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ClP-regularity at the boundary of two
dimensional sliding almost minimal sets

Yangqin Fang

Abstract

In this paper, we will give a C*#-regularity result on the boundary
for two dimensional sliding almost minimal sets. This effect may lead to
the existence of a solution to the Plateau problem with sliding boundary
conditions proposed by Guy David in [4].

1 Introduction

In [4], Guy David proposed to consider the Plateau Problem with sliding bound-
ary conditions, since it is very natural to soap films and has some advantages
to consider the boundary regularity.

Jean Taylor, in [10], proved a C#-regularity theorem for Almgren almost
minimal sets of dimensional two in an open set U C R3, and Guy David, in [2],
given a new proof and generalized it to any codimension.

In [6], we proved a Holder regularity of two dimensional sliding almost mini-
mal set at the boundary. That is, suppose that Q C R3 is a closed domain with
boundary 9Q a C!' manifold of dimension 2, E C Q is a 2 dimensional sliding
almost minimal set with sliding boundary 02, and that 02 C E. Then FE, at
the boundary, is locally biHo6lder equivalent to a sliding minimal cone in the
upper half space €y. In this paper, we will generalized the biH6lder equivalence
to a C1'¥ equivalence when the gauge function h satisfies that h(t) < Ct. Let
us refer to Theorem 1.2 for details. In our case, the list of sliding minimal cones
is known: they are 0} and 0Qy U Z, where Z are half planes or cones of type
Y4, which meet 09y perpendicularly.

Let us introduce some notation and definitions before state our main the-
orem. A gauge function is a nondecreasing function h : [0,00) — [0, 00] with
lim; .o h(t) = 0. Let © be a closed domain of R3, L be a closed subset in R?,
E C Q be a given set. Let U C R? be an open set. A family of mappings
{¢t}o<t<1, from E into Q, is called a sliding deformation of E in U if following
properties hold:

oi(z) =z forz e E\U,pi(x) CUforz e ENU,0<t <1,

pi(x) e Lforx e ENL, 0<t <1,
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the mapping
[0,1] x E = Q, (t,2) — ()

is continuous, and
1 is Lipschitz and ¢y = idg.

Definition 1.1. We say that an nonempty set £ C € is locally sliding almost
minimal at z € F with sliding boundary L and with gauge function h, called
(92, L, h) locally sliding almost at 2 € E for short, if H2L E is locally finite, and
for any sliding deformation {¢; }o<i<1 of E in B(0,7), we have that

H*(E N B(z,7)) < H2(01(E) N B(x, 7)) + h(r)r?.

We say that F is sliding almost minimal with sliding boundary L and gauge
function h, denote by SAM (2, L, h) the collection of all such sets, if E is locally
sliding almost minimal at all points z € E.

Theorem 1.2. Let  C R? be a closed connected set such that the boundary
9Q is a 2-dimensional manifold of class CY* for some a > 0. Let E C Q be a
closed set such that E D 0 and E is a sliding almost minimal set with sliding
boundary 0N and with gauge function h satisfying that

h(t) < Cpt*, 0 <t <tg, for some Cp > 0,00 >0 and tg > 0.

Then for any xo € 02, there is a unique tangent cone of E at xo; moreover, there
exist a radius r > 0, a sliding minimal cone Z in Qg with sliding boundary 0,
and a mapping ® : Qo N B(0,1) — Q of class CY#, which is a diffeomorphism
between its domain and image, such that ®(0) = xg, |®(z) — z9 — x| < 10727
for z € B(0,2r), and

EN B(xg,r) = ®(Z) N B(xo,r).

Theorem 1.2 and Jean Taylor’s theorem imply that any set E as in above
theorem is lipschitz neighborhood retract. This effect gives the existence of a
solution to the Plateau problem with sliding boundary conditions in a special
case, see Theorem 6.1.

2 Lower bound of the decay for the density

In this section, we will consider a simple case that €2 is a half space and L is its
boundary; without loss of generality, we assume that {2 is the upper half space,
and change the notation to be 2 for convenience, i.e.

QO = {(.131,:E2,$3) S Rg | T3 > 0},L0 = 390

It is well known that for, any 2-rectifiable set F, there exists an approximate
tangent plane Tan?(E,y) of E at y for H*-a.e. y € E. We will denote by
0(y) € [0,7/2] the angle between the segment [0,] and the plane Tan?(E, y), by
0.(y) € [0,7/2] the angle between the segment [z, y] and the plane Tan?(E,y),
for z € R3.



In this section, we assume that there is a number 7, > 0 such that
"h b (2t
0

and put

" h(2
m&):/‘ifﬁﬁ,brOgtgrb
0

Lemma 2.1. Let E C Qg be any 2-rectifiable set. Then, by putting u(r) =
H2(E N B(x,7)), we have that u is differentiable almost every r > 0, and that

HYENOB(x,r)) <u'(r)

for such r.

Proof. Considering the function ¢ : R® — R defined by ¥ (y) = |y — z|, we have
that, for any y # = and v € R3,

wav:<y_x >,

)
ly — 2|
thus
ap J1(¢|g)(y) = sup{|Dy(y)v| : v € TLE, |v] = 1} = cos b (y). (2.2)
Employing Theorem 3.2.22 in [7], we have that, for any 0 < r < R < oo,
R
/ HYENOB(x,t))dt = / cos, (y)dH?(y) < u(R) — u(r),
r ENB(z,R)\B(z,r)
we get so that, for almost every r € (0, 00),
HYENOB(z,t)) < u/(r)
O

Lemma 2.2. Let E be a 2-rectifiable (Qq, Lo, h) locally sliding almost minimal
at some point v € E. If v € EN Lo, then for H'-a.e. v € (0,0),

H%EQB@JDggH%EﬂaB@JD+h@ﬂ@ﬂ? (2.3)

If v € E\ Lo, then inequality (2.2) holds for H'-a.e. r € (0,dist(x, Ly)).

Proof. If H?*(EN&B(x,7)) > 0, then H'(ENJB(z,r)) = 0o, and nothing need
to do. We assume so that H2(E N dB(z,r)) = 0.

Let f :[0,00) — [0,00) be any Lipschitz function, we let ¢ : Qo — Qo be
defined by
y—x
ly—a|

o(y) = f(ly — zl)



Then, for any y # x and any v € R3, by putting § = y — 2, we have that

A G - S [ 5N
Dely = T+ = <|g|’ >y

If the tangent plane Tan?(E, y) of E at y exists, we take vy, vy € Tan?(E, y)
such that |v1| = |va| = 1, vy is perpendicular to y = x, and that vy is perpen-
dicular to vy, let v3 be a vector in R?® which is perpendicular to Tan?(E, %) and
|vg] = 1, then

7 = (7, v2)va + (§,v3)v3 = |g] cos O, (y)va + || sin O, (y)vs,

f(g)? gl (gD f (gh — £(g)?
91°

cos 0, (y)v1 A G,

thus
ap Jo(#|e)(y) = [[Dé(y)v1 A Do(y)va||
y

1\ 1/2
_ f(liﬂ) (f'(|g)2cos2 0. (y) + f(|ljy|2) sin? Hz(y)> .
We consider the function 1 : R* — R defined by 9 (y) = |y — «|. Then, by
(2), we have that

ap J1(¢[5)(y) = cos 0 (y).
For any £ € (0,r/2), we consider the function f defined by

0, 0<t<r—¢
fi) = %(t—r—}—f), r—§&<t<r
t, t>r.

Then we have that
f(gl)?

ap J2(¢|E)(y) COSOx(y) + |g|2

sin 0, (y).

Applying Theorem 3.2.22 in [7], by putting A; = EN B(0,r) \ B(0,r — &), we
get that

2 ﬁ-m_r—'—gcos 2 r’ 2
H2(G(E N B0, 1)) < /Ag m O ()AHE ) + g (4o
:/T WHl(Eﬂ8B(x,t))dt+4H2(A5),
r—¢

thus
t—r+&, 4
&2 H

Since the function g(t) = H'(E N B(z,t))/t is a measurable function, we have
that, for almost every r,

H?(EN B(0,7)) < (2r)%h(2r) + lim r? /r (ENOB(z,t))dt.
r—¢

£—0+

3 _
lim tg(t —r+¢)

1
dt = =
dm | e 29(T)>



thus for such r,

H2(EN Bz, r)) < (2r)%h(2r) + g’Hl(E N B(z,r)).

For any set E C R?, we set
1
Op(x,r) = T—Q’HQ(EO B(x,r)), for any r > 0,

and denote by Og(z) = lim, 04 O (z,r) if the limit exist, we may drop the
script E if there is no danger of confusion.

Theorem 2.3. Let E be a 2-rectifiable (Qqo, Lo, h) locally sliding almost minimal
at x € E. If © € Lo, then ©(x,r) 4+ 8hy(r) is nondecreasing as r € (0,7p); if
x & Lo, then ©(z,7) + 8h1(r) is nondecreasing as r € (0, min{ry,, dist(z, L)}).

Proof. From Lemma 2.2 and Lemma 2.1, by putting u(r) = H2(E N B(x, 1)),
we get that, if z € L,

u(r) < 5o (r) + h(2r)(2r)?, (2.4)

for almost every r € (0,00); if ¢ L, then (2) holds for almost every r €
(0, min{ry, dist(x, L) }).

We put v(r) = r~2u(r), then v'(r) > —8r~2h(2r), we get that O(z,r) +
8h1(r) is nondecreasing. O

Remark 2.4. Let E be a 2-rectifiable (Qq, Lo, h) locally sliding almost minimal
at some point © € E. Then by Theorem 2.3, we get that O g(x) exists.

3 Estimation of upper bound

Let Z be a collection of cones. We say that a set £ C R? is locally C*“-
equivalent (resp. C*-equivalent) to a cone in Z at x € E for some nonnegative
integer k and some number a € (0, 1], if there exist gp > 0 and 79 > 0 such
that for any 7 € (0,79) there is o € (0,00), a cone Z € Z and a mapping
® : B(0,20) — R3, which is a homeomorphism of class C* (resp. C*) between
B(0,2p) and its image ®(B(0,2p)) with ®(0) = x, satisfying that

1@~ id - ®(0)]loc < o7 (3.1)

and
EnB(z,0) C®(ZNB(0,20)) C EN B(z,30). (3.2)

Similarly, if @ C R? is a closed domain with the boundary 95 is a 2-dimensional
smooth manifold, a set £ C € is called locally C*®-equivalent to a sliding
minimal cone Z in Qg at x € E NI, if there exist o9 > 0 and 79 > 0 such that
for any 7 € (0,79) there is ¢ € (0, 00) and a mapping ® : B(0,20) N Qy — £,
which is a diffeomorphism of class C*® between B(0,20) N and its image
®(B(0,20) N Q) with ®(0) = x satisfying that ®(Lo N B(0,20)) C 9N and (3)
and (3).



Jean Taylor proved, in [10], that if E is a 2-dimensional almost minimal
set in an open set U C R3 with gauge function h satisfying h(r) < cr®, then
E is locally C'#-equivalent to a minimal cone at each point x € E for some
£ > 0. In [2, Theorem 1.15], Guy David gave a different proof of this result
and generalized it to high dimensional ambient space. In [6], we got that, when
Q) C R? is a closed domain with the boundary 9 is a 2-dimensional smooth
manifold, any sliding almost minimal set £ D 02 in 2 with sliding boundary 02
and with gauge function h satisfying (2), is locally C%#-equivalent to a sliding
minimal cone in Qg at x € E N ON.

3.1 Approximation of £ N 0dB(0,r) by rectifiable curves

For any sets X,Y C R?, any z € R?® and any r > 0, we denote by d,, a
normalized local Hausdorff distances defined by

1 1
d.(X,)Y)=- sup dist(z,Y)+ - sup dist(y,X).
r z€XNB(z,r) r yEYNB(z,r)

A cone Z C Q) is called of type P, is if it is a half plane perpendicular to
Lo; a cone Z C Q) is called of type Y, is if Z = QyNY, where Y is a cone
of type Y, perpendicular to Lg; for convenient, we will also use the notation
P, , to denote the collection of all of cones of type Py, and Y, to denote the
collection of all of cones of type Y.

For any set £ C Qg with 0 € E and r > 0, we set

ep(r) =inf{do,(E,Z): Z € P, }

ey(r) =inf{do,(E,Z) : Z € Yy }.
and set K, = ENJB(0,r). If E is 2-rectifiable and H?*(E) < oo, then K, is
L-rectifiable and H!(K,) < oo for Hl-a.e. 7 € (0,00); we consider the function
u: (0,00) — R defined by u(r) = H*(EN B(0,7)), then u is nondecreasing, and

u is differentiable for H'-a.e.; we will denote by % the set r € (0, 00) such that
H(K,) < oo and u is differentiable at r.

Lemma 3.1. Let E C R? be a connected set. If H(E) < oo, then E is path
connected.

For a proof, see for example Lemma 3.12 in [5]

Lemma 3.2. Let X be a locally connected and simply connected compact metric
space. Let A and B be two connected subsets of X. If F is a closed subset of
X such that A and B are contained in two different connected components of
X\ F, then there exists a connected closed set Fy C F such that A and B still
lie in two different connected components of X\ Fy.

Proof. See for example 52.III.1 on page 335 in [9]. O
For any r > 0, we put 3, = (0,0,7) € R3.

Lemma 3.3. Let E C Qq be a 2-rectifiable set with H*(E) < co. Suppose that
0 € E, and that E is locally C°-equivalent to a sliding minimal cone of type P
at 0. Then there exist v = v(7) > 0 such that, for any r € (0,t) and € > ep(r),
we can find y, € ENOB0,7)\ L , X,1,%X,2 € ENLNOB(0,r) and two simple
curves Yr1,%r2 C ENOB(0,1) satisfying that



(1) |yr — 37| <er and |z,1 — 2r2| > (2 —2¢)r;
(2) Vv joins yr and X,;, i = 1,2;
(3) vr1 and vr 2 are disjoint except for point y,.

Proof. Since E is locally C%-equivalent to a sliding minimal cone of type P, at
0, there exist 7 > 0, o > 0, sliding minimal cone Z of type P, and a mapping
D : Q9N B(0,20) = Qp which is a homeomorphism between Qg N B(0, 20) and
D(Qp N B(0,2p)) with ®(0) = 0 and P(9Qp N B(0,2p)) C 9N such that (3) and
(3) hold. We new take vt = g. Then for any r € (0, t),

&t [ENAB(0,7)] C ZN B(0,3p).

Without loss of generality, we assume that Z = {(x1,0,23) | 1 € R,z3 > 0}.
Applying Lemma 3.2 with X = Z N B(0,30), F = @1 [ENJB(0,r)], A= {0}
and B = Z N dB(0,30), we get that there is a connected closed set Fy C F
such that A and B lie in two different connected components of A \ Fp, thus
¢(Fo) € EN9B(0,r) is connected. We put a3 = {(x1,0,0) | 1 < 0} and
az = {(£1,0,0) | z;1 > 0}. Then FyNa; # 0, ¢ = 1,2; otherwise A and B are
contained in a same connected component of X \ Fy. We take z,.; € Fy N a;,
and let X, ; = ¢(2,;) € ENOB(0,r). Then |X, 1 — X, 2| > (2 —2¢)r.

Since Fp is connected and H!(Fy) < oo, by Lemma 3.1, Fp is path connected.
Let «y be a simple curve which joins z, 1 and z, 2. We see that B(3,,er)Ny # 0,
because ep(r) < € and 3, € Z for sliding minimal cone Z of type P,. We take

yr € B(3,,er) NA. O

Lemma 3.4. Let E C Qq be a 2-rectifiable set with H?(E) < co. Suppose that
0 € E, and that E is locally C°-equivalent to a sliding minimal cone of type Y .
at 0. Then there exist v = t(7) > 0 such that, for any r € (0,t) and € > ey (r),
we can find y, € ENOB(0,r)\ L, X,1,%X,2,%X,3 € ENLNIB(0,r) and three
simple curves Vr1,7%r2, V3 C ENOB(0,7) satisfying that

(1) |3 —yr| < 7r/6, and there exists Z € Y with dist(z, Z) < er forxz € v;
(2) Yri join y, and X, ;;
(3) Yr,i and 7y, ; are disjoint except for point ys..

Proof. Since E is locally C°-equivalent to a sliding minimal cone of type Y, at
0, there exist 7 > 0, ¢ > 0, sliding minimal cone Z of type Y, and a mapping
D : QN B(0,20) = Qp which is a homeomorphism between Qg N B(0,20) and
D(Qp N B(0,20)) with &(0) = 0 and ®(9Q0 N B(0,2p)) C 9 such that (3) and
(3) hold. We new take t = p. Then for any r € (0,t),

d 1 [ENaB(0,r)] C Zn B(0,30).

Applying Lemma 3.2 with X = Z N B(0,3p), F = @~ [ENdB(0,r)], A= {0}
and B = Z N 0B(0,3p), we get that there is a connected closed set Fy C F
such that A and B lie in two different connected components of A \ Fp, thus
¢(Fy) C ENOB(0,r) is connected. We let a;, i = 1,2, 3, be the there component
of ZN Lo\ A. Then FyNa; # 0, ¢ =1,2,3; otherwise A and B are contained
in a same connected component of X \ Fy. We take z,.; € Fy N a;, and let
X, =¢(2;) € ENOB(0,r). Then |X,1 — X, 2| > (V3 —2¢)r.
Since Fy is connected and H!(Fy) < oo, by Lemma 3.1, Fy is path connected.
O



3.2 Approximation of rectifiable curves in S? by Lipschitz
graph

We denote by S? the unit sphere in R3. We say that a simple rectifiable curve
~ C S? is a Lipschitz graph with constant at most 7, if it can be parametrized
by

(1) = ( 1= 0()2 cos (t), /1 — v(i)2 sin 6(t), v(t)) ,
where v is Lipschitz with Lip(v) < 7.

Lemma 3.5. Let T € [r/3,2r/3] be a number, and v : [0,T] — S? a simple
rectifiable curve given by

() = ( 1= o(t)2 cosO(t), /1 — v(t)2 sin@(t),v(t)) :

where v is a continuous function with v(0) = v(T) = 0, 6 is a continuous
function with 6(0) =0 and (T) = T. Then there is a small number 75 € (0,1)
such that whenever |v(t)| < 79, we have that

[v(t)] < 10VH (v) - T.

Proof. We let A = v(0) = (1,0,0), B = (T) = (cosT,sinT,0), and let C' =
~(to) be a point in v such that

|v(to)| = max{|v(t)| : t € [0,T]}.

We let v;, ¢ = 1,2, be two curve such that 71(0) = A, 1(1) = C, %2(0) = B
and v2(1) = C, and let s € [0,1] be the smallest number such that v;(s) & 7,
and put D = v;(s). Then, by setting ¢, €; and €3 the arc AD, BD and CD
respectively, we have that

H(7) = H (71 Un2) > H(€1) + H(€) + H'(€3).

We see that €; U €, is a simple Lipschitz curve joining A and B, and let
v3 1 [0,4] — S? giving by

~a(t) = ( 1 w(t)2cosO(t), /1 — w(t)zsma(t),w(t))

be its parametrization by length. We assume that y3(t1) = D, then w'(t) > 0
on (0,t1), or w'(t) < 0 on (0,%1), thus |w(t)| = fotl |w'(t)]dt.

We let our 79 to be the small number 74 < 1 as in Lemma 7.8 in [2]. If
H(y) — T < 79, then we have that

/e lw' (t)|dt < 14(¢ —T),
0

thus
1/2

lw(ty)] :/0 |w'(t)|dt < (tl/o w'(t)|2dt> <\140(0 - T).
We get so that
[u(to)] < H'(€s) + |w(tr)] < (H'(7) =€) + /140(( = T)
< VIHHI (V) (HU(7) = T) < 10/H () - T.

It H!(y) = T > 70, then v(t) < 7 < 10/7 < 10\/H1(7) — 1. O




Lemma 3.6. Let a and b be two points in Qo N OB(0, 1) satisfying

2
< distgz(a, b) < ?ﬂ

wl

Let v be a simple rectifiable curve in Qo N OB(0,1) which joins a and b, and
satisfies
length(y) < distgz(a, b) + 70,

where 79 > 0 is as in Lemma 3.5. Then there is a constant C' > 0 such that, for
any n > 0, we can find a simple curve v, in Qo NOB(0,1) which is a Lipschitz
graph with constant at most n joining a and b, and satisfies that

H (1 \7) < H' (7 \ 1) < Cn~*(length(y) — dists2(a, b)).

The proof will be the same as in [2, p.875-p.878]|, so we omit it.

3.3 Compare surfaces

Let T be a Lipschitz curve in S%. We assume for simplicity that its extremities
a and b lie in the horizontal plane. Let us assume that a = (1,0,0) and b =
(cosT,sinT,0) for some T € [r/3,2m/3]. We also assume that I" is a Lipschitz
graph with constant at most 7, i.e. there is a Lipschitz function s : [0,7] — R
with s(0) = s(T") = 0 and Lip(s) < n, such that I' is parametrized by

z(t) = (w(t) cost,w(t)sint, s(t)) for t € [0,T],

where w(t) = (1 — |s(t)[?)!/2.
We set
Dy ={(rcost,rsint)] |0 <r < 1,0 <t <T},

and consider the function v : Dy — R defined by

rs(t)

for0<r<landO0<t<T.
w(t)

v(rcost,rsint) =

For any function f : Dy — R, we denote by ¥ ¢ the graphs of f over Dr.

Lemma 3.7. There is a universal constant £ > 0 such that we can find a
Lipschitz function uw on Dt satisfying that

Lip(u) < Cn,
u(r,0) = u(rcosT,rsinT) =0, for 0 <r<1,0<t<T,
u(rcost,rsint) = v(rcost,rsint) for 0 <r <1,0<t < T,
u(rcost,rsint) =0, for 0 <r <2x,0<t<T

and
HA(Z,) — HE(Zw) > 1074 (HI(T) - T).

The proof is the same as Lemma 8.8 in [2], we omit it.



3.4 Retractions

We let p, : R® — R3 be the mapping defined by u,.(x) = rz for any r > 0,
and let IT : R3\ {0} — S? be the projection defined by II(x) = z/|z|.
this subsection, we will construct a neighborhood retraction of set F, which
satisfying the following conditions: E C g is a 2-rectifiable set with H?(E) <
o0, 0 € E, and E is locally (Qq, Lo, h) sliding almost minimal at 0, E is locally
CP-equivalent to a sliding minimal cone of type P, or Y, at 0.

For convenient, we will denote

j(r) = %’Hl(E NoB(0,r)) — HY (X NdB(0,1)),

and denote by %#; the set {r € Z : j(r) < 79}, where 73 is the small number
considered as in Lemma 3.5.

For any r € (0,v) N %y, we take X, C EN B(0,r) N L as following: if F
is locally C%-equivalent to a sliding minimal cone of type P, we let X, ; and
X,2 be the same as in Lemma 3.3, and let X, = {¥,1,X,2}; if E is locally
C%-equivalent to a sliding minimal cone of type Y, we let Xr1, Xr2 and X, 3
be the same as in Lemma 3.4, and let X, = {X,1,%,2, X, 3}.

We take y,. as in Lemma 3.3 and Lemma 3.4. For any = € X,., we let v* be
the curve which joins z and ¥, as in Lemma 3.3 and Lemma 3.4, let D, ,, be
the sector determined by points 0, y, and . We denote by P, , the plane that
contains 0, z and y,, let R, 4, be a rotation such that R, ,, (y») = (r,0,0) and
Ra(yr) = (rcosTy, rsinTy,0), where T, € [7/3,27/3].

For any = € X,, 4* is a simple rectifiable curve in Qy N 9B(0,r), thus
the curve I'" = II(%*) is a simple rectifiable curve in Q¢ N 9B(0,1), let I'?
be the corresponding curve with respect to I'* as in Lemma 3.6. Let z(t) =
(w(t) cost,w(t)sint, s(t)) be a parametrization of R, (I'7), where w(t) =

1—s(t)?2. Let X% and X% be the same as in Lemma 3.7. We put T =
> wex, Tu, and put

X=|J Doy, Tu=JTL M= | B, ands= [ 5. (33)

TEX, TEX, rEX, TEX,

By Lemma 3.7, we get that
HAM) — HA(Z) > 107 (HNT,) —1T). (3.4)

Lemma 3.8. Let §,c¢ < 1/2 be positive numbers. Let vi,ve,v3 € R3 be unit
vectors such that |(va,v;)| <& fori=1,3. Then we have that

[{v; v3) = V1, 03) (v, v2)| < (£ + &)[v]

and
[(v,v1)| > (1 —e = §)|v|

for any v € R3 with (v,v2) = 0 and dist(v, span{vy,va}) < e|v|; when (v1,v3) <
1 and § < 1072(1 — (v1,v3))?, we have that

|U}1|+|U}2|§\/ < U17U3 710[)|U)17’(U2|
>

(1 =9)|w;l, i=1,3.

for any wi,ws € R® with (v;, w;)

10



Proof. We write v = v + A\jvy + v, \; € R, (v, v;) = 0.
Since (v, v9) = 0, we have that Ay = —\;(v1, v2), thus

A\ = v Ao = _ v, v)(ur, v9)
Pl (o) 1 —(v1,v2)?
we get so that
1 (v,v)vr — (v, v1) (v, v2) U2
- 3.5
[ v+ 1— <’U1,’U2>2 ) ( )

and then ( - " >
L U1,V3) — (V2,V3)(V1, V2
<rUarU3> - <U 7U3> + 1— <’01.U2>2 <U7U1>a
thus
5 +

]
[(v; v3) = V1, 03) (v, v1)| < elv] + 50| < (e +20)]o].

1-46
We get also, from (3.4), that

1 + ‘<'U1.’U2>|

1
T oyl o)l < bl + 5l )l

< J_
ol < ot + s

thus
[(v,v1)| = (1 —e)(X = 8)|v| = (1 —e—d)|v].
O

Lemma 3.9. For any r € (0.t) N %1, we let ¥ be as in (3.4). Then there is a
Lipschitz mapping p : Qo — X with Lip(p) < 50, such that p(z) € L for z € L,
and that p(z) = z for z € .

Proof. By definition, we have that
¥\ B(0,9/10) = M\ B(0,9/10),

and that
>N B(0,2x) = X N B(0, 2k).

For any z € Qg \ {0}, we denote by ¢(z) the line which is through 0 and z. Then
0D, . = £(x) UL(y,). We fix any o € (0,1073), put

R* = {z € Qq | dist(z, D, y,) < odist(z,0D44.)},
RY ={z € Qq | dist(z, D, ,) < odist(z,(yr))},

R=|J R" R = J R

TEX, rEX,
Then we see that R* C R7, and that both of them are cones,

and

R*" N R% = R N R’ = U(y,) for xj,xj € X, x; # ;.

Since ¥ is a small Lipschitz graph over D, , bounded by two half lines of
0D, ,, with constant at most 7, there is a constant 7 such that

i C RY,

11



when 0 < n < 7.

We will construct a Lipschitz retraction pg : Q9 — R; such that po(z) = =
for z € Ry, po(z) € L for z € L, and Lip(pg) < 3. We now distinguish two cases,
depending on cardinality of X..

Case 1: card(X,) = 2. We assume that X, = {x1,22}. Then |y, | = |z1] =
|xa] = 7, and

0 < (z1,29) + 7?2 < 272

Since |y, — 3| < er, we have that |(y,, z)| < er? for any z € LN IB(0,r).
We now let e and e5 be two unit vectors in L such that (x1,e1) = (x2,e1) >0
and e; = —ey. Then
0 < {(z,e1) <er.

We let Q) and Q5 be the two connected components of Q \ (U; Dy, ,, ) such that
e; € Q. We put Q; = Q) \ R;. We claim that

[{(z1 — z9,€;)| < 5(0+¢)|z1 — 22
whenever z1, 2o € 0, 21 # 22, 1 € {1,2}.

Without loss of generality, we assume z1, zo € €21, because for another case
we will use the same treatment. We see that

dist(zi, D, y,) = o dist(z, £(y,)).

wy wy

Figure 1: the angle between z; — 22 and D, ,, is small.

(1) In case 21, 22 € ORT Ny, without loss of generality, we assume that 21, 22 €
ORT* N Q. We let Z; € Dy, .. be such that

2 — 7z = dist(2z;, Dy, ,.), 1 =1,2,
and let 2/ € £(y,) be such that
|2 — 2] = dist(zi, £(yr)),

and put
~ ~ ! /
w1 =21 — 21+ 22, Wy =21 — 2] + 29,

12



then we get that z; — 20 = (21 — w2) + (wa — 22). Moreover, we have that
z1 — wy is perpendicular to we — 25 and parallel to y,. Thus |wy — 23] <
|21 — 22|, |21 — wa| < |21 — 22| and

dist(we — 29, span{z1,y,}) = o|wy — 23]
We apply Lemma 3.8 to get that
|(z1 — w2, e1)| < glzg — wo|

and
[(we — 2z2,e1)| < (0 4 3¢) |wa — 22/,

thus
[(z1 — 22, €1)| < [(21 — wa, e1)| + [{w2 — 22, €1)| < (0 +4e) |21 — 2.
In case z; € OR™ NQy, 20 € OR*> N . We let z; € Dy, ,,. be such that
|zi — 2| = dist(2i, D, 4,.), @ = 1,2,
and let z € (y,) be such that
|zi — 2| = dist(z:, £(yy)), i =1,2.

Then by Lemma 3.8, we have that

<zi—z’ i >2(1—0—5)|zi—z1’»|, i=1,2.

"]
Since z1 — 22 = (21 — 21) + (25 — 22) + (2] — #5),
(21 — 25, e1)| < elz1 — 2| < el — 2

and
[(zi — zi,en)| < (0 +e) |z — 2,

we get that
[(21 = 22,e1)| < [(21 — 21, e1)| + [{25 — 22, e1)| + [{2] — 23, €)]
<2-(0+¢)(|z1 — 21 + |22 — 25]) + &|z1 — 2a].

Since z] — 24 is perpendicular to z; — 2] and zo — 25, and

<zi—z'- gCZ> >(1—0—¢)|zi—2l], i=1,2,

i
||

<> <1422,
1] o]

we get, by Lemma 3.8, that

and

1
1—e2—-5yo+¢

1/2
o=+ < ( ) (1—24)— (a2 < 2021 zal.

Thus
(21 — 2z2,€) < (40 + 5e)|z1 — 2a].

13



We now define pg : Qy — R; as follows: for any z € Q;, we let py(z) be the
unique point in 0€2; such that py(z) — z parallels e; and for any z € Ry, we let
po(z) = z. Since pg(z) — z parallels e, we see that po(L) C L. We will check
that

2
po is Lipschitz with Lip(pg) < m'

Indeed, for any 21, zo € ¢, we put

pO(Zi) =z; +te, t; € R,

then
[t1 — ta] = [((t1 — t2)e, €)]
< [{po(21) — po(22), €)] + [(21 — 22, €}
<5(0 +¢)lpo(21) — po(22)| + |21 — 22l
and

Ipo(21) — po(22)| < |21 — 22| + |t1 — ta| < 5(0 +¢€)|po(21) — po(22)| + 2|21 — 22,

thus

[po(z1) — po(22) |21 — 2.

| < #
~1-5(c+¢)
Case 2: card(X,) = 3. We assume that X, = {x1, 29, 23}, then

1 1
fanul < or®, (VB = ) 2 < Ganw) < (5 +2¢)

We put
To + 23 1+ x3 To + X1

= €y = €3 =
oo + 23] ° o +as] 0 |wa+ 2|

€1

and let Q}, Q) and Qf be the three connected components of Qg \ (U; Dy, 4.)
such that e; € Q). By putting Q; = Q \ Ry, we claim that

1 1
(3-50+2) -l <l - medl < (5 +560+2)) | -
whenever z1, 2o € 9, 21 # 22, 1 € {1,2,3}.

Indeed, we only need to check the case z1,zo € 094, and the other two
cases will be the same. Since —v/3¢ — 1/2 < (z;,2;) < 1/2 + 2¢, we have that
(1/2 —e)r < (mj,e1) < (1/2+¢)r for i = 2,3.

If 21, 22 € ORI N or 21, 22 € ORT? NNy, we assume that 21,29 € RNy,
and let Z; € D, ., be such that

Zi — Ez = diSt(Zi, Dmg,yr)v = 1, 27
and let 2z} € ¢(y,) be such that
|zi — 21| = dist(z4, £(yr)),

and put
~ ~ ! /
w1 =21 — 21 22, Wy =21 — 2] + 29,
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then we get that z; — wsy is perpendicular to ws — 2o and parallel to y,.. Since
z21—29 = (21—wa)+(wa—23), we have that |we—za| < |21—22], |21 —w2| < |21—22|
and

dist(wg — 22, span{x1,y,}) = olwy — 23].

We apply Lemma 3.8 to get that
[(21 — w2, e1)] < elz1 — wyl
and

1
[{we — 29, €1)] < (2+5+U+5> |wg — 23],

thus

[{(z1 — z2,e1)| < [(21 — wa,e1)| + [{wy — z9,e1)| < (; —1—0—1—35) |21 — 23]
If 21 € OR™ Ny, 20 € OR™ NQy, we let z; € Dy, 4. be such that
|21 — z1| = dist(2z1, Dz, 4,.), |22 — 22| = dist(22, Day y,.)
and let 2] € £(y,) be such that
|zi — 2)| = dist(z;, £(yr)), i =1,2.
Since 21 — 20 = (21 — 21) + (25 — 22) + (2] — 25),
(21 — 25, €1)] < elz1 — 25| < elz1 — 22

and
/ 1 !
[(2i — zj,e1)| < 5 tetote |z — 2,

we get that

(21 = 22, e1)] < (21 — 21, )| + (25 — 22, €2)| + [{2] — 25, €]

1 3.6
< <2+0+25> (|21 = 21] + |22 — 25|) + €lz1 — 22]. (3.6)
By Lemma 3.8, we have that
<21 —zi,|2> >(1—0—¢)|z1 — 2]
and
x
<z2 —z§,|x2|> > (1—0—¢)|zg — 2|
Applying Lemma 3.8 with (za/|x2], z3/|z3]) < —1/2 + 2¢, we get that
9 1/2
o _ < VAN o
= sl e 481 < (o) 11— )~ (2 5

|Zl 7ZQ|.

<2<12€+10\/U+€)
=5 BT E—
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We get, from (3.4), that

2
[(z1 — 22,€1)] < 5\21 — 2.

For any z € ;, we now let pg(z) be the unique point in 9€2; such that
po(z) — z parallels e; and for z € Ry, we let pg(z) = z. Then po(L) C L. We
will check that

po is Lipschitz with Lip(pg) < 6.

For any z1, 29 € Q;, we put

po(Zj) =2 +tj€i7 tieR, j=1,2,

then
t1 —to] = [((t1 — t2)es, €4)]
< [{po(21) — po(22), €| + [(z1 — 22, €:)]
2
< g\Po(zl) —po(z2)| + |21 — 22,
and

2
[Po(z1) = po(z2)| < |21 — 22| + [t — 22| < §|p0(z1) —po(22)] +2[21 — 22,
thus
Ipo(21) — po(22)| < 6|21 — 22].
By the definition of R* and RY, we have that

R* ={z € Ry | dist(z, D, ,,) < odist(z, {(x))}.

Similar as above, we can that, for any z1, zo € RfNIR® with [21, 22] Dy, =0,
if card(X,.) = 2 then

(21 — 22, €;)| < 5(0 +¢€)|21 — 22;

if card(X;.) = 3 then

1
[(z1 — 22,€;)| < <2 +O’+3€> |21 — 22|,

where e; is the vector in 3.4 such that z1, zo € ;.
We now consider the mapping p; : Ry — R defined by

() = z, for z € R,
piiz) = z—te; € ORNQ;, for z € Q.

By the same reason as above, we get that

2
Lip(p1) < <.
) S TR g <P

We define a mapping ps : RN B(0,1) — ¥ as follows: we know 32 is the
graph of w over D, , , thus for any z € R", there is only one point in the
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intersection of 37 and the line which is perpendicular to D, ,, and through z,
we define ps(z) to be the unique intersection point. That is, ps(2) is the unique
point in X2 such that ps(z) — z is perpendicular to D, .. We will show that po
is Lipschitz and Lip(ps) < 1 4 10%. Indeed, for any points z1, 2o € R*, we let
Zi, 1 = 1,2, be the points in D, ,, such that z; — 2z; is perpendicular to D, ,,,
then

|(p2(21)—21)—(p2(22)—22)| = |u (Z1) — u (Z2)| < Lip(u)|z1—22| < Lip(u)|21— 22,
thus
Ip2(21) — p2(22)] < (14 Lip(u))|21 — 22| < (14 10%n)21 — 2.
Let p; : R3 — R3 be the mapping defined by
xz, |x| <1
pa(z) = { -

Then p = p3 o py 0 p3 0 p1 © pg is our desire mapping. O
Lemma 3.10. For any r € (0.x) N %1, we let ¥ be as in (3.4), and let ¥, be
given by . (3). Then we have that
quymzxono)g7ﬂ(zgg+25a{/ dist(z, X, )dH (2) + (2r)*h(2r).
ENdB(0,r)

Proof. For any & > 0, we consider the function ¢ : [0,00) — R defined by

1, 0<t<1-—¢
— t—1
0, t>1,

and the mapping ¢¢ : Qo — Qo defined by
¢e(2) = Ye(lz)p(2) + (1 — ¢e(l2]))2.
Then we get that ¢¢(L) C L. For any t € [0,1], we put
oi(z) =trée (z/1) + (1 —t)z, for z € Q.

Then {p;}o<i<1 is a sliding deformation, and we get that

H2(E N B(0,1)) < H2(o1 (B) 1 B(0,1)) + (2r)*h(2r).
Since ¢ (t) =1 for t € [0,1 — ¢], we get that

e1(ENB0,(1—-&r)) =p(ENB0,(1—-&)r)) C %,

We set A¢ = B(0,7) \ B(0, (1 —&)r). By Theorem 3.2.22 in [7], we get that

H2 (o1 (E 0 Ag)) < / ap Jo (01 2) (2)IH3(2). (3.7)

EﬂA5
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For any z € A¢ and v € R3, we have, by setting 2’ = z/r, that
Dip1(2)v = (1) Dp(z' Yo + (1 = (|2 D)o + V(12 ) =/ 2], o) (=) — 2).
For any z € A¢ N E, we let vi,v2 € T, E be such that
|v1] = |ve| =1, v1 L z and vy L vy,
then we have that (z/|z|,v) = cos8(z), and that

e (|12 Dp(2")vi + (1 = ¢(|2']))vi| < [Dp(2")vi] < Lip(p),

thus
ap J2(p1|E)(2) = [Dp1(z)vr A D1 (2)vs]
1 3.8
< Lip(p)* + gLip(p) cosO(z)|rp(2') — z|. (3:8)
Since p(z) = Z for any z € 3, we have that
Ip(2') = 2| = [p(z') = p(2) + Z = 2| < (Lip(p) + 1)|Z = '],
then we get that
Ip(2') — 2’| < (Lip(p) + 1) dist(z, 2).
We now get, from (3.4), that
. 1. . .
ap Ja(1|r)(2) < Lip(p)* + ¢ Lip(p) (Lip(p) + 1) dist(z, X cos f(2),
plug that into (3.4) to get that
, , 2550 , )
Ho(p1(ENAg)) < 2500H*(ENAg) + — dist(z, %) cos 0(2)dH?(2)
EﬂAE
2550

< 2500H*(E N Ag) + —— / / dist(z, X,.)dH' (2)dt,
€ Ja-or JEnoBO.Y

we let £ — 0+, then we get that, for almost every r,

lim H?(p1(E N Ag)) < 2550r/ dist(z, 3, )dH'(2),
=0+ ENAB(0,r)

for such r, we have that

H2(EN B(0,7)) < H*(Z,) + 25501"/ dist(z, 2, )dH (2) + (2r)*h(2r).
ENdB(0,r)

O

3.5 The main comparison statement

For any z,y € Qo N 0B(0,1), if |z — y| < 2, we denote by g, , the geodesic on
Qo NIB(0,1) which join  and y.
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Lemma 3.11. Let 7 € (0,107%) be a given. Then there is a constant ¥ > 0
such that the following hold. Let a € 0B(0,1) and b,c € L N 0B(0,1) be such
that dist(a, (0,0,1)) < 7, dist(b, (1,0,0)) < 7 and dist(c,(—1,0,0)) < 7. Let X
be the cone over g, vy Ugq,.. Then there is a Lipschitz mapping ¢ : Qo — Qo with
p(ENL)CL, |p(2)] <1 when |z| <1, and ¢(z) = z when |z| > 1, such that

H2((X) 1 B0 1)) < (1 - 9)H(X) + .

Proof. The proof will be similar to the proof of Lemma 14.4 in [2]. O

Lemma 3.12. Let 7 € (0,107%) be a given. Then there is a constant 9 > 0 such
that the following hold. Let a € 0B(0,1) and b,c,d € LN IB(0,1) be such that
dist(a, (0,0,1)) < 7, dist(b, (—1/2,v/3/2,0)) < 7, dist(c, (—1/2, —/3/2,0)) < 7
and dist(d, (1,0,0)) < 7. Let X be the cone over gop U Ga,cUga.a- Then there is
a Lipschitz mapping ¢ : Qo — Qo with o(ENL) C L, |p(z)| <1 when |z| <1,
and ©(z) = z when |z| > 1, such that

— 39
H2(e(X) N B0, 1)) < (1 = DHAX) + 2
Proof. The proof will be similar to the proof of Lemma 14.6 in [2]. O

Let E C Q be a 2-rectifiable set with H?(E) < oo and 0 € E. Suppose
that E is locally (0, Lo, k) sliding almost minimal at 0, and that F is locally
CP-equivalent to a sliding minimal cone of type P, or Y at 0.

We will denote by %- the set

{r € % : e(r) +10§(r)/2 < 102007 1(1 — 2- 10—4)} ,

and denote by B; the open ball B(0,t) sometimes for short for any ¢ > 0.

Lemma 3.13. For any r € (0,t) N %, we have that

2
H2(ENB,) < (1—2- 10*4)3H1(E NOB,) +(2-107* — ﬁnQ)%Hl(X noB)

+ 9x*20(0) + (2r)*h(2r).

Proof. Without loss of generality, we assume that x = 0. Let X, ¥,, &, ¥¢, ¢¢
and {¢; o<i<1 be the same as in the proof of Lemma 3.10.
We see that

e1(ENB(0,(1-&r) =p(EN B0, (1-&r)) C =,

and that ¥ N B(0,2k) = X N B(0,2x), where X is a cone defined in (3.4).
We see that if ©(0) = 7/2, then X satisfies the conditions in Lemma 3.11; if
©(0) = 37/4, then X satisfies the conditions in Lemma 3.12. Thus we can find
a Lipschitz mapping Q¢ — Qo with ¢(ENL) C L, |¢(2)] < 1 when |z| < 1, and
¢(z) = z when |z| > 1, such that

H?(o(X) N B(0,1)) < (1 —9)H*(X N B(0,1)) +9O(x).
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Let ¢ : Qg — Qo be the mapping defined by @(x) = r¢(x/r), then

H*(EN B(0,r)) < H*($opi(E)NB(0,r)) + (2r)*h(2r)
<H*(@opi(EN B0, (1—&)r)) +H*(p1(EN Ag))
<HA(E, \ B(0, k7)) + (1 —9)(kr)*H3(X N B(0,1))
+ 9+ (kr)20(0) + H?(p1(E N Ag)).

But we see that ¥, = {rz : x € ¥}, XN B(0,2k) = X N B(0,2k), and

lim H2(p1(EN Ag)) < 2550/ dist(z, 2,)dH! (2),
=0+ ENAB(0,r)

we have that
H?(S, \ B(0,kr)) = r* (H*(Z) — H*(X N B(0,k))),
and that

HA(EN B(0,7)) < r*H*(Z) — (kr)*H*(X N B(0,1))
+ (1 = 9)(kr)?*H3(X N B(0,1)) + (skr)%0 - ©(0)

+ 2550/ dist(z, X, )dH (2) + (2r)*h(2r).
ENdB(0,r)

By (3.4), we get that

H? (D) < HA(M) — 107 H(HN(T,) = T)
= (1/2 = 10"HH (T.) +107*H (X N dB(0, 1)),

and then
HA(ENB,) < (1/2=10"Hr*HY(T,) + (107 — 962 /2)r*H (X N OB,)

+ 9K2r?0(0) + 2550/ dist(z, 2, )dH' (2) + (2r)*h(2r).
ENOB,

For any € > £(r), there exists cone Z of type Py or Y such that
dor(E,Z) <e,
by the construction of X and M, we see that
dor(X,Z) <e¢,

thus
d()yr(E, X) S 2¢.

By Lemma 7?7, we have that
do,1 (M, X) < 105(r)*/2.
We get that for any z € EN9B(0,r),

dist(py /,(2), M) < 2(r) + 104(r)"/2,
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thus
dist(z, 2,) = rdist(py ,.(2),3) = rdist(py /,.(2), M) < 2re(r) + 2075 (r)*/2,
because X\ B(0,9/10) = M\ B(0,9/10). We get that
/ dist(z, £,)dH () < 2r(e(r) + 10§ (r) > )HY(E N OB(0,7) \ ;)
ENdB(0,r)
< 2r(e(r) 4+ 205 (r)Y2)(HY(E N AB,) — rH(T.)).
By Lemma 3.6, we have that
HY(A\T) <HYT\TL) < CpP(HUT) = HH(X N9B(0,1))),
so that
HY (X N9B(0,1)) < HY(T.) < HNT) < H' (py,,.(ENIB,)),
thus
H*(ENB,) < (1/2 =107 Hr*HY(T,) + (107* — 9x%/2)r*H (X N OB,)

+5100(e(r) + 105 (r)Y?)r(HY(E N 8B,) — rH*(T.))
+ 9K%r20(0) + (2r)%h(2r).

Since r € (0,t) N %, we have that

5100 (e(r) + 10j(r)1/2) <(1-2-107%

N =

thus

2
H2(ENB,) < (1-2- 10*4)27{1(13 NOB,)+(2-107% — 19/@2)%7{1()( NoB)

+9K2r?0(0) + (2r)2h(2r).
O
Theorem 3.14. There exist A\, € (0,1073) and vy > 0 such that, for any
0<r <ry,
2
H?*(ENB,) < (1fuf)\)g”ﬂl(EﬂaBT)+M%H1(X08B1)+>\®(O)r2+4r2h(2r).
Proof. We put 7 = min{rg, 10712(1 — 9¥x?)2}, and take J such that
K<d<r+(89)H1—-2-10710(0)7. (3.9)

We see that e(r) — 0 as r — 04, there exist t; € (0,t) such that, for any
re (O,tl),
e(r) < 10~ min{r,9(6% — k?)}. (3.10)

If r € (0,v1) and j(r) < 71, then r € %5, then by Lemma 3.13, we have that

2
H2(ENB,) < (1-2- 10—4)27{1@ NOB,) +(2-107% — M)%Hl(x N OB,

+ 9x*20(0) + (2r)h(2r).
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We only need to consider the case 7 € (0,t1), j(r) > 7 and H(ENIB,) < +oo0,
thus

HY X NOBy)+7 < %Hl(EﬂB(O,r)). (3.11)

By the construction of X, we see that X N B(0,1) is Lipschitz neighborhood
retract, let U be a neighborhood of X N B(0,1) and ¢o : U — X N B(0,1)
be a retraction such that |po(z) — x| < r/2. We put Uy = pg, o(U), p1 =
Hsy/9 © $0 © Pg(sry, and let s : [0,00) — [0,1] be a function given by

1, 0<t<3r/d,
s(t) =< —(8/r)(t —7r/8), 3r/4<t<Tr/s,
0, t>Tr/8.

We see that there exist sliding minimal cone Z such that do 1 (X, Z) < e(r),
thus do,(E,X) < 2¢(r), then for any x € EN B(0,r) \ B(0,3r/4),

dist(z, X) < 2e(r)r < SET(T)I:CI.

We consider the mapping v : Q¢ — Q¢ defined by

P(x) = s(|z)pr(x) + (1 = s(lz])z,

then ¥(L) = L and ¢(z) = « for |z| > 8r/9.
We take t; > 0 such that, for any r € (0,t1),

{r € QN B(0,1) : dist(z, X) < 3¢(r)} C U.
Then we get that ¢(z) € X for any z € EN B(0,3r/4);
dist(¢(z), X) < 3e(r)|z| for any z € EN B(0,r) \ B(0,3r/4);

and U(E N B,)NB(0,r/4) = X N B(0,r/4).
We now consider the mapping II; : Q5 — €2y defined by

I (z) = s(4fz])x + (1 = s(4]z|)I(z),
and the mapping 1, : Qg — Q¢ defined by
u(a) = {m ov(a), e <,

x, |z] > r.

We have that v, is Lipschitz, 11 (L) = L and ¢ (B(0,7)) C B(0,r),
Y1 (ENB(0,r)) Cc X NB(0,r)U{x € B, : dist(x, X) < 3re(r)}.
Let ¢ be the same as in Lemma 3.11 and Lemma 3.12, and let )3 = psopo
H1/5 ©¥1. Then we have that
HA(E N B(0,1) < H2(ua(E N BO,1)) + (2r)2h(2r)
< (1 =96HHA(X N B(0,7)) +9620(0)r* + 4r2h(2r)
+H2({x € OB, : dist(x, X) < 3re(r)})

< (1 —98*)YH2(X N B(0,7)) + 9520(0)r?

+ 4re(r)HH (X NOB,) + 4r?h(2r)
2
<(1-98%+ Ss(r))%Hl(X NOBy) + 9520(0)r2 + 4r2h(2r)

(3.12)
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We take = 2-107% — 9x? and A = k2, then by (3.5) and (3.5), we have
that
8e(r) < 9(62 — K?)

and r
(6% — k2)O(0) < (1—2- 10*4)51.

We get from (3.5) and (3.5) that

7’17‘2

H>(ENB,)<(1-2- 10’4)§(’H1(X NOB1)+7)—(1-2- 10*4)T
+ M;Hl(x NOBy) + 9k*0(0)r? + 412 h(2r)
+ (8e(r) — 962 + 1952)%27{1()( NOBy) + (962 — 9K2)©(0)r?
<(1-X— ,u)g?-ll(E NoB,) + uéﬂl(X NOB1) + AO(0)r? + 4r2h(2r).

O

For convenient, we put A\g = A/(1 = X), f(r) = ©(0,7) — ©(0) and u(r) =
HY(ENB(0,7)) for r > 0. Since f(r) = r~2u(r) —©O(0) and u is a nondecreasing
function, we have that, for any \; € R and 0 < r < R < 400,

A1 Al r A1 !
RN f(R) — ™ f(r) > / (M £(1)) dt,

thus " /
f(r)y <r MRMF(R) 17N / (M f(@)) dt. (3.13)

Corollary 3.15. If the gauge function h satisfy
h(t) < Cpt*, 0 <t <ty for some Cp, >0, a >0,

then for any 0 < f < min{a, 2Xg}, there is a constant C' = C(Ag, o, B,t1,Ch) >
0 such that
6(0,p) - ©(0) < Cp° (3.14)

forany 0 < p <rty.

Proof. For any r > 0, we put u(r) = H?(E N B(0,7)). Then u is differentiable
for Hl-a.e. r € (0,00).

Recall that Z is the set r € (0,00) such that H'(E N B(0,7)) < oo and u is
differentiable at r, and we have that H!((0,00) \ #Z) = 0.

By Theorem 3.14 and Lemma 2.1, we have that for any r € (0,t1) N %,

u(r) < (1— A)%HI(E N AB(0, 7)) + AO(0)r? + 4r2h(2r)
<(1- )\)gu/(r) + A0(0)r2 + 4r2h(2r),

thus

— 2 h(2r) = 2X0f(r) — 8(1 + A)h(2r),
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and
(P20 f(r)) = 171720 (r (1) — 200) > =8(1 + Ag)r T P0R(2r).

We get, from (3.5), so that, for any 0 < r < R < vy,

R
F(r) < 7229 B2 F(R) 4 8(1 4 Ag)r2 / 1200 (28 dt. (3.15)

T

Since h(t) < Cpt*, we have that

) < (/R0 (R) £ 39471 xg) e [ Do lar

T

If a > 2), then
Fr) < (F(R) + 2270 (1 + Ao) (1 + Ao)(a — 200) "'CLR®) (r/R)*;  (3.16)
if o = 2o, then
f@r) < F(R)(r/R)™ + 272 (1 + Xo)Chr® In(R/7),

thus, for any 8 € (0, a),

< FR 2 e ORI
fr) < FR)r™ + 29731+ Xo)Crr” R (R/r)a-? (3.17)
< (f(R) +2°T3(1 4+ Xo)Ch(a — B)"'e ' R) (r/R)”;
if a < 2)\p, then
£(1) < PR /RIS + 2791~ )G - (220 — a)~) (=20 — R=2%0)

< ((r/R)*™*f(R) +2°T3(1 — A\g)Ch (2o — @) "' R%) (r/R)“.
(3.18)
Hence (3.15) follows from (3.5), (3.5), (3.5) and Theorem 2.3. Indeed, there is
a constant C1(«, 3, Ag) > 0 such that

R
r%/ te=2ro=Lgr < 1 (a, B, Xo)R® - (r/R)P, (3.19)

and there is a constant Co(c, 8, Ag) > 0 such that

f(r) < (f(R) + Ca(e, B,0)Ch - RY) (r/R)™.

Remark 3.16. If the gauge function h satisfy that

ht) < C (m (f))_b

for some A,b,C > 0, then (3.5) implies that there exist R > 0 and constant
C(R, )\, b) such that

F(r) < C(R,\,b) (m <f))_b for0<r<R.
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4 Approximation of £/ by cones

In this section, we also assume that E C ) is a 2-rectifiable set with H?(E) < oo
and 0 € F, and that F is locally (Qo, Lo, h) sliding almost minimal at 0. Suppose
in addition that E is locally C°-equivalent to a sliding minimal cone of type P
or Y, at 0. Welet (r) = ep(r) if E is locally C%-equivalent to a sliding minimal
cone of type P, ; and let £(r) = ey (r) if E is locally C%-equivalent to a sliding
minimal cone of type Y.

For any r > 0, we put

f(r) =0(0,7) = 0(0), F(r)= f(r)+8hi(r), Fi(r) = F(r)+ 8h(r),

and put
E(r) =7rf'(r) +2f(r) + 16h(2r) + 32k (r),

ifreZ.
We denote by X (r) and I'(r), respectively, the cone X and the set I which
are defined in (3.4), and by ~(r) the set u,.(T'(r)). For any r2 > r; > 0, we put

A(T17r2) = {x ER?: r < ‘x| < 7’2}.

Lemma 4.1. For any 0 <r < R < oo with H*(ENJB,) = H*(ENJBg) =0,
we have that

/ Md#(@ < F(R) — F(r), (4.1)
ENA(r,R) ||
and )

H2 (I(E N A(r, R))) < /E . SlTj(f)de(x). (4.2)

Proof. We see that for H?-a.e. € E, the tangent plane Tan2(E,x) exists, we
will denote by 6(z), the angle between the line [0, z] and the plane Tan?(E, z).
For any ¢t > 0, we put u(t) = H?(E N B(0,t)), then u : (0,00) — [0,00] is a
nondecreasing function. By Lemma 2.2, we have that

u(t) < ~HY(ENIB(0,t)) + 4t%h(2t),

N | =+

for Hl-a.e. t € (0,00). Considering the mapping ¢ : R?* — [0,00) given by
¢(x) = |x|, we have, by (2), that

ap J1(¢|g)(z) = cos0(x)

for H2-a.e. x € E.
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Apply Theorem 3.2.22 in [7], we get that

R
/ icose( )d”HZ(x):/ t%?-tl(EﬂaB(O,t)ddt
E T

NA(r,R) |$|

Q/R ult )dth/ h(?t)dt
R
/ ! / AH (2)dt — 8(hy (R) — ha(r)
ENB(0,t)

_ / / t—dtd?—ﬁ( z) — 8(h1(R) — hy (r))
ENB(0,R) Y max{r,|z|}
_ /E L 32(0) + r2u(r) - R2u(R) — 8(hi(R) — hu(r),

NA(r,R) |[2

v

thus (4.1) holds.
By a simple computation, we get that

sin f(x
ap JoIl(z) = |:c|(2 ),
we now apply Theorem 3.2.22 in [7] to get (4.1). O

We get from above Lemma that

HA(TI(E N A(r, R))) < = (20(0, R))"/? (F(R) — F(r))"/?

1
Lemma 4.2. For any r € (0,v1) NZ, if E(r) < urg, then
dir(D(r), X (r) N dB(0,1)) < u~Y25(r)Y/2
Proof. By lemma 2.1, we get that

%Hl(E NOB(0,r)) <20(0) +7rf'(r) + 2f(r),

By Theorem 3.14, we get that
2
120(0,r) < (L= A=) gH (ENOB,) + pH (X N 9B1) + AO(0)r + 4rh(2r)

< %(1 — A= w)r?(20(0) +rf'(r) +2f(r)) + M§H1(X NoB)
+A0(0)r? + 4r2h(2r),
thus
20+ p) 1Ay
7 7

H(X NIBy) > 20(0) + rf(r) — gh(Qr).

Hence )
j(r)=~HYENB,) - H (X NBy)

-
L= - %f(r) + %h(?r)

IN

(rf'(r) + 16h1(r) + 16h(27)).

26



Since
HY (X NOB1) < HU(Tu(r)) <HU(T(r) < H (1y/,(ENDB,)),

we have that
0 < HYT(r)) —H X NBy) <jr) <

by Lemma 3.5, we get that for any z € T'(r),

dist (2, X N9B(0,1)) < (ELT) ) v .

O

Lemma 4.3. For any 0 < r1 < ro < (1 — 7)v, if P is a plane such that
HYENPNB,) < oo and PNX, =0 for any r € [r1,72], then there is a
compact path connected set

CP7r17r2 CENPN A(TQ,’I“l)

such that
Cryrm NY(E) # 0 for i <t <.

Proof. We let ¢ be the same as in 3. Since ||® — id|o < 7o, we get that
o (E N B0, rg)) C Zo., N B0, 15 + 70).

We put
X = Z07Q n B(07T2 + TQ),

F=Xn®o"YENP,).

We take 1,29 € &, 75 # x1, such that ®~1(x;) and &~ (x5) are contained in
two different connected components of X\ F'. By Lemma 3.2, there is a connected
closed subset Fyy of F such that ®~1(x) and ®~!(x9) are still contained in two
different connected components of X\ Fy. Then FyNo~t(y(t)) # 0 for 0 < t < ro;
otherwise, if Fy N ¢~1(y(tg)) = 0, then z; and x5 are in the same connected
component of ®(X)\®(Fp), thus @~ !(z;) and ®~!(z) are in the same connected
component of X\ Fp, absurd!

Since HY(®(Fp)) < HY(E N P, N B,) < oo, we get that ®(Fp) is path
connected. We take z; € ®(Fp) N~y(r1) and z2 € P(Fy) N y(r2), and let
g : [0,1] — ®(Fp) be a path such that g(0) = z; and g(1) = z2. We take
t1 = sup{t € [0,1] : |g(t)] < m} and t2 = inf{t € [t1,1] : |g(t)] > r2}. Then
Caryrs = 9([t1,t2]) is our desire set. O

Lemma 4.4. Let T € [r/4,3n/4] and € € (0,1/2) be given. Suppose that F a
2-rectifiable set satisfying

F C 0B(0,1)N{(tcosh,tsinb,z3) € R3 |t >0,]0] < T/2,|xs| < e}

Then we have, by putting Py = {(tcos,tsind,x3) |t > 0,23 € R}, that

T/2
HYUEF NPy)do < (14 e)H*(F)
-T/2
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Proof. For any z = (z1, 79, 23) € F, we have that 22 + 23+ 23 = 1 and |z3| < ¢,
thus o2 + 22 > 1 — 2. Since || < T/2 < 37/8, we get that the mapping
¢ : F— R given by

T
¢(x1,x9,3) = arctan =2
il

is well defined and Lipschitz. Moreover, we have that
apip(z) = (22 +22) V2 < (1 - V2 <1 4.

Hence

T/2
H(F (Py)d6 — / ap J1o(x)dH2(x) < (14 £)H2(F).
T2 F

For any 0 < t; < 3, we put
Et17t2 = H({x EE: i < |$| < t2})~

For any ¢t > 0, we put
g(t) = sup{e(r) : r < t}.

Lemma 4.5. If ro > r1 > 0 satisfy that 8(1 4 ro/r1)é(r2) < 1/2, then we have
that

/ HY (P, N Ey, ) dH (2) < 2H? (Byy ), Vr1 <t <o
X (t)N&B(0,1)

Proof. For any § > 0, we can find sliding minimal cone Z in )y with sliding
boundary L such that
do(E,Z) < 2e(r),

thus
dor(X(r),Z) < 2e(r)
and
do (B, X(r)) < 4e(r).
We get that
dot(X (1), X(r2)) < dot(E, X (1)) + dot(E, X(r2))
< 45(ry) + 4%25(73).
But
dist(x, X (r2)) < 4rae(ry), for any x € EN B(0,ry),
and

4roe(re)

dist(II(x), X (r2)) < 2]

, for any x € EN A(ry,72),
we get so that

dist(I(x), X () < (8r2/r1 + 4)&(r2) <

N |

We now apply Lemma 4.4 to get the result. O
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Lemma 4.6. Let ¢ € (0,1/2) be given. Let A C 0B(0,1) be an arc of a great
circle such that 0 < H'(A) < 7 and

dist(z, L) < e,Va € A.
Then there is a constant C > 0 such that

2
dist(z, L) < 2;'_;7(14)2/Adist(gc,L)d’;'-Ll(ac), Yz € A.

Proof. We let P be the plane such that A C P, let vo € PN LN JB(0,1) and

vy € PN OB(0,1) be two vectors such that vy is perpendicular to v;. Then A

can be parametrized as v : [01,62] — A given by

~¥(t) = vp cost + vy sint,
where 0 —6; = H'(A). We write v; = w+w* with w € L and w' perpendicular

to L. Since ap J1y(t) = 1 for any ¢ € [0, 02], by Theorem 3.2.22 in [7], we have
that

92 02
/dist(x,L)?—[l(x):/ dist(*y(t),L)dt:/ |wh sin t|dt
A 01 01
_ R
> 2wt | (1 - cos b2 — 61 > 20> — 1) lw™],
2 2

and that )
i L) <|wh < —" ist(x, L)dH (z).
dist(z, L) < |wk| < 2H1(A)2/Adlbt(x, VM (z)
0

Lemma 4.7. Let r; and ro be the same as in Lemma 4.3. If Z(r;) < pro,
(L+ry/r1)é(re) < 1/10, then we have that

307 — —
do1 (X (r1), X (r2)) < ﬁ?@(o,rz)l/Q.F(rz)l/%erl/z.(;(m)W + :(rg)m)

Proof. For z € X(ry) N OBy, if z ¢ {y.} U X, we will denote by P, the plane
which is through 0 and z and perpendicular to Tan(X (r2) N0By, z). By Lemma
4.2, we have that

|z —a| < p=22(r)Y2,Va € T(ry) N Ps.
Since Cp. . NY(ri) # 0, i =1,2, we take b; € Cp_ r, r, NY(r;), then
TT(b2) — TI(b)| < HX(TH(Cr_ 1)) < HA(P2 O\ By 1),
thus
dist(z, X (r1) N0B1) < |z — II(ba)| + |II(be) — I1(b1)| + dist(I1(b1), X (r1) N OB1)
<H PN Epy ) + 72 (E(r0)2 4 2(r2)' 1)
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For any = € X, we let A, be the arc in dB(0,1) which join II(x) and II(y,),
We see that X (r2) N9B(0,1) = Ugex, Az, and H(A,) > (1/2 — &(re))m > /4.
Suppose z € A,, then

dist(z, X (1)) < 27{1 / dist(z, X (r1))dH ()

) AH @) + 2 (S(r0) Y + 2(r0)?)

< 16K (By, ) + 22 (2(m)'2 4 5(r2)?)
16
< =22 (20(0,12) /2 Flr) /2 + 20~ /2 (2(r1) /2 4+ Z(r2) )

T1
O

Remark 4.8. For any cones X1 and Xo, we see that
dy (X1 N0B(0,1), X, NIB(0,1)) < 2dy 1 (X1, X2).

Since Z(r) = [rFy(r)] for any r € Z, we get that

/ E(t)dt < roFy(r2) —riFi(r1),

T1

For any ¢ > 2, if r; < ry < r, then by Chebyshev’s inequality, we get that,

1 ({t € [r1,72]

thus {t € [r1,m2] | 2(t) < CF1(r)?/3} # 0 when ro — 1y > (1/Q)rFy ()3,

Lemma 4.9. Let Ry < (1 — 1)t be a positive number such that F(Rg) < uro/4
and £(Ro) < 107, For any r € Z N (0, Ry), if Z(r) < uro, then there is a
constant C' = C(u, 0(0)) such that

dist(z, F) < Cr <F1(7°)1/3 + E(r)l/z) , € X(r)N B,.

E() < CR()*P}) 2 =i %mwg,

Proof. For any k > 0, we take r, = 27%r. Then there exists t;, € [ry,r,_1] such

that

Jre B e Fi(ria)
Th—1—Tk —  Th-1/2
We let X, = X (t1), then for any j > ¢ > 1, we have that

E(tk) § = 2F1(7’k,1).

-1
do1(Xi, X;) < doa(Xe, Xiya)
k=i
-1
< 60/(0(0) + pro/4) 2" Fi(ty)/? + 2mp 1/ Z (: tr) /% + (tkﬂ)”z)
k=i k=i

j—1
< (60 (0(0) + pro/4)"? + 4=/ 2) > 2P (te)'? + Fi(tr-1)'/?
k=1

< C1 (1, 0(0))(j — i) Fy(ri1)Y? = C1 (1, ©(0)) Fy (r5-1) /2 10%2((7“1‘/)7‘,7')7
4.3
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where C1(u,0(0)) =3 (60 (©(0) + MTO/4)1/2 +47TM71/2)~

For any x € X(r) N B, with Z(|z|) < p7o, we assume that t,1 < |2| < tg,
then

dist(x, B) < d(X(r) O Baj, X(21) O Bia)) + diz (X (|2]) O Bay, 1(J2])
< 2laldo, (X (r), X (|a])) + p~ /2|2l E(|2]) /2
< 22| (do 1 (X (), Xi) + do,1 (X, X1) + do1 (X1, X (r))) + p~ /|| Z(|]) /2
< (4m + D al (222 + 2()/2) + Caln, ©(0)) |2l Fi (r) "/ logy (r/|])
< (dm + D PlelE(2) 2 + Calp ©(0)r (22 + Fi(r)'/?)

For any 0 < a < b < r, we put
I(a,0) = {t € [a,4] | 20) < A(r)?}
then I(a,b) # ) when b —a > rFy(r)'/3. If || € 1(0,7), then
dist(z, E) < Ca(1, 0(0))r (Fi(r)"/* +2(r)2).
We let {s;}74" C [0,7] be a sequence such that

0==50<81< < 8m<Smp1=r, s €I10,7),

and
Si+1 — 54 S 27'F1(7’)1/3.

For any z € X(r) N By, if s; < |z| < s;41 for some 0 < i < m, we have that
. Si
dist(z, F) < |z — |—x

] + dist (fx"x,E>
< (Si41 — i) + Calp, ©(0))r (Fl(r)1/3 + E(r)l/z)

(Ca(1,©(0)) + 2)r (Fi (1) + 2(1)/?)

IN

O

Definition 4.10. Let U C R? be an open set, £ C R? be a set of Hausdorff
dimension 2. F is called Ahlfors-regular in U if there isa § > 0 and & > 1 such
that, for any x € ENU,if 0 <7 < and B(z,r) C U, we have that

& <HA(EN B(x,r)) < &r?.
Lemma 4.11. Let Ry be the same as in Lemma 4.9. If E is Ahlfors-regular, and

r € ZN(0, Ry) satisfies Z(r) < pro, then there is a constant C' = C(u, &, ©(0))
such that

dist(z, X (r)) < Cr (Fl(r)1/4 + E(r)l/z) , € ENB(0,97/10).
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Proof. Let {Xj}r>1 be the same as in (4). For any ¢ € Z with ty11 <t < tg,
E(t) < pro and z € y(t), we have that

dist(x, X (r)) < dr(4(t), X (|]) 0 Bya)) + (X (J2]) N Blap, X (1))
< (4 + 2 al2(2)) 2 + Ca, O(O))r (20)72 + Fi(r)2)

We put
JO,7) = {t € [0,7] : E(t) > Fi(r)"/?}.

For any = € v(t) with ¢ € (0,7) \ J(0,r), we have that

dist(z, X(r)) < C5(, 0(0)r (2()/2 + Fy (1)) .

We put
Ev= |J (EnoB), B2= ) (EnB\4®),
teJ(0,r) t€(0,r)\J(0,r)
and
Es=ENB.\(E,UE) = |J 0.
te(0,r)\J(0,r)
Then
H*(By U Ey) = / dH?(z) — / dH?*(x)
ENB, Es

2 xXr) — COoSU(x 2 X
<[ e - [ sty
:/ (1 — cosO(x))dH>*(x) —|—/ cos O(x)dH?(x)
ENB, FiUE>
<r F(r)+/0 H (EmaBt)dt+/0 H(Ey N OBy)dt
<r?F(r) —|—/

(20(0) +tf'(t) + 2f()tdt + p~* /T t=(t)dt
J(0,r) 0

< 24 p 2 F () + 20(0) / bt
{t€[0,r]:E(t)>Fy(r)1/2}
—1y,2 2000) "
<@24+p H)r*Fi(r)+ 2 o tE(t)dt
< Cs(p, ©(0))r* Fi(r)'?,
where Cg(1,0(0)) = (2 + =) (uro/4)'/? 4+ 20(0).
We see that, for any x € Fj,
dist(z, X(r)) < Cs (1, 0(0)r (2()/2 + Fa(1)/) .
If x € EN B(0,9r/10) with

dist(z, X (r)) > Cs(p, ©(0))r (E(T)l/Q n Fl(r)1/4) iy
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for some s € (0,7/10), then E N B(z,s) C Ey U Ey, thus
H2(E N B(z,s)) < Cs(u, ©(0))r?Fy(r)"/2.
But on the other hand, by Ahlfors-regular property of E, we have that
H2(EN B(z,s)) > & 's%
We get so that
5 < Co(n, ©(0))/ - &% - rFy ()4,
Therefore, for x € E N B(0,9r/10),
dist(z, X(r)) < (Colu, 0(0)) /2 - &% + C5(1,0(0)) ) (202 + Fa(1)/*) .
O
For any k > 0, we take Ry = 27*Rg and s, € [Rpy1, Ry] such that
R
SR E(t)dt
= <=L T < 9F(Ry).
(s5e) < Ry — Rg1 — 1 (Ri)
We put Xj, = X(sg). Then for any j > > 2, we have that
j—1
< G100

k=1

do 1 (X, X;)

(]

(2P (51012 + F(s1-)2)

=

<O 0(0) Y R0

k=i—1

_ G0 & [ ne

<

dt

In2 b1 Ry t

_ Ci(1,6(0)) /R RIGRE
In2 Ri_o t '

If the gauge function h satisfy that h(r) < C(In(A/r))~°, 0 < r < Ry, for some
A> Ry, C >0 and b > 3, then

o [0 ()

and then Remark 3.16 implies that

=6 (m <f>>b 5o (ln (f))bﬂ <G, (m (f))bﬂ |

thus Ro (12
/ —i%—ﬁ<+m. (4.4)
0

In case (4) holds, X}, converges to a cone X (0), and

Ri—2 1/2
o, (X(0), ;) < 1200 / RO,
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Lemma 4.12. If (4) holds, then X (0) is a minimal cone.

Proof. We see that for any r € (0,t) N, there exist sliding minimal cone Z(r)
such that do 1 (X (r), Z(r)) < 20e(r)Y/2. But &(r) — 0 as r — 0+, we get that

do1(Z(sk), X(0)) — 0.

Since Z(sg) is sliding minimal for any k, we get that X (0) is also sliding minimal.
O

For any r € Z N (0, Ry) with Z(r) < prp, we assume Rii11 < r < Ry, by
Lemma 4.7, we have that

do,1(X(0), X(r)) < do,1(X(0), Xg+3) + do,1 (X3, X (7))

Rpt1 1/2
< GO0 [ RO,

307

Sk+3

<m@w@®(awﬂ+mmm+l”ﬂ?@@

+——0(0,7)" 2Ry (r)"/? + 2mp /2 (E(sk+3>” 2+ E(r)Y 2)

(4.5)
Theorem 4.13. If (4) holds, and E is AR, then E has unique tangent cone
X (0) at 0, and there is a constant C = C1o(p, ©,&0) such that

r 1/2
doan (B XO) < € (R4 [ F ) (4.6)

In particular,

e if h(r) < Cu(In(A/r))~" for some A,C, >0,b>3 and 0 <r < Ry < A,
then

do(E,X(0)) < C'(In(Ay/r))~ =34 0 < r <9Ry/10, A; < 10A/9;

o if h(r) < Cpr®t for some Ch,a17 > 0, and 0 < r < rg, 0 < 19 <
min{1, Ry}, then

do.-(E,X(0)) < C(r/ro)?, 0 <7 <9rp/10, 0 < 3 < a,
where

C < Cii(p, Ao, a1, 3,Ch, &0, 0(0)) (F(T0)1/4 + 7”8“”) .

Proof. From (4) and Lemma 4.9, we get that, for any = € X (0) N B, where
r € %N (0, Ry) such that =(r) < ur,

. =(1/2 1/4 TR()?
dist(z, B) < Cr(1,0,00)r (2772 + Fi ()Y 4 [ ) ")
0
Similarly to the proof of Lemma 4.9, we still consider

I(a,b) = {t € [a,b] ‘ =(t) < Fl(r)2/3}, 0<a<b<r
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we have that I(a,b) # () whenever b —a > rFy(r)'/3. We let {s;}5"** < [0,7]
be a sequence such that

0==50<81 < <8m<S8mp1=r, s €I0,7),

and
Si+1 — 54 S ZTFl(T)l/S.

For any r € (0, Rp), we assume that s; < r < s;41, z € X(0) N OB,
. Sg
dist(z, E) < |z — |—x

+ dist <st>
7l ]
T 1/2
< Cs(p, €0, 0(0))r (Fl(r)1/4+/ Fl(tt)dt)
0

From (4) and Lemma 4.11, we have that, for any x € X(0) N B(0, 9r/10) where
r € ZN(0,Rp) such that Z(r) < um,

(4.7)

dist(z, X (0)) < Cy(u, &, ©(0)) (E(r)1/2 + Fy(r)V4 + /O Wdt) :

Similarly to the proof of Lemma 4.11, we can get that

dist(z, X (0)) < Cro(ps &0, ©(0)) (F1<r>1/4 - ' Fl(’?wdt) L 48)

We get, from (4) and (4), that (4.13) holds.
If h(r) < Cp(In(A/r)) =" for some A,Cj, >0 and b >3 and 0 < r < Ry < A,

then bt
" h(2t) Ch AN~
= —_— < [R——
ha(r) /0 : dtb_1<ln(r>> :

and by Remark 3.16 we have that

—b+1
F(r)<c” (m A)
.

where

A

-1
@ < C(Rg, \, b) (m) +bcl

b—1

r Ro —1

AN !
C" < C(Rp, A\, b) <1n > +
is bounded, thus

r 1/2 (=b+3)/2
/ %dt < o <ln A>
0 t r

Hence we get that
T F.(t 1/2
dosr 0B, X(0) < Cralp&0,00) (i + [ B0 at)
0

—(b—3)/4
<’ <ln A) .

r
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If h(T) < Cpret for some Cp, a1 >0 and 0 < r < rg, then

ha(r) = /0 @dt < @(w)al.

(€3]

We see, from the proof of Corollary 3.15, that

F(r) < (f(ro) + Calaa, B, Xo)Crrst) (r/ro)ﬂ, V0 < B < ay,

thus
Fi(r) = f(r) + 16k (r) < (f(ro) + Chlar, B, Xo)Crrg*) (r/ro)”.
Then
r 1/2
do.or10(E, X (0)) < Cao(p, €0, ©(0)) ( Fu(r)V4 4 /0 Fl(?dt)
< C(r/ro)/*,
where

C < C{O(/JJ) 50» @(O))(F(T0)1/4 + Cé/(alv ﬁv )\07 Ch)r(l)/4)‘

Remark 4.14. If the gauge function h satisfies that

[ 20) g < oo 19)

Ro A Ro 22 Yz
/ TR / tTIm TR p(2t)dt | dr < 400, (4.10)
0 r

then by (3.5), we have that (4) holds.

and

5 Parameterization of sliding almost minimal sets

Let n, d < n and k be nonnegative integers, « € (0,1). By a d-dimensional
submanifold of class C*® of R we mean a subset M of R" satisfying that for
each x € M there exist s neighborhood U of z in R", a mapping ® : U — R"
which is a diffeomorphism of class C* between its domain and image, and a d
dimensional vector subspace Z of R™ such that

M NU)=2Zno).

In this section, we assume that Q C R3 is a closed domain such that the
boundary 052 is a 2-dimensional submanifold of class C1'* for some a > 0. Let
E C Q be a closed set such that E € SAM(Q,0Q,h) and 002 C E, xy € 09.
We always assume that the gauge function h satisfies (4.14) and (4.14). We put

Ao = A/(1—=)), and
)= [ ( [ 120)
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and
1/2

p Ro
hg(p):/o pmitdo (/ t12’\°h(2t)dt> dt

We see, from Proposition 4.1 in [3], that E is Ahlfors-regular in B(zq, Rp),
i.e. there exist 1 > 0 and & > 1 such that for any « € E N B(xg, Ro), if
0 <r < and B(x,r) C B(zo, Ro), we have that

51_17"2 < HQ(E N B(xz,r)) < &,

We see from Theorem 3.10 in [6] that there only there kinds of possibility for
the blow-up limits of E at xg, they are the plane Tan(9€2, x(), cones of type P4
union Tan(9€, o), and cones of type Y union Tan(d92, zq). By Proposition
29.53 in [3], we get so that

3 T

—, or —.

2’ 4

If ©Op(xo) = m, then there is a neighborhood Uy of zp in R* such that E N
Uy = 02 N Uy. In the next content of this section, we put ourself in the case

Op(xg) =37/2 or Tr/4.

Op(xg) =,

Lemma 5.1. There exist ro = ro(z0) > 0 and a mapping ¥ =V, : B(0,79) —
R3, which is a diffeomorphism of class C1® from B(0,7q) to W(B(0,r0)), such
that

\I/(O) = Xy, \II(QO n Bm) can B(.To, Ro), \IJ(LO N BTO) co0n B(IQ, Ro)7
and that DVU(0) is a rotation satisfying that
DY (0)(2) = Tan(Q, zo) and DY(0)(Lo) = Tan(0f?, zg).

Proof. By definition, there are an open set U,V C R? and a diffeomorphism
®: U — V of class C1* such that 29 € U, 0 = ®(z9) € V and

UNIN)=2ZNYV,
where Z is a plane through 0. Indeed, we have that
Z = D®(xp) Tan(09Q, xo)

and
(U NN) =V NDP(xp) Tan(, x0).

We will denote by A the linear mapping given by A(v) = D®(xo) v,
and assume that A(V) = B(0,r) is a ball. Let ®; be a rotation such that
@4 (Tan(09, z0)) = Lo and ®1(Tan(, zo)) = Q. Then we get that $10 Ao ®
is also C1** mapping which is a diffeomorphism between U and B(0,7),

D(®1 0 Ao ®)(xg) Tan(2, zg) = @1 (Tan(, zp)) = Qo,
D(®1 0 Ao ®)(xg) Tan(9Q, x9) = @1(Tan(0, zg)) = Lo,
and
B0 Ao®UNIN) =10 A(ZNV) = Lo N B(0,r),
D10A0®(UNIN) =10 AV NDP(xg) Tan(£2, o)) = Qo N B(0, 7).

We now take rg =7 and ¥ = (®1 0 Ao ®)~ g0, to get the result.
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Let U C R™ be an open set. For any mapping ¥ : U — R" of class C*®, we
will denote by Cy the constant defined by

Cy = sup { |D\I/(|z)_yDa1/)(y)|| cx,yelU,x # y} . (5.1)
Then L
Y(x) - U(y) = / DU(y + t(x — y))dt - (z — y)
and

W (x) — U(y) — DU(y)(z — y)| < / Cu(tlz —y)2dt - |z — 4|

C!
< T -yt
a+1

For any 0 < p < rg, we set U, = ®(B,), M, =V~Y(ENU,) and

A(p) = max {Lip (¥p,),Lip (\Ill_]:)} .

Then A(p) <1/(1 — Cyp®) when Cygp® < 1.

Lemma 5.2. For any 1 < p < rg, M, is local almost minimal in B, at 0 with
gauge function

H(t) < 4A(p)*h(A(p)t) + Ct*, 0 < t < p,

where C' = C(p) is a constant such that 0 < C < & A(p)Cy (4 + Cyp®). More-
over, we have that

M, € GSAM (B,, A(p)*,2p, A(p)*h (20A(p)))
Proof. We see that
diam(U,) < 2pLip (¥|5,) < 2pA(p)

and
ENnU, e GSAM(U,,1,diam(U,), h(2diam(U,))),

By Proposition 2.8 in [3], we have that
M, € GSAM (B,, A(p)*,2p, A(p)*h (20A(p)))

By Proposition 4.1 in [3]|, we get that M, is Ahlfors-regular in B,. Indeed,
we can get a little more, that is, for any @ € M, with 0 < rA(p) < ¢; and
B(z,r) C B(0, p), we have that

(GA () r® < HA(M, 0 Bla,m)) < (61A(p) 7.
Let {¢:}o<i<1 be a sliding deformation of M, in B,. Then

{\I/o%oqfl}ogtgl

is a sliding deformation of £ in U,. Hence we get that

HA(ENU,) <H>*(Wop, 0 HENU,))+ h(2diam(U,))* diam(U,)* (5.2)
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For any 2-rectifiable set A C B,., by Theorem 3.2.22 in [7], we have that

ap J5(¥[4)(x) = || A2 (D (@) ran(a.) |

and

H(W(ANB,)) = /AnB ap Jo (W] 4) (2)dH2 ()

By (5), we get that

/ (1—Oq,|a:|a)2d7—12S’HZ(\I/(AOB,)))gf (14 Colz|*2dH2. (5.3)
ANB,

ANB,
Thus
H2(W(M,)) > (1 — Cyp™)*H*(M,) > H*(M,) — 2Cyp“H?*(M,)
> H*(M,) — 26, CyA(p)p*t,

and
/H2(\I/(901(Mp))) < HZ(QM(MP)) + &1 A(p)Cy (24 Cyp®) p2+a_

Combine these two equations with (5), we get that

H?(M,) < H?(p1(M,)) + &1A(p)Cy (4 + Cup™) P>
(M) (2pA(p)) .
O

Lemma 5.3. Let By C Qq be a 2-rectifiable set, x € Fq, X a cone centered at
0, ® : R® = R? a diffeomorphism of class C1*. Then there exist C > 0 such
that, for any r > 0 and p > 0 with B(®(zx),p) C ®(B(x,1)),

r
do(),p (B(E1), ®(z) + DO(2)X) < (Cr* + || D (2)|de r (Er, & + X)) o
Proof. Since ® is of class C!*®, we have that

B(y) - 8(x) ~ D)y — 2)| <~ fo— yl'

by putting C1 = Cs /(o + 1), we get that
dist(®(y), ®(z) + D®(2)X) < Cyly — z|*T* for y € 2 + X.
For any z € F1 N B, and y € z + X, we have that

[©(2) = (y)| < [@(2) — (y) — D(2)(2 —y)| + [[D(2)] - |z — 9]
<|[D2(@)|| - |2 =yl + Culz — 27 + Cily — af "+,

thus
dist(®(2), @(z + X)) < | D®(x)||rd, (E1,x + X) + 2C1r' T,
hence

dist(®(2), ®(z) + D®(2)X) < ||D®(2)||rdy - (Er, o+ X) +3Cr' T (5.4)
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For any z € X N B,, ®(x) + D®(z)z € ®(x) + DP(z)X, and
dist(®(z) + DO(x)z, ®(E1)) = inf{|®(y) — ®(z) — DP(x)z| : y € E1}
< nf{Cyr e 4 [DO@))| - ly —x — 2| - y € By}

< ||D®(x)|lrde,r(x + X, E1) + Crr' ™.
(5.5)
We get from (5) and (5) that

dp(a),p (D(Er), ®(2) + DD(x) X) < % (311 + | D®()|| - dyr (1, z + X))
O

Theorem 5.4. Let Q, E C Q, o € 02 and h be the same as in the beginning
of this section. Then there is a unique tantent cone X of E at xy; moreover, if
the gauge function h satisfy that

h(t) < Cpt™ for some Cp > 0,1 > 0 and 0 < t < to, (5.6)
then there exists py > 0 such that, for any 0 < f < min{a, 1,2},
g o (B, 0 + X) < Clp/po)*'*, 0.< p < 9po/20,
where C' is a constant satisfying that
C < Cao(p, Ao, v, a1, B,€1)(F (o, 2p0) + Cup§ + Crpgt)'*,
and Fg(zo,7) = r—2H?(E N B(xo,7)) — Op(xo) + 16h1 (7).

Proof. Let r € (0,79) be such that Cgr® < 1/2 and 2r < Ry. Then A(r) < 2.
By Lemma 5.2, we have that M, is loacal almost minimal at 0 with gauge
function H satisfying that

H(t) < 16h(2t) + Cpt™, 0 <t <, (5.7)

where C,. < & A(r)Cy (4 + Cyr®) < 9£Cy is a constant.
We put far, (p) = O, (0,p) — Op, (0). Then we get, from (3.5) and (3.5),
that

Faa(p) < (17220 far, (r) p*2° + 8(1 4 Ag)p? 0 / e 0
P

—2 20 | o7+2X0 270 > h(2t)
< (r7 far, (1) 20 + 2772 (14 Xo)p e
P

+ 2°‘+3(1 + X0)Cy - Ci(a, B, Xo)r - (p/r)ﬁ,

where Ci(a, 3, \g) is the constant in (3.5).
We get from (5) that

Hi(p) = /Op @ds < 16h1(2p) + %(Qp)a,

by setting Fi(p) = fum, (p) + 16H1(p), we have that

Fl (,0) S 012()\05 a, 57 T)(P/T)ﬁ + 28h1(29) + 24+QCTa_1pa

h(2t)

2r
+ 274’2)\0(1 + )\O)pQ)\O / t1+2)\0 dt,
2p
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where
Cia(No, @, B,7) < far. (1) + 2973 (1 + X) C.C1 (v, B, Ao)r?.

Hence

. 1(P)1/2 1/2 8 ) a/2
7;} dp < Cra(Xo, a0, B,7m)7(2/8)(t/r)” 4+ 16ho(2t) + Cr3(a, 1)t
0

1/2

t 2r
_ h(2s)
+ 24+>\0(1 + )\0)1/2‘/0 P 1420 (/2 Mds) d/%
p

where Cy3(a,r) < 93+0/20=3/2012 thus
t 1/2
F;
/ 1(L)dp<—|—oo, for 0 <t <
0 p

We now apply Theorem 4.13, there is a unique tangent cone 17" of M,. at 0,
thus there is a unique tangent cone X of E at xg.
For any R € (0, Ry), we put

fe(zo, R) = R™*H?*(E N B(zo, R)) — Og(z0)

and
FE(!E(), R) = fE(LL'(), R) + 16h1(R)

We see, from (5) and B(xzo, p/A(p)) C U, C B(zo, pA(p)), that
(1=Cup®)*(far, (P)+OE(20)) < p*H*(ENU,) < (14+Cwp™)* (far,(p)+O£(w0)),

so that
fur, (p) < (1= Cup®)~* fe(20, pA(p)) + 40 (20)Cyp®,

and
far(p) = (1= Cgp**)? fr(xo, p/A(p)) + 20 (20)C p**.

Thus we get that
Ch2(Nos o, B,7) <16 fp(20, 2r) + (961 - 272 (14 X) C1 (v, B, Ao) + 40 5(0)) Cyr®.
If h satisfy (5.6), we take 0 < pg < min{r,to}, then

Oh
p) < —(2p)*, Hi(p) <
hl()_al( ) ) 1() o

gt+2an 0 20C
hpa1+ ana7 O<P§P0a

and

Fi(p) < Ciz(Ao, . B, po. Cu)(p/po)” + 2571 ar Crp™ + Cra(a, &1, Cw)p®,
(5.8)
where Cy3(No, a1, 3, po, Cr) and Ci4(c, &1, Cyy) are constant satisfying that

013(A07 aq, 67 £0, Ch) S 012(A07 «, 100) + 27+4a1 (1 + )‘O)Cl (alv ﬁa )\O)C(hp(o)l1

and
Ciraa, &1, Cg) < 22771 Cy.
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We get so that (5) can be rewrite as

Fi(p) < Cis(Nos @, a1, B, &) (Fr (20, 2p0) + Cap§ + Crpl* ) (p/po)’/.

By Theorem 4.13, we have that

14 F t 1/2
do,0p/10(M;, T) < Ci6(p, o) <F1(0)1/4 +/ 71(2 dt)
0

< Ci7(p, Moy @, an, B, €1)G (0, po)(p/po)?/4,

where
GE(zo, po) = (Fr(zo,2p0) + Cup§ + Chpg) /™.

Apply Lemma 5.3, and by setting X = DWU(0)T, we get that, for any p €
(Oa 9p0/10)7

dwo,p/Q(EaxO + X) < dwo,p/A(p)(EaxO + D\II(O)T)
< 6Cyp” + 2dy,,(M,,T)

< 6Cyp® + Cis(p, Mo, @, a1, B, &) G (20, po)(p/po)?/*
S C]Q(,Lh )\07 «, gy, ﬁ7 gl)GE(:COa PO)(p//’O)ﬁ/‘l

The radius pg is chosen to be such that
0 < po < min {l,to,ro(xo)vRo/Qa (20\1/)71/(1}
and Rg > 0 is chosen to be such that
Far (Ro) < pmo/4, E(Rp) <1074 Ry < (1 — 7).
O

Lemma 5.5. For any 7 > 0 small enough, there exists eo = eo(7) > 0 such that
the following hold: E is an sliding almost minimal set in Q) with sliding boundary
00 and gauge function h, xg € ENIQ, ¥ is a mapping as in Lemma 5.1 and
Cy is the constant as in (5), if ro > 0 satisfy that Cyrf < &3, h(2r9) < &2 and
Fg(xo,1r0) < &2, then for any r € (0,9r9/10), we can find sliding minimal cone
Zyo . in Tan(Q, zo) with sliding boundary Tan(0Q, xo) such that

dist(x, Zyy.r) < 71, @ € EN B(xg, (1 — 7))
dist(z, E) < 7r, © € Zy, » N B(xo, (1 —7)r),

and for any ball B(x,t) C B(zo, (1 —7)r),
|H?(Zyy.r N B(z,t)) — H?*(EN B(x,t))| < 712
Moreover, if E D 09, then Zy, , D Tan(99Q, xo).
Proof. Tt is a consequence of Proposition 30.19 in [3]. O

Corollary 5.6. Let Q, E C ), g € 090, h and Fg be the same as in Theorem
5.4. Suppose that the gauge function h satisfying

h(t) < Cpt®** for some Cp, > 0,1 >0 and 0 < t < tg. (5.9)
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Then there exists 0 > 0 and constant C = Cao(u, Ao, @, 1, 3,€1) > 0 for 0 <
B < min{o, a1,2X0} such that, whenever 0 < pg < min{1,to,ro(xo)} satisfying

Fg(xo,2po) + Cupgy + Crhpy* < 0,
we have that, for 0 < p < 9pg/20,
day. (B, z0 + Tan(E, 0)) < C(Fg(xo,2p0) + Cupf + Cnpy)*(p/po)*'*.
Proof. By Theorem 5.4, there exist py > 0 such that
dag,o(E, w0 + Tan(E, 20)) < C(p/po)**, 0 < p < 9po/20,
where py > 0 is chosen to be such that
0<po< min{l,to,rg(xo),R0/2, (20«,)*1/“} (5.10)
and Rg > 0 is chosen to be such that
Far (Ro) < pmo/4, E(Rp) <1074 Ry < (1 — 7).

By Lemma 5.5, there exists § > 0 such that if Fg(xo,2p0) + Cupf + Crpg* < 96,
then (5) holds, and we get the result. O

Lemma 5.7. Let Q, E, ©g and h be the same as in Theorem 5.4. Suppose
that O (x9) = 3w/2. Then there exist a radius r > 0, a number > 0 and a
constant C > 0 such that, for any x € B(zg,r)NE and 0 < p < 2r, we can find
cone Zy , which is a half plane in Tan($2, xo) union Tan(0Q, o) when x € 0N
and a plane in R3 when x ¢ 0N, satisfying that

dop(E, Zyp) < CpP.
Proof. By Corollary 5.6, there exist 6 > 0 and C' > 0 such that whenever
0 < po < min{l, t, ro(xzo)} satisfying
Fr(20,2p0) + Cu,, p5 + Crpy' <0,
we have that, for 0 < p < 9p/20,
do.p (B, wo + Tan(E, z9)) < C8*(p/po)”,
where 0 < 8 < min{a, ag,2Mg}/4. We take p; € (0, pg) such that
Fr(z0,2p) + Cy,, p* + Cpp™ < min{d/2,e2(7)},¥0 < p < p1.

If x € 9Q N B(xo, p1/10), we take t = p1/2, then apply Lemma 5.5 with
r = |z — x| + ¢ to get that

H2(EN B(z,t) < H(Zpr 0 B(x,t)) + 712,
thus

1 T N
Op(@,t) < 5H(Zey N B(w,1) +47 < 5 + Cu, v + 47,
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and
FE(,T,t) < Cq;IOTa + 47 + 16h1(t).

We get that F(z,2p) + Cg, p* + Cpp® <6 for 0 < p < t/2. Thus
dyp (B, x + Tan(E, x)) < C6Y*(r/t)?, 0 < r < 9t/20. (5.11)

If x € QN B(xzg, p1/10) \ 09, we take t = t(z) = dist(x, 0Q) then apply
Lemma 5.5 with r = | — z¢| + ¢ to get that

H?*(EN B(z,t)) < H*(Zypr 0 B(x,t)) + 717,

thus 1
Op(x,t) < ﬁHz(Zz,r N B(z,t)) + 47 < w4+ 47.

It is follow from Section 12 in [1] that there is a constent Cy > 0 such that
dor(E, Zp ) < C1(r/t)P, 0 <1 < 9t/20 (5.12)

for some plane Z, ;.
There exists a constant Co > 0 such that for any x € B(x, p1/10), there
exists 1 € B(xg, p1/5) N 0N with 21 € E \  such that

|z — 1] < Codist(z, 09).

We take 0 < a < 3/(1+ ). For any x € B(xo, p1/5)NQ, if r < Cytt/ (=)
then we get from (5) that

dxﬂ“(EaZxﬂ“) < Clc:f(a_l)raﬁ;
if C3t1/(1=9) < 1 < p; /5, then by (5), we have that

|z — 21|+ 7

dyr(E, 21+ Tan(E, x1)) < Ay, |g—ay |+ (B, 21 + Tan(E, x1))

r

B
(14 80 (20
T p1/2

< 05(1 + CGT_G)B+17“B < 077“5_(15_(1.

We get so that there is a minimal cone Z, , such that
dz,r(Ea Z:c,r) S CBTBI
for 1 = min{afB, 8 — af —a} and any 0 < r < p;/5. O

Lemma 5.8. Let Q, E, xo and h be the same as in Theorem 5.4. Suppose
that ©g(xg) = Tr/4. Then there exist a radius r > 0, a number 5 > 0 and a
constant C > 0 such that, for any x € B(xzo,r)NE and 0 < p < 2r, we can find
cone Zy., which is a cone of type Yy in Tan(Q, zo) union Tan(0Q, xg) when
x € 9Q and a cone of type Y in R3 when x ¢ 00, satisfying that

dep(E, Zy,) < CpP°.
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Proof. By Corollary 5.6, there exist 6 > 0 and C' > 0 such that whenever
0 < po < min{1,tp,ro(z0)} satisfying

Fr(z0,2p0) + Cu,, p5 + Cupg* <0,
we have that, for 0 < p < 9p/20,
deyp(E,x0 + Tan(E, z¢)) < C’(51/4(p/p0)ﬁ7
where 0 < 8 < min{«, a1,2Xo}/4. We take p; € (0, pg) such that
Fg(xo,2p) + Cy, p% + Crp™ <min{d/2,e2(7)}, V0 < p < p1.
If © € 9Q N B(xo, p1/10), we take t = |z — x¢|/2, then apply Lemma 5.5 with
r = |z —xo|+t to get that
H?*(EN B(z,t)) < H*(Zyp . 0 B(x,t)) + 712,
thus 1 -
Ofp(z,t) < t—QHQ(ZI,T N B(x,t))+ 97 < 3 + Cy, 7" + 97,
and
Fg(z,t) < Cy, r* + 97 + 16h1 (1).
We get that Fr(z,2p) + Cg, p* + Cpp® <6 for 0 < p < t/2. Thus
dpr(E,2 + Tan(E,z)) < C8Y4(r/t)?, 0 < r < 9t/20.
If 2 € 90 N B(xg, p1/10) \ 0, we put By = {ax € E : Og(z) = 37/2} and

take
t = t(z) = min{dist(z, 0), dist(x, Ey)},

then apply Lemma 5.5 with r = | — z¢| + ¢ to get that
H?*(EN B(z,t)) < H*(Zypr 0 B(x,t)) + 717,
thus
1., 3m
Ofp(x,t) < t—z?{ (Zyr N B(x,t)) + 47 < B + 47.
It is follow from Section 12 in [1] that
dpr(E, 2z + Tan(E, x)) < C(r/t)?, 0 < r < 9t/20.

A Similar argument as above, we will get the result. O

Corollary 5.9. Let Q, E, xo and h be the same as in Theorem 5.4. Then there
exist a radius v > 0, a number B > 0 and a constant C > 0 such that, for any
x € B(zo, ) NE and 0 < p < 2r, we can find cone Z,,, which is a sliding
minimal cone when x € 9Q and a minimal cone in R® when x ¢ 09, satisfying
that

dpp(E, Zy,) < CpP°. (5.13)

Proof. 1t is follow from Lemma 5.7 and Lemma 5.8. O

Proof of Theorem 1.2. 1t is follow from Corollary 5.9 and the generalization in
[1] of Reifenberg’s topological disk. More precisely, Section 10 in [1] gives a C!
estimates, but in our case, we can get a bit little more that equation (10.22) in
[1] and (5.9) give a COP-Holder estimates of its differential. O
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6 Existence of the Plateau problem with sliding
boundary conditions

Let © C R? be a closed domain such that the boundary 95 is a 2-dimensional
manifold of class C1® for some o > 0. Let Ey C Q be a closed set with Ey D 5.
We denote by € (Ey) be the collection of all competitors of Ej.

Theorem 6.1. There exists E € € (Fy) such that
H*(E\ 0Q) = inf{H*(S\ 00Q) : S € €(Ep)}

Proof. We put
mo = inf{H?(S\ IN) : S € €(Ep)}.
If my = +00, we have nothing to do; if mg = 0. We now assume that 0 < mg <

+o00.
Let {S;} C %o be a sequence of competitors bounded by B(0, R) such that

lim H2(S; \ 99) = mo.

71— 00
Apply Lemme 5.2.6 in [8], we can fined a sequence of open sets {U;} and a
sequence of competitors {E;} C €(Fy) of Ey bounded by B(0, R+ 1) such that

o U; CUjt1, Ui>1U; = B(0, R+ 2) \ 0%
e E,NU; € QM (U;, M, diam(U;)) for constant M > 0;
. HQ(EZ) < 7‘[2(51) +270,

We assume that E; converge locally to F in B(0, R+2), pass to subsequence
if necessary, then by Corollary 21.15 in [3], we get that E is sliding minimal.

We get, from Theorem 1.2 and Theorem 1.15 in [2], that E is a Lipschitz
neighborhood retract. But we see that E; converges to F, we get so that E is
a competitor. O]
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