ∈ E3,

dist(x,X(r)) ≤ C5(µ,Θ(0))r
(

Ξ(r)1/2 + F1(r)1/4
)
.

If x ∈ E ∩B(0, 9r/10) with

dist(x,X(r)) > C5(µ,Θ(0))r
(

Ξ(r)1/2 + F1(r)1/4
)

+ s
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for some s ∈ (0, r/10), then E ∩B(x, s) ⊂ E1 ∪ E2, thus

H2(E ∩B(x, s)) ≤ C6(µ,Θ(0))r2F1(r)1/2.

But on the other hand, by Ahlfors-regular property of E, we have that

H2(E ∩B(x, s)) ≥ ξ−1
0 s2.

We get so that
s ≤ C6(µ,Θ(0))1/2 · ξ1/2

0 · rF1(r)1/4.

Therefore, for x ∈ E ∩B(0, 9r/10),

dist(x,X(r)) ≤
(
C6(µ,Θ(0))1/2 · ξ1/2

0 + C5(µ,Θ(0))
)(

Ξ(r)1/2 + F1(r)1/4
)
.

For any k ≥ 0, we take Rk = 2−kR0 and sk ∈ [Rk+1, Rk] such that

Ξ(sk) ≤

∫ Rk
Rk+1

Ξ(t)dt

Rk −Rk+1
≤ 2F1(Rk).

We put Xk = X(sk). Then for any j ≥ i ≥ 2, we have that

d0,1(Xi, Xj) ≤
C1(µ,Θ(0))

3

j−1∑
k=i

(
2F1(sk)1/2 + F1(sk−1)1/2

)

≤ C1(µ,Θ(0))

j−1∑
k=i−1

F1(Rk)1/2

≤ C1(µ,Θ(0))

ln 2

j−1∑
k=i−1

∫ Rk−1

Rk

F1(t)1/2

t
dt

=
C1(µ,Θ(0))

ln 2

∫ Rj−1

Ri−2

F1(t)1/2

t
dt.

If the gauge function h satisfy that h(r) ≤ C(ln(A/r))−b, 0 < r ≤ R0, for some
A > R0, C > 0 and b > 3, then

h1(r) =

∫ r

0

h(2t)

t
dt ≤ C

b− 1

(
ln

(
A

r

))−b+1

,

and then Remark 3.16 implies that

F (r) ≤ C1

(
ln

(
A

r

))−b
+

C

b− 1

(
ln

(
A

r

))−b+1

≤ C2

(
ln

(
A

r

))−b+1

,

thus ∫ R0

0

F1(t)1/2

t
dt < +∞. (4.4)

In case (4) holds, Xk converges to a cone X(0), and

d0,1(X(0), Xk) ≤ C1(µ,Θ(0))

ln 2

∫ Rk−2

0

F1(t)1/2

t
dt.
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Lemma 4.12. If (4) holds, then X(0) is a minimal cone.

Proof. We see that for any r ∈ (0, r)∩R, there exist sliding minimal cone Z(r)
such that d0,1(X(r), Z(r)) ≤ 20ε(r)1/2. But ε(r)→ 0 as r → 0+, we get that

d0,1(Z(sk), X(0))→ 0.

Since Z(sk) is sliding minimal for any k, we get thatX(0) is also sliding minimal.

For any r ∈ R ∩ (0, R0) with Ξ(r) ≤ µτ0, we assume Rk+1 ≤ r < Rk, by
Lemma 4.7, we have that

d0,1(X(0), X(r)) ≤ d0,1(X(0), Xk+3) + d0,1(Xk+3, X(r))

≤ C1(µ,Θ(0))

ln 2

∫ Rk+1

0

F1(t)1/2

t
dt

+
30r

sk+3
Θ(0, r)1/2F1(r)1/2 + 2πµ−1/2

(
Ξ(sk+3)1/2 + Ξ(r)1/2

)
≤ 10C1(µ,Θ(0))

(
Ξ(r)1/2 + F1(r)1/2 +

∫ r

0

F1(t)1/2

t
dt

)
(4.5)

Theorem 4.13. If (4) holds, and E is AR, then E has unique tangent cone
X(0) at 0, and there is a constant C = C10(µ,Θ, ξ0) such that

d0,9r/10(E,X(0)) ≤ C
(
F1(r)1/4 +

∫ r

0

F (t)1/2

t
dt

)
(4.6)

In particular,

• if h(r) ≤ Ch(ln(A/r))−b for some A,Ch > 0, b > 3 and 0 < r ≤ R0 < A,
then

d0,r(E,X(0)) ≤ C ′(ln(A1/r))
−(b−3)/4, 0 < r ≤ 9R0/10, A1 ≤ 10A/9;

• if h(r) ≤ Chr
α1 for some Ch, α1 > 0, and 0 < r ≤ r0, 0 < r0 ≤

min{1, R0}, then

d0,r(E,X(0)) ≤ C(r/r0)β , 0 < r ≤ 9r0/10, 0 < β < α1,

where

C ≤ C11(µ, λ0, α1, β, Ch, ξ0,Θ(0))
(
F (r0)1/4 + r

α1/4
0

)
.

Proof. From (4) and Lemma 4.9, we get that, for any x ∈ X(0) ∩ Br where
r ∈ R ∩ (0, R0) such that Ξ(r) ≤ µτ0,

dist(x,E) ≤ C7(µ, ξ0,Θ(0))r

(
Ξ(r)1/2 + F1(r)1/4 +

∫ r

0

F1(t)1/2

t
dt

)
.

Similarly to the proof of Lemma 4.9, we still consider

I(a, b) =
{
t ∈ [a, b]

∣∣∣ Ξ(t) ≤ F1(r)2/3
}
, 0 ≤ a ≤ b ≤ r,
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we have that I(a, b) 6= ∅ whenever b − a > rF1(r)1/3. We let {si}m+1
0 ⊂ [0, r]

be a sequence such that

0 = s0 < s1 < · · · < sm < sm+1 = r, si ∈ I(0, r),

and
si+1 − si ≤ 2rF1(r)1/3.

For any r ∈ (0, R0), we assume that si ≤ r < si+1, x ∈ X(0) ∩ ∂Br.

dist(x,E) ≤
∣∣∣∣x− si

|x|
x

∣∣∣∣+ dist

(
si
|x|
x,E

)
≤ C8(µ, ξ0,Θ(0))r

(
F1(r)1/4 +

∫ r

0

F1(t)1/2

t
dt

) (4.7)

From (4) and Lemma 4.11, we have that, for any x ∈ X(0)∩B(0, 9r/10) where
r ∈ R ∩ (0, R0) such that Ξ(r) ≤ µτ0,

dist(x,X(0)) ≤ C9(µ, ξ0,Θ(0))

(
Ξ(r)1/2 + F1(r)1/4 +

∫ r

0

F1(t)1/2

t
dt

)
.

Similarly to the proof of Lemma 4.11, we can get that

dist(x,X(0)) ≤ C10(µ, ξ0,Θ(0))

(
F1(r)1/4 +

∫ r

0

F1(t)1/2

t
dt

)
. (4.8)

We get, from (4) and (4), that (4.13) holds.
If h(r) ≤ Ch(ln(A/r))−b for some A,Ch > 0 and b > 3 and 0 < r ≤ R0 < A,

then

h1(r) =

∫ r

0

h(2t)

t
dt ≤ Ch

b− 1

(
ln

(
A

r

))−b+1

,

and by Remark 3.16 we have that

F (r) ≤ C ′′
(

ln
A

r

)−b+1

where

C ′′ ≤ C(R0, λ, b)

(
ln
A

r

)−1

+
C1

b− 1
≤ C(R0, λ, b)

(
ln

A

R0

)−1

+
C1

b− 1

is bounded, thus ∫ r

0

F1(t)1/2

t
dt ≤ C ′′′

(
ln
A

r

)(−b+3)/2

Hence we get that

d0,9r/10(E,X(0)) ≤ C10(µ, ξ0,Θ(0))

(
F1(r)1/4 +

∫ r

0

F1(t)1/2

t
dt

)
≤ C ′

(
ln
A

r

)−(b−3)/4

.
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If h(r) ≤ Chrα1 for some Ch, α1 > 0 and 0 < r ≤ r0, then

h1(r) =

∫ r

0

h(2t)

t
dt ≤ Ch

α1
(2r)α1 .

We see, from the proof of Corollary 3.15, that

f(r) ≤ (f(r0) + C2(α1, β, λ0)Chr
α1
0 ) (r/r0)β , ∀0 < β < α1,

thus

F1(r) = f(r) + 16h1(r) ≤ (f(r0) + C ′2(α1, β, λ0)Chr
α1
0 )(r/r0)β .

Then

d0,9r/10(E,X(0)) ≤ C10(µ, ξ0,Θ(0))

(
F1(r)1/4 +

∫ r

0

F1(t)1/2

t
dt

)
≤ C(r/r0)β/4,

where
C ≤ C ′10(µ, ξ0,Θ(0))(F (r0)1/4 + C ′′2 (α1, β, λ0, Ch)r

1/4
0 ).

Remark 4.14. If the gauge function h satisfies that∫ R0

0

1

r

(∫ r

0

h(2t)

t
dt

)1/2

dr < +∞ (4.9)

and ∫ R0

0

r−1+ λ
1−λ

(∫ R0

r

t−1− 2λ
1−λh(2t)dt

)1/2

dr < +∞, (4.10)

then by (3.5), we have that (4) holds.

5 Parameterization of sliding almost minimal sets
Let n, d ≤ n and k be nonnegative integers, α ∈ (0, 1). By a d-dimensional
submanifold of class Ck,α of Rn we mean a subset M of Rn satisfying that for
each x ∈ M there exist s neighborhood U of x in Rn, a mapping Φ : U → Rn
which is a diffeomorphism of class Ck,α between its domain and image, and a d
dimensional vector subspace Z of Rn such that

Φ(M ∩ U) = Z ∩ Φ(U).

In this section, we assume that Ω ⊂ R3 is a closed domain such that the
boundary ∂Ω is a 2-dimensional submanifold of class C1,α for some α > 0. Let
E ⊂ Ω be a closed set such that E ∈ SAM(Ω, ∂Ω, h) and ∂Ω ⊂ E, x0 ∈ ∂Ω.
We always assume that the gauge function h satisfies (4.14) and (4.14). We put
λ0 = λ/(1− λ), and

h2(ρ) =

∫ ρ

0

1

r

(∫ r

0

h(2t)

t
dt

)1/2

dt
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and

h3(ρ) =

∫ ρ

0

r−1+λ0

(∫ R0

r

t−1−2λ0h(2t)dt

)1/2

dt

We see, from Proposition 4.1 in [3], that E is Ahlfors-regular in B(x0, R0),
i.e. there exist δ1 > 0 and ξ1 ≥ 1 such that for any x ∈ E ∩ B(x0, R0), if
0 < r < δ1 and B(x, r) ⊂ B(x0, R0), we have that

ξ−1
1 r2 ≤ H2(E ∩B(x, r)) ≤ ξ1r2.

We see from Theorem 3.10 in [6] that there only there kinds of possibility for
the blow-up limits of E at x0, they are the plane Tan(∂Ω, x0), cones of type P+

union Tan(∂Ω, x0), and cones of type Y+ union Tan(∂Ω, x0). By Proposition
29.53 in [3], we get so that

ΘE(x0) = π,
3π

2
, or

7π

4
.

If ΘE(x0) = π, then there is a neighborhood U0 of x0 in R3 such that E ∩
U0 = ∂Ω ∩ U0. In the next content of this section, we put ourself in the case
ΘE(x0) = 3π/2 or 7π/4.

Lemma 5.1. There exist r0 = r0(x0) > 0 and a mapping Ψ = Ψx0
: B(0, r0)→

R3, which is a diffeomorphism of class C1,α from B(0, r0) to Ψ(B(0, r0)), such
that

Ψ(0) = x0,Ψ(Ω0 ∩Br0) ⊂ Ω ∩B(x0, R0),Ψ(L0 ∩Br0) ⊂ ∂Ω ∩B(x0, R0),

and that DΨ(0) is a rotation satisfying that

DΨ(0)(Ω0) = Tan(Ω, x0) and DΨ(0)(L0) = Tan(∂Ω, x0).

Proof. By definition, there are an open set U, V ⊂ R3 and a diffeomorphism
Φ : U → V of class C1,α such that x0 ∈ U , 0 = Φ(x0) ∈ V and

Φ(U ∩ ∂Ω) = Z ∩ V,

where Z is a plane through 0. Indeed, we have that

Z = DΦ(x0) Tan(∂Ω, x0)

and
Φ(U ∩ Ω) = V ∩DΦ(x0) Tan(Ω, x0).

We will denote by A the linear mapping given by A(v) = DΦ(x0)−1v,
and assume that A(V ) = B(0, r) is a ball. Let Φ1 be a rotation such that
Φ1(Tan(∂Ω, x0)) = L0 and Φ1(Tan(Ω, x0)) = Ω0. Then we get that Φ1 ◦ A ◦ Φ
is also C1,α mapping which is a diffeomorphism between U and B(0, r),

D(Φ1 ◦A ◦ Φ)(x0) Tan(Ω, x0) = Φ1(Tan(Ω, x0)) = Ω0,

D(Φ1 ◦A ◦ Φ)(x0) Tan(∂Ω, x0) = Φ1(Tan(∂Ω, x0)) = L0,

and
Φ1 ◦A ◦ Φ(U ∩ ∂Ω) = Φ1 ◦A(Z ∩ V ) = L0 ∩B(0, r),

Φ1 ◦A ◦ Φ(U ∩ ∂Ω) = Φ1 ◦A(V ∩DΦ(x0) Tan(Ω, x0)) = Ω0 ∩B(0, r).

We now take r0 = r and Ψ = (Φ1 ◦A ◦ Φ)−1|B(0,r) to get the result.
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Let U ⊂ Rn be an open set. For any mapping Ψ : U → Rn of class C1,α, we
will denote by CΨ the constant defined by

CΨ = sup

{
‖DΨ(x)−Dψ(y)‖

|x− y|α
: x, y ∈ U, x 6= y

}
. (5.1)

Then

Ψ(x)−Ψ(y) =

∫ 1

0

DΨ(y + t(x− y))dt · (x− y)

and

|Ψ(x)−Ψ(y)−DΨ(y)(x− y)| ≤
∫ 1

0

CΨ(t|x− y|)αdt · |x− y|

≤ CΨ

α+ 1
|x− y|1+α.

For any 0 < ρ ≤ r0, we set Uρ = Φ(Bρ), Mρ = Ψ−1(E ∩ Uρ) and

Λ(ρ) = max
{

Lip
(
ΨBρ

)
,Lip

(
Ψ−1
Uρ

)}
.

Then Λ(ρ) ≤ 1/(1− CΨρ
α) when CΨρ

α < 1.

Lemma 5.2. For any 1 < ρ ≤ r0, Mρ is local almost minimal in Bρ at 0 with
gauge function

H(t) ≤ 4Λ(ρ)2h(Λ(ρ)t) + Ctα, 0 < t < ρ,

where C = C(ρ) is a constant such that 0 < C ≤ ξ1Λ(ρ)CΨ(4 + CΨρ
α). More-

over, we have that

Mρ ∈ GSAM
(
Bρ,Λ(ρ)4, 2ρ,Λ(ρ)4h (2ρΛ(ρ))

)
Proof. We see that

diam(Uρ) ≤ 2ρLip
(
Ψ|Bρ

)
≤ 2ρΛ(ρ)

and
E ∩ Uρ ∈ GSAM(Uρ, 1,diam(Uρ), h(2 diam(Uρ))),

By Proposition 2.8 in [3], we have that

Mρ ∈ GSAM
(
Bρ,Λ(ρ)4, 2ρ,Λ(ρ)4h (2ρΛ(ρ))

)
By Proposition 4.1 in [3], we get that Mρ is Ahlfors-regular in Bρ. Indeed,
we can get a little more, that is, for any x ∈ Mρ with 0 < rΛ(ρ) < δ1 and
B(x, r) ⊂ B(0, ρ), we have that

(ξ1Λ(ρ))
−1
r2 ≤ H2(Mρ ∩B(x, r)) ≤ (ξ1Λ(ρ)) r2.

Let {ϕt}0≤t≤1 be a sliding deformation of Mr in Bρ. Then{
Ψ ◦ ϕt ◦Ψ−1

}
0≤t≤1

is a sliding deformation of E in Uρ. Hence we get that

H2(E ∩ Uρ) ≤ H2(Ψ ◦ ϕt ◦Ψ−1(E ∩ Uρ)) + h(2 diam(Uρ))
2 diam(Uρ)

2 (5.2)
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For any 2-rectifiable set A ⊂ Br, by Theorem 3.2.22 in [7], we have that

ap J2(Ψ|A)(x) =
∥∥∧2

(
DΨ(x)|Tan(A,x)

)∥∥
and

H2(Ψ(A ∩Bρ)) =

∫
A∩Bρ

ap J2(Ψ|A)(x)dH2(x)

By (5), we get that∫
A∩Bρ

(1− CΨ|x|α)2dH2 ≤ H2(Ψ(A ∩Bρ)) ≤
∫
A∩Bρ

(1 + CΨ|x|α)2dH2. (5.3)

Thus

H2(Ψ(Mρ)) ≥ (1− CΨρ
α)2H2(Mρ) ≥ H2(Mρ)− 2CΨρ

αH2(Mρ)

≥ H2(Mρ)− 2ξ1CΨΛ(ρ)ρ2+α,

and
H2(Ψ(ϕ1(Mρ))) ≤ H2(ϕ1(Mρ)) + ξ1Λ(ρ)CΨ (2 + CΨρ

α) ρ2+α.

Combine these two equations with (5), we get that

H2(Mρ) ≤ H2(ϕ1(Mρ)) + ξ1Λ(ρ)CΨ (4 + CΨρ
α) ρ2+α

+ 4 (Λ(ρ))
2
h (2ρΛ(ρ)) ρ2.

Lemma 5.3. Let E1 ⊂ Ω0 be a 2-rectifiable set, x ∈ E1, X a cone centered at
0, Φ : R3 → R3 a diffeomorphism of class C1,α. Then there exist C > 0 such
that, for any r > 0 and ρ > 0 with B(Φ(x), ρ) ⊂ Φ(B(x, r)),

dΦ(x),ρ (Φ(E1),Φ(x) +DΦ(x)X) ≤ (Crα + ‖DΦ(x)‖dx,r(E1, x+X))
r

ρ
.

Proof. Since Φ is of class C1,α, we have that

|Φ(y)− Φ(x)−DΦ(x)(y − x)| ≤ CΦ

α+ 1
|x− y|1+α,

by putting C1 = CΦ/(α+ 1), we get that

dist(Φ(y),Φ(x) +DΦ(x)X) ≤ C1|y − x|1+α for y ∈ x+X.

For any z ∈ E1 ∩Br and y ∈ x+X, we have that

|Φ(z)− Φ(y)| ≤ |Φ(z)− Φ(y)−DΦ(x)(z − y)|+ ‖DΦ(x)‖ · |z − y|
≤ ‖DΦ(x)‖ · |z − y|+ C1|z − x|1+α + C1|y − x|1+α,

thus

dist(Φ(z),Φ(x+X)) ≤ ‖DΦ(x)‖rdx,r(E1, x+X) + 2C1r
1+α,

hence

dist(Φ(z),Φ(x) +DΦ(x)X) ≤ ‖DΦ(x)‖rdx,r(E1, x+X) + 3C1r
1+α. (5.4)

39



For any z ∈ X ∩Br, Φ(x) +DΦ(x)z ∈ Φ(x) +DΦ(x)X, and

dist(Φ(x) +DΦ(x)z,Φ(E1)) = inf{|Φ(y)− Φ(x)−DΦ(x)z| : y ∈ E1}
≤ inf{C1r

1+α + ‖DΦ(x)‖ · |y − x− z| : y ∈ E1}
≤ ‖DΦ(x)‖rdx,r(x+X,E1) + C1r

1+α.
(5.5)

We get from (5) and (5) that

dΦ(x),ρ(Φ(E1),Φ(x) +DΦ(x)X) ≤ r

ρ
(3C1r

α + ‖DΦ(x)‖ · dx,r(E1, x+X))

Theorem 5.4. Let Ω, E ⊂ Ω, x0 ∈ ∂Ω and h be the same as in the beginning
of this section. Then there is a unique tantent cone X of E at x0; moreover, if
the gauge function h satisfy that

h(t) ≤ Chtα1 for some Ch > 0, α1 > 0 and 0 < t < t0, (5.6)

then there exists ρ0 > 0 such that, for any 0 < β < min{α, α1, 2λ0},

dx0,ρ(E, x0 +X) ≤ C(ρ/ρ0)β/4, 0 < ρ ≤ 9ρ0/20,

where C is a constant satisfying that

C ≤ C20(µ, λ0, α, α1, β, ξ1)(FE(x0, 2ρ0) + CΨρ
α
0 + Chρ

α1
0 )1/4,

and FE(x0, r) = r−2H2(E ∩B(x0, r))−ΘE(x0) + 16h1(r).

Proof. Let r ∈ (0, r0) be such that CΨr
α ≤ 1/2 and 2r ≤ R0. Then Λ(r) ≤ 2.

By Lemma 5.2, we have that Mr is loacal almost minimal at 0 with gauge
function H satisfying that

H(t) ≤ 16h(2t) + Crt
α, 0 < t < r, (5.7)

where Cr ≤ ξ1Λ(r)CΨ(4 + CΨr
α) ≤ 9ξ1CΨ is a constant.

We put fMr (ρ) = ΘMr (0, ρ) − ΘMr (0). Then we get, from (3.5) and (3.5),
that

fMr (ρ) ≤
(
r−2λ0fMr (r)

)
ρ2λ0 + 8(1 + λ0)ρ2λ0

∫ r

ρ

t−1−2λ0H(2t)dt

≤
(
r−2λ0fMr (r)

)
ρ2λ0 + 27+2λ0(1 + λ0)ρ2λ0

∫ 2r

2ρ

h(2t)

t1+2λ0
dt

+ 2α+3(1 + λ0)Cr · C1(α, β, λ0)rα · (ρ/r)β ,

where C1(α, β, λ0) is the constant in (3.5).
We get from (5) that

H1(ρ) =

∫ ρ

0

H(2s)

s
ds ≤ 16h1(2ρ) +

Cr
α

(2ρ)α,

by setting F1(ρ) = fMr
(ρ) + 16H1(ρ), we have that

F1(ρ) ≤ C12(λ0, α, β, r)(ρ/r)
β + 28h1(2ρ) + 24+αCrα

−1ρα

+ 27+2λ0(1 + λ0)ρ2λ0

∫ 2r

2ρ

h(2t)

t1+2λ0
dt,
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where
C12(λ0, α, β, r) ≤ fMr

(r) + 2α+3(1 + λ0)CrC1(α, β, λ0)rα.

Hence∫ t

0

F1(ρ)1/2

ρ
dρ ≤ C12(λ0, α, β, r)

1/2(2/β)(t/r)β + 16h2(2t) + C13(α, r)tα/2

+ 24+λ0(1 + λ0)1/2

∫ t

0

ρ−1+λ0

(∫ 2r

2ρ

h(2s)

s1+2λ0
ds

)1/2

dρ,

where C13(α, r) ≤ 23+α/2α−3/2C
1/2
r , thus∫ t

0

F1(ρ)1/2

ρ
dρ < +∞, for 0 < t ≤ r.

We now apply Theorem 4.13, there is a unique tangent cone T of Mr at 0,
thus there is a unique tangent cone X of E at x0.

For any R ∈ (0, R0), we put

fE(x0, R) = R−2H2(E ∩B(x0, R))−ΘE(x0)

and
FE(x0, R) = fE(x0, R) + 16h1(R).

We see, from (5) and B(x0, ρ/Λ(ρ)) ⊂ Uρ ⊂ B(x0, ρΛ(ρ)), that

(1−CΨρ
α)2(fMr

(ρ)+ΘE(x0)) ≤ ρ−2H2(E∩Uρ) ≤ (1+CΨρ
α)2(fMr

(ρ)+ΘE(x0)),

so that
fMr

(ρ) ≤ (1− CΨρ
α)−4fE(x0, ρΛ(ρ)) + 4ΘE(x0)CΨρ

α,

and
fMr (ρ) ≥ (1− C2

Ψρ
2α)2fE(x0, ρ/Λ(ρ)) + 2ΘE(x0)C2

Ψρ
2α.

Thus we get that

C12(λ0, α, β, r) ≤ 16fE(x0, 2r)+ (9ξ1 ·2α+3(1+λ0)C1(α, β, λ0)+ 4ΘE(0))CΨr
α.

If h satisfy (5.6), we take 0 < ρ0 ≤ min{r, t0}, then

h1(ρ) ≤ Ch
α1

(2ρ)α1 , H1(ρ) ≤ 24+2α1Ch
α1

ρα1 +
2αCr
α

ρα, 0 < ρ ≤ ρ0,

and

F1(ρ) ≤ C13(λ0, α, β, ρ0, Ch)(ρ/ρ0)β + 28+α1α−1
1 Chρ

α1 + C14(α, ξ1, CΨ)ρα,
(5.8)

where C13(λ0, α1, β, ρ0, Ch) and C14(α, ξ1, CΨ) are constant satisfying that

C13(λ0, α1, β, ρ0, Ch) ≤ C12(λ0, α, ρ0) + 27+4α1(1 + λ0)C1(α1, β, λ0)Chρ
α1
0

and
C14(α, ξ1, CΨ) ≤ 28+αα−1ξ1CΨ.
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We get so that (5) can be rewrite as

F1(ρ) ≤ C15(λ0, α, α1, β, ξ1)(FE(x0, 2ρ0) + CΨρ
α
0 + Chρ

α1
0 )(ρ/ρ0)β/4.

By Theorem 4.13, we have that

d0,9ρ/10(Mr, T ) ≤ C16(µ, ξ0)

(
F1(ρ)1/4 +

∫ ρ

0

F1(t)1/2

t
dt

)
≤ C17(µ, λ0, α, α1, β, ξ1)GE(x0, ρ0)(ρ/ρ0)β/4,

where
GE(x0, ρ0) = (FE(x0, 2ρ0) + CΨρ

α
0 + Chρ

α1
0 )1/4.

Apply Lemma 5.3, and by setting X = DΨ(0)T , we get that, for any ρ ∈
(0, 9ρ0/10),

dx0,ρ/2(E, x0 +X) ≤ dx0,ρ/Λ(ρ)(E, x0 +DΨ(0)T )

≤ 6CΨρ
α + 2dx,ρ(Mr, T )

≤ 6CΨρ
α + C18(µ, λ0, α, α1, β, ξ1)GE(x0, ρ0)(ρ/ρ0)β/4

≤ C19(µ, λ0, α, α1, β, ξ1)GE(x0, ρ0)(ρ/ρ0)β/4.

The radius ρ0 is chosen to be such that

0 < ρ0 ≤ min
{

1, t0, r0(x0), R0/2, (2CΨ)−1/α
}

and R0 > 0 is chosen to be such that

FMr (R0) ≤ µτ0/4, ε̄(R0) ≤ 10−4, R0 < (1− τ)r.

Lemma 5.5. For any τ > 0 small enough, there exists ε2 = ε2(τ) > 0 such that
the following hold: E is an sliding almost minimal set in Ω with sliding boundary
∂Ω and gauge function h, x0 ∈ E ∩ ∂Ω, Ψ is a mapping as in Lemma 5.1 and
CΨ is the constant as in (5), if r0 > 0 satisfy that CΨr

α
0 ≤ ε2, h(2r0) ≤ ε2 and

FE(x0, r0) ≤ ε2, then for any r ∈ (0, 9r0/10), we can find sliding minimal cone
Zx0,r in Tan(Ω, x0) with sliding boundary Tan(∂Ω, x0) such that

dist(x, Zx0,r) ≤ τr, x ∈ E ∩B(x0, (1− τ)r)

dist(x,E) ≤ τr, x ∈ Zx0,r ∩B(x0, (1− τ)r),

and for any ball B(x, t) ⊂ B(x0, (1− τ)r),

|H2(Zx0,r ∩B(x, t))−H2(E ∩B(x, t))| ≤ τr2.

Moreover, if E ⊃ ∂Ω, then Zx0,r ⊃ Tan(∂Ω, x0).

Proof. It is a consequence of Proposition 30.19 in [3].

Corollary 5.6. Let Ω, E ⊂ Ω, x0 ∈ ∂Ω, h and FE be the same as in Theorem
5.4. Suppose that the gauge function h satisfying

h(t) ≤ Chtα1 for some Ch > 0, α1 > 0 and 0 < t < t0. (5.9)
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Then there exists δ > 0 and constant C = C20(µ, λ0, α, α1, β, ξ1) > 0 for 0 <
β < min{α, α1, 2λ0} such that, whenever 0 < ρ0 ≤ min{1, t0, r0(x0)} satisfying

FE(x0, 2ρ0) + CΨρ
α
0 + Chρ

α1
0 ≤ δ,

we have that, for 0 < ρ ≤ 9ρ0/20,

dx0,ρ(E, x0 + Tan(E, x0)) ≤ C(FE(x0, 2ρ0) + CΨρ
α
0 + Chρ

α1
0 )1/4(ρ/ρ0)β/4.

Proof. By Theorem 5.4, there exist ρ0 > 0 such that

dx0,ρ(E, x0 + Tan(E, x0)) ≤ C(ρ/ρ0)β/4, 0 < ρ ≤ 9ρ0/20,

where ρ0 > 0 is chosen to be such that

0 < ρ0 ≤ min
{

1, t0, r0(x0), R0/2, (2CΨ)−1/α
}

(5.10)

and R0 > 0 is chosen to be such that

FMr
(R0) ≤ µτ0/4, ε̄(R0) ≤ 10−4, R0 < (1− τ)r.

By Lemma 5.5, there exists δ > 0 such that if FE(x0, 2ρ0) +CΨρ
α
0 +Chρ

α1
0 ≤ δ,

then (5) holds, and we get the result.

Lemma 5.7. Let Ω, E, x0 and h be the same as in Theorem 5.4. Suppose
that ΘE(x0) = 3π/2. Then there exist a radius r > 0, a number β > 0 and a
constant C > 0 such that, for any x ∈ B(x0, r)∩E and 0 < ρ < 2r, we can find
cone Zx,r, which is a half plane in Tan(Ω, x0) union Tan(∂Ω, x0) when x ∈ ∂Ω
and a plane in R3 when x /∈ ∂Ω, satisfying that

dx,ρ(E,Zx,ρ) ≤ Cρβ .

Proof. By Corollary 5.6, there exist δ > 0 and C > 0 such that whenever
0 < ρ0 ≤ min{1, t0, r0(x0)} satisfying

FE(x0, 2ρ0) + CΨx0
ρα0 + Chρ

α1
0 ≤ δ,

we have that, for 0 < ρ ≤ 9ρ0/20,

dx0,ρ(E, x0 + Tan(E, x0)) ≤ Cδ1/4(ρ/ρ0)β ,

where 0 < β < min{α, α1, 2λ0}/4. We take ρ1 ∈ (0, ρ0) such that

FE(x0, 2ρ) + CΨx0
ρα + Chρ

α1 ≤ min{δ/2, ε2(τ)},∀0 < ρ ≤ ρ1.

If x ∈ ∂Ω ∩ B(x0, ρ1/10), we take t = ρ1/2, then apply Lemma 5.5 with
r = |x− x0|+ t to get that

H2(E ∩B(x, t)) ≤ H2(Zx,r ∩B(x, t)) + τr2,

thus
ΘE(x, t) ≤ 1

t2
H2(Zx,r ∩B(x, t)) + 4τ ≤ π

2
+ CΨx0

rα + 4τ,
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and
FE(x, t) ≤ CΨx0

rα + 4τ + 16h1(t).

We get that FE(x, 2ρ) + CΨxρ
α + Chρ

α1 ≤ δ for 0 < ρ ≤ t/2. Thus

dx,r(E, x+ Tan(E, x)) ≤ Cδ1/4(r/t)β , 0 < r < 9t/20. (5.11)

If x ∈ Ω ∩ B(x0, ρ1/10) \ ∂Ω, we take t = t(x) = dist(x, ∂Ω) then apply
Lemma 5.5 with r = |x− x0|+ t to get that

H2(E ∩B(x, t)) ≤ H2(Zx,r ∩B(x, t)) + τr2,

thus
ΘE(x, t) ≤ 1

t2
H2(Zx,r ∩B(x, t)) + 4τ ≤ π + 4τ.

It is follow from Section 12 in [1] that there is a constent C1 > 0 such that

dx,r(E,Zx,r) ≤ C1(r/t)β , 0 < r < 9t/20 (5.12)

for some plane Zx,r.
There exists a constant C2 > 0 such that for any x ∈ B(x0, ρ1/10), there

exists x1 ∈ B(x0, ρ1/5) ∩ ∂Ω with x1 ∈ E \ Ω such that

|x− x1| ≤ C2 dist(x, ∂Ω).

We take 0 < a < β/(1 +β). For any x ∈ B(x0, ρ1/5)∩∂Ω, if r ≤ C3t
1/(1−a),

then we get from (5) that

dx,r(E,Zx,r) ≤ C1C
β(a−1)
3 raβ ;

if C3t
1/(1−a) < r < ρ1/5, then by (5), we have that

dx,r(E, x1 + Tan(E, x1)) ≤ |x− x1|+ r

r
dx1,|x−x1|+r(E, x1 + Tan(E, x1))

≤ C4

(
1 +

C1t

r

)(
r + C1t

ρ1/2

)β
≤ C5(1 + C6r

−a)β+1rβ ≤ C7r
β−aβ−a.

We get so that there is a minimal cone Zx,r such that

dx,r(E,Zx,r) ≤ C8r
β1

for β1 = min{aβ, β − aβ − a} and any 0 < r < ρ1/5.

Lemma 5.8. Let Ω, E, x0 and h be the same as in Theorem 5.4. Suppose
that ΘE(x0) = 7π/4. Then there exist a radius r > 0, a number β > 0 and a
constant C > 0 such that, for any x ∈ B(x0, r)∩E and 0 < ρ < 2r, we can find
cone Zx,r, which is a cone of type Y+ in Tan(Ω, x0) union Tan(∂Ω, x0) when
x ∈ ∂Ω and a cone of type Y in R3 when x /∈ ∂Ω, satisfying that

dx,ρ(E,Zx,ρ) ≤ Cρβ .
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Proof. By Corollary 5.6, there exist δ > 0 and C > 0 such that whenever
0 < ρ0 ≤ min{1, t0, r0(x0)} satisfying

FE(x0, 2ρ0) + CΨx0
ρα0 + Chρ

α1
0 ≤ δ,

we have that, for 0 < ρ ≤ 9ρ0/20,

dx0,ρ(E, x0 + Tan(E, x0)) ≤ Cδ1/4(ρ/ρ0)β ,

where 0 < β < min{α, α1, 2λ0}/4. We take ρ1 ∈ (0, ρ0) such that

FE(x0, 2ρ) + CΨx0
ρα + Chρ

α1 ≤ min{δ/2, ε2(τ)},∀0 < ρ ≤ ρ1.

If x ∈ ∂Ω ∩ B(x0, ρ1/10), we take t = |x − x0|/2, then apply Lemma 5.5 with
r = |x− x0|+ t to get that

H2(E ∩B(x, t)) ≤ H2(Zx,r ∩B(x, t)) + τr2,

thus
ΘE(x, t) ≤ 1

t2
H2(Zx,r ∩B(x, t)) + 9τ ≤ π

2
+ CΨx0

rα + 9τ,

and
FE(x, t) ≤ CΨx0

rα + 9τ + 16h1(t).

We get that FE(x, 2ρ) + CΨxρ
α + Chρ

α1 ≤ δ for 0 < ρ ≤ t/2. Thus

dx,r(E, x+ Tan(E, x)) ≤ Cδ1/4(r/t)β , 0 < r < 9t/20.

If x ∈ ∂Ω ∩ B(x0, ρ1/10) \ ∂Ω, we put EY = {x ∈ E : ΘE(x) = 3π/2} and
take

t = t(x) = min{dist(x, ∂Ω),dist(x,EY )},
then apply Lemma 5.5 with r = |x− x0|+ t to get that

H2(E ∩B(x, t)) ≤ H2(Zx,r ∩B(x, t)) + τr2,

thus
ΘE(x, t) ≤ 1

t2
H2(Zx,r ∩B(x, t)) + 4τ ≤ 3π

2
+ 4τ.

It is follow from Section 12 in [1] that

dx,r(E, x+ Tan(E, x)) ≤ C(r/t)β , 0 < r < 9t/20.

A Similar argument as above, we will get the result.

Corollary 5.9. Let Ω, E, x0 and h be the same as in Theorem 5.4. Then there
exist a radius r > 0, a number β > 0 and a constant C > 0 such that, for any
x ∈ B(x0, r) ∩ E and 0 < ρ < 2r, we can find cone Zx,r, which is a sliding
minimal cone when x ∈ ∂Ω and a minimal cone in R3 when x /∈ ∂Ω, satisfying
that

dx,ρ(E,Zx,ρ) ≤ Cρβ . (5.13)

Proof. It is follow from Lemma 5.7 and Lemma 5.8.

Proof of Theorem 1.2. It is follow from Corollary 5.9 and the generalization in
[1] of Reifenberg’s topological disk. More precisely, Section 10 in [1] gives a C1

estimates, but in our case, we can get a bit little more that equation (10.22) in
[1] and (5.9) give a C0,β-Hölder estimates of its differential.
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6 Existence of the Plateau problem with sliding
boundary conditions

Let Ω ⊂ R3 be a closed domain such that the boundary ∂Ω is a 2-dimensional
manifold of class C1,α for some α > 0. Let E0 ⊂ Ω be a closed set with E0 ⊃ ∂Ω.
We denote by C (E0) be the collection of all competitors of E0.

Theorem 6.1. There exists E ∈ C (E0) such that

H2(E \ ∂Ω) = inf{H2(S \ ∂Ω) : S ∈ C (E0)}

Proof. We put
m0 = inf{H2(S \ ∂Ω) : S ∈ C (E0)}.

If m0 = +∞, we have nothing to do; if m0 = 0. We now assume that 0 < m0 <
+∞.

Let {Si} ⊂ C0 be a sequence of competitors bounded by B(0, R) such that

lim
i→∞

H2(Si \ ∂Ω) = m0.

Apply Lemme 5.2.6 in [8], we can fined a sequence of open sets {Ui} and a
sequence of competitors {Ei} ⊂ C (E0) of E0 bounded by B(0, R+ 1) such that

• Ui ⊂ Ui+1, ∪i≥1Ui = B(0, R+ 2) \ ∂Ω;

• Ei ∩ Ui ∈ QM(Ui,M, diam(Ui)) for constant M > 0;

• H2(Ei) ≤ H2(Si) + 2−i.

We assume that Ei converge locally to E in B(0, R+2), pass to subsequence
if necessary, then by Corollary 21.15 in [3], we get that E is sliding minimal.

We get, from Theorem 1.2 and Theorem 1.15 in [2], that E is a Lipschitz
neighborhood retract. But we see that Ei converges to E, we get so that E is
a competitor.
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