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Abstract

In this paper, we will give a C1,β-regularity result on the boundary for two dimensional
sliding almost minimal sets in R3. This effect may lead to the existence of a solution to
the Plateau problem with sliding boundary conditions proposed by Guy David in [6] in
the case that the boundary is a 2-dimensional smooth manifold.

1 Introduction

Jean Taylor, in [12], proved a celebrated regularity result of Almgren almost minimal sets, that
gives a complete classification of the local structure of 2-dimensional (almost) minimal sets.
This result may apply to many actual surfaces, soap films are considered as typical examples.
Guy David, in [4], gave a new proof of this result and generalized it to any codimension.
That is, every 2-dimensional almost minimal set, in an open set U ⊆ Rn with gauge function
h(t) ≤ Ctα, is local C1,β equivalent to a 2-dimensional minimal cone.

In [6], Guy David proposed to consider the Plateau Problem with sliding boundary condi-
tions, since it is very natural to soap films and Jean Taylor’s regularity also applies for sliding
almost minimal sets away from the boundary, and it also has some advantages to consider
the local structure at the boundary. Motivated by these, regularity at the boundary would
be well worth our considering. In fact, a result similar to Jean Talyor’s will be a satisfactory
conclusion, for which together with Jean Taylor’s theorem will imply the local Lipschitz re-
tract property of sliding (almost) minimal sets, and the existence of minimizers for the sliding
Plateau Problem easily follows.

One of advantages of the sliding boundary conditions is that we have chance to determine
the possibility of minimal cones in the upper half space Ω0 of R3, where minimal cone is a cone
but minimal, and minimal is understood with sliding on the boundary ∂Ω0. Indeed, there no
more than seven kinds of cones which are minimal, they are ∂Ω0, cones of type V, cones of
type P+, cones of type Y+, cones of type T+ and cones ∂Ω0∪Z where Z are cones of type P+

or Y+, see Section 3 in [8] for the precise definition of cones of type P+, Y+, T+ and V, and
also Remark 3.11 for the claim. We ascertain that there are only there kinds of cones which
are minimal and contains the boundary ∂Ω0, they are ∂Ω0 and ∂Ω0 ∪ Z where Z is cone of
type P+ or Y+, see Theorem 3.10 in [8] for the statement.
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Another advantages of the sliding boundary conditions is that we can easily establish a
monotony density property at the boundary, see Theorem 2.3 for precise statement. In fact,
the monotony density property is not enough, we have estimated the decay of the almost
density, and that is also possible with sliding on the boundary, see Corollary 3.16.

In [8], we proved a Hölder regularity of two dimensional sliding almost minimal set at the
boundary. That is, suppose that Ω ⊆ R3 is a closed domain with boundary ∂Ω a C1 manifold
of dimension 2, E ⊆ Ω is a 2 dimensional sliding almost minimal set with sliding boundary
∂Ω, and that ∂Ω ⊆ E. Then E, at the boundary, is locally biHölder equivalent to a sliding
minimal cone in the upper half space Ω0. In this paper, we will generalized the biHölder
equivalence to a C1,β equivalence when the gauge function h satisfies that h(t) ≤ Ctα1 and
∂Ω is a 2 dimensional C1,α manifold. Let us refer to Theorem 1.2 for details. Where the
sliding minimal cones always contain the boundary ∂Ω0, namely only there kinds of cones can
appear: ∂Ω0 and ∂Ω0 ∪ Z, where Z are cones of type P+ or Y+.

Let us introduce some notation and definitions before state our main theorem. A gauge
function is a nondecreasing function h : [0,∞) → [0,∞] with limt→0 h(t) = 0. Let Ω be a
closed domain of R3, L be a closed subset in R3, E ⊆ Ω be a given set. Let U ⊆ R3 be an
open set. A family of mappings {ϕt}0≤t≤1, from E into Ω, is called a sliding deformation of
E in U , while ϕ1(E) is called a competitor of E in U , if following properties hold:
• ϕt(x) = x for x ∈ E \ U , ϕt(x) ⊆ U for x ∈ E ∩ U , 0 ≤ t ≤ 1,
• ϕt(x) ∈ L for x ∈ E ∩ L, 0 ≤ t ≤ 1,
• the mapping [0, 1]× E → Ω, (t, x) 7→ ϕt(x) is continuous,
• ϕ1 is Lipschitz and ψ0 = idE .

Definition 1.1. We say that an nonempty set E ⊆ Ω is locally sliding almost minimal at
x ∈ E with sliding boundary L and with gauge function h, called (Ω, L, h) locally sliding
almost at x ∈ E for short, if H2 E is locally finite, and for any sliding deformation {ϕt}0≤t≤1

of E in B(x, r), we have that

H2(E ∩B(x, r)) ≤ H2(ϕ1(E) ∩B(x, r)) + h(r)r2.

We say that E is sliding almost minimal with sliding boundary L and gauge function h,
denote by SAM(Ω, L, h) the collection of all such sets, if E is locally sliding almost minimal
at all points x ∈ E.

For any x ∈ R3, we let τ x : R3 → R3 be the translation defined by τ x(y) = y + x, and
let µr : R3 → R3 be the mapping defined by µr(y) = ry for any r > 0. For any S ⊆ R3 and
x ∈ S, a blow-up limit of S at x is any closed set in R3 that can be obtained as the Hausdorff
limit of a sequence µ1/rk

◦τ−x(S) with limk→∞ rk = 0. A set X in R3 is called a cone centered
at the origin 0 if for any µt(X) = X for any t ≥ 0; in general, we call a cone X centered at
x if τ−x(X) is a cone centered at 0. We denote by Tan(S, x) the tangent cone of S at x, see
Section 2.1 in [1]. We see that if there is unique blow-up limit of S at x, then it coincide with
the tangent cone Tan(S, x). Our main theorem is the following.

Theorem 1.2. Let Ω ⊆ R3 be a closed set such that the boundary ∂Ω is a 2-dimensional
manifold of class C1,α for some α > 0 and Tan(Ω, z) is a half space for any z ∈ ∂Ω. Let
E ⊆ Ω be a closed set such that E ⊇ ∂Ω and E is a sliding almost minimal set with sliding
boundary ∂Ω and with gauge function h satisfying that

h(t) ≤ Chtα1 , 0 < t ≤ t0, for some Ch > 0, α1 > 0 and t0 > 0.
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Then for any x0 ∈ ∂Ω, there is unique blow-up limit of E at x0; moreover, there exist a
radius r > 0, a sliding minimal cone Z in Ω0 with sliding boundary ∂Ω0, and a mapping
Φ : Ω0 ∩B(0, 1)→ Ω of class C1,β, which is a diffeomorphism between its domain and image,
such that Φ(0) = x0, |Φ(x)− x0 − x| ≤ 10−2r for x ∈ B(0, 2r), and

E ∩B(x0, r) = Φ(Z) ∩B(x0, r).

Theorem 1.2 and Jean Taylor’s theorem imply that any set E as in above theorem is
Lipschitz neighborhood retract. This effect gives the existence of a solution to the Plateau
problem with sliding boundary conditions in a special case, see Theorem 8.1.

2 Lower bound of the decay for the density

In this section, we will consider a simple case that Ω is a half space and L is its boundary;
without loss of generality, we assume that Ω is the upper half space, and change the notation
to be Ω0 for convenience, i.e.

Ω0 = {(x1, x2, x3) ∈ R3 | x3 ≥ 0}, L0 = ∂Ω0.

It is well known that for any 2-rectifiable set E, there exists an approximate tangent plane
Tan(E, y) of E at y for H2-a.e. y ∈ E. We will denote by θ(y) ∈ [0, π/2] the angle between
the segment [0, y] and the plane Tan(E, y), by θx(y) ∈ [0, π/2] the angle between the segment
[x, y] and the plane Tan(E, y), for x ∈ R3.

In this section, we assume that there is a number rh > 0 such that∫ rh

0

h(2t)

t
dt <∞, (2.1)

and put

h1(t) =

∫ t

0

h(2s)

s
ds, for 0 ≤ t ≤ rh.

Lemma 2.1. Let E ⊆ Ω0 be any 2-rectifiable set. Then, by putting u(r) = H2(E ∩ B(x, r)),
we have that u is differentiable almost every r > 0, and for such r,

H1(E ∩ ∂B(x, r)) ≤ u′(r).

Proof. Considering the function ψ : R3 → R defined by ψ(y) = |y − x|, we have that, for any
y 6= x and v ∈ R3,

Dψ(y)v =

〈
y − x
|y − x|

, v

〉
,

thus
ap J1(ψ|E)(y) = sup{|Dψ(y)v| : v ∈ Tan(E, x), |v| = 1} = cos θx(y). (2.2)

Employing Theorem 3.2.22 in [9], we have that, for any 0 < r < R <∞,∫ R

r
H1(E ∩ ∂B(x, t))dt =

∫
E∩B(x,R)\B(x,r)

cosx(y)dH2(y) ≤ u(R)− u(r),
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we get so that, for almost every r ∈ (0,∞),

H1(E ∩ ∂B(x, t)) ≤ u′(r).

Lemma 2.2. Let E be a 2-rectifiable (Ω0, L0, h) locally sliding almost minimal at x ∈ E.
• If x ∈ E ∩ L0, then for H1-a.e. r ∈ (0,∞),

H2(E ∩B(x, r)) ≤ r

2
H1(E ∩ ∂B(x, r)) + h(2r)(2r)2. (2.3)

• If x ∈ E \ L0, then inequality (2.2) holds for H1-a.e. r ∈ (0,dist(x, L0)).

Proof. If H2(E ∩ ∂B(x, r)) > 0, then H1(E ∩ ∂B(x, r)) = ∞, and nothing need to do. We
assume so that H2(E ∩ ∂B(x, r)) = 0.

Let f : [0,∞)→ [0,∞) be any Lipschitz function, we let φ : Ω0 → Ω0 be defined by

φ(y) = f(|y − x|) y − x
|y − x|

.

Then, for any y 6= x and any v ∈ R3, by putting ỹ = y − x, we have that

Dφ(y)v =
f(|ỹ|)
|ỹ|

v +
|ỹ|f ′(|ỹ|)− f(|ỹ|)

|ỹ|2

〈
ỹ

|ỹ|
, v

〉
ỹ

If the tangent plane Tan2(E, y) of E at y exists, we take v1, v2 ∈ Tan2(E, y) such that
|v1| = |v2| = 1, v1 is perpendicular to y = x, and that v2 is perpendicular to v1, let v3 be a
vector in R3 which is perpendicular to Tan2(E, y) and |v3| = 1, then

ỹ = 〈ỹ, v2〉v2 + 〈ỹ, v3〉v3 = |ỹ| cos θx(y)v2 + |ỹ| sin θx(y)v3,

and

Dφ(y)v1 ∧Dφ(y)v2 =
f(|ỹ|)2

|ỹ|2
v1 ∧ v2 +

|ỹ|f ′(|ỹ|)f(|ỹ|)− f(|ỹ|)2

|ỹ|3
cos θx(y)v1 ∧ ỹ,

thus
ap J2(φ|E)(y) = ‖Dφ(y)v1 ∧Dφ(y)v2‖

=
f(|ỹ|)
|ỹ|

(
f ′(|ỹ|)2 cos2 θx(y) +

f(|ỹ|)2

|ỹ|2
sin2 θx(y)

)1/2

.

We consider the function ψ : R3 → R defined by ψ(y) = |y − x|. Then, by (2), we have
that

ap J1(ψ|E)(y) = cos θx(y).

For any ξ ∈ (0, r/2), we consider the function f defined by

f(t) =


0, 0 ≤ t ≤ r − ξ
r
ξ (t− r + ξ), r − ξ < t ≤ r
t, t > r.
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Then we have that

ap J2(φ|E)(y) ≤ f(|ỹ|)f ′(|ỹ|)
|ỹ|

cos θx(y) +
f(|ỹ|)2

|ỹ|2
sin θx(y).

Applying Theorem 3.2.22 in [9], by putting Aξ = E ∩B(0, r) \B(0, r − ξ), we get that

H2(φ(E ∩B(0, r))) ≤
∫
Aξ

r2

ξ2
· |ỹ| − r + ξ

|ỹ|
cos θx(y)dH2(y) +

r2

(r − ξ)2
H2(Aξ)

=

∫ r

r−ξ

r2(t− r + ξ)

ξ2t
H1(E ∩ ∂B(x, t))dt+ 4H2(Aξ),

thus
H2(E ∩B(0, r)) ≤ (2r)2h(2r) + lim

ξ→0+
r2

∫ r

r−ξ

t− r + ξ

tξ2
H1(E ∩ ∂B(x, t))dt.

Since the function g(t) = H1(E∩B(x, t))/t is a measurable function, we have that, for almost
every r,

lim
ξ→0+

∫ ξ

0

tg(t− r + ξ)

ξ2
dt =

1

2
g(r),

thus for such r,
H2(E ∩B(x, r)) ≤ (2r)2h(2r) +

r

2
H1(E ∩B(x, r)).

For any set E ⊆ R3, we set

ΘE(x, r) = r−2H2(E ∩B(x, r)), for any r > 0,

and denote by ΘE(x) = limr→0+ ΘE(x, r) if the limit exist, we may drop the script E if there
is no danger of confusion.

Theorem 2.3. Let E be a 2-rectifiable (Ω0, L0, h) locally sliding almost minimal at x ∈ E.
• If x ∈ L0, then Θ(x, r) + 8h1(r) is nondecreasing as r ∈ (0, rh).
• If x 6∈ L0, then Θ(x, r) + 8h1(r) is nondecreasing as r ∈ (0,min{rh,dist(x, L)}).

Proof. From Lemma 2.2 and Lemma 2.1, by putting u(r) = H2(E ∩ B(x, r)), we get that, if
x ∈ L,

u(r) ≤ r

2
u′(r) + h(2r)(2r)2, (2.4)

for almost every r ∈ (0,∞); if x 6∈ L, then (2) holds for almost every r ∈ (0,min{rh,dist(x, L)}).
We put v(r) = r−2u(r), then v′(r) ≥ −8r−2h(2r), we get that Θ(x, r) + 8h1(r) is nonde-

creasing.

Remark 2.4. Let E be a 2-rectifiable (Ω0, L0, h) locally sliding almost minimal at some point
x ∈ E. Then by Theorem 2.3, we get that ΘE(x) exists.

5



3 Estimation of upper bound

Let Z be a collection of cones. We say that a set E ⊆ R3 is locally Ck,α-equivalent (resp.
Ck-equivalent) to a cone in Z at x ∈ E for some nonnegative integer k and some number
α ∈ (0, 1], if there exist %0 > 0 and τ0 > 0 such that for any τ ∈ (0, τ0) there is % ∈ (0, %0),
a cone Z ∈ Z and a mapping Φ : B(0, 2%) → R3, which is a homeomorphism of class Ck,α

(resp. Ck) between B(0, 2%) and its image Φ(B(0, 2%)) with Φ(0) = x, satisfying that

‖Φ− id− Φ(0)‖∞ ≤ %τ (3.1)

and
E ∩B(x, %) ⊆ Φ (Z ∩B (0, 2%)) ⊆ E ∩B(x, 3%). (3.2)

Similarly, if Ω ⊆ R3 is a closed set with the boundary ∂Ω is a 2-dimensional manifold, a set
E ⊆ Ω is called locally Ck,α-equivalent to a sliding minimal cone Z in Ω0 at x ∈ E ∩ ∂Ω, if
there exist %0 > 0 and τ0 > 0 such that for any τ ∈ (0, τ0) there is % ∈ (0, %0) and a mapping
Φ : B(0, 2%)∩Ω0 → Ω, which is a diffeomorphism of class Ck,α between its domain and image
with Φ(0) = x satisfying that Φ(L0 ∩B(0, 2%)) ⊆ ∂Ω and (3) and (3).

Suppose that Ω ⊆ R3 is closed set with the boundary ∂Ω is a 2-dimensional C1 manifold.
Suppose that E ⊆ Ω is sliding almost minimal with sliding boundary ∂Ω and gauge function
h. Then, by putting U = Ω \ ∂Ω, we see that E ∩ U is almost minimal in U , applying Jean
Taylor’s theorem, E is locally C1,β-equivalent to a minimal cone at each point x ∈ E ∩ U for
some β > 0 in case h(r) ≤ crα for some c > 0, α > 0, r0 > 0 and 0 < r < r0. We see from
[8, Theorem 6.1] that, at x ∈ E ∩ ∂Ω, E is locally C0,β-equivalent to a sliding minimal cone
in Ω0 in case the gauge function h satisfying (2).

3.1 Approximation of E ∩ ∂B(0, r) by rectifiable curves

For any sets X,Y ⊆ R3, any z ∈ R3 and any r > 0, we denote by dz,r the normalized local
Hausdorff distance defined by

dz,r(X,Y ) =
1

r
sup{dist(x, Y ) : x ∈ X ∩B(z, r)}+

1

r
sup{dist(y,X) : y ∈ Y ∩B(z, r)}.

A cone in R3 is called of type Y if it is the union of three half planes with common boundary
line and that make 120◦ angles along the boundary line. A cone Z ⊆ Ω0 is called of type P+

is if it is a half plane perpendicular to L0; a cone Z ⊆ Ω0 is called of type Y+ is if Z = Ω0∩Y ,
where Y is a cone of type Y perpendicular to L0; for convenient, we will also use the notation
P+, to denote the collection of all of cones of type P+, and Y+ to denote the collection of all
of cones of type Y+.

For any set E ⊆ Ω0 with 0 ∈ E, and any r > 0, we set

εP (r) = inf{d0,r(E,Z) : Z ∈ P+},
εY (r) = inf{d0,r(E,Z) : Z ∈ Y+}.

If E is 2-rectifiable and H2(E) <∞, then E∩∂B(0, r) is 1-rectifiable and H1(E∩∂B(0, r)) <
∞ for H1-a.e. r ∈ (0,∞); we consider the function u : (0,∞) → R which is defined by
u(r) = H2(E ∩B(0, r)), it is quite easy to see that u is nondecreasing, thus u is differentiable
for H1-a.e.; we will denote by R the set r ∈ (0,∞) such that

H1(E ∩ ∂B(0, r)) <∞, u is differentiable at r,
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lim
ξ→0+

1

ξ

∫
t∈(r−ξ,r)

∫
E∩∂B(0,t)

f(z)dH1(z)dt =

∫
E∩∂B(0,r)

f(z)dH1(z),

and
sup
ξ>0

1

ξ

∫
t∈(r−ξ,r)

H1(E ∩ ∂B(0, t))dt < +∞.

It is not hard to see that H1((0,∞) \R) = 0, see for example Lemma 4.12 in [4].

Lemma 3.1. Let E ⊆ R3 be a connected set. If H1(E) <∞, then E is path connected.

For a proof, see for example Lemma 3.12 in [7], so we omit it here.

Lemma 3.2. Let X be a locally connected and simply connected compact metric space. Let
A and B be two connected subsets of X. If F is a closed subset of X such that A and B are
contained in two different connected components of X \F , then there exists a connected closed
set F0 ⊆ F such that A and B still lie in two different connected components of X \ F0.

Proof. See for example 52.III.1 on page 335 in [11], so we omit the proof here.

For any r > 0, we put Zr = (0, 0, r) ∈ R3.

Lemma 3.3. Let E ⊆ Ω0 be a 2-rectifiable set with H2(E) < ∞. Suppose that 0 ∈ E,
and that E is locally C0-equivalent to a sliding minimal cone of type P+ at 0. Then for any
τ ∈ (0, τ0) there exist r = r(τ) > 0 such that, for any r ∈ (0, r) and ε > εP (r), we can find
yr ∈ E∩∂B(0, r)\L , Xr,1,Xr,2 ∈ E∩L∩∂B(0, r) and two simple curves γr,1, γr,2 ⊆ E∩∂B(0, r)
satisfying that

(1) |yr − Zr| ≤ εr and |zr,1 − zr,2| ≥ (2− 2ε)r;
(2) γr,i joins yr and Xr,i, i = 1, 2;
(3) γr,1 and γr,2 are disjoint except for point yr.

Proof. Since E is locally C0-equivalent to a sliding minimal cone of type P+ at 0, for any
τ ∈ (0, τ0), there exist % > 0, sliding minimal cone Z of type P+, and a mapping Φ : Ω0 ∩
B(0, 2%)→ Ω0 which is a homeomorphism between Ω0 ∩ B(0, 2%) and Φ(Ω0 ∩ B(0, 2%)) with
Φ(0) = 0 and Φ(∂Ω0 ∩B(0, 2%)) ⊆ ∂Ω0 such that (3) and (3) hold. We new take r = %. Then
for any r ∈ (0, r),

Φ−1 [E ∩ ∂B(0, r)] ⊆ Z ∩B(0, 3%).

Without loss of generality, we assume that Z = {(x1, 0, x3) | x1 ∈ R, x3 ≥ 0}. Applying
Lemma 3.2 with X = Z ∩B(0, 3%), F = Φ−1 [E ∩ ∂B(0, r)], A = {0} and B = Z ∩ ∂B(0, 3%),
we get that there is a connected closed set F0 ⊆ F such that A and B lie in two different
connected components of A \ F0, thus φ(F0) ⊆ E ∩ ∂B(0, r) is connected. We put a1 =
{(x1, 0, 0) | x1 < 0} and a2 = {(x1, 0, 0) | x1 > 0}. Then F0 ∩ ai 6= ∅, i = 1, 2; otherwise A
and B are contained in a same connected component of X \ F0. We take zr,i ∈ F0 ∩ ai, and
let Xr,i = φ(zr,i) ∈ E ∩ ∂B(0, r). Then |Xr,1 − Xr,2| ≥ (2− 2ε)r.

Since F0 is connected and H1(F0) <∞, by Lemma 3.1, F0 is path connected. Let γ be a
simple curve which joins zr,1 and zr,2. We see that B(Zr, εr) ∩ γ 6= ∅, because εP (r) < ε and
Zr ∈ Z for sliding minimal cone Z of type P+. We take yr ∈ B(Zr, εr) ∩ γ.

Lemma 3.4. Let E ⊆ Ω0 be a 2-rectifiable set with H2(E) < ∞. Suppose that 0 ∈ E,
and that E is locally C0-equivalent to a sliding minimal cone of type Y+ at 0. Then for
any τ ∈ (0, τ0) there exist r = r(τ) > 0 such that, for any r ∈ (0, r) and ε > εY (r), we
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can find yr ∈ E ∩ ∂B(0, r) \ L , Xr,1,Xr,2,Xr,3 ∈ E ∩ L ∩ ∂B(0, r) and three simple curves
γr,1, γr,2, γr,3 ⊆ E ∩ ∂B(0, r) satisfying that

(1) |Zr − yr| ≤ πr/6, and there exists Z ∈ Y+ with dist(x, Z) ≤ εr for x ∈ γ;
(2) γr,i join yr and Xr,i;
(3) γr,i and γr,j are disjoint except for point yr.

Proof. Since E is locally C0-equivalent to a sliding minimal cone of type Y+ at 0, for any
τ ∈ (0, τ0), there exist τ > 0, % > 0, sliding minimal cone Z of type Y+, and a mapping
Φ : Ω0∩B(0, 2%)→ Ω0 which is a homeomorphism between Ω0∩B(0, 2%) and Φ(Ω0∩B(0, 2%))
with Φ(0) = 0 and Φ(∂Ω0 ∩B(0, 2%)) ⊆ ∂Ω0 such that (3) and (3) hold. We new take r = %.
Then for any r ∈ (0, r),

Φ−1 [E ∩ ∂B(0, r)] ⊆ Z ∩B(0, 3%).

Applying Lemma 3.2 with X = Z ∩ B(0, 3%), F = Φ−1 [E ∩ ∂B(0, r)], A = {0} and B =
Z ∩ ∂B(0, 3%), we get that there is a connected closed set F0 ⊆ F such that A and B lie in
two different connected components of A\F0, thus φ(F0) ⊆ E ∩∂B(0, r) is connected. We let
ai, i = 1, 2, 3, be the there component of Z ∩ L0 \ A. Then F0 ∩ ai 6= ∅, i = 1, 2, 3; otherwise
A and B are contained in a same connected component of X \F0. We take zr,i ∈ F0 ∩ ai, and
let Xr,i = φ(zr,i) ∈ E ∩ ∂B(0, r). Then |Xr,1 − Xr,2| ≥ (

√
3− 2ε)r.

Since F0 is connected and H1(F0) <∞, by Lemma 3.1, F0 is path connected.

3.2 Approximation of rectifiable curves in S2 by Lipschitz graph

We denote by S2 the unit sphere in R3. We say that a simple rectifiable curve γ ⊆ S2 is a
Lipschitz graph with constant at most η, if it can be parametrized by

z(t) =
(√

1− v(t)2 cos θ(t),
√

1− v(t)2 sin θ(t), v(t)
)
,

where v is Lipschitz with Lip(v) ≤ η.

Lemma 3.5. Let T ∈ [π/3, 2π/3] be a number, and γ : [0, T ] → S2 a simple rectifiable curve
given by

γ(t) =
(√

1− v(t)2 cos θ(t),
√

1− v(t)2 sin θ(t), v(t)
)
,

where v is a continuous function with v(0) = v(T ) = 0, θ is a continuous function with θ(0) = 0
and θ(T ) = T . Then there is a small number τ0 ∈ (0, 1) such that whenever |v(t)| ≤ τ0, we
have that

|v(t)| ≤ 10
√
H1(γ)− T .

Proof. We let A = γ(0) = (1, 0, 0), B = γ(T ) = (cosT, sinT, 0), and let C = γ(t0) be a point
in γ such that

|v(t0)| = max{|v(t)| : t ∈ [0, T ]}.

We let γi, i = 1, 2, be two curve such that γ1(0) = A, γ1(1) = C, γ2(0) = B and γ2(1) = C,
and let s ∈ [0, 1] be the smallest number such that γ1(s) 6∈ γ2, and put D = γ1(s). Then, by
setting C1, C2 and C3 the arc AD, BD and CD respectively, we have that

H1(γ) ≥ H1(γ1 ∪ γ2) ≥ H1(C1) +H1(C2) +H1(C3).
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We see that C1 ∪ C2 is a simple Lipschitz curve joining A and B, and let γ3 : [0, `] → S2

giving by
γ3(t) =

(√
1− w(t)2 cos θ(t),

√
1− w(t)2 sin θ(t), w(t)

)
be its parametrization by length. We assume that γ3(t1) = D, then w′(t) > 0 on (0, t1), or
w′(t) < 0 on (0, t1), thus |w(t)| =

∫ t1
0 |w

′(t)|dt.
We let the number τ0 ∈ (0, 1) to be the small number τ1 in Lemma 7.8 in [4]. IfH1(γ)−T ≤

τ0, then we have that ∫ `

0
|w′(t)|2dt ≤ 14(`− T ),

thus

|w(t1)| =
∫ t1

0
|w′(t)|dt ≤

(
t1

∫ t1

0
|w′(t)|2dt

)1/2

≤
√

14`(`− T ).

We get so that

|v(t0)| ≤ H1(C3) + |w(t1)| ≤ (H1(γ)− `) +
√

14`(`− T )

≤
√

14H1(γ)(H1(γ)− T ) ≤ 10
√
H1(γ)− T .

If H1(γ)− T > τ0, then v(t) ≤ τ0 ≤ 10
√
τ0 ≤ 10

√
H1(γ)− T .

Lemma 3.6. Let a and b be two points in Ω0 ∩ ∂B(0, 1) satisfying

π

3
≤ distS2(a, b) ≤ 2π

3
.

Let γ be a simple rectifiable curve in Ω0 ∩ ∂B(0, 1) which joins a and b, and satisfies

length(γ) ≤ distS2(a, b) + τ0,

where τ0 > 0 is as in Lemma 3.5. Then there is a constant C > 0 such that, for any η > 0, we
can find a simple curve γ∗ in Ω0 ∩ ∂B(0, 1) which is a Lipschitz graph with constant at most
η joining a and b, and satisfies that

H1(γ∗ \ γ) ≤ H1(γ \ γ∗) ≤ Cη−2(length(γ)− distS2(a, b)).

The proof will be the same as in [4, p.875-p.878], so we omit it.

3.3 Compare surfaces

Let Γ be a Lipschitz curve in S2. We assume for simplicity that its extremities a and b lie
in the horizontal plane. Let us assume that a = (1, 0, 0) and b = (cosT, sinT, 0) for some
T ∈ [π/3, 2π/3]. We also assume that Γ is a Lipschitz graph with constant at most η, i.e.
there is a Lipschitz function s : [0, T ]→ R with s(0) = s(T ) = 0 and Lip(s) ≤ η, such that Γ
is parametrized by

z(t) = (w(t) cos t, w(t) sin t, s(t)) for t ∈ [0, T ],

where w(t) = (1− |s(t)|2)1/2.
We set

DT = {(r cos t, r sin t)| | 0 < r < 1, 0 < t < T},
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and consider the function v : DT → R defined by

v(r cos t, r sin t) =
rs(t)

w(t)
for 0 ≤ r ≤ 1 and 0 ≤ t ≤ T.

For any function f : DT → R, we denote by Σf the graphs of f over DT .

Lemma 3.7. There is a universal constant κ > 0 such that we can find a Lipschitz function
u on DT satisfying that

Lip(u) ≤ Cη,

u(r, 0) = u(r cosT, r sinT ) = 0, for 0 ≤ r ≤ 1, 0 ≤ t ≤ T,

u(r cos t, r sin t) = v(r cos t, r sin t) for 0 ≤ r ≤ 1, 0 ≤ t ≤ T,

u(r cos t, r sin t) = 0, for 0 ≤ r ≤ 2κ, 0 ≤ t ≤ T

and
H2(Σv)−H2(Σu) ≥ 10−4(H1(Γ)− T ).

Proof. The proof is the same as Lemma 8.8 in [4], we omit it.

3.4 Retractions

We let Π : R3 \ {0} → S2 be the projection defined by Π(x) = x/|x|. In this subsection, we
assume that E ⊆ Ω0 is a 2-rectifiable set satisfying that

(a) H2(E) <∞, 0 ∈ E,

(b) E is locally (Ω0, L0, h) sliding almost minimal at 0,

(c) E is locally C0-equivalent to a sliding minimal cone of type P+ or Y+.
For convenient, we put

j(r) =
1

r
H1(E ∩ ∂B(0, r))−H1(X ∩ ∂B(0, 1)),

and denote by R1 the set {r ∈ R : j(r) ≤ τ1}, where τ1 is the small number considered as in
Lemma 3.5.

For any r ∈ (0, r) ∩ R1, we take Xr ⊆ E ∩ B(0, r) ∩ L0 as following: if E is locally C0-
equivalent to a sliding minimal cone of type P+, we let Xr,1 and Xr,2 be the same as in Lemma
3.3, and let Xr = {Xr,1,Xr,2}; if E is locally C0-equivalent to a sliding minimal cone of type
Y+, we let Xr,1, Xr,2 and Xr,3 be the same as in Lemma 3.4, and let Xr = {Xr,1,Xr,2,Xr,3}.

We take yr as in Lemma 3.3 or Lemma 3.4. For any x ∈ Xr, we let γx be the curve which
joins x and yr as in Lemma 3.3 and Lemma 3.4, let Dx,yr be the sector determined by points
0, yr and x. We denote by Px,yr the plane that contains 0, x and yr, let Rx,yr be a rotation
such that Rx,yr(yr) = (r, 0, 0) and Rx(yr) = (r cosTx, r sinTx, 0), where Tx ∈ [π/3, 2π/3].

For any x ∈ Xr, γx is a simple rectifiable curve in Ω0 ∩ ∂B(0, r), thus the curve Γx =
Π(γx) is a simple rectifiable curve in Ω0 ∩ ∂B(0, 1), let Γx∗ be the corresponding curve with
respect to Γx as in Lemma 3.6. Let z(t) = (w(t) cos t, w(t) sin t, s(t)) be a parametrization of
Rx,yr(Γx∗), where w(t) =

√
1− s(t)2. Let Σx

v and Σx
u be the same as in Lemma 3.7. We put

T =
∑

x∈Xr Tx, and put

X =
⋃
x∈Xr

Dx,yr , Γ∗ =
⋃
x∈Xr

Γx∗ , M =
⋃
x∈Xr

Σx
v , and Σ =

⋃
x∈Xr

Σx
u. (3.3)
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By Lemma 3.7, we have that

H2(M)−H2(Σ) ≥ 10−4
(
H1(Γ∗)− T

)
, (3.4)

and by Lemma 3.5, we have that

d0,1(X,M) ≤ 10j(r)1/2. (3.5)

Lemma 3.8. If ε(r) < 1/2, then for any ε(r) < ε < 1/2, there is a sliding minimal cone
Z = Zr such that

d0,1(X,Z) ≤ 4ε.

Moreover
d0,r(E,X) ≤ 5ε(r).

Proof. There exists sliding minimal cone Z such that d0,r(E,Z) ≤ ε, thus for any x ∈ Xr,
there is xz ∈ Z ∩ (L0 ∩ ∂Br) satisfying that |x− xz| ≤ 2εr. We get so that

dH([x, yr], [xz,Zr]) ≤ 2εr.

Since dist(0, [x, yr]) > r/2 for any x ∈ Xr, we have that

dH(X ∩B(0, r/2), Z ∩B(0, r/2)) ≤ 2εr.

Thus
d0,1(X,Z) = d0,r/2(X,Z) ≤ 4ε,

and
d0,r(E,X) ≤ d0,r(E,Z) + d0,r(Z,X) ≤ 5ε.

Lemma 3.9. Let 0 < δ, ε < 1/2 be positive numbers. Let v1, v2, v3 ∈ R3 be three unit vectors.
• If |〈v2, vi〉| ≤ δ for i = 1, 3, then for any v ∈ R3 with 〈v, v2〉 = 0 and dist(v, span{v1, v2}) ≤
ε|v|, we have that

|〈v, v3〉 − 〈v1, v3〉〈v, v2〉| ≤ (ε+ δ)|v|, and |〈v, v1〉| ≥ (1− ε− δ)|v|.

• If 〈v1, v3〉 < 1 and 0 < δ < 10−2(1− 〈v1, v3〉)2, then for any w1, w3 ∈ R3 with 〈vi, wi〉 ≥
(1− δ)|wi|, i = 1, 3, we have that

|w1|+ |w3| ≤
√

2 ·
(

1− 〈v1, v3〉 − 4
√

2δ
)−1/2

|w1 − w3|. (3.6)

Proof. We write v = v⊥ + λ1v1 + λ2v2, λi ∈ R, 〈v⊥, vi〉 = 0. Since 〈v, v2〉 = 0, we have that
λ2 = −λ1〈v1, v2〉, thus

λ1 =
〈v, v1〉

1− 〈v1, v2〉2
, λ2 = −〈v, v1〉〈v1, v2〉

1− 〈v1, v2〉2
,
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we get so that

v = v⊥ +
〈v, v1〉v1 − 〈v, v1〉〈v1, v2〉v2

1− 〈v1, v2〉2
, (3.7)

and then
〈v, v3〉 = 〈v⊥, v3〉+

〈v1, v3〉 − 〈v2, v3〉〈v1, v2〉
1− 〈v1.v2〉2

〈v, v1〉,

thus

|〈v, v3〉 − 〈v1, v3〉〈v, v1〉| ≤ ε|v|+
δ2 + δ

1− δ2
|v| ≤ (ε+ 2δ)|v|.

We get also, from (3.4), that

|v| ≤ |v⊥|+ 1 + |〈v1.v2〉|
1− 〈v1, v2〉2

|〈v, v1〉| ≤ ε|v|+
1

1− δ
|〈v, v1〉|,

thus
|〈v, v1〉| ≥ (1− ε)(1− δ)|v| ≥ (1− ε− δ)|v|.

We can certainly assume wi 6= 0, otherwise the inequality (3.9) will be trivial true. Since
〈vi, wi〉 ≥ (1− δ)|wi|, we have that 〈vi, wi/|wi|〉 ≥ 1− δ, and∣∣∣vi − wi/|wi|∣∣∣2 = 2− 2〈vi, wi/|wi|〉 ≤ 2δ.

Thus ∣∣∣∣ w1

|w1|
− w2

|w2|

∣∣∣∣2 =

∣∣∣∣( w1

|w1|
− v1

)
−
(
w2

|w2|
− v2

)
+ (v1 − v2)

∣∣∣∣2
≥ |v1 − v2|2 − 2|v1 − v2|

(∣∣∣∣ w1

|w1|
− v1

∣∣∣∣+

∣∣∣∣ w2

|w2|
− v2

∣∣∣∣)
≥ 2− 2〈v1, v2〉 − 8

√
2δ,

and
〈w1, w2〉 = |w1||w2|

〈
w1

|w1|
,
w2

|w2|

〉
≤ |w1||w2|

(
〈v1, v2〉+ 4

√
2δ
)
.

Hence

|w1 − w2|2 ≥ |w1|2 + |w2|2 − 2|w1||w2|
(
〈v1, v2〉+ 4

√
2δ
)
≥ (1− s)(|w1|+ |w2|)2,

where s = (1 + 〈v1, v2〉+ 4
√

2δ)/2 ∈ (0, 1).

Lemma 3.10. For any r ∈ (0, r) ∩ R1, we let Σ be as in (3.4). Then there is a Lipschitz
mapping p : Ω0 → Σ with Lip(p) ≤ 50, such that p(z) ∈ L for z ∈ L, and that p(z) = z for
z ∈ Σ.

Proof. By definition, we have that

Σ \B (0, 9/10) =M\B (0, 9/10) ,

and that
Σ ∩B(0, 2κ) = X ∩B(0, 2κ).
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For any z ∈ Ω0 \ {0}, we denote by `(z) the line which is through 0 and z. Then ∂Dx,yr =
`(x) ∪ `(yr). We fix any σ ∈ (0, 10−3), put

Rx = {z ∈ Ω0 | dist(z,Dx,yr) ≤ σ dist(z, ∂Dx,yr)},
Rx1 = {z ∈ Ω0 | dist(z,Dx,yr) ≤ σ dist(z, `(yr))},

and
R =

⋃
x∈Xr

Rx, R1 =
⋃
x∈Xr

Rx1 .

Then we see that Rx ⊆ Rx1 , and that both of them are cones,

Rxi ∩Rxj = Rxi1 ∩R
xj
1 = `(yr) for xi, xj ∈ Xr, xi 6= xj .

Since Σx
u is a small Lipschitz graph over Dx,yr bounded by two half lines of ∂Dx,yr with

constant at most η, there is a constant η̄ such that

Σx
u ⊆ Rx,

when 0 < η < η̄.
We will construct a Lipschitz retraction p0 : Ω0 → R1 such that p0(z) = z for z ∈ R1,

p0(z) ∈ L for z ∈ L, and Lip(p0) ≤ 3. We now distinguish two cases, depending on cardinality
of Xr.

Case 1: card(Xr) = 2. We assume that Xr = {x1, x2}. Then |yr| = |x1| = |x2| = r, and

0 ≤ 〈x1, x2〉+ r2 ≤ 2ε2r2.

Since |yr − Zr| ≤ εr, we have that |〈yr, x〉| ≤ εr2 for any x ∈ L ∩ ∂B(0, r).
We now let e1 and e2 be two unit vectors in L such that 〈x1, e1〉 = 〈x2, e1〉 ≥ 0 and

e2 = −e1. Then
0 ≤ 〈xi, e1〉 ≤ εr.

We let Ω′1 and Ω′2 be the two connected components of Ω0 \ (∪iDxi,yr) such that ei ∈ Ω′i. We
put Ωi = Ω′i \R1. We claim that

|〈z1 − z2, ei〉| ≤ 5(σ + ε)|z1 − z2|

whenever z1, z2 ∈ ∂Ωi, z1 6= z2, i ∈ {1, 2}.
Without loss of generality, we assume z1, z2 ∈ ∂Ω1, because for another case we will use

the same treatment. We see that

dist(zi, Dxj ,yr) = σ dist(zi, `(yr)).

(1) In case z1, z2 ∈ ∂Rxi1 ∩Ω1, without loss of generality, we assume that z1, z2 ∈ ∂Rx11 ∩Ω1.
We let z̃i ∈ Dx1,yr be such that

zi − z̃i = dist(zi, Dx1,yr), i = 1, 2,

and let z′i ∈ `(yr) be such that

|zi − z′i| = dist(zi, `(yr)),
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z1

z2

0

yr

z′1

z′2z′2

z′2

Dx,yr

w1 w2

Figure 1: the angle between z1 − z2 and Dx,yr is small.

and put
w1 = z1 − z̃1 + z̃2, w2 = z1 − z′1 + z′2,

then we get that z1 − z2 = (z1 − w2) + (w2 − z2). Moreover, we have that z1 − w2 is
perpendicular to w2−z2 and parallel to yr. Thus |w2−z2| ≤ |z1−z2|, |z1−w2| ≤ |z1−z2|
and

dist(w2 − z2, span{x1, yr}) = σ|w2 − z2|.

We apply Lemma 3.9 to get that

|〈z1 − w2, e1〉| ≤ ε|z1 − w2|

and
|〈w2 − z2, e1〉| ≤ (σ + 3ε) |w2 − z2|,

thus
|〈z1 − z2, e1〉| ≤ |〈z1 − w2, e1〉|+ |〈w2 − z2, e1〉| ≤ (σ + 4ε) |z1 − z2|.

(2) In case z1 ∈ ∂Rx1 ∩ Ω1, z2 ∈ ∂Rx2 ∩ Ω1. We let z̃i ∈ Dxi,yr be such that

|zi − z̃i| = dist(zi, Dxi,yr), i = 1, 2,

and let z′i ∈ `(yr) be such that

|zi − z′i| = dist(zi, `(yr)), i = 1, 2.

Then by Lemma 3.9, we have that〈
zi − z′i,

xi
|xi|

〉
≥ (1− σ − ε)|zi − z′i|, i = 1, 2.

Since z1 − z2 = (z1 − z′1) + (z′2 − z2) + (z′1 − z′2),

|〈z′1 − z′2, e1〉| ≤ ε|z′1 − z′2| ≤ ε|z1 − z2|

and
|〈zi − z′i, e1〉| ≤ (σ + ε) |zi − z′i|,

we get that

|〈z1 − z2, e1〉| ≤ |〈z1 − z′1, e1〉|+ |〈z′2 − z2, e1〉|+ |〈z′1 − z′2, e〉|
≤ 2 · (σ + ε) (|z1 − z′1|+ |z2 − z′2|) + ε|z1 − z2|.
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Since z′1 − z′2 is perpendicular to z1 − z′1 and z2 − z′2, and〈
zi − z′i,

xi
|xi|

〉
≥ (1− σ − ε)|zi − z′i|, i = 1, 2,

and 〈
x1

|x1|
,
x2

|x2|

〉
≤ −1 + 2ε2,

we get, by Lemma 3.9, that

|z1 − z′1|+ |z2 − z′2| ≤
(
1− ε2 − 5

√
σ + ε

)−1/2 |(z1 − z′1)− (z2 − z′2)| ≤ 2|z1 − z2|.

Thus
〈z1 − z2, e〉 ≤ (4σ + 5ε)|z1 − z2|.

We now define p0 : Ω0 → R1 as follows: for any z ∈ Ωi, we let p0(z) be the unique point
in ∂Ωi such that p0(z) − z parallels e; and for any z ∈ R1, we let p0(z) = z. Since p0(z) − z
parallels e, we see that p0(L) ⊆ L. We will check that

p0 is Lipschitz with Lip(p0) ≤ 2

1− 5(σ + ε)
.

Indeed, for any z1, z2 ∈ Ω0, we put

p0(zi) = zi + tie, ti ∈ R,

then
|t1 − t2| = |〈(t1 − t2)e, e〉|

≤ |〈p0(z1)− p0(z2), e〉|+ |〈z1 − z2, e〉|
≤ 5(σ + ε)|p0(z1)− p0(z2)|+ |z1 − z2|,

and

|p0(z1)− p0(z2)| ≤ |z1 − z2|+ |t1 − t2| ≤ 5(σ + ε)|p0(z1)− p0(z2)|+ 2|z1 − z2|,

thus
|p0(z1)− p0(z2)| ≤ 2

1− 5(σ + ε)
|z1 − z2|.

Case 2: card(Xr) = 3. We assume that Xr = {x1, x2, x3}, then

|〈xi, yr〉| ≤ εr2,

(
−
√

3ε− 1

2

)
r2 ≤ 〈xi, xj〉 ≤

(
−1

2
+ 2ε

)
r2.

We put
e1 =

x2 + x3

|x2 + x3|
, e2 =

x1 + x3

|x1 + x3|
, e3 =

x2 + x1

|x2 + x1|
,

and let Ω′1, Ω′2 and Ω′3 be the three connected components of Ω0 \ (∪iDxi,yr) such that ei ∈ Ω′i.
By putting Ωi = Ω′i \R1, we claim that(

1

2
− 5(σ + ε)

)
|z1 − z2| ≤ |〈z1 − z2, ei〉| ≤

(
1

2
+ 5(σ + ε)

)
|z1 − z2|
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whenever z1, z2 ∈ ∂Ωi, z1 6= z2, i ∈ {1, 2, 3}.
Indeed, we only need to check the case z1, z2 ∈ ∂Ω1, and the other two cases will be the

same. Since −
√

3ε−1/2 ≤ 〈xi, xj〉 ≤ 1/2 + 2ε, we have that (1/2− ε)r ≤ 〈xi, e1〉 ≤ (1/2 + ε)r
for i = 2, 3.

If z1, z2 ∈ ∂Rx21 ∩ Ω1 or z1, z2 ∈ ∂Rx31 ∩ Ω1, we assume that z1, z2 ∈ ∂Rx21 ∩ Ω1, and let
z̃i ∈ Dx2,yr be such that

zi − z̃i = dist(zi, Dx2,yr), i = 1, 2,

and let z′i ∈ `(yr) be such that

|zi − z′i| = dist(zi, `(yr)),

and put
w1 = z1 − z̃1 + z̃2, w2 = z1 − z′1 + z′2,

then we get that z1 − w2 is perpendicular to w2 − z2 and parallel to yr. Since z1 − z2 =
(z1 − w2) + (w2 − z2), we have that |w2 − z2| ≤ |z1 − z2|, |z1 − w2| ≤ |z1 − z2| and

dist(w2 − z2, span{x1, yr}) = σ|w2 − z2|.

We apply Lemma 3.9 to get that

|〈z1 − w2, e1〉| ≤ ε|z1 − w2|

and
|〈w2 − z2, e1〉| ≤

(
1

2
+ ε+ σ + ε

)
|w2 − z2|,

thus
|〈z1 − z2, e1〉| ≤ |〈z1 − w2, e1〉|+ |〈w2 − z2, e1〉| ≤

(
1

2
+ σ + 3ε

)
|z1 − z2|.

If z1 ∈ ∂Rx2 ∩ Ω1, z2 ∈ ∂Rx3 ∩ Ω1, we let z̃i ∈ Dxi,yr be such that

|z1 − z̃1| = dist(z1, Dx2,yr), |z2 − z̃2| = dist(z2, Dx3,yr)

and let z′i ∈ `(yr) be such that

|zi − z′i| = dist(zi, `(yr)), i = 1, 2.

Since z1 − z2 = (z1 − z′1) + (z′2 − z2) + (z′1 − z′2),

|〈z′1 − z′2, e1〉| ≤ ε|z′1 − z′2| ≤ ε|z1 − z2|

and
|〈zi − z′i, e1〉| ≤

(
1

2
+ ε+ σ + ε

)
|zi − z′i|,

we get that

|〈z1 − z2, e1〉| ≤ |〈z1 − z′1, e1〉|+ |〈z′2 − z2, e1〉|+ |〈z′1 − z′2, e〉|

≤
(

1

2
+ σ + 2ε

)
(|z1 − z′1|+ |z2 − z′2|) + ε|z1 − z2|.

(3.8)
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By Lemma 3.9, we have that〈
z1 − z′1,

x2

|x2|

〉
≥ (1− σ − ε)|z1 − z′1|

and 〈
z2 − z′2,

x3

|x3|

〉
≥ (1− σ − ε)|z2 − z′2|.

Applying Lemma 3.9 with 〈x2/|x2|, x3/|x3|〉 ≤ −1/2 + 2ε, we get that

|z1 − z′1|+ |z2 − z′2| ≤
(

2

1 + 1/2− 2ε− 4
√

2σ + 2ε

)1/2

|(z1 − z′1)− (z2 − z′2)|

≤ 2√
3

(
1− 2ε+ 4

√
2σ + 2ε

3

)
|z1 − z2|.

We get, from (3.4), that

|〈z1 − z2, e1〉| ≤
2

3
|z1 − z2|.

For any z ∈ Ωi, we now let p0(z) be the unique point in ∂Ωi such that p0(z)− z parallels
e; and for z ∈ R1, we let p0(z) = z. Then p0(L) ⊆ L. We will check that

p0 is Lipschitz with Lip(p0) ≤ 6.

For any z1, z2 ∈ Ωi, we put

p0(zj) = zj + tjei, ti ∈ R, j = 1, 2,

then
|t1 − t2| = |〈(t1 − t2)ei, ei〉|

≤ |〈p0(z1)− p0(z2), ei〉|+ |〈z1 − z2, ei〉|

≤ 2

3
|p0(z1)− p0(z2)|+ |z1 − z2|,

and
|p0(z1)− p0(z2)| ≤ |z1 − z2|+ |t1 − t2| ≤

2

3
|p0(z1)− p0(z2)|+ 2|z1 − z2|,

thus
|p0(z1)− p0(z2)| ≤ 6|z1 − z2|.

By the definition of Rx and Rx1 , we have that

Rx = {z ∈ Rx1 | dist(z,Dx,yr) ≤ σ dist(z, `(x))}.

Similar as above, we can that, for any z1, z2 ∈ Rx1∩∂Rx with [z1, z2]∩Dx,yr = ∅, if card(Xr) = 2
then

|〈z1 − z2, ei〉| ≤ 5(σ + ε)|z1 − z2|;

if card(Xr) = 3 then

|〈z1 − z2, ei〉| ≤
(

1

2
+ σ + 3ε

)
|z1 − z2|,
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where ei is the vector in 3.4 such that z1, z2 ∈ Ωi.
We now consider the mapping p1 : R1 → R defined by

p1(z) =

{
z, for z ∈ R,
z − tei ∈ ∂R ∩ Ωi, for z ∈ Ωi.

By the same reason as above, we get that

Lip(p1) ≤ 2

1− 1/2− σ − 3ε
≤ 5.

We define a mapping p2 : R ∩ B(0, 1)→ Σ as follows: we know Σx
u is the graph of u over

Dx,yr , thus for any z ∈ Rx, there is only one point in the intersection of Σx
u and the line which

is perpendicular to Dx,yr and through z, we define p2(z) to be the unique intersection point.
That is, p2(z) is the unique point in Σx

u such that p2(z)− z is perpendicular to Dx,yr . We will
show that p2 is Lipschitz and Lip(p2) ≤ 1 + 104η. Indeed, for any points z1, z2 ∈ Rx, we let
z̃i, i = 1, 2, be the points in Dx,yr such that zi − z̃i is perpendicular to Dx,yr , then

|(p2(z1)− z1)− (p2(z2)− z2)| = |u (z̃1)− u (z̃2)| ≤ Lip(u)|z̃1 − z̃2| ≤ Lip(u)|z1 − z2|,

thus
|p2(z1)− p2(z2)| ≤ (1 + Lip(u))|z1 − z2| ≤ (1 + 104η)|z1 − z2|.

Let p3 : R3 → R3 be the mapping defined by

p3(x) =

{
x, |x| ≤ 1
x
|x| , |x| > 1.

Then p = p3 ◦ p2 ◦ p3 ◦ p1 ◦ p0 is our desire mapping.

Lemma 3.11. For any r ∈ (0, r)∩R1, we let Σ be as in (3.4), and let Σr be given by µr(Σ).
Then we have that

H2(E ∩B(0, r)) ≤ H2(Σr) + 2550

∫
E∩∂B(0,r)

dist(z,Σr)dH1(z) + (2r)2h(2r).

Proof. For any ξ > 0, we consider the function ψξ : [0,∞)→ R defined by

ψξ(t) =


1, 0 ≤ t ≤ 1− ξ
− t−1

ξ , 1− ξ < t ≤ 1

0, t > 1,

and the mapping φξ : Ω0 → Ω0 defined by

φξ(z) = ψξ(|z|)p(z) + (1− ψξ(|z|))z.

Then we get that φξ(L) ⊆ L. For any t ∈ [0, 1], we put

ϕt(z) = trφξ (z/r) + (1− t)z, for z ∈ Ω0.
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Then {ϕt}0≤t≤1 is a sliding deformation, and we get that

H2(E ∩B(0, r)) ≤ H2(ϕ1(E) ∩B(0, r)) + (2r)2h(2r).

Since ψξ(t) = 1 for t ∈ [0, 1− ξ], we get that

ϕ1(E ∩B(0, (1− ξ)r)) = p(E ∩B(0, (1− ξ)r)) ⊆ Σr.

We set Aξ = B(0, r) \B(0, (1− ξ)r). By Theorem 3.2.22 in [9], we get that

H2(ϕ1(E ∩Aξ)) ≤
∫
E∩Aξ

ap J2(ϕ1|E)(z)dH2(z). (3.9)

For any z ∈ Aξ and v ∈ R3, we have, by setting z′ = z/r, that

Dϕ1(z)v = ψξ(|z′|)Dp(z′)v + (1− ψξ(|z′|))v + ψ′ξ(|z′|)〈z/|z|, v〉(rp(z′)− z).

For any z ∈ Aξ ∩ E, we let v1, v2 ∈ TzE be such that

|v1| = |v2| = 1, v1 ⊥ z and v2 ⊥ v1,

then we have that 〈z/|z|, v〉 = cos θ(z), and that

|ψξ(|z′|)Dp(z′)vi + (1− ψξ(|z′|))vi| ≤ |Dp(z′)vi| ≤ Lip(p),

thus
ap J2(ϕ1|E)(z) = |Dϕ1(z)v1 ∧Dϕ1(z)v2|

≤ Lip(p)2 +
1

ξ
Lip(p) cos θ(z)|rp(z′)− z|.

(3.10)

Since p(z̃) = z̃ for any z̃ ∈ Σ, we have that

|p(z′)− z′| = |p(z′)− p(z̃) + z̃ − z′| ≤ (Lip(p) + 1)|z̃ − z′|,

then we get that
|p(z′)− z′| ≤ (Lip(p) + 1) dist(z,Σ).

We now get, from (3.4), that

ap J2(ϕ1|E)(z) ≤ Lip(p)2 +
1

ξ
Lip(p)(Lip(p) + 1) dist(z,Σr) cos θ(z),

plug that into (3.4) to get that

H2(ϕ1(E ∩Aξ)) ≤ 2500H2(E ∩Aξ) +
2550

ξ

∫
E∩Aξ

dist(z,Σr) cos θ(z)dH2(z)

≤ 2500H2(E ∩Aξ) +
2550

ξ

∫ r

(1−ξ)r

∫
E∩∂B(0,t)

dist(z,Σr)dH1(z)dt,

we let ξ → 0+, then we get that, for such r,

lim
ξ→0+

H2(ϕ1(E ∩Aξ)) ≤ 2550r

∫
E∩∂B(0,r)

dist(z,Σr)dH1(z),

thus

H2(E ∩B(0, r)) ≤ H2(Σr) + 2550r

∫
E∩∂B(0,r)

dist(z,Σr)dH1(z) + (2r)2h(2r).
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3.5 The main comparison statement

For any x, y ∈ Ω0 ∩ ∂B(0, 1), if |x − y| < 2, we denote by gx,y the unique geodesic on
Ω0 ∩ ∂B(0, 1) which join x and y.

We will denote by Bt the open ball B(0, t) sometimes for short.

Lemma 3.12. Let τ ∈ (0, 10−4) be a given. Then there is a constant ϑ > 0 such that the
following hold. Let a ∈ ∂B(0, 1) and b, c ∈ L0 ∩ ∂B(0, 1) be such that dist(a, (0, 0, 1)) ≤ τ ,
dist(b, (1, 0, 0)) ≤ τ and dist(c, (−1, 0, 0)) ≤ τ . Let X be the cone over ga,b ∪ ga,c. Then there
is a Lipschitz mapping ϕ : Ω0 → Ω0 with ϕ(L0) ⊆ L0, |ϕ(z)| ≤ 1 when |z| ≤ 1, and ϕ(z) = z
when |z| > 1, such that

H2(ϕ(X) ∩B(0, 1)) ≤ (1− ϑ)H2(X ∩B(0, 1)) +
ϑπ

2
.

Proof. We let b0 a unit vector in L0 which is perpendicular to b, and let c0 be a unit vector
in L0 which is perpendicular to c, such that b0 + c0 is parallel to b+ c, and take

ui =
a− 〈a, i〉i
|a− 〈a, i〉i|

, ei =
i− 〈i, a〉a
|i− 〈i, a〉a|

, for i ∈ {b, c},

va = λa(eb + ec), vb = λbb0 and vc = λcc0, where λj ∈ R, j ∈ {a, b, c}, will be chosen
later. We let ψ1 : R → R be a function of class C1 such that 0 ≤ ψ1 ≤ 1, ψ1(x) = 0 for
x ∈ (−∞, 1/4) ∪ (3/4,+∞), ψ1(x) = 1 for x ∈ [2/5, 3/5], and |ψ′1| ≤ 10. We let ψ2 : R → R
be a non increasing function of class C1 such that 0 ≤ ψ2 ≤ 1, ψ2(x) = 1 for x ∈ (−∞, 0],
ψ2(x) = 0 for x ∈ [1/5,+∞), and |ψ′2| ≤ 10. We let ψ : R3×R3 → R be a function defined by

ψ(z, v) = ψ1(〈z, v〉)ψ2(|z − 〈z, v〉v|). (3.11)

We now consider the mapping ϕ : R3 → R3 defined by

ϕ(z) = z + ψ(z, a)va + ψ(z, b)vb + ψ(z, c)vc.

We see that supp(ψ(·, a)), supp(ψ(·, b)) and supp(ψ(·, c)) are mutually disjoint, and that

{z ∈ R3 : ϕ(z) 6= z} ⊆ B(0, 1), ϕ(Ω0) ⊆ Ω0, ϕ(L0) ⊆ L0.

We have that

Dϕ(z)w = w + 〈Dψ(·, a), w〉va + 〈Dψ(·, b), w〉vb + 〈Dψ(·, c), w〉vc.

By setting z⊥v = z − 〈z, v〉v for convenient, if w 6= 0 and z⊥v 6= 0, we have that

Dψ(·, v)w = ψ′1(〈z, v〉)ψ2(|z⊥v |)〈w/|w|, v〉+ ψ1(〈z, v〉)ψ′2(|z⊥v |)〈w⊥v , z⊥v /|z⊥v |〉.

If w is perpendicular to v, then w⊥v = w; if w is parallel to v and |v| = 1 , then w⊥v = 0. We
denote by Wj = supp(ψ(·, j)) for j ∈ {a, b, c}. Then

Dψ(·, v)w =

{
w, z /∈Wa ∪Wb ∪Wc,

w + 〈Dψ(·, v), w〉vj , z ∈Wa ∪Wb ∪Wc.

But
〈Dψ(·, j), j〉 = ψ′1(〈z, j〉)ψ2(|z⊥j |), j ∈ {a, b, c},
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〈Dψ(·, i), ui〉 = ψ1(〈z, i〉)ψ′2(|z⊥i |)〈ui, z⊥i /|z⊥i |〉, i ∈ {b, c},

and
〈Dψ(·, a), ei〉 = ψ1(〈z, a〉)ψ′2(|z⊥a |)〈ei, z⊥a /|z⊥a |〉, i ∈ {b, c},

by putting
gj(z) = ψ′1(〈z, j〉)ψ2(|z⊥j |), j ∈ {a, b, c},

ga,i(z) = ψ1(〈z, a〉)ψ′2(|z⊥a |)〈ei, z⊥a /|z⊥a |〉, i ∈ {b, c}

and
gi,i(z) = ψ1(〈z, i〉)ψ′2(|z⊥i |)〈vi, z⊥i /|z⊥i |〉, i ∈ {b, c},

and denote by Xi the cone over ga,i, i ∈ {b, c}, we have that

Dϕ(z)a ∧Dϕ(z)ei = a ∧ ei + ga(z)va ∧ ei + ga,i(z)a ∧ va, z ∈ Xi ∩Wa

and
Dϕ(z)i ∧Dϕ(z)ui = i ∧ ui + gi(z)vi ∧ ui + gi,i(z)i ∧ vi, z ∈ Xi ∩Wi.

If z ∈ Xi ∩Wa, i ∈ {b, c}, we have that

J2ϕ|X(z) = ‖Dϕ(z)a ∧Dϕ(z)ei‖

≤ 1 + 〈a ∧ ei, ga(z)va ∧ ei + ga,i(z)a ∧ va〉+
1

2
‖ga(z)va ∧ ei + ga,i(z)a ∧ va‖2

= 1 + ga(z)〈a, va〉+ ga,i(z)〈ei, va〉+
1

2

(
ga(z)

2‖va ∧ ei‖2 + ga,i(z)
2|va|2

)
≤ 1 + ga,i(z)〈ei, va〉+ 100|va|2.

Similarly, we have that, for z ∈ Xi ∩Wi,

J2ϕ|X(z) = ‖Dϕ(z)i ∧Dϕ(z)ui‖ ≤ 1 + gi,i(z)〈ui, vi〉+ 100|vi|2.

We see that z⊥a /|z⊥a | = ei when z ∈ Xi\span{a}, and z⊥i /|z⊥i | = ui in case z ∈ Xi\span{i},
thus

ga,i(z) = ψ1(〈z, a〉)ψ′2(|z⊥a |) and gi,i(z) = ψ1(〈z, i〉)ψ′2(|z⊥i |).

Hence, for j = a or i, we have that∫
z∈Xi∩Wj

gj,i(z)dH2(z) =

∫
z∈Xi∩Wj

ψ1(〈z, j〉)ψ′2(|z⊥j |)dH2(z)

=

∫ +∞

0

∫ +∞

0
ψ1(t)ψ′2(s)dtds

= −
∫ +∞

0
ψ1(t)dt < −1

5
,

Thus

H2(ϕ(X ∩B1)) =

∫
z∈X∩B(0,1)

J2ϕ|X(z)dH2(z)

≤ (1 + 100
∑
j

|vj |2)H2(X ∩B1)− 1

5
(〈va, eb + ec〉+

∑
i

〈ui, vi〉)
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If we take λa = 10−3H2(X ∩B1)−1 and λi = 10−3H2(X ∩B1)−1〈ui, i0〉, i ∈ {b, c}, then

H2(ϕ(X ∩B1)) ≤ H2(X ∩B1)− 10−4(|eb + ec|2 + 〈ub, b0〉2 + 〈uc, c0〉2).

Since |〈a,w〉| ≤ τ |w| for w ∈ L0, and −1 ≤ 〈b, c〉 ≤ −1 + 2τ2, we get that

|eb + ec|2 = 2(1 + 〈eb, ec〉) =
2

1− 〈eb, ec〉
(1− 〈eb, ec〉2)

≥ 1− (〈b, c〉 − 〈a, b〉〈a, c〉)2

(1− 〈a, b〉2)(1− 〈a, c〉2)

≥ 1− 〈a, b〉2 − 〈a, c〉2 − 〈b, c〉2 + 2〈a, b〉〈b, c〉〈c, a〉
= (1− 〈b, c〉+ 2〈a, b〉〈a, c〉)(1 + 〈b, c〉)− 〈a, b+ c〉2

≥ (1− 3τ2)|b+ c|2.

Since arcsinx = x+
∑

n≥1Cnx
2n+1 for |x| ≤ 1, where Cn = (2n)!

4n(n!)2(2n+1)
, we have that

H2(X ∩B1)− π

2
=

1

2
(arccos〈a, b〉+ arccos〈a, c〉)− π

2

= −1

2
(arcsin〈a, b〉+ arcsin〈a, c〉) ≤ 1

2
(1 + τ)|〈a, b+ c〉|.

If b+ c 6= 0, then |b0 + c0| ≥ 1, and we have that〈
a,

b+ c

|b+ c|

〉2

=

〈
a,

b0 + c0

|b0 + c0|

〉2

≤ 2
(
〈a, b0〉2 + 〈a, c0〉2

)
.

We get so that in any case

|〈a, b+ c〉| ≤ 1

2

(
|b+ c|2 + 2〈a, b0〉2 + 2〈a, c0〉2

)
.

Since

〈ub, b0〉2 + 〈uc, c0〉2 =
〈a, b0〉2

1− 〈a, b〉2
+
〈a, c0〉2

1− 〈a, c〉2
≥ 〈a, b0〉2 + 〈a, c0〉2,

we get that

H2(ϕ(X ∩B1)) ≤ H2(X ∩B1)− 10−4

(
1

2
|b+ c|2 + 〈a, b0〉2 + 〈a, c0〉2

)
≤ H2(X ∩B1)− 10−4

(
H2(X ∩B1)− π

2

)
.

Lemma 3.13. Let τ ∈ (0, 10−4) be a given. Then there is a constant ϑ > 0 such that the
following hold. Let a ∈ ∂B(0, 1) and b, c, d ∈ L0 ∩ ∂B(0, 1) be such that dist(a, (0, 0, 1)) ≤ τ ,
dist(b, (−1/2,

√
3/2, 0)) ≤ τ , dist(c, (−1/2,−

√
3/2, 0)) ≤ τ and dist(d, (1, 0, 0)) ≤ τ . Let X

be the cone over ga,b ∪ ga,c ∪ ga,d. Then there is a Lipschitz mapping ϕ : Ω0 → Ω0 with
ϕ(E ∩ L) ⊆ L, |ϕ(z)| ≤ 1 when |z| ≤ 1, and ϕ(z) = z when |z| > 1, such that

H2(ϕ(X) ∩B(0, 1)) ≤ (1− ϑ)H2(X ∩B(0, 1)) + ϑ
3π

4
.
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Proof. We let b0, c0 and d0 be unit vectors in L0 such that

b0 ⊥ b, c0 ⊥ c, d0 ⊥ d.

For i ∈ {b, c, d}, we put

ui =
a− 〈a, i〉i
|a− 〈a, i〉i|

, ei =
i− 〈i, a〉a
|i− 〈i, a〉a|

.

We take va = λa(eb + ec + ed) and vi = λii0, where λi > 0, i ∈ {b, c, d}, will be chosen later.
We let ψ be the same as in (3.5), and consider the mapping ϕ : R3 → R3 defined by

ϕ(z) = z + ψ(z, a)va + ψ(z, b)vb + ψ(z, c)vc + ψ(z, d)vd.

We see that supp(ψ(·, a)), supp(ψ(·, b)), supp(ψ(·, c)) and supp(ψ(·, d)) are mutually disjoint,
and that

{z ∈ R3 : ϕ(z) 6= z} ⊆ B(0, 1), ϕ(Ω0) ⊆ Ω0, ϕ(L0) ⊆ L0.

By putting Wj = supp(ψ(·, j)) for j ∈ {a, b, c, d}, we have that

Dψ(·, v)w =

{
w, z /∈Wa ∪Wb ∪Wc ∪Wd,

w + 〈Dψ(·, v), w〉vj , z ∈Wa ∪Wb ∪Wc ∪Wd,

and
〈Dψ(·, j), j〉 = ψ′1(〈z, j〉)ψ2(|z⊥j |), j ∈ {a, b, c, d},
〈Dψ(·, i), ui〉 = ψ1(〈z, i〉)ψ′2(|z⊥i |)〈ui, z⊥i /|z⊥i |〉,

〈Dψ(·, a), ei〉 = ψ1(〈z, a〉)ψ′2(|z⊥a |)〈ei, z⊥a /|z⊥a |〉, i ∈ {b, c, d},

where zw = z − 〈z, w〉w. By putting

gj(z) = ψ′1(〈z, j〉)ψ2(|z⊥j |), j ∈ {a, b, c, d},
ga,i(z) = ψ1(〈z, a〉)ψ′2(|z⊥a |)〈ei, z⊥a /|z⊥a |〉,

gi,i(z) = ψ1(〈z, i〉)ψ′2(|z⊥i |)〈vi, z⊥i /|z⊥i |〉, i ∈ {b, c, d},

and denote by Xi the cone over ga,i, i ∈ {b, c, d}, we have that

Dϕ(z)a ∧Dϕ(z)ei = a ∧ ei + ga(z)va ∧ ei + ga,i(z)a ∧ va, z ∈ Xi ∩Wa,

Dϕ(z)i ∧Dϕ(z)ui = i ∧ ui + gi(z)vi ∧ ui + gi,i(z)i ∧ vi, z ∈ Xi ∩Wi.

We have that, for i ∈ {b, c, d},

J2ϕ|X(z) = ‖Dϕ(z)a ∧Dϕ(z)ei‖ ≤ 1 + ga,i(z)〈ei, va〉+ 100|va|2, z ∈ Xi ∩Wa,

J2ϕ|X(z) = ‖Dϕ(z)i ∧Dϕ(z)ui‖ ≤ 1 + gi,i(z)〈ui, vi〉+ 100|vi|2, z ∈ Xi ∩Wi.

Since z⊥a /|z⊥a | = ei when z ∈ Xi \ span{a}, and z⊥i /|z⊥i | = ui in case z ∈ Xi \ span{i}, we
have that

ga,i(z) = ψ1(〈z, a〉)ψ′2(|z⊥a |) and gi,i(z) = ψ1(〈z, i〉)ψ′2(|z⊥i |).

Thus, for j = a or i, ∫
z∈Xi∩Wj

gj,i(z)dH2(z) = −
∫ +∞

0
ψ1(t)dt < −1

5
.
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Hence

H2(ϕ(X ∩B1)) =

∫
z∈X∩B1

J2ϕ|X(z)dH2(z)

≤
(
1 + 100(|va|2 + |vb|2 + |vc|2 + |vd|2)

)
H2(X ∩B1)

− 1

5
(〈va, eb + ec + ed〉+ 〈ub, vb〉+ 〈uc, vc〉+ 〈ud, vd〉) .

If we take λa = 10−3H2(X ∩B1)−1 and λi = 10−3H2(X ∩B1)−1〈ui, i0〉, i ∈ {b, c, d}, then

H2(ϕ(X ∩B1)) ≤ H2(X ∩B1)− 10−4

(
|eb + ec + ed|2 +

∑
i

〈ui, i0〉2
)
.

Since |〈a,w〉| ≤ τ |w|, for w ∈ L0, and −1/2−
√

3τ ≤ 〈i1, i2〉 ≤ −1/2+
√

3τ , i1, i2 ∈ {b, c, d},
i1 6= i2, we get that 〈i, j〉 − 〈a, i〉〈a, j〉 < 0. By putting e = (0, 0, 1), it is evident that

〈a,w〉2 ≤ 1− 〈a, e〉2, for any w ∈ L0 with |w| = 1.

We put N = 〈a, b〉2 + 〈a, c〉2 + 〈a, d〉2, and we claim that

N ≤ (3/2 + 25τ)
(
1− 〈a, e〉2

)
. (3.12)

Indeed, for any w = λb+ µc with λ, µ ≥ 0, we have that

|w|2 = λ2 + µ2 + 2λµ〈b, c〉 ≥ λ2 + µ2 − (1 + 4τ)λµ,

〈w, d〉2 ≤ (1/2 +
√

3τ)2(λ+ µ)2 ≤ (1/4 + 2τ)(λ+ µ)2

and
〈w, b〉2 + 〈w, b〉2 + 〈w, b〉2 = (λ2 + µ2)(1 + 〈b, c〉2) + 4λµ〈b, c〉+ 〈w, d〉2

≤ (3/2 + 4τ) (λ2 + µ2)− (3/2− 10τ)λµ

≤ (3/2 + 25τ)|w|2.
Hence, for any w ∈ L0, we have that

〈w, b〉2 + 〈w, b〉2 + 〈w, b〉2 ≤ (3/2 + 25τ)|w|2,

we now take w = a− 〈a, e〉e, then

N ≤ (3/2 + 25τ)|a− 〈a, e〉e|2 = (3/2 + 25τ)(1− 〈a, e〉2),

the claim (3.5) follows.
Since (1− x)1/2 ≤ 1− x/2− x2/8 for any x ∈ (0, 1), and

(1− 〈a, b〉2)(1− 〈a, c〉2)(1− 〈a, d〉2) ≥ 1−N,

we have that, for {i, j, k} = {b, c, d},

〈ei, ej〉 =
〈i, j〉 − 〈a, i〉〈a, j〉

(1− 〈a, i〉2)1/2(1− 〈a, j〉2)1/2

≥ (〈i, j〉 − 〈a, i〉〈a, j〉)(1− 〈a, k〉2/2− 〈a, k〉4/8)

(1−N)1/2
.
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Note that
〈a, b〉4 + 〈a, c〉4 + 〈a, d〉4 ≥ N2/3,

and
|〈a, b+ c+ d〉| ≤ 1

2

(
|b+ c+ d|2 + 1− 〈a, e〉2

)
,

we get so that

|eb + ec + ed|2 ≥ 3 + (1−N)−1/2
(
− 3 + (3/2−

√
3τ)N +

1

12
(1/2−

√
3τ)N2

+ |b+ c+ d|2 − 〈a, b+ c+ d〉2 + 〈a, b〉〈a, c〉〈a, d〉〈a, b+ c+ d〉

+
1

4
〈a, b〉〈a, c〉〈a, d〉

(
〈a, b〉3 + 〈a, c〉3 + 〈a, d〉3

))
≥ (1−N)−1/2

(
(1− τ2)|b+ c+ d|2 − 2τN − 2τ3|〈a, b+ c+ d〉|

)
≥ (1− τ)|b+ c+ d|2 − 6τ(1− 〈a, e〉2).

Since 1/(1−x) = 1 +x+x2/(1−x) for x ∈ [0, 1), and 〈a, i〉2 ≤ 1−〈a, e〉2 for i ∈ {b, c, d},
we have that

〈a, e〉2

1− 〈a, i〉2
= 〈a, e〉2 +

〈a, e〉2〈a, i〉2

1− 〈a, i〉2
≤ 〈a, e〉2 + 〈a, i〉2

and

〈ub, b0〉2 + 〈uc, c0〉2 + 〈ud, d0〉2 =
∑

i∈{b,c,d}

1− 〈a, e〉2 − 〈a, i〉2

1− 〈a, i〉2

= 3(1− 〈a, e〉2)−N
≥ (1− τ)(1− 〈a, e〉2).

We get so that

H2(ϕ(X ∩B1)) ≤ H2(X ∩B1)− 10−4(1− 10τ)
(
|b+ c+ d|2 + 1− 〈a, e〉2

)
Since arcsinx = x +

∑
n≥1Cnx

2n+1 for |x| ≤ 1, where Cn = (2n)!
4n(n!)2(2n+1)

, we have that
arcsin〈a, i〉 ≥ 〈a, i〉 − τ〈a, i〉2, thus

H2(X ∩B1)− 3π

4
= −1

2
(arcsin〈a, b〉+ arcsin〈a, c〉+ arcsin〈a, c〉)

≤ −1

2
〈a, b+ c+ d〉+

τ

2
N

≤ 1

2

(
|b+ c+ d|2 + 1− 〈a, e〉2

)
+ τ

(
1− 〈a, e〉2

)
.

Thus
H2(ϕ(X ∩B1)) ≤ (1− 10−4)H2(X ∩B1)− 10−4 · 3π

4
.

Let E ⊆ Ω0 be a 2-rectifiable set satisfying (a), (b) and (c). We will denote by R2 the
set {

r ∈ R1 : ε(r) + j(r)1/2 ≤ 10−6(1− 2 · 10−4)
}
.
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Lemma 3.14. For any r ∈ (0, r) ∩R2, we have that

H2(E ∩Br) ≤ (1− 2 · 10−4)
r

2
H1(E ∩ ∂Br) + (2 · 10−4 − ϑκ2)

r2

2
H1(X ∩ ∂B1)

+ ϑκ2r2Θ(0) + (2r)2h(2r).

Proof. Let Σ, Σr, ξ, ψξ, φξ and {ϕt}0≤t≤1 be the same as in the proof of Lemma 3.11. We
see that

ϕ1(E ∩B(0, (1− ξ)r)) = p(E ∩B(0, (1− ξ)r)) ⊆ Σr,

and that Σ ∩ B(0, 2κ) = X ∩ B(0, 2κ), where X is a cone defined in (3.4). We see that
if Θ(0) = π/2, then X satisfies the conditions in Lemma 3.12; if Θ(0) = 3π/4, then X
satisfies the conditions in Lemma 3.13. Thus we can find a Lipschitz mapping Ω0 → Ω0 with
ϕ(E ∩ L) ⊆ L, |ϕ(z)| ≤ 1 when |z| ≤ 1, and ϕ(z) = z when |z| > 1, such that

H2
(
ϕ(X) ∩B(0, 1)

)
≤ (1− ϑ)H2(X ∩B(0, 1)) + ϑΘ(x).

Let ϕ̃ : Ω0 → Ω0 be the mapping defined by ϕ̃(x) = rϕ(x/r), then

H2(E ∩B(0, r)) ≤ H2(ϕ̃ ◦ ϕ1(E) ∩B(0, r)) + (2r)2h(2r)

≤ H2(ϕ̃ ◦ ϕ1(E ∩B(0, (1− ξ)r))) +H2(ϕ1(E ∩Aξ))
≤ H2(Σr \B(0, κr)) + (1− ϑ)(κr)2H2(X ∩B(0, 1))

+ ϑ · (κr)2Θ(0) +H2(ϕ1(E ∩Aξ)).

But we see that Σr = {rx : x ∈ Σ}, Σ ∩B(0, 2κ) = X ∩B(0, 2κ), and

lim
ξ→0+

H2(ϕ1(E ∩Aξ)) ≤ 2550

∫
E∩∂B(0,r)

dist(z,Σr)dH1(z),

we get so that
H2(Σr \B(0, κr)) = r2

(
H2(Σ)−H2(X ∩B(0, κ))

)
,

and
H2(E ∩B(0, r)) ≤ r2H2(Σ)− (κr)2H2(X ∩B(0, 1))

+ (1− ϑ)(κr)2H2(X ∩B(0, 1)) + (κr)2ϑ ·Θ(0)

+ 2550

∫
E∩∂B(0,r)

dist(z,Σr)dH1(z) + (2r)2h(2r).

By (3.4), we get that

H2(Σ) ≤ H2(M)− 10−4(H1(Γ∗)− T )

= (1/2− 10−4)H1(Γ∗) + 10−4H1(X ∩ ∂B(0, 1)),

and then

H2(E ∩Br) ≤ (1/2− 10−4)r2H1(Γ∗) + (10−4 − ϑκ2/2)r2H1(X ∩ ∂B1)

+ ϑκ2r2Θ(0) + 2550

∫
E∩∂Br

dist(z,Σr)dH1(z) + (2r)2h(2r).
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By (3.4) and Lemma 3.8, we have that

d0,r(E,M) ≤ 5ε(r) + 10j(r)1/2.

We get that for any z ∈ E ∩ ∂B(0, r),

dist(µ1/r(z),M) ≤ 5ε(r) + 10j(r)1/2.

Since Σ \B(0, 9/10) =M\B(0, 9/10), we have that

dist(z,Σr) = r dist(µ1/r(z),Σ) = r dist(µ1/r(z),M)

≤ 5rε(r) + 10rj(r)1/2.

We get so that∫
E∩∂B(0,r)

dist(z,Σr)dH1(z) ≤ 5r(ε(r) + 10j(r)1/2)H1(E ∩ ∂B(0, r) \ Σr)

≤ 10r(ε(r) + j(r)1/2)(H1(E ∩ ∂Br)− rH1(Γ∗)).

By Lemma 3.6, we have that

H1(Γ∗ \ Γ) ≤ H1(Γ \ Γ∗) ≤ Cη2(H1(Γ)−H1(X ∩ ∂B(0, 1))),

so that
H1(X ∩ ∂B(0, 1)) ≤ H1(Γ∗) ≤ H1(Γ) ≤ H1(µ1/r(E ∩ ∂Br)),

thus
H2(E ∩Br) ≤ (1/2− 10−4)r2H1(Γ∗) + (10−4 − ϑκ2/2)r2H1(X ∩ ∂B1)

+ 105(ε(r) + j(r)1/2)r(H1(E ∩ ∂Br)− rH1(Γ∗))

+ ϑκ2r2Θ(0) + (2r)2h(2r).

Since r ∈ (0, r) ∩R2, we have that

105
(
ε(r) + 10j(r)1/2

)
≤ 1

10
(1− 2 · 10−4)

thus

H2(E ∩Br) ≤ (1− 2 · 10−4)
r

2
H1(E ∩ ∂Br) + (2 · 10−4 − ϑκ2)

r2

2
H1(X ∩ ∂B1)

+ ϑκ2r2Θ(0) + (2r)2h(2r).

Theorem 3.15. There exist λ, µ ∈ (0, 10−3) and r1 > 0 such that, for any 0 < r < r1,

H2(E ∩Br) ≤ (1− µ− λ)
r

2
H1(E ∩ ∂Br) + µ

r2

2
H1(X ∩ ∂B1) + λΘ(0)r2 + 4r2h(2r).
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Proof. We put τ1 = min{τ0, 10−12(1− ϑκ2)2}, and take δ such that

κ < δ < κ+ (8ϑ)−1(1− 2 · 10−4)Θ(0)τ1. (3.13)

We see that ε(r)→ 0 as r → 0+, there exist r1 ∈ (0, r) such that, for any r ∈ (0, r1),

ε(r) ≤ 10−1 min{τ1, ϑ(δ2 − κ2)}. (3.14)

If r ∈ (0, r1) and j(r) ≤ τ1, then r ∈ R2, then by Lemma 3.14, we have that

H2(E ∩Br) ≤ (1− 2 · 10−4)
r

2
H1(E ∩ ∂Br) + (2 · 10−4 − ϑκ2)

r2

2
H1(X ∩ ∂B1)

+ ϑκ2r2Θ(0) + (2r)2h(2r).

We only need to consider the case r ∈ (0, r1), j(r) > τ1 and H1(E ∩ ∂Br) < +∞, thus

H1(X ∩ ∂B1) + τ1 ≤
1

r
H1(E ∩B(0, r)). (3.15)

By the construction of X, we see that X ∩ B(0, 1) is Lipschitz neighborhood retract, let
U be a neighborhood of X ∩ B(0, 1) and ϕ0 : U → X ∩ B(0, 1) be a retraction such that
|ϕ0(x)− x| ≤ r/2. We put U1 = µ8r/9(U), ϕ1 = µ8r/9 ◦ϕ0 ◦µ9/(8r), and let s : [0,∞)→ [0, 1]
be a function given by

s(t) =


1, 0 ≤ t ≤ 3r/4,

−(8/r)(t− 7r/8), 3r/4 < t ≤ 7r/8,

0, t > 7r/8.

We see that there exist sliding minimal cone Z such that d0,1(X,Z) ≤ ε(r), thus d0,r(E,X) ≤
2ε(r), then for any x ∈ E ∩B(0, r) \B(0, 3r/4),

dist(x,X) ≤ 2ε(r)r ≤ 8ε(r)

3
|x|.

We consider the mapping ψ : Ω0 → Ω0 defined by

ψ(x) = s(|x|)ϕ1(x) + (1− s(|x|))x,

then ψ(L) = L and ψ(x) = x for |x| ≥ 8r/9.
We take r1 > 0 such that, for any r ∈ (0, r1),

{x ∈ Ω0 ∩B(0, 1) : dist(x,X) ≤ 3ε(r)} ⊆ U.

Then we get that ψ(x) ∈ X for any x ∈ E ∩B(0, 3r/4);

dist(ψ(x), X) ≤ 3ε(r)|x| for any x ∈ E ∩B(0, r) \B(0, 3r/4);

and Ψ(E ∩Br) ∩B(0, r/4) = X ∩B(0, r/4).
We now consider the mapping Π1 : Ω0 → Ω0 defined by

Π1(x) = s(4|x|)x+ (1− s(4|x|))Π(x),
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and the mapping ψ1 : Ω0 → Ω0 defined by

ψ1(x) =

{
Π1 ◦ ψ(x), |x| ≤ r,
x, |x| ≥ r.

We have that ψ1 is Lipschitz, ψ1(L0) = L0 and ψ1(B(0, r)) ⊆ B(0, r),

ψ1(E ∩B(0, r)) ⊆ X ∩B(0, r) ∪ {x ∈ ∂Br : dist(x,X) ≤ 3rε(r)}.

Let ϕ be the same as in Lemma 3.12 and Lemma 3.13, and let ψ2 = µδ ◦ ϕ ◦ µ1/δ ◦ ψ1.
Then we have that

H2(E ∩B(0, r)) ≤ H2(ψ2(E ∩B(0, r))) + (2r)2h(2r)

≤ (1− ϑδ2)H2(X ∩B(0, r)) + ϑδ2Θ(0)r2 + 4r2h(2r)

+H2({x ∈ ∂Br : dist(x,X) ≤ 3rε(r)})
≤ (1− ϑδ2)H2(X ∩B(0, r)) + ϑδ2Θ(0)r2

+ 4rε(r)H1(X ∩ ∂Br) + 4r2h(2r)

≤ (1− ϑδ2 + 8ε(r))
r2

2
H1(X ∩ ∂B1) + ϑδ2Θ(0)r2 + 4r2h(2r)

(3.16)

We take µ = 2 · 10−4 − ϑκ2 and λ = ϑκ2, then by (3.5) and (3.5), we have that

8ε(r) < ϑ(δ2 − κ2)

and
ϑ(δ2 − κ2)Θ(0) ≤ (1− 2 · 10−4)

τ1

2
.

We get from (3.5) and (3.5) that

H2(E ∩Br) ≤ (1− 2 · 10−4)
r2

2
(H1(X ∩ ∂B1) + τ1)− (1− 2 · 10−4)

τ1r
2

2

+ µ
r2

2
H1(X ∩ ∂B1) + ϑκ2Θ(0)r2 + 4r2h(2r)

+ (8ε(r)− ϑδ2 + ϑκ2)
r2

2
H1(X ∩ ∂B1) + (ϑδ2 − ϑκ2)Θ(0)r2

≤ (1− λ− µ)
r

2
H1(E ∩ ∂Br) + µ

r2

2
H1(X ∩ ∂B1) + λΘ(0)r2 + 4r2h(2r).

For convenient, we put λ0 = λ/(1− λ), f(r) = Θ(0, r)−Θ(0) and u(r) = H1(E ∩B(0, r))
for r > 0. Since f(r) = r−2u(r) − Θ(0) and u is a nondecreasing function, we have that, for
any λ1 ∈ R and 0 < r ≤ R < +∞,

Rλ1f(R)− rλ1f(r) ≥
∫ R

r

(
tλ1f(t)

)′
dt,

thus

f(r) ≤ r−λ1Rλ1f(R) + r−λ1
∫ R

r

(
tλ1f(t)

)′
dt. (3.17)
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Corollary 3.16. If the gauge function h satisfy

h(t) ≤ Chtα, 0 < t ≤ r1 for some Ch > 0, α > 0,

then for any 0 < β < min{α, 2λ0}, there is a constant C = C(λ0, α, β, r1, Ch) > 0 such that

|Θ(0, ρ)−Θ(0)| ≤ Cρβ (3.18)

for any 0 < ρ ≤ r1.

Proof. For any r > 0, we put u(r) = H2(E ∩ B(0, r)). Then u is differentiable for H1-a.e.
r ∈ (0,∞).

By Theorem 3.15 and Lemma 2.1, we have that for any r ∈ (0, r1) ∩R,

u(r) ≤ (1− λ)
r

2
H1(E ∩ ∂B(0, r)) + λΘ(0)r2 + 4r2h(2r)

≤ (1− λ)
r

2
u′(r) + λΘ(0)r2 + 4r2h(2r),

thus
rf ′(r) ≥ 2λ

1− λ
f(r)− 8

1− λ
h(2r) = 2λ0f(r)− 8(1 + λ0)h(2r),

and (
r−2λ0f(r)

)′
= r−1−2λ0

(
rf ′(r)− 2λ0

)
≥ −8(1 + λ0)r−1−2λ0h(2r).

Recall that H1((0,∞) \R) = 0. We get, from (3.5), so that, for any 0 < r < R ≤ r1,

f(r) ≤ r2λ0R−2λ0f(R) + 8(1 + λ0)r2λ0

∫ R

r
t−1−2λ0h(2t)dt. (3.19)

Since h(t) ≤ Chtα, we have that

f(r) ≤ (r/R)−2λ0f(R) + 23+α(1 + λ0)Chr
2λ0

∫ R

r
tα−2λ0−1dt.

If α > 2λ0, then

f(r) ≤
(
f(R) + 23+α(1 + λ0)(1 + λ0)(α− 2λ0)−1ChR

α
)

(r/R)2λ0 ; (3.20)

if α = 2λ0, then
f(r) ≤ f(R)(r/R)α + 2α+3(1 + λ0)Chr

α ln(R/r),

thus, for any β ∈ (0, α),

f(r) ≤ f(R)rα + 2α+3(1 + λ0)Chr
βRα−β

ln(R/r)

(R/r)α−β

≤
(
f(R) + 2α+3(1 + λ0)Ch(α− β)−1e−1Rα

)
(r/R)β;

(3.21)

if α < 2λ0, then

f(r) ≤ f(R)(r/R)2λ0 + 2α+3(1− λ0)Chr
2λ0 · (2λ0 − α)−1

(
rα−2λ0 −Rα−2λ0

)
≤
(

(r/R)2λ0−αf(R) + 2α+3(1− λ0)Ch(2λ0 − α)−1Rα
)

(r/R)α.
(3.22)
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Hence (3.16) follows from (3.5), (3.5), (3.5) and Theorem 2.3. Indeed, there is a constant
C1(α, β, λ0) > 0 such that

r2λ0

∫ R

r
tα−2λ0−1dt ≤ C1(α, β, λ0)Rα · (r/R)β, (3.23)

and there is a constant C2(α, β, λ0) > 0 such that

f(r) ≤ (f(R) + C2(α, β, λ0)Ch ·Rα) (r/R)α.

Remark 3.17. If the gauge function h satisfy that

h(t) ≤ C
(

ln

(
A

t

))−b
for some A, b, C > 0, then (3.5) implies that there exist R > 0 and constant C(R, λ, b) such
that

f(r) ≤ C(R, λ, b)

(
ln

(
A

r

))−b
for 0 < r ≤ R.

4 Approximation of E by cones at the boundary

In this section, we also assume that E ⊆ Ω0 is a 2-rectifiable set satisfying (a), (b) and (c).
We let ε(r) = εP (r) if E is locally C0-equivalent to a sliding minimal cone of type P+; and
let ε(r) = εY (r) if E is locally C0-equivalent to a sliding minimal cone of type Y+.

For any r > 0, we put

f(r) = Θ(0, r)−Θ(0), F (r) = f(r) + 8h1(r), F1(r) = F (r) + 8h1(r),

and for r ∈ R, we put

Ξ(r) = rf ′(r) + 2f(r) + 16h(2r) + 32h1(r).

We denote by X(r) and Γ(r), respectively, the cone X and the set Γ which are defined in
(3.4), and by γ(r) the set µr(Γ(r)). For any r2 > r1 > 0, we put

A(r1, r2) = {x ∈ R3 : r1 ≤ |x| ≤ r2}.

Lemma 4.1. For any 0 < r < R <∞ with H2(E ∩ ∂Br) = H2(E ∩ ∂BR) = 0, we have that∫
E∩A(r,R)

1− cos θ(x)

|x|2
dH2(x) ≤ F (R)− F (r), (4.1)

and
H2 (Π(E ∩A(r,R))) ≤

∫
E∩A(r,R)

sin θ(x)

|x|2
dH2(x). (4.2)
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Proof. We see that for H2-a.e. x ∈ E, the tangent plane Tan(E, x) exists, we will denote
by θ(x), the angle between the line [0, x] and the plane Tan(E, x). For any t > 0, we put
u(t) = H2(E ∩B(0, t)), then u : (0,∞)→ [0,∞] is a nondecreasing function. By Lemma 2.2,
we have that

u(t) ≤ t

2
H1(E ∩ ∂B(0, t)) + 4t2h(2t),

for H1-a.e. t ∈ (0,∞). Considering the mapping φ : R3 → [0,∞) given by φ(x) = |x|, we
have, by (2), that

ap J1(φ|E)(x) = cos θ(x)

for H2-a.e. x ∈ E.
Apply Theorem 3.2.22 in [9], we get that∫

E∩A(r,R)

1

|x|2
cos θ(x)dH2(x) =

∫ R

r

1

t2
H1(E ∩ ∂B(0, t)ddt

≥ 2

∫ R

r

u(t)

t3
dt− 8

∫ R

r

h(2t)

t
dt

= 2

∫ R

r

1

t3

∫
E∩B(0,t)

dH2(x)dt− 8(h1(R)− h1(r))

= 2

∫
E∩B(0,R)

∫ R

max{r,|x|}

1

t3
dtdH2(x)− 8(h1(R)− h1(r))

=

∫
E∩A(r,R)

1

|x|2
dH2(x) + r−2u(r)−R−2u(R)− 8(h1(R)− h1(r)),

thus (4.1) holds.
By a simple computation, we get that

ap J2Π(x) =
sin θ(x)

|x|2
,

we now apply Theorem 3.2.22 in [9] to get (4.1).

We get from above Lemma that

H2(Π(E ∩A(r,R))) ≤ r2

r1
(2Θ(0, R))1/2 (F (R)− F (r))1/2

Lemma 4.2. For any r ∈ (0, r1) ∩R, if Ξ(r) ≤ µτ0, then

dH(Γ(r), X(r) ∩ ∂B(0, 1)) ≤ 10µ−1/2Ξ(r)1/2.

Proof. By lemma 2.1, we get that

1

r
H1(E ∩ ∂B(0, r)) ≤ 2Θ(0) + rf ′(r) + 2f(r),

By Theorem 3.15, we get that

r2Θ(0, r) ≤ (1− λ− µ)
r

2
H1(E ∩ ∂Br) + µ

r2

2
H1(X ∩ ∂B1) + λΘ(0)r2 + 4r2h(2r)

≤ 1

2
(1− λ− µ)r2(2Θ(0) + rf ′(r) + 2f(r)) + µ

r2

2
H1(X ∩ ∂B1)

+ λΘ(0)r2 + 4r2h(2r),
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thus
H1(X ∩ ∂B1) ≥ 2Θ(0) +

2(λ+ µ)

µ
f(r)− 1− λ− µ

µ
rf ′(r)− µ

8
h(2r).

Hence
j(r) =

1

r
H1(E ∩Br)−H1(X ∩ ∂B1)

≤ 1− λ
µ

rf ′(r)− 2λ

µ
f(r) +

8

µ
h(2r)

≤ 1

µ
(rf ′(r) + 16h1(r) + 16h(2r)).

Since
H1(X ∩ ∂B1) ≤ H1(Γ∗(r)) ≤ H1(Γ(r)) ≤ H1(µ1/r(E ∩ ∂Br)),

we have that
0 ≤ H1(Γ(r))−H1(X ∩B1) ≤ j(r) ≤ 1

µ
Ξ(r),

by Lemma 3.5, we get that for any z ∈ Γ(r),

dist (z,X ∩ ∂B(0, 1)) ≤ 10

(
Ξ(r)

µ

)1/2

.

Lemma 4.3. For any 0 < r1 < r2 < (1− τ)r, if P is a plane such that H1(E ∩ P ∩Br) <∞
and P ∩ Xr = ∅ for any r ∈ [r1, r2], then there is a compact path connected set

CP,r1,r2 ⊆ E ∩ P ∩A(r2, r1)

such that
CP,r1,r2 ∩ γ(t) 6= ∅ for r1 ≤ t ≤ r2.

Proof. We let % be the same as in 3. Since ‖Φ− id‖∞ ≤ τ%, we get that

Φ−1
(
E ∩B(0, r2)

)
⊆ Z0,% ∩B(0, r2 + τ%).

We put
X = Z0,% ∩B(0, r2 + τ%),

F = X ∩ Φ−1(E ∩ Pz).

We take x1, x2 ∈ Xr, x2 6= x1, such that Φ−1(x1) and Φ−1(x2) are contained in two different
connected components of X \ F . By Lemma 3.2, there is a connected closed subset F0 of F
such that Φ−1(x) and Φ−1(x2) are still contained in two different connected components of
X \ F0. Then F0 ∩ φ−1(γ(t)) 6= ∅ for 0 < t ≤ r2; otherwise, if F0 ∩ φ−1(γ(t0)) = ∅, then x1

and x2 are in the same connected component of Φ(X) \Φ(F0), thus Φ−1(x1) and Φ−1(x2) are
in the same connected component of X \ F0, absurd!

Since H1(Φ(F0)) ≤ H1(E ∩ Pz ∩B%) <∞, we get that Φ(F0) is path connected. We take
z1 ∈ Φ(F0) ∩ γ(r1) and z2 ∈ Φ(F0) ∩ γ(r2), and let g : [0, 1] → Φ(F0) be a path such that
g(0) = z1 and g(1) = z2. We take t1 = sup{t ∈ [0, 1] : |g(t)| ≤ r1} and t2 = inf{t ∈ [t1, 1] :
|g(t)| ≥ r2}. Then Cz,r1,r2 = g([t1, t2]) is our desire set.
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Lemma 4.4. Let T ∈ [π/4, 3π/4] and ε ∈ (0, 1/2) be given. Suppose that F a 2-rectifiable set
satisfying

F ⊆ ∂B(0, 1) ∩ {(t cos θ, t sin θ, x3) ∈ R3 | t ≥ 0, |θ| ≤ T/2, |x3| ≤ ε}.

Then we have, by putting Pθ = {(t cos θ, t sin θ, x3) | t ≥ 0, x3 ∈ R}, that∫ T/2

−T/2
H1(F ∩ Pθ)dθ ≤ (1 + ε)H2(F )

Proof. For any x = (x1, x2, x3) ∈ F , we have that x2
1 + x2

2 + x2
3 = 1 and |x3| ≤ ε, thus

x2
1 + x2

2 ≥ 1− ε2. Since |θ| ≤ T/2 ≤ 3π/8, we get that the mapping φ : F → R given by

φ(x1, x2, x3) = arctan
x2

x1

is well defined and Lipschitz. Moreover, we have that

ap J1φ(x) = (x2
1 + x2

2)−1/2 ≤ (1− ε2)−1/2 ≤ 1 + ε.

Hence ∫ T/2

−T/2
H1(F ∩ Pθ)dθ =

∫
F

ap J1φ(x)dH2(x) ≤ (1 + ε)H2(F ).

For any 0 < t1 ≤ t2, we put

Et1,t2 = Π ({x ∈ E : t1 ≤ |x| ≤ t2}) .

For any t > 0, we put
ε̄(t) = sup{ε(r) : r ≤ t}.

Lemma 4.5. If r2 > r1 > 0 satisfy that 10(1 + r2/r1)ε̄(r2) < 1/2, then we have that∫
X(t)∩∂B(0,1)

H1 (Pz ∩ Er1,r2) dH1(z) ≤ 2H2 (Er1,r2) , ∀r1 ≤ t ≤ r2.

Proof. By Lemma 3.8, we have that, for any r > 0, if ε(r) < 1/2, then

d0,r(E,X(r)) ≤ 5ε(r).

We get so that

d0,1(X(t), X(r2)) = d0,t(X(t), X(r2)) ≤ d0,t(E,X(t)) + d0,t(E,X(r2))

≤ 5ε̄(r2) + 5
r2

t
ε̄(r2).

Since
dist(x,X(r2)) ≤ 5r2ε(r2), for any x ∈ E ∩B(0, r2),
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we have that
dist(Π(x), X(r2)) ≤ 5r2ε(r2)

|x|
, for any x ∈ E ∩A(r1, r2),

we get so that

dist(Π(x), X(t)) ≤ 5r2ε(r2)

|x|
+ 5ε̄(r2) + 5

r2

t
ε̄(r2) ≤ 10(r2/r1 + 1)ε̄(r2) <

1

2
.

We now apply Lemma 4.4 to get the result.

Lemma 4.6. Let ε ∈ (0, 1/2) be given. Let A ⊆ ∂B(0, 1) be an arc of a great circle such that
0 < H1(A) ≤ π and

dist(x, L0) ≤ ε, ∀x ∈ A.

Then

dist(x, L0) ≤ π2

2H1(A)2

∫
A

dist(x, L0)dH1(x), ∀x ∈ A.

Proof. We let P be the plane such that A ⊆ P , let v0 ∈ P ∩L0∩∂B(0, 1) and v2 ∈ P ∩∂B(0, 1)
be two vectors such that v0 is perpendicular to v1. Then A can be parametrized as γ : [θ1, θ2]→
A given by

γ(t) = v0 cos t+ v1 sin t,

where θ2 − θ1 = H1(A). We write v1 = w + w⊥ with w ∈ L0 and w⊥ perpendicular to L0.
Since ap J1γ(t) = 1 for any t ∈ [θ1, θ2], by Theorem 3.2.22 in [9], we have that∫

A
dist(x, L0)H1(x) =

∫ θ2

θ1

dist(γ(t), L0)dt =

∫ θ2

θ1

|w⊥ sin t|dt

≥ 2|w⊥|
(

1− cos
θ2 − θ1

2

)
≥ 2(θ2 − θ1)2

π2
|w⊥|,

and that

dist(x, L0) ≤ |w⊥| ≤ π2

2H1(A)2

∫
A

dist(x, L0)dH1(x).

Lemma 4.7. Let r1 and r2 be the same as in Lemma 4.3. If Ξ(ri) ≤ µτ0, 10(1+r2/r1)ε̄(r2) ≤
1, then we have that

d0,1(X(r1), X(r2)) ≤ 30r2

r1
Θ(0, r2)1/2 · F (r2)1/2 + 20πµ−1/2 ·

(
Ξ(r1)1/2 + Ξ(r2)1/2

)
.

Proof. For z ∈ X(r2)∩ ∂B1, if z /∈ {yr}∪Xr, we will denote by Pz the plane which is through
0 and z and perpendicular to Tan(X(r2) ∩ ∂B1, z). By Lemma 4.2, we have that

|z − a| ≤ 10µ−1/2Ξ(r1)1/2,∀a ∈ Γ(r2) ∩ Pz.

Since CPz ,r1,r2 ∩ γ(ri) 6= ∅, i = 1, 2, we take bi ∈ CPz ,r1,r2 ∩ γ(ri), then

|Π(b1)−Π(b2)| ≤ H1(Π(CPz ,r1,r2)) ≤ H1(Pz ∩ Er1,r2),
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thus

dist(z,X(r1) ∩ ∂B1) ≤ |z −Π(b2)|+ |Π(b2)−Π(b1)|+ dist(Π(b1), X(r1) ∩ ∂B1)

≤ H1(Pz ∩ Er1,r2) + 10µ−1/2
(

Ξ(r1)1/2 + Ξ(r2)1/2
)
.

For any x ∈ Xr, we let Ax be the arc in ∂B(0, 1) which join Π(x) and Π(yr), We see that
X(r2) ∩ ∂B(0, 1) = ∪x∈XrAx, and H1(Ax) ≥ (1/2− ε̄(r2))π ≥ π/4. Suppose z ∈ Ax, then

dist(z,X(r1)) ≤ π2

2H1(Ax)2

∫
Ax

dist(z,X(r1))dH1(x)

≤ 2π

H1(Ax)

∫
Ax

H1(Pz ∩ Er1,r2)dH1(x) + 20πµ−1/2
(

Ξ(r1)1/2 + Ξ(r2)1/2
)

≤ 16H2(Er1,r2) + 20πµ−1/2
(

Ξ(r1)1/2 + Ξ(r2)1/2
)

≤ 16r2

r1
(2Θ(0, r2))1/2 F (r2)1/2 + 20πµ−1/2

(
Ξ(r1)1/2 + Ξ(r2)1/2

)

Remark 4.8. For any cones X1 and X2, we see that

dH(X1 ∩ ∂B(0, 1), X2 ∩ ∂B(0, 1)) ≤ 2d0,1(X1, X2).

Since Ξ(r) = [rF1(r)]′ for any r ∈ R, we get that∫ r2

r1

Ξ(t)dt ≤ r2F1(r2)− r1F1(r1),

For any ζ > 2, if r1 ≤ r2 ≤ r, then by Chebyshev’s inequality, we get that,

H1
({
t ∈ [r1, r2]

∣∣∣ Ξ(t) ≤ ζF1(r)2/3
})
≥ r2 − r1 −

1

ζ
rF1(r)1/3,

thus
{
t ∈ [r1, r2]

∣∣ Ξ(t) ≤ ζF1(r)2/3
}
6= ∅ when r2 − r1 > (1/ζ)rF1(r)1/3.

Lemma 4.9. Let R0 < (1− τ)r be a positive number such that F (R0) ≤ µτ0/4 and ε̄(R0) ≤
10−4. For any r ∈ R ∩ (0, R0), if Ξ(r) ≤ µτ0, then there is a constant C = C(µ,Θ(0)) such
that

dist(x,E) ≤ Cr
(
F1(r)1/3 + Ξ(r)1/2

)
, x ∈ X(r) ∩Br.

Proof. For any k ≥ 0, we take rk = 2−kr. Then there exists tk ∈ [rk, rk−1] such that

Ξ(tk) ≤
∫ rk−1

rk
Ξ(t)dt

rk−1 − rk
≤ rk−1F1(rk−1)

rk−1/2
= 2F1(rk−1).
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We let Xk = X(tk), then for any j > i ≥ 1, we have that

d0,1(Xi, Xj) ≤
j−1∑
k=i

d0,1(Xk, Xk+1)

≤ 60 (Θ(0) + µτ0/4)1/2
j−1∑
k=i

F1(tk)
1/2 + 20πµ−1/2

j−1∑
k=i

(
Ξ(tk)

1/2 + Ξ(tk+1)1/2
)

≤
(

60 (Θ(0) + µτ0/4)1/2 + 40πµ−1/2
) j−1∑
k=i

2F1(tk)
1/2 + F1(tk−1)1/2

≤ C1(µ,Θ(0))(j − i)F1(ri−1)1/2 = C1(µ,Θ(0))F1(ri−1)1/2 log2(ri/rj),
(4.3)

where C1(µ,Θ(0)) = 3
(

60 (Θ(0) + µτ0/4)1/2 + 40πµ−1/2
)
.

For any x ∈ X(r) ∩Br with Ξ(|x|) ≤ µτ0, we assume that tk+1 ≤ |x| < tk, then

dist(x,E) ≤ dH(X(r) ∩B|x|, X(|x|) ∩B|x|) + dH(X(|x|) ∩B|x|, γ(|x|))

≤ 2|x|d0,1(X(r), X(|x|)) + 10µ−1/2|x|Ξ(|x|)1/2

≤ 2|x|(d0,1(X(|x|), Xk) + d0,1(Xk, X1) + d0,1(X1, X(r))) + 10µ−1/2|x|Ξ(|x|)1/2

≤ (40π + 10)µ−1/2|x|
(

Ξ(|x|)1/2 + Ξ(r)1/2
)

+ C2(µ,Θ(0))|x|F1(r)1/2 log2(r/|x|)

≤ (40π + 10)µ−1/2|x|Ξ(|x|)1/2 + C3(µ,Θ(0))r
(

Ξ(r)1/2 + F1(r)1/2
)

For any 0 ≤ a ≤ b ≤ r, we put

I(a, b) =
{
t ∈ [a, b]

∣∣∣ Ξ(t) ≤ F1(r)2/3
}
,

then I(a, b) 6= ∅ when b− a > rF1(r)1/3. If |x| ∈ I(0, r), then

dist(x,E) ≤ C4(µ,Θ(0))r
(
F1(r)1/3 + Ξ(r)1/2

)
.

We let {si}m+1
i=0 ⊆ [0, r] be a sequence such that

0 = s0 < s1 < · · · < sm < sm+1 = r, si ∈ I(0, r),

and
si+1 − si ≤ 2rF1(r)1/3.

For any x ∈ X(r) ∩Br, if si ≤ |x| < si+1 for some 0 ≤ i ≤ m, we have that

dist(x,E) ≤
∣∣∣∣x− si

|x|
x

∣∣∣∣+ dist

(
si
|x|
x,E

)
≤ (si+1 − si) + C4(µ,Θ(0))r

(
F1(r)1/3 + Ξ(r)1/2

)
≤ (C4(µ,Θ(0)) + 2)r

(
F1(r)1/3 + Ξ(r)1/2

)
.
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Definition 4.10. Let U ⊆ R3 be an open set, E ⊆ R3 be a set of Hausdorff dimension 2. E
is called Ahlfors-regular in U if there is a δ > 0 and ξ0 ≥ 1 such that, for any x ∈ E ∩ U , if
0 < r < δ and B(x, r) ⊆ U , we have that

ξ−1
0 r2 ≤ H2(E ∩B(x, r)) ≤ ξ0r

2.

Lemma 4.11. Let R0 be the same as in Lemma 4.9. If E is Ahlfors-regular, and r ∈ R ∩
(0, R0) satisfies Ξ(r) ≤ µτ0, then there is a constant C = C(µ, ξ0,Θ(0)) such that

dist(x,X(r)) ≤ Cr
(
F1(r)1/4 + Ξ(r)1/2

)
, x ∈ E ∩B(0, 9r/10).

Proof. Let {Xk}k≥1 be the same as in (4). For any t ∈ R with tk+1 ≤ t < tk, Ξ(t) ≤ µτ0 and
x ∈ γ(t), we have that

dist(x,X(r)) ≤ dH(γ(t), X(|x|) ∩B|x|) + dH(X(|x|) ∩B|x|, X(r))

≤ (40π + 10)µ−1/2|x|Ξ(|x|)1/2 + C3(µ,Θ(0))r
(

Ξ(r)1/2 + F1(r)1/2
)

We put
J(0, r) = {t ∈ [0, r] : Ξ(t) > F1(r)1/2}.

For any x ∈ γ(t) with t ∈ (0, r) \ J(0, r), we have that

dist(x,X(r)) ≤ C5(µ,Θ(0))r
(

Ξ(r)1/2 + F1(r)1/4
)
.

We put
E1 =

⋃
t∈J(0,r)

(E ∩ ∂Bt), E2 =
⋃

t∈(0,r)\J(0,r)

(E ∩Bt \ γ(t)),

and
E3 = E ∩Br \ (E1 ∪ E2) =

⋃
t∈(0,r)\J(0,r)

γ(t).

Then

H2(E1 ∪ E2) =

∫
E∩Br

dH2(x)−
∫
E3

dH2(x)

≤
∫
E∩Br

dH2(x)−
∫
E3

cos θ(x)dH2(x)

=

∫
E∩Br

(1− cos θ(x))dH2(x) +

∫
E1∪E2

cos θ(x)dH2(x)

≤ r2F (r) +

∫ r

0
H1(E1 ∩ ∂Bt)dt+

∫ r

0
H1(E2 ∩ ∂Bt)dt

≤ r2F (r) +

∫
J(0,r)

(2Θ(0) + tf ′(t) + 2f(t))tdt+ µ−1

∫ r

0
tΞ(t)dt

≤ (2 + µ−1)r2F1(r) + 2Θ(0)

∫
{t∈[0,r]:Ξ(t)>F1(r)1/2}

tdt

≤ (2 + µ−1)r2F1(r) +
2Θ(0)

F1(r)1/2

∫ r

0
tΞ(t)dt

≤ C6(µ,Θ(0))r2F1(r)1/2,
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where C6(µ,Θ(0)) = (2 + µ−1)(µτ0/4)1/2 + 2Θ(0).
We see that, for any x ∈ E3,

dist(x,X(r)) ≤ C5(µ,Θ(0))r
(

Ξ(r)1/2 + F1(r)1/4
)
.

If x ∈ E ∩B(0, 9r/10) with

dist(x,X(r)) > C5(µ,Θ(0))r
(

Ξ(r)1/2 + F1(r)1/4
)

+ s

for some s ∈ (0, r/10), then E ∩B(x, s) ⊆ E1 ∪ E2, thus

H2(E ∩B(x, s)) ≤ C6(µ,Θ(0))r2F1(r)1/2.

But on the other hand, by Ahlfors-regular property of E, we have that

H2(E ∩B(x, s)) ≥ ξ−1
0 s2.

We get so that
s ≤ C6(µ,Θ(0))1/2 · ξ1/2

0 · rF1(r)1/4.

Therefore, for x ∈ E ∩B(0, 9r/10),

dist(x,X(r)) ≤
(
C6(µ,Θ(0))1/2 · ξ1/2

0 + C5(µ,Θ(0))
)(

Ξ(r)1/2 + F1(r)1/4
)
.

For any k ≥ 0, we take Rk = 2−kR0 and sk ∈ [Rk+1, Rk] such that

Ξ(sk) ≤

∫ Rk
Rk+1

Ξ(t)dt

Rk −Rk+1
≤ 2F1(Rk).

We put Xk = X(sk). Then for any j ≥ i ≥ 2, we have that

d0,1(Xi, Xj) ≤
C1(µ,Θ(0))

3

j−1∑
k=i

(
2F1(sk)

1/2 + F1(sk−1)1/2
)

≤ C1(µ,Θ(0))

j−1∑
k=i−1

F1(Rk)
1/2

≤ C1(µ,Θ(0))

ln 2

j−1∑
k=i−1

∫ Rk−1

Rk

F1(t)1/2

t
dt

=
C1(µ,Θ(0))

ln 2

∫ Rj−1

Ri−2

F1(t)1/2

t
dt.

If the gauge function h satisfy that∫ R0

0

F1(t)1/2

t
dt < +∞, (4.4)

then Xk converges to a cone X(0), and

d0,1(X(0), Xk) ≤
C1(µ,Θ(0))

ln 2

∫ Rk−2

0

F1(t)1/2

t
dt.
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Remark 4.12. If h(r) ≤ C(ln(A/r))−b, 0 < r ≤ R0, for some A > R0, C > 0 and b > 3,
then (4) holds.

Indeed,

h1(r) =

∫ r

0

h(2t)

t
dt ≤ C

b− 1

(
ln

(
A

r

))−b+1

,

and then Remark 3.17 implies that

F (r) ≤ C1

(
ln

(
A

r

))−b
+

C

b− 1

(
ln

(
A

r

))−b+1

≤ C2

(
ln

(
A

r

))−b+1

,

thus (4) holds.

Lemma 4.13. If (4) holds, then X(0) is a minimal cone.

Proof. By Lemma 3.8, for any r ∈ (0, r) ∩R, there exist sliding minimal cone Z(r) such that
d0,1(X(r), Z(r)) ≤ 4ε(r). But ε(r)→ 0 as r → 0+, we get that

d0,1(Z(sk), X(0))→ 0.

Since Z(sk) is sliding minimal for any k, we get that X(0) is also sliding minimal.

For any r ∈ R ∩ (0, R0) with Ξ(r) ≤ µτ0, we assume Rk+1 ≤ r < Rk, by Lemma 4.7, we
have that

d0,1(X(0), X(r)) ≤ d0,1(X(0), Xk+3) + d0,1(Xk+3, X(r))

≤ C1(µ,Θ(0))

ln 2

∫ Rk+1

0

F1(t)1/2

t
dt

+
30r

sk+3
Θ(0, r)1/2F1(r)1/2 + 20πµ−1/2

(
Ξ(sk+3)1/2 + Ξ(r)1/2

)
≤ 10C1(µ,Θ(0))

(
Ξ(r)1/2 + F1(r)1/2 +

∫ r

0

F1(t)1/2

t
dt

)
.

(4.5)

Theorem 4.14. If (4) holds, and E is Ahlfors-regular, then E has unique blow-up limit X(0)
at 0, and there is a constant C = C10(µ,Θ, ξ0) such that

d0,9r/10(E,X(0)) ≤ C

(
F1(r)1/4 +

∫ r

0

F (t)1/2

t
dt

)
, 0 < r < r. (4.6)

In particular,
• if h(r) ≤ Ch(ln(A/r))−b for some A,Ch > 0, b > 3 and 0 < r ≤ R0 < A, then

d0,r(E,X(0)) ≤ C ′(ln(A1/r))
−(b−3)/4, 0 < r ≤ 9R0/10, A1 ≤ 10A/9;

• if h(r) ≤ Chrα1 for some Ch, α1 > 0, and 0 < r ≤ r0, 0 < r0 ≤ min{1, R0}, then

d0,r(E,X(0)) ≤ C(r/r0)β, 0 < r ≤ 9r0/10, 0 < β < α1,

where
C ≤ C11(µ, λ0, α1, β, Ch, ξ0,Θ(0))

(
F (r0)1/4 + r

α1/4
0

)
.
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Proof. From (4) and Lemma 4.9, we get that, for any x ∈ X(0) ∩ Br where r ∈ R ∩ (0, R0)
such that Ξ(r) ≤ µτ0,

dist(x,E) ≤ C7(µ, ξ0,Θ(0))r

(
Ξ(r)1/2 + F1(r)1/4 +

∫ r

0

F1(t)1/2

t
dt

)
.

Similarly to the proof of Lemma 4.9, we still consider

I(a, b) =
{
t ∈ [a, b]

∣∣∣ Ξ(t) ≤ F1(r)2/3
}
, 0 ≤ a ≤ b ≤ r,

we have that I(a, b) 6= ∅ whenever b − a > rF1(r)1/3. We let {si}m+1
0 ⊆ [0, r] be a sequence

such that
0 = s0 < s1 < · · · < sm < sm+1 = r, si ∈ I(0, r),

and
si+1 − si ≤ 2rF1(r)1/3.

For any r ∈ (0, R0), we assume that si ≤ r < si+1, x ∈ X(0) ∩ ∂Br.

dist(x,E) ≤
∣∣∣∣x− si

|x|
x

∣∣∣∣+ dist

(
si
|x|
x,E

)
≤ C8(µ, ξ0,Θ(0))r

(
F1(r)1/4 +

∫ r

0

F1(t)1/2

t
dt

) (4.7)

From (4) and Lemma 4.11, we have that, for any x ∈ X(0)∩B(0, 9r/10) where r ∈ R∩(0, R0)
such that Ξ(r) ≤ µτ0,

dist(x,X(0)) ≤ C9(µ, ξ0,Θ(0))

(
Ξ(r)1/2 + F1(r)1/4 +

∫ r

0

F1(t)1/2

t
dt

)
.

Similarly to the proof of Lemma 4.11, we can get that

dist(x,X(0)) ≤ C10(µ, ξ0,Θ(0))

(
F1(r)1/4 +

∫ r

0

F1(t)1/2

t
dt

)
. (4.8)

We get, from (4) and (4), that (4.14) holds.
If h(r) ≤ Ch(ln(A/r))−b for some A,Ch > 0 and b > 3 and 0 < r ≤ R0 < A, then

h1(r) =

∫ r

0

h(2t)

t
dt ≤ Ch

b− 1

(
ln

(
A

r

))−b+1

,

and by Remark 3.17 we have that

F (r) ≤ C ′′
(

ln
A

r

)−b+1

where

C ′′ ≤ C(R0, λ, b)

(
ln
A

r

)−1

+
C1

b− 1
≤ C(R0, λ, b)

(
ln

A

R0

)−1

+
C1

b− 1
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is bounded, thus ∫ r

0

F1(t)1/2

t
dt ≤ C ′′′

(
ln
A

r

)(−b+3)/2

Hence we get that

d0,9r/10(E,X(0)) ≤ C10(µ, ξ0,Θ(0))

(
F1(r)1/4 +

∫ r

0

F1(t)1/2

t
dt

)

≤ C ′
(

ln
A

r

)−(b−3)/4

.

If h(r) ≤ Chrα1 for some Ch, α1 > 0 and 0 < r ≤ r0, then

h1(r) =

∫ r

0

h(2t)

t
dt ≤ Ch

α1
(2r)α1 .

We see, from the proof of Corollary 3.16, that

f(r) ≤ (f(r0) + C2(α1, β, λ0)Chr
α1
0 ) (r/r0)β, ∀0 < β < α1,

thus
F1(r) = f(r) + 16h1(r) ≤ (f(r0) + C ′2(α1, β, λ0)Chr

α1
0 )(r/r0)β.

Then

d0,9r/10(E,X(0)) ≤ C10(µ, ξ0,Θ(0))

(
F1(r)1/4 +

∫ r

0

F1(t)1/2

t
dt

)
≤ C(r/r0)β/4,

where
C ≤ C ′10(µ, ξ0,Θ(0))(F (r0)1/4 + C ′′2 (α1, β, λ0, Ch)r

1/4
0 ).

5 Parameterization of well approximate sets

Recall that a cone in R3 is called of type P if it is a plane; a cone is called of type Y if it is
the union of three half planes with common boundary line and that make 120◦ angles along
the boundary line; a cone of type T if it is the cone over the union of the edges of a regular
tetrahedron.

Theorem 5.1. Let E ⊆ Ω0 be a set with 0 ∈ E. Suppose that there exist C > 0, r0 > 0,
β > 0 and 0 < η ≤ 1 such that, for any x ∈ E ∩ B(0, r0) and 0 < r ≤ 2r0, we can find cone
Zx,r through x such that

dx,r(E,Zx,r) ≤ Crβ,
where Zx,r is a minimal cone in R3 of type P or Y when x /∈ ∂Ω0 and 0 < r < η dist(x, ∂Ω0),
and otherwise, Zx,r is a sliding minimal cone of type P+ or Y+ in Ω0 with sliding boundary ∂Ω0

centered at some point in ∂Ω0. Then there exist a radius r1 ∈ (0, r0/2), a sliding minimal cone
Z centered at 0 and a mapping Φ : Ω0∩B(0, r1)→ Ω0, which is a C1,β-diffeomorphism between
its domain and image, such that Φ(0) = 0, Φ(∂Ω0 ∩ B(0, 2r1)) ⊆ ∂Ω0, ‖Φ − id‖∞ ≤ 10−2r1

and
E ∩B(0, r1) = Φ(Z) ∩B(0, r1).
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Proof. Let σ : R3 → R3 be given by σ(x1, x2, x3) = (x1, x2,−x3). By setting E1 = E ∪ σ(E),
we have that, for any x ∈ E1 ∩ B(0, r0) and 0 < r ≤ 2r0, there exist minimal cone Z(x, r) in
R3 centered at x of type P or Y such that Z(σ(x), r) = σ(Z(x, r)) and

dx,r(E,Z(x, r)) ≤ Crβ.

By Theorem 4.1 in [8], there exist r1 ∈ (0, r0), τ ∈ (0, 1), a cone Z centered at 0 of type P or
Y, and a mapping Φ1 : B(0, 3r1/2)→ B(0, 2r1) such that

σ(Z) = Z, σ ◦ Φ1 = Φ1 ◦ σ, ‖Φ1 − id‖ ≤ r0τ,

C1|x− y|1+τ ≤ |Φ(x)− Φ(y)| ≤ C−1
1 |x− y|

1/(1+τ),

E1 ∩B(0, r1) ⊆ Φ1(Z ∩B(0, 3r1/2)) ⊆ E1 ∩B(0, 2r1).

Using the same argument as in Section 10 in [2], we get that Φ1 is of class C1,β .

6 Approximation of E by cones away from the boundary

In this section, we let Ω ⊆ R3 be a closed set. Let E ∈ SAM(Ω, ∂Ω, h) be a sliding almost
minimal set, x0 ∈ E \ ∂Ω. Then E ∩B(x, r) is almost minimal with gauge function h for any
0 < r < dist(x0, ∂Ω). We put

F (x, r) = Θ(x, r)−Θ(x) + 8h1(r).

We see from Theorem 2.3 that F (x, r) ≥ 0 and F (x, ·) is nondecreasing for 0 < r < dist(x0, L).

Theorem 6.1. If
∫ R0

0 r−1F (x, r)1/3dr < ∞ for some R0 > 0, then E has unique blow-up
limit T at x. Moreover there is a constant C > 0 and a radius ρ0 = ρ0(x) > 0 such that

dx,r(E, T ) ≤ C
∫ 200r

0

F (x, t)1/3

t
dt, 0 < r ≤ ρ0.

In particular, if the gauge function h satisfies that

h(t) ≤ Chtα1 for some α1 > 0 and 0 < t ≤ R0,

then there is a β0 > 0 such that, for any 0 < β < β0,

dx,r(E, T ) ≤ C(α1, β) (F (x, ρ0) + Chρ
α1
0 )1/3 (r/ρ0)β/3.

Proof. Let % be the radius defines as in (3). We take ρ0 = 10−3 min{R0, dist(x0, ∂Ω), %}. By
Theorem 11.4 in [4], there is a constant C > 0 and cone Zr for each 0 < r < ρ0 such that

dx,r(E,Zr) + α+(Zr) ≤ CF (x, 110r)1/3.

We put ρk = 2−kρ0, and Zk = Zρk . Then

dx,1(Zk, Zk+1) = dx,ρk+1
(Zk, Zk+1) ≤ dx,ρk+1

(Zk, E) + dx,ρk+1
(E,Zk+1)

≤ CF (x, 110ρk+1)1/3 + 2CF (x, 110ρk)
1/3.
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For any 1 ≤ i < j, we have that

dx,1(Zi, Zj) ≤ 2C

j−1∑
k=i

F (x, 110ρk)
1/3 + C

j∑
k=i+1

F (x, 110ρk)
1/3 ≤ 3C

j∑
k=i

F (x, 110ρk)
1/3

≤ 3C

ln 2

∫ ρi−1

ρj

F (x, 110t)1/3

t
dt.

Let Z0 be the limit of {Zk}∞k=1. Then we have that

dx,1(Z0, Zi) ≤
3C

ln 2

∫ ρi−1

0

F (x, 110t)1/3

t
dt.

For any 0 < r < ρ0, we assume that ρk+1 ≤ r < ρk, then

dx,1(Zr, Z0) ≤ dx,ρk+1
(Zr, Zk+1) + dx,1(Zk+1, Z0)

≤ dx,1(Zk+1, Z0) + dx,ρk+1
(Zr, E) + dx,ρk+1

(E,Zk+1)

≤ dx,1(Zk+1, Z0) +
r

ρk+1
dx,r(Zr, E) + dx,ρk+1

(E,Zk+1)

≤ 3CF (x, 110r)1/3 +
3C

ln 2

∫ ρk

0

F (x, 110t)1/3

t
dt.

Hence

dx,r(E,Z0) ≤ dx,r(E,Zr) + dx,r(Zr, Z0) ≤ 10C

ln 2

∫ 200r

0

F (x, t)1/3

t
dt (6.1)

and T = τ x(Z0) is the only blow up limit of E at x, which is a minimal cone.
By Theorem 4.5 in [4], we have that

ΘE(x, r) ≤
(

1

2
− α0

)
H1(E ∩B(x, r))

r
+ 2α0ΘE(x) + 4h(r),

where we take α0 the constant α in Theorem 4.5 in [4]. For our convenient, we denote
u(r) = H2(E ∩B(x, r)) and f(r) = ΘE(x, r)−ΘE(x), then we have H1(E ∩∂B(x, r)) ≤ u′(r)
and

f(r) + ΘE(x) ≤
(

1

2
− α0

)
u′(r)

r
+ 2α0ΘE(x) + 4h(r)

=

(
1

2
− α0

)
(2f(r) + rf ′(r) + 2ΘE(x)) + 2α0ΘE(x) + 4h(r),

thus
rf ′(r) ≥ 4α0

1− 2α0
f(r)− 8

1− 2α0
h(r),

and (
r
− 4α0

1−2α0 f(r)

)′
≥ − 8

1− 2α0
r
− 1+2α0

1−2α0 h(r).

We take β0 = min{4α0/(1− 2α0), α1}. Then for any 0 < β < β0, we have that

f(r) ≤ (r/ρ0)
4α0

1−2α0 f(ρ0) +
8

1− 2α0
r

4α0
1−2α0

∫ ρ0

r
t
− 1+2α0

1−2α0 h(t)dt

≤ (r/ρ0)
4α0

1−2α0 f(ρ0) + C ′1(α1, β, α0)ρα1
0 · (r/ρ0)β.
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We get so that
F (x, r) ≤ C(α1, β, α0)(F (x, ρ0) + Chρ

α1
0 )(r/ρ0)β,

combine this with (6), we get the conclusion.

7 Parameterization of sliding almost minimal sets

Let n, d ≤ n and k be nonnegative integers, α ∈ (0, 1). By a d-dimensional submanifold of
class Ck,α of Rn we mean a subset M of Rn satisfying that for each x ∈ M there exist s
neighborhood U of x in Rn, a mapping Φ : U → Rn which is a diffeomorphism of class Ck,α

between its domain and image, and a d dimensional vector subspace Z of Rn such that

Φ(M ∩ U) = Z ∩ Φ(U).

In this section, we assume that Ω ⊆ R3 is a closed set whose boundary ∂Ω is a 2-dimensional
submanifold of class C1,α for some α ∈ (0, 1), and suppose that Ω has tangent cone a half
space at any point in ∂Ω. Let E ⊆ Ω be a closed set such that E ∈ SAM(Ω, ∂Ω, h) and
∂Ω ⊆ E, x0 ∈ ∂Ω. We always assume that the gauge function h satisfies that∫ R0

0

1

r

(∫ r

0

h(2t)

t
dt

)1/2

dr < +∞ (7.1)

and ∫ R0

0
r−1+ λ

1−λ

(∫ R0

r
t−1− 2λ

1−λh(2t)dt

)1/2

dr < +∞, (7.2)

for some R0 > 0. It is easy to see that if h(t) ≤ Ctα1 for some α1 > 0, C > 0 and 0 < t ≤ R0,
then (7) and (7) hold. For our convenient, we put λ0 = λ/(1− λ),

h2(ρ) =

∫ ρ

0

1

r

(∫ r

0

h(2t)

t
dt

)1/2

dr

and

h3(ρ) =

∫ ρ

0
r−1+λ0

(∫ R0

r
t−1−2λ0h(2t)dt

)1/2

dr.

We see, from Proposition 4.1 in [5], that E is Ahlfors-regular in B(x0, R0), i.e. there exist
δ1 > 0 and ξ1 ≥ 1 such that for any x ∈ E ∩B(x0, R0), if 0 < r < δ1 and B(x, r) ⊆ B(x0, R0),
we have that

ξ−1
1 r2 ≤ H2(E ∩B(x, r)) ≤ ξ1r

2.

We see from Theorem 3.10 in [8] that there only there kinds of possibility for the blow-up
limits of E at x0, they are the plane Tan(∂Ω, x0), cones of type P+ union Tan(∂Ω, x0), and
cones of type Y+ union Tan(∂Ω, x0). By Proposition 29.53 in [5], we get so that

ΘE(x0) = π,
3π

2
, or

7π

4
.

If ΘE(x0) = π, then there is a neighborhood U0 of x0 in R3 such that E ∩ U0 = ∂Ω ∩ U0. In
the next content of this section, we put ourself in the case ΘE(x0) = 3π/2 or 7π/4.
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Lemma 7.1. There exist r0 = r0(x0) > 0 and a mapping Ψ = Ψx0 : B(0, r0)→ R3, which is
a diffeomorphism of class C1,α from B(0, r0) to Ψ(B(0, r0)), such that

Ψ(0) = x0,Ψ(Ω0 ∩Br0) ⊆ Ω ∩B(x0, R0),Ψ(L0 ∩Br0) ⊆ ∂Ω ∩B(x0, R0),

and that DΨ(0) is a rotation satisfying that

DΨ(0)(Ω0) = Tan(Ω, x0) and DΨ(0)(L0) = Tan(∂Ω, x0).

Proof. By definition, there are an open set U, V ⊆ R3 and a diffeomorphism Φ : U → V of
class C1,α such that x0 ∈ U , 0 = Φ(x0) ∈ V and

Φ(U ∩ ∂Ω) = Z ∩ V,

where Z is a plane through 0. Indeed, we have that

Z = DΦ(x0) Tan(∂Ω, x0)

and
Φ(U ∩ Ω) = V ∩DΦ(x0) Tan(Ω, x0).

We will denote by A the linear mapping given by A(v) = DΦ(x0)−1v, and assume that
A(V ) = B(0, r) is a ball. Let Φ1 be a rotation such that Φ1(Tan(∂Ω, x0)) = L0 and
Φ1(Tan(Ω, x0)) = Ω0. Then we get that Φ1 ◦ A ◦ Φ is also C1,α mapping which is a dif-
feomorphism between U and B(0, r),

D(Φ1 ◦A ◦ Φ)(x0) Tan(Ω, x0) = Φ1(Tan(Ω, x0)) = Ω0,

D(Φ1 ◦A ◦ Φ)(x0) Tan(∂Ω, x0) = Φ1(Tan(∂Ω, x0)) = L0,

and
Φ1 ◦A ◦ Φ(U ∩ ∂Ω) = Φ1 ◦A(Z ∩ V ) = L0 ∩B(0, r),

Φ1 ◦A ◦ Φ(U ∩ ∂Ω) = Φ1 ◦A(V ∩DΦ(x0) Tan(Ω, x0)) = Ω0 ∩B(0, r).

We now take r0 = r and Ψ = (Φ1 ◦A ◦ Φ)−1|B(0,r) to get the result.

Let U ⊆ Rn be an open set. For any mapping Ψ : U → Rn of class C1,α, we will denote
by CΨ the constant CΨ = sup {‖DΨ(x)−Dψ(y)‖/|x− y|α : x, y ∈ U, x 6= y}. Then we have
that

Ψ(x)−Ψ(y) =

〈
x− y,

∫ 1

0
DΨ(y + t(x− y))dt

〉
,

and thus

|Ψ(x)−Ψ(y)−DΨ(y)(x− y)| ≤ |x− y|
∫ 1

0
CΨ(t|x− y|)αdt ≤ CΨ

α+ 1
|x− y|1+α.

For any 0 < ρ ≤ r0, we set Uρ = Ψ(Bρ), Mρ = Ψ−1(E ∩ Uρ) and

Λ(ρ) = max
{

Lip
(
ΨBρ

)
,Lip

(
Ψ−1
Uρ

)}
. (7.3)
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Then

‖DΨ(0)‖ − ‖DΨ(x)−DΨ(0)‖ ≤ ‖DΨ(x)‖ ≤ ‖DΨ(0)‖+ ‖DΨ(x)−DΨ(0)‖,

thus 1− CΨρ
α ≤ ‖DΨ(x)‖ ≤ 1 + CΨρ

α for x ∈ Bρ, and we have that

Λ(ρ) ≤ 1/(1− CΨρ
α) whenever CΨρ

α < 1. (7.4)

Lemma 7.2. For any 1 < ρ ≤ min{r0, C
−1/α
Ψ }, Mρ is local almost minimal in Bρ at 0 with

gauge function H satisfying that

H(2r) ≤ 4Λ(r)2h(2Λ(r)r) + 4ξ1CΨΛ(ρ)rα for 0 < r < (1− CΨρ
α)δ1.

Proof. For any open set U ⊆ R3, M ≥ 1, δ > 0 and ε > 0, we let GSAQ(U,M, δ, ε) be the
collection of generalized sliding Almgren quasiminimal sets which is defined in Definition 2.3
in [5]. We see that

diam(Uρ) ≤ 2ρLip
(
Ψ|Bρ

)
≤ 2ρΛ(ρ)

and
E ∩ Uρ ∈ GSAQ(Uρ, 1,diam(Uρ), h(2 diam(Uρ))),

By Proposition 2.8 in [5], we have that

Mρ ∈ GSAQ
(
Bρ,Λ(ρ)4, 2ρ,Λ(ρ)4h (2ρΛ(ρ))

)
By Proposition 4.1 in [5], we get that Mρ is Ahlfors-regular in Bρ. Indeed, we can get a little
more, that is, for any x ∈Mρ with 0 < rΛ(ρ) < δ1 and B(x, r) ⊆ B(0, ρ), we have that

(ξ1Λ(ρ))−1 r2 ≤ H2(Mρ ∩B(x, r)) ≤ (ξ1Λ(ρ)) r2. (7.5)

Let {ϕt}0≤t≤1 be any sliding deformation of Mρ in Br. Then{
Ψ ◦ ϕt ◦Ψ−1

}
0≤t≤1

is a sliding deformation of E in Ur. Hence we get that

H2(E ∩ Ur) ≤ H2(Ψ ◦ ϕ1 ◦Ψ−1(E ∩ Ur)) + h(2 diam(Ur))
2 diam(Ur)

2 (7.6)

For any 2-rectifiable set A ⊆ Bρ, by Theorem 3.2.22 in [9], we have that

ap J2(Ψ|A)(x) =
∥∥∧2

(
DΨ(x)|Tan(A,x)

)∥∥
and

H2(Ψ(A ∩Br)) =

∫
A∩Br

ap J2(Ψ|A)(x)dH2(x)

By (7), we get that∫
A∩Br

(1− CΨ|x|α)2dH2 ≤ H2(Ψ(A ∩Br)) ≤
∫
A∩Br

(1 + CΨ|x|α)2dH2.
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Thus, by taking A = Mρ, we have that Mr = Mρ ∩Br, Ψ(Mr) = E ∩ Ur and

H2(Ψ(Mr)) ≥ (1− CΨρ
α)2H2(Mr);

by taking A = ϕ1(Mρ), we have that

H2(Ψ(ϕ1(Mρ) ∩Br)) ≤ (1 + CΨr
α)2H2(ϕ1(Mρ) ∩Br).

Combine these two equations with (7) and (7), we get that

H2(ϕ1(Mρ) ∩Br) ≥ (1 + CΨr
α)−2H2(Ψ(ϕ1(Mρ) ∩Br))

≥ (1 + CΨr
α)−2

(
H2(E ∩ Ur)− h(4rΛ(r))(2rΛ(r))2

)
≥
(

1− CΨρ
α

1 + CΨrα

)2

H2(Mr)−
(

2rΛ(r)

1 + CΨrα

)2

h(4rΛ(r))

≥ H2(Mr)−H(2r)r2.

Lemma 7.3. Let E1 ⊆ Ω0 be a 2-rectifiable set, x ∈ E1, X a cone centered at 0, Φ : R3 → R3

a diffeomorphism of class C1,α. Then there exist C > 0 such that, for any r > 0 and ρ > 0
with B(Φ(x), ρ) ⊆ Φ(B(x, r)),

dΦ(x),ρ (Φ(E1),Φ(x) +DΦ(x)X) ≤ (Crα + ‖DΦ(x)‖dx,r(E1, x+X))
r

ρ
.

Proof. Since Φ is of class C1,α, we have that

|Φ(y)− Φ(x)−DΦ(x)(y − x)| ≤ CΦ

α+ 1
|x− y|1+α,

by putting C1 = CΦ/(α+ 1), we get that

dist(Φ(y),Φ(x) +DΦ(x)X) ≤ C1|y − x|1+α for y ∈ x+X.

For any z ∈ E1 ∩Br and y ∈ x+X, we have that

|Φ(z)− Φ(y)| ≤ |Φ(z)− Φ(y)−DΦ(x)(z − y)|+ ‖DΦ(x)‖ · |z − y|
≤ ‖DΦ(x)‖ · |z − y|+ C1|z − x|1+α + C1|y − x|1+α,

thus
dist(Φ(z),Φ(x+X)) ≤ ‖DΦ(x)‖rdx,r(E1, x+X) + 2C1r

1+α,

hence
dist(Φ(z),Φ(x) +DΦ(x)X) ≤ ‖DΦ(x)‖rdx,r(E1, x+X) + 3C1r

1+α. (7.7)

For any z ∈ X ∩Br, Φ(x) +DΦ(x)z ∈ Φ(x) +DΦ(x)X, and

dist(Φ(x) +DΦ(x)z,Φ(E1)) = inf{|Φ(y)− Φ(x)−DΦ(x)z| : y ∈ E1}
≤ inf{C1r

1+α + ‖DΦ(x)‖ · |y − x− z| : y ∈ E1}
≤ ‖DΦ(x)‖rdx,r(x+X,E1) + C1r

1+α.

(7.8)

We get from (7) and (7) that

dΦ(x),ρ(Φ(E1),Φ(x) +DΦ(x)X) ≤ r

ρ
(3C1r

α + ‖DΦ(x)‖ · dx,r(E1, x+X))
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Theorem 7.4. Let Ω, E ⊆ Ω, x0 ∈ ∂Ω and h be the same as in the beginning of this section.
Then there is a unique blow-up limit X of E at x0; moreover, if the gauge function h satisfy
that

h(t) ≤ Chtα1 for some Ch > 0, α1 > 0 and 0 < t < t0, (7.9)

then there exists ρ0 > 0 such that, for any 0 < β < min{α, α1, 2λ0},

dx0,ρ(E, x0 +X) ≤ C(ρ/ρ0)β/4, 0 < ρ ≤ 9ρ0/20,

where C is a constant satisfying that

C ≤ C20(µ, λ0, α, α1, β, ξ1)(FE(x0, 2ρ0) + CΨρ
α
0 + Chρ

α1
0 )1/4,

and FE(x0, r) = r−2H2(E ∩B(x0, r))−ΘE(x0) + 16h1(r).

Proof. Let r ∈ (0, r0) be such that CΨr
α ≤ 1/2 and 2r ≤ R0. Then Λ(r) ≤ 2. By Lemma 7.2,

we have that Mr is local almost minimal at 0 with gauge function H satisfying that

H(t) ≤ 16h(2t) + Crt
α, 0 < t < r, (7.10)

where Cr ∈ (0, 23−αξ1CΨ) is a constant.
We put fMr(ρ) = ΘMr(0, ρ)−ΘMr(0). Then we get, from (3.5) and (3.5), that

fMr(ρ) ≤
(
r−2λ0fMr(r)

)
ρ2λ0 + 8(1 + λ0)ρ2λ0

∫ r

ρ
t−1−2λ0H(2t)dt

≤
(
r−2λ0fMr(r)

)
ρ2λ0 + 27+2λ0(1 + λ0)ρ2λ0

∫ 2r

2ρ

h(2t)

t1+2λ0
dt

+ 2α+3(1 + λ0)Cr · C1(α, β, λ0)rα · (ρ/r)β,

where C1(α, β, λ0) is the constant in (3.5).
We get from (7) that

H1(ρ) =

∫ ρ

0

H(2s)

s
ds ≤ 16h1(2ρ) +

Cr
α

(2ρ)α,

by setting F1(ρ) = fMr(ρ) + 16H1(ρ), we have that

F1(ρ) ≤ C12(λ0, α, β, r)(ρ/r)
β + 28h1(2ρ) + 24+αCrα

−1ρα

+ 27+2λ0(1 + λ0)ρ2λ0

∫ 2r

2ρ

h(2t)

t1+2λ0
dt,

where
C12(λ0, α, β, r) ≤ fMr(r) + 2α+3(1 + λ0)CrC1(α, β, λ0)rα.

Hence ∫ t

0

F1(ρ)1/2

ρ
dρ ≤ C12(λ0, α, β, r)

1/2(2/β)(t/r)β + 16h2(2t) + C13(α, r)tα/2

+ 24+λ0(1 + λ0)1/2

∫ t

0
ρ−1+λ0

(∫ 2r

2ρ

h(2s)

s1+2λ0
ds

)1/2

dρ,
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where C13(α, r) ≤ 23+α/2α−3/2C
1/2
r , thus∫ t

0

F1(ρ)1/2

ρ
dρ < +∞, for 0 < t ≤ r.

We now apply Theorem 4.14, there is a unique tangent cone T of Mr at 0, thus there is a
unique tangent cone X of E at x0.

For any R ∈ (0, R0), we put

fE(x0, R) = R−2H2(E ∩B(x0, R))−ΘE(x0)

and
FE(x0, R) = fE(x0, R) + 16h1(R).

We see, from (7) and B(x0, ρ/Λ(ρ)) ⊆ Uρ ⊆ B(x0, ρΛ(ρ)), that

(1− CΨρ
α)2(fMr(ρ) + ΘE(x0)) ≤ ρ−2H2(E ∩ Uρ) ≤ (1 + CΨρ

α)2(fMr(ρ) + ΘE(x0)),

so that
fMr(ρ) ≤ (1− CΨρ

α)−4fE(x0, ρΛ(ρ)) + 4ΘE(x0)CΨρ
α,

and
fMr(ρ) ≥ (1− C2

Ψρ
2α)2fE(x0, ρ/Λ(ρ)) + 2ΘE(x0)C2

Ψρ
2α.

Thus we get that

C12(λ0, α, β, r) ≤ 16fE(x0, 2r) + (9ξ1 · 2α+3(1 + λ0)C1(α, β, λ0) + 4ΘE(0))CΨr
α.

If h satisfy (7.6), we take 0 < ρ0 ≤ min{r, t0}, then

h1(ρ) ≤ Ch
α1

(2ρ)α1 , H1(ρ) ≤ 24+2α1Ch
α1

ρα1 +
2αCr
α

ρα, 0 < ρ ≤ ρ0,

and

F1(ρ) ≤ C13(λ0, α, β, ρ0, Ch)(ρ/ρ0)β + 28+α1α−1
1 Chρ

α1 + C14(α, ξ1, CΨ)ρα, (7.11)

where C13(λ0, α1, β, ρ0, Ch) and C14(α, ξ1, CΨ) are constant satisfying that

C13(λ0, α1, β, ρ0, Ch) ≤ C12(λ0, α, ρ0) + 27+4α1(1 + λ0)C1(α1, β, λ0)Chρ
α1
0

and
C14(α, ξ1, CΨ) ≤ 28+αα−1ξ1CΨ.

We get so that (7) can be rewrite as

F1(ρ) ≤ C15(λ0, α, α1, β, ξ1)(FE(x0, 2ρ0) + CΨρ
α
0 + Chρ

α1
0 )(ρ/ρ0)β/4.

By Theorem 4.14, we have that

d0,9ρ/10(Mr, T ) ≤ C16(µ, ξ0)

(
F1(ρ)1/4 +

∫ ρ

0

F1(t)1/2

t
dt

)
≤ C17(µ, λ0, α, α1, β, ξ1)GE(x0, ρ0)(ρ/ρ0)β/4,
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where
GE(x0, ρ0) = (FE(x0, 2ρ0) + CΨρ

α
0 + Chρ

α1
0 )1/4.

Apply Lemma 7.3, and by setting X = DΨ(0)T , we get that, for any ρ ∈ (0, 9ρ0/10),

dx0,ρ/2(E, x0 +X) ≤ dx0,ρ/Λ(ρ)(E, x0 +DΨ(0)T )

≤ 6CΨρ
α + 2dx,ρ(Mr, T )

≤ 6CΨρ
α + C18(µ, λ0, α, α1, β, ξ1)GE(x0, ρ0)(ρ/ρ0)β/4

≤ C19(µ, λ0, α, α1, β, ξ1)GE(x0, ρ0)(ρ/ρ0)β/4.

The radius ρ0 is chosen to be such that

0 < ρ0 ≤ min
{

1, t0, r0(x0), R0/2, (2CΨ)−1/α
}

and R0 > 0 is chosen to be such that

FMr(R0) ≤ µτ0/4, ε̄(R0) ≤ 10−4, R0 < (1− τ)r.

Lemma 7.5. For any τ > 0 small enough, there exists ε2 = ε2(τ) > 0 such that the following
hold: E is an sliding almost minimal set in Ω with sliding boundary ∂Ω and gauge function
h, x0 ∈ E ∩ ∂Ω, Ψ is a mapping as in Lemma 7.1 and CΨ is the constant as in (7), if r1 > 0
satisfy that CΨr

α
1 ≤ ε2, h(2r1) ≤ ε2 and FE(x0, r1) ≤ ε2, then for any r ∈ (0, 9r1/10), we can

find sliding minimal cone Zx0,r in Tan(Ω, x0) with sliding boundary Tan(∂Ω, x0) such that

dist(x, Zx0,r) ≤ τr, x ∈ E ∩B(x0, (1− τ)r)

dist(x,E) ≤ τr, x ∈ Zx0,r ∩B(x0, (1− τ)r),

and for any ball B(x, t) ⊆ B(x0, (1− τ)r),

|H2(Zx0,r ∩B(x, t))−H2(E ∩B(x, t))| ≤ τr2.

Moreover, if E ⊇ ∂Ω, then Zx0,r ⊇ Tan(∂Ω, x0).

Proof. It is a consequence of Proposition 30.19 in [5].

Corollary 7.6. Let Ω, E ⊆ Ω, x0 ∈ ∂Ω, h and FE be the same as in Theorem 7.4. Suppose
that the gauge function h satisfying

h(t) ≤ Chtα1 for some Ch > 0, α1 > 0 and 0 < t < t0. (7.12)

Then there exists δ > 0 and constant C = C20(µ, λ0, α, α1, β, ξ1) > 0 for 0 < β < min{α, α1, 2λ0}
such that, whenever 0 < ρ0 ≤ min{1, t0, r0(x0), r} satisfying

FE(x0, 2ρ0) + CΨρ
α
0 + Chρ

α1
0 ≤ δ,

we have that, for 0 < ρ ≤ 9ρ0/20,

dx0,ρ(E, x0 + Tan(E, x0)) ≤ C(FE(x0, 2ρ0) + CΨρ
α
0 + Chρ

α1
0 )1/4(ρ/ρ0)β/4.
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Proof. By Theorem 7.4, there exist ρ0 > 0 such that

dx0,ρ(E, x0 + Tan(E, x0)) ≤ C(ρ/ρ0)β/4, 0 < ρ ≤ 9ρ0/20,

where ρ0 > 0 is chosen to be such that

0 < ρ0 ≤ min
{

1, t0, r0(x0), R0/2, (2CΨ)−1/α
}

(7.13)

and R0 > 0 is chosen to be such that

FMr(R0) ≤ µτ0/4, ε̄(R0) ≤ 10−4, R0 < (1− τ)r.

By Lemma 7.5, there exists δ > 0 such that if FE(x0, 2ρ0) + CΨρ
α
0 + Chρ

α1
0 ≤ δ, then (7)

holds, and we get the result.

Lemma 7.7. Let Ω, E and h be the same as in Theorem 7.4. We have that

E \ ∂Ω ∈ SAM(Ω, ∂Ω, h).

Proof. We will put E1 = E \ ∂Ω for convenient. We first show that H2(E1∩∂Ω) = 0. Indeed,
for any x ∈ E1 ∩ ∂Ω, ΘE(x) ≥ 3π/2. It follows from the fact that for H2-a.e. x ∈ E,
ΘE(x) = π that H2(E1 ∩ ∂Ω) = 0.

Let {ϕt}0≤t≤1 be any sliding deformation in some ball B = B(y, r). Since E ⊇ ∂Ω and
E ∈ SAM(Ω, ∂Ω, h), we have that

H2(E1) = H2(E \ ∂Ω) ≤ H2(ϕ1(E) \ ∂Ω) + 4h(2r)r2

= H2(ϕ1(E1) \ ∂Ω) + 4h(2r)r2

≤ H2(ϕ1(E1)) + 4h(2r)r2.

Thus E1 ∈ SAM(Ω, ∂Ω, h).

Lemma 7.8. Let Ω, E, x0 and h be the same as in Theorem 7.4. For ant ε > 0 small
enough, there exists a ρ0 > 0 such that for any 0 < ρ < ρ0 and x ∈ E ∩B(x0, ρ), there exists
x1 ∈ B(x0, 5ρ) ∩ ∂Ω with x1 ∈ E \ Ω such that

|x− x1| ≤ (1 + ε) dist(x, ∂Ω).

Proof. If ΘE(x0) = π, then there is an open ball B = B(x0, r) such that E ∩ B = ∂Ω ∩ B,
and we have nothing to prove.

We assume that ΘE(x0) = 3π/2 or 7π/4. We put E1 = E \ ∂Ω. Then x0 ∈ E1 and
ΘE(x0) = π/2 or 3π/4, and by Lemma 7.7, we have that E1 ∈ SAM(Ω, ∂Ω, h). By Lemma
7.5, for any ε ∈ (0, 10−3), there exists ρ0 ∈ (0, r0) such that, for any 0 < ρ < ρ0, we can find
sliding minimal cone Zρ centered at x0 of type P+ or Y+ satisfying that

dx0,ρ(E1, Zρ) ≤ ε.

Let Ψ : B(0, r0)→ R3 be the mapping defined in Lemma 7.1, and let Λ be the same as in (7).
We put Uρ = Ψ(Bρ), A1 = Ψ−1(E1 ∩ Uρ0). By Lemma 7.3, for any 0 < r ≤ ρ/Λ(ρ), there
exist sliding minimal cone Xr in Ω0 such that

d0,r(A1, Xr) ≤ (Cρα + ε)
ρ

r
.
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Thus there exists ρ1 > 0 such that for any 0 < r ≤ ρ1, we can find sliding minimal cone Xr

of type P+ or Y+ such that
d0,r(A1, Xr) ≤ 2ε.

Using the same argument as in the proof Lemma 5.4 in [8], we get that there exists ρ2 > 0
such that for any x ∈ A1 ∩ B(0, ρ) with 0 < ρ ≤ ρ2, we can find a ∈ A1 ∩ L0 ∩ B(0, 3ρ) such
that

|PL0(x)− a| ≤ 8ε|x− a|,

where we denote by PL0 the orthogonal projection from R3 to L0. Thus

|x− a| ≤ |x− PL0(x)|+ |PL0(x)− a| ≤ dist(x, L0) + 8ε|x− a|,

and we get that

dist(x,A1 ∩ L0 ∩B(0, 3ρ)) ≤ 1

1− 8ε
dist(x, L0 ∩B(0, 3ρ)).

We take ρ3 = dist(x0,R3 \ Uρ2)/10. Then, for any 0 < ρ ≤ ρ3 and z ∈ E1 ∩B(x0, ρ),

dist(z, E1 ∩ ∂Ω ∩B(x0, 5ρ)) ≤ Lip
(
Ψ|B(0,3ρ2)

)
dist(Ψ−1(z), A1 ∩ L0 ∩B(0, 3ρ))

≤ (1− 8ε)−1Λ(3ρ) dist(Ψ−1(z), A1 ∩ L0 ∩B(0, 3ρ))

≤ (1− 8ε)−1Λ(3ρ)2 dist(z, ∂Ω ∩B(x0, 5ρ)).

We assume ρ2 to be small enough such that (1− 8ε)−1Λ(3ρ2)2 < 1 + 10ε, then

dist(z, E1 ∩ ∂Ω ∩B(x0, 5ρ)) ≤ (1 + 10ε) dist(z, ∂Ω ∩B(x0, 5ρ)).

Lemma 7.9. Let Ω, E, x0 and h be the same as in Theorem 7.4. Suppose that ΘE(x0) = 3π/2.
Then, by putting E1 = E \ ∂Ω, there exist a radius r > 0, a number β > 0 and a constant
C > 0 such that, for any x ∈ B(x0, r) ∩ E1 and 0 < ρ < 2r, we can find cone Zx,ρ such that

dx,ρ(E1, Zx,ρ) ≤ Cρβ,

where Zx,ρ = y + Tan(E1, y), y ∈ E1 ∩ B(x,Cρ), and y ∈ E1 ∩ ∂Ω ∩ B(x,Cρ) in case
ρ ≥ dist(x, ∂Ω)/10.

Proof. We see that E = E1 ∪ ∂Ω, and FE(x0, ρ) = FE1(x, ρ) + F∂Ω(x0, r). By Corollary 7.6,
there exist δ > 0 and C > 0 such that whenever 0 < ρ0 ≤ min{1, t0, r0(x0)} satisfying

FE1(x0, 2ρ0) + CΨx0
ρα0 + Chρ

α1
0 ≤ δ.

we have that, for 0 < ρ ≤ 9ρ0/20,

dx0,ρ(E1, x0 + Tan(E1, x0)) ≤ Cδ1/4(ρ/ρ0)β,

where 0 < β < min{α, α1, 2λ0, β0}/4. We take ρ1 ∈ (0, ρ0) such that

FE1(x0, 2ρ) + CΨx0
ρα + Chρ

α1 ≤ min{δ/2, ε2(τ)}, ∀0 < ρ ≤ ρ1.
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If x ∈ ∂Ω ∩ B(x0, ρ1/10), we take t = ρ1/2, then apply Lemma 7.5 with r = |x − x0| + t
to get that

H2(E1 ∩B(x, t)) ≤ H2(Zx,r ∩B(x, t)) + τr2,

thus
ΘE1(x, t) ≤ 1

t2
H2(Zx,r ∩B(x, t)) + 4τ ≤ π

2
+ CΨx0

rα + 4τ,

and
FE1(x, t) ≤ CΨx0

rα + 4τ + 16h1(t).

We get that FE1(x, 2ρ) + CΨxρ
α + Chρ

α1 ≤ δ for 0 < ρ ≤ t/2. Thus

dx,r(E1, x+ Tan(E1, x)) ≤ Cδ1/4(r/t)β, 0 < r < 9t/20.

By Lemma 7.8, we assume that for any x ∈ E1 ∩ B(x0, ρ1/10), there exists x1 ∈ E1 ∩
B(x0, ρ1/2) ∩ ∂Ω such that

|x− x1| ≤ 2 dist(x, ∂Ω).

If x ∈ E1 ∩B(x0, ρ1/10) \ ∂Ω, we take t = t(x) = 10−3 dist(x, ∂Ω), then apply Lemma 7.5
with r = |x− x1|+ t to get that

H2(E1 ∩B(x, t)) ≤ H2(Zx1,r ∩B(x, t)) + τr2,

thus
ΘE1(x, t) ≤ 1

t2
H2(Zx1,r ∩B(x, t)) + (1 + 2 · 103)2τ ≤ π/2 + (1 + 2 · 103)2τ,

and
F (x, t) ≤ (1 + 2 · 103)2τ + 8h1(t).

By Theorem 6.1, there is a constent C1 > 0 such that

dx,r(E1, x+ Tan(E1, x)) ≤ C1(r/t)β, 0 < r < t.

Hence we get that

dx,r(E1, x+ Tan(E1, x)) ≤ C2(r/t0)β, ∀x ∈ E1 ∩B(x0, ρ1/10), 0 < r < t0, (7.14)

where

t0 =

{
ρ1/10, x ∈ ∂Ω,

10−3 dist(x, ∂Ω), x /∈ ∂Ω.

We take 0 < a < β/(1 + β). For any x ∈ B(x0, ρ1/10) \ ∂Ω, if r ≤ C3t
1/(1−a)
0 , then we get

from (7) that
dx,r(E1, x+ Tan(E1, x)) ≤ C2C

β(a−1)
3 raβ;

if C3t
1/(1−a)
0 < r < ρ1/5, then by (7), we have that

dx,r(E1, x1 + Tan(E1, x1)) ≤ |x− x1|+ r

r
dx1,|x−x1|+r(E1, x1 + Tan(E1, x1))

≤ C4

(
1 +

2 · 103t0
r

)(
r + 2 · 103t0

ρ1/2

)β
≤ C5(1 + C6r

−a)β+1rβ ≤ C7r
β−aβ−a.
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We get so that, for any 0 < β1 < min{aβ, β − aβ − a} there is a constant C8 such that for
any x ∈ E1 ∩B(x0, ρ1/10) and 0 < ρ < ρ1/5, we can find cone Zx,ρ such that

dx,ρ(E1, Zx,ρ) ≤ C8ρ
β1 ,

where Zx,ρ = y + Tan(E1, y), y ∈ E1 ∩ B(x,C8ρ), and y ∈ E1 ∩ ∂Ω ∩ B(x,C8ρ) in case
ρ ≥ C3t

1/(1−a)
0 .

Lemma 7.10. Let Ω, E, x0 and h be the same as in Theorem 7.4. Suppose that ΘE(x0) =
7π/4. Then, by putting E1 = E \ ∂Ω, there exist a radius r > 0, a number β > 0 and a
constant C > 0 such that, for any x ∈ B(x0, r) ∩ E1 and 0 < ρ < 2r, we can find a cone Zx,ρ
such that

dx,ρ(E1, Zx,ρ) ≤ Cρβ,

where Zx,ρ = y + Tan(E1, y), y ∈ E1 ∩ B(x0, Cρ), and y ∈ E1 ∩ ∂Ω ∩ B(x0, Cρ) in case
ρ ≥ dist(x, ∂Ω)/10.

Proof. By Corollary 7.6, there exist δ > 0 and C > 0 such that whenever 0 < ρ0 ≤
min{1, t0, r0(x0)} satisfying

FE1(x0, 2ρ0) + CΨx0
ρα0 + Chρ

α1
0 ≤ δ,

we have that, for 0 < ρ ≤ 9ρ0/20,

dx0,ρ(E1, x0 + Tan(E1, x0)) ≤ Cδ1/4(ρ/ρ0)β,

where 0 < β < min{α, α1, 2λ0}/4. We take ρ1 ∈ (0, ρ0) such that

FE1(x0, 2ρ) + CΨx0
ρα + Chρ

α1 ≤ min{δ/2, ε2(τ)}, ∀0 < ρ ≤ ρ1.

If x ∈ ∂Ω∩B(x0, ρ1/10), we take t = |x− x0|/2, then apply Lemma 7.5 with r = |x− x0|+ t
to get that

H2(E1 ∩B(x, t)) ≤ H2(Zx,r ∩B(x, t)) + τr2,

thus
ΘE1(x, t) ≤ 1

t2
H2(Zx,r ∩B(x, t)) + 9τ ≤ π

2
+ CΨx0

rα + 9τ,

and
FE1(x, t) ≤ CΨx0

rα + 9τ + 16h1(t).

We get that FE1(x, 2ρ) + CΨxρ
α + Chρ

α1 ≤ δ for 0 < ρ ≤ t/2. Thus

dx,r(E1, x+ Tan(E1, x)) ≤ Cδ1/4(r/t)β, 0 < r < 9t/20. (7.15)

By Lemma 7.8, we assume that for any x ∈ E1 ∩ B(x0, ρ1/10), there exists x1 ∈ E1 ∩
B(x0, ρ1/5) ∩ ∂Ω such that

|x− x1| ≤ 2 dist(x, ∂Ω).

If x ∈ E1 ∩ B(x0, ρ1/10) \ ∂Ω, then ΘE1(x) = π or 3π/2. We put t(x) = dist(x, ∂Ω). If
ΘE1(x) = 3π/2, we take t = 10−3t(x), then apply Lemma 7.5 with r = |x−x1|+ t to get that

H2(E1 ∩B(x, t)) ≤ H2(Zx1,r ∩B(x, t)) + τr2,
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thus
ΘE1(x, t) ≤ 1

t2
H2(Zx1,r ∩B(x, t)) + (1 + 2 · 103)2τ ≤ 3π

2
+ (1 + 2 · 103)2τ.

and
FE1(x, t) ≤ (1 + 2 · 103)2τ + 8h1(t).

By Theorem 6.1, we have that

dx,ρ(E1, x+ Tan(E1, x)) ≤ C1(ρ/t)β, 0 < ρ < t. (7.16)

We put EY = {x0} ∪ {x ∈ E \ ∂Ω : ΘE1(x) = π}. If ΘE1(x) = π and dist(x,EY ) ≤
10−2 dist(x, ∂Ω), we take x2 ∈ EY such that |x−x2| ≤ 2 dist(x,EY ) and t = 10−1 dist(x,EY ),
then apply Lemma 7.24 in [3] with r = |x− x2|+ t to get that

H2(E1 ∩B(x, t)) ≤ H2(Zx2,r ∩B(x, t)) + τr2,

thus
ΘE1(x, t) ≤ 1

t2
H2(Zx2,r ∩B(x, t)) + 400τ ≤ π + 400τ,

and
FE1(x, t) ≤ 4τ + 8h1(t).

By Theorem 6.1, we have that

dx,ρ(E1, x+ Tan(E1, x)) ≤ C2(ρ/t)β, 0 < ρ < t. (7.17)

If ΘE1(x) = π and dist(x,EY ) > 10−2 dist(x, ∂Ω), we take t = 10−3 dist(x, ∂Ω), then
apply Lemma 7.5 with r = |x− x1|+ t to get that

H2(E1 ∩B(x, t)) ≤ H2(Zx1,r ∩B(x, t)) + τr2,

thus
ΘE1(x, t) ≤ 1

t2
H2(Zx1,r ∩B(x, t)) + (1 + 2 · 103)2τ ≤ π + (1 + 2 · 103)2τ.

and
FE1(x, t) ≤ (1 + 2 · 103)2τ + 8h1(t).

By Theorem 6.1, we have that

dx,ρ(E1, x+ Tan(E1, x)) ≤ C3(ρ/t)β, 0 < ρ < t. (7.18)

We get, from (7), (7), (7) and (7), so that

dx,ρ(E1, x+ Tan(E1, x)) ≤ C4(ρ/t0)β, x ∈ E1 ∩B(x0, ρ1/10), 0 < ρ < t0, (7.19)

where

t0 =


ρ1/2, x = x0,

|x− x0|/10, x ∈ ∂Ω \ {x0},
10−3 dist(x, ∂Ω), x /∈ ∂Ω,ΘE1(x) = 3π/2

10−1 min{10−2 dist(x, ∂Ω),dist(x,EY )}, x /∈ ∂Ω,ΘE1(x) = π.

56



Claim: EY ∩ B(x0, ρ1/2) is a C1 curve which is perpendicular to Tan(Ω, x0). Indeed, by
biHölder regaurity at the boundary, we see that EY ∩B(x0, ρ1/2) is a curve, and by J. Taylor’s
regularity, we get that EY ∩B(x0, ρ1/2) is of class C1.

By the claim, we can assume that, there is a constant η3 > 0 such that

dist(x, ∂Ω) ≥ η3|x− x0|, ∀x ∈ EY ∩B(x0, ρ1/10). (7.20)

We fix 0 < β1 < β2 < β/(1 + β) such that β1 ≤ β2β/(1 + β).
By (7), we have that, for any x ∈ ∂Ω ∩B(x0, ρ1/10) \ {x0}, and any 0 < ρ < |x− x0|/10,

dx,ρ(E1, x+ Tan(E1, x)) ≤ C4(ρ/t0)β.

If 0 < ρ ≤ C5|x− x0|1/(1−β1), then

dx,ρ(E1, x+ Tan(E1, x)) ≤ C4(10ρ/|x− x0|)β = C6ρ
β1β;

if C5|x− x0|1/(1−β1) < ρ ≤ ρ1/5, then

dx,ρ(E1, x0 + Tan(E1, x0)) ≤ |x− x0|+ ρ

ρ
dx0,|x−x0|+ρ(E1, x0 + Tan(E1, x0))

≤ (1 + C−1+β1
5 ρ−β1)C4

(
C−1+β1

5 ρ1−β1 + ρ

ρ1/2

)β
≤ C7ρ

β−β1−ββ1 .

Thus we get that, for any 0 < β3 ≤ min{ββ1, β−β1−ββ1)}, there is a constant C8 such that
for any x ∈ ∂Ω ∩B(x0, ρ1/10) and 0 < ρ ≤ ρ1/5 we can find cone Zx,ρ satisfying that

dx,ρ(E1, Zx,ρ) ≤ C8ρ
β3 . (7.21)

If x ∈ E1 ∩B(x0, ρ1/10) \ ∂Ω and ΘE1(x) = 3π/2, then for 0 < ρ ≤ C5|x− x0|1/(1−β1), we
get, from (7), that

dx,ρ(E1, x+ Tan(E1, x)) ≤ C4(103ρ/ dist(x, ∂Ω))β = C9ρ
β1β;

and for C5|x− x0|1/(1−β1) < ρ ≤ ρ1/5, we have that

dx,ρ(E1, x0 + Tan(E1, x0)) ≤ |x− x0|+ ρ

ρ
dx0,|x−x0|+ρ(E1, x0 + Tan(E1, x0))

≤ (1 + C−1+β1
5 ρ−β1)C4

(
C−1+β1

5 ρ1−β1 + ρ

ρ1/2

)β
≤ C10ρ

β−β1−ββ1 .

Thus we get that, for any 0 < β4 ≤ min{ββ1, β − β1 − ββ1)}, there is a constant C11 such
that for any x ∈ E1 ∩ B(x0, ρ1/10) \ ∂Ω with ΘE1(x) = 3π/2, and 0 < ρ ≤ ρ1/5 we can find
cone Zx,ρ satisfying that

dx,ρ(E1, Zx,ρ) ≤ C11ρ
β4 . (7.22)

If x ∈ E1 ∩ B(x0, ρ1/10) \ Ω, ΘE1(x) = π and dist(x, ∂Ω) < 100 dist(x,EY ), then for any
0 < ρ < C9 dist(x, ∂Ω)1/(1−β1), we get, from (7), that

dx,ρ(E1, x+ Tan(E1, x)) ≤ C4(103ρ/ dist(x, ∂Ω))β = C12ρ
β1β; (7.23)
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and for C9 dist(x, ∂Ω)1/(1−β1) ≤ ρ ≤ ρ1/5, in case ρ ≤ C13|x − x0|1/(1−β2), we get, from (7),
that

dx,ρ(E1, x1 + Tan(E1, x1)) ≤ |x− x1|+ ρ

ρ
dx1,|x−x1|+ρ(E1, x1 + Tan(E1, x1))

≤ (1 + 2C−1+β1
9 ρ−β1)C4

(
2C−1+β1

9 ρ1−β1 + ρ

|x0 − x1|/10

)β
≤ C14ρ

ββ2−β1−ββ1 ;

(7.24)

in case ρ > C13|x− x0|1/(1−β2), we have that

dx,ρ(E1, x0 + Tan(E1, x0)) ≤ |x− x0|+ ρ

ρ
dx0,|x−x0|+ρ(E1, x0 + Tan(E1, x0))

≤ (1 + C−1+β2
13 ρ−β2)C4

(
C−1+β2

13 ρ1−β2 + ρ

ρ1/2

)β
≤ C15ρ

β−β2−ββ2 .

(7.25)

If x ∈ E1 ∩ B(x0, ρ1/10) \ ∂Ω, ΘE1(x) = π and dist(x, ∂Ω) ≥ 100 dist(x,EY ), then for any
0 < ρ < C16 dist(x,EY )1/(1−β1), we get, from (7), that

dx,ρ(E1, x+ Tan(E1, x)) ≤ C4(10ρ/ dist(x,EY ))β = C17ρ
β1β, (7.26)

for C16 dist(x,EY )1/(1−β1) ≤ ρ ≤ ρ1/5, we can find y ∈ EY such that |x− y| ≤ 2 dist(x,EY ),
in case ρ ≤ C18 dist(y, ∂Ω)1/(1−β2), we get, from (7), that

dx,ρ(E1, y + Tan(E1, y)) ≤ |x− y|+ ρ

ρ
dy,|x−y|+ρ(E1, y + Tan(E1, y))

≤ (1 + 2C−1+β1
16 ρ−β1)C4

(
2C−1+β1

16 ρ1−β1 + ρ

10−3 dist(y, ∂Ω)

)β
≤ C19ρ

ββ2−β1−ββ1 ;

(7.27)

and in case ρ > C18 dist(y, ∂Ω)1/(1−β2), we have that

|x− x0| ≥ dist(x, ∂Ω) ≥ 100 dist(x,EY ) ≥ 50|x− y|,

and by (7),

dist(y, ∂Ω) ≥ η3|y − x0| ≥ η3(|x− x0| − |x− y|) ≥ η3 ·
49

50
|x− x0|,

thus by (7),

dx,ρ(E1, x0 + Tan(E1, x0)) ≤ |x− x0|+ ρ

ρ
dx0,|x−x0|+ρ(E1, x0 + Tan(E1, x0))

≤ (1 + C−1+β2
20 ρ−β2)C4

(
C−1+β2

20 ρ1−β2 + ρ

ρ1/2

)β
≤ C21ρ

β−β2−ββ2 .

(7.28)
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We get, from (7), (7), (7), (7),(7) and (7), that for any 0 < β5 ≤ min{ββ1, ββ2 − β1 −
ββ1, β − β2− ββ2}, there is a constant C22 such that for any x ∈ E1 ∩B(x0, ρ1/10) \ ∂Ω with
ΘE1(x) = π, and 0 < ρ ≤ ρ1/5 we can find cone Zx,ρ such that

dx,ρ(E1, Zx,ρ) ≤ C22ρ
β5 . (7.29)

Hence we get, from (7), (7) and (7), that for any 0 < β6 ≤ min{ββ1, ββ2 − β1 − ββ1, β −
β2 − ββ2}, there is a constant C23 > 0 and C24 > 0 such that for any x ∈ E1 ∩ B(x0, ρ1/10)
and 0 < ρ ≤ ρ1/5 we can find cone Zx,ρ such that

dx,ρ(E1, Zx,ρ) ≤ C23ρ
β6 ,

where Zx,ρ = z+Tan(E1, z) for some z ∈ E1∩B(x,C24ρ), and z ∈ E1∩∂Ω∩B(x,C24ρ) in case
ρ ≥ max{C5|x− x0|1/(1−β1), C9 dist(x, ∂Ω)1/(1−β1), C18 dist(y, ∂Ω)1/(1−β2) dist(x, ∂Ω)}.

Corollary 7.11. Let Ω, E and h be the same as in Theorem 7.4. Let E1 = E \ ∂Ω and
x0 ∈ E1 ∩ ∂Ω. Then there exist a radius r > 0, a number β > 0 and a constant C > 0 such
that, for any x ∈ E1 ∩B(x0, r) and 0 < ρ < 2r, we can find cone Zx,ρ such that

dx,ρ(E1, Zx,ρ) ≤ Cρβ,

where Zx,ρ = y + Tan(E1, y), y ∈ E1 ∩ B(x,Cρ), and y ∈ E1 ∩ ∂Ω ∩ B(x,Cρ) in case
ρ ≥ dist(x, ∂Ω)/10..

Proof. It is follow from Lemma 7.9 and Lemma 7.10.

Lemma 7.12. Let Ω, E, x0 and h be the same as in Corollary 7.11. Let Ψ : B(0, r0) → R3

be the mapping defined in Lemma 7.1. Let R > 0 be such that Ψ(B(0, R)) ⊆ B(x0, r), where
B(x0, r) is the ball considered as in Corollary 7.11. By putting U = Ψ(B(0, R)), M1 =
Ψ−1(E1 ∩ U), we have that there exist ρ3 > 0, β > 0, and constant C > 0 such that for any
z ∈M1 ∩B(0, ρ3) and 0 < t < 2ρ3, we can find cone Z(z, t) through z such that

dz,t(M1, Z(z, t)) ≤ Ctβ,

where Z(z, t) is a minimal cone of type P or Y in case z ∈ M1 \ L0 and 0 < t < dist(z, L0);
and in case t ≥ dist(z, L0) or z ∈ L0, Z(z, t) is a sliding minimal cone in Ω0 with sliding
boundary L0, if Z(z, t) \L0 6= ∅, we can be written as Z(z, t) = L0 ∪Z, Z is a slding minimal
cone of type P+ or Y+.

Proof. For any x ∈ B(x0, r) ∩E1 and 0 < ρ < 2r, we let Zx,ρ be the same cone considered as
in Corollary 7.11. We put Φ = Ψ−1|B(x0,r) and X = Tan(E1, y) for convenient.

For any x ∈ E1 ∩B(x0, r), and any z ∈ E1 ∩B(x, ρ), we have that

dist(Φ(z),Φ(y +X)) ≤ Lip(Φ) dist(z, y +X) ≤ C Lip(Φ)ρ1+β.

Since
|Φ(z1)− Φ(z2)−DΦ(z2)(z1 − z2)| ≤ C1|z1 − z2|1+α,

we have that, for any z1 ∈ y +X,

dist(Φ(z1),Φ(y) +DΦ(y)X) ≤ C1|z1 − y|1+α.
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Hence

dist(Φ(z),Φ(y) +DΦ(y)X) ≤ C Lip(Φ)ρ1+β + C1(ρ+ Cρ+ Cρ1+β)1+α ≤ C2ρ
1+β. (7.30)

For any v ∈ X, we see that Φ(y) +DΦ(y)v ∈ Φ(y) +DΦ(y)X, and we have that

dist(Φ(y) +DΦ(y)v,M1) ≤ dist(Φ(y) +DΦ(y)v,Φ(E1 ∩B(x, ρ)))

= inf{|Φ(z)− Φ(y)−DΦ(y)v| : z ∈ E1 ∩B(x, ρ)}
≤ inf{C1|z − y|1+α + Lip(Φ)|z − y − v| : z ∈ E1 ∩B(x, ρ)}
≤ C1(ρ+ Cρ)1+α + Lip(Φ) dist(y + v,E1).

Thus there exist C3 > 0 such that, for any v ∈ X with |y + v − x| ≤ ρ,

dist(Φ(y) +DΦ(y)v,M1) ≤ C3ρ
1+β. (7.31)

We take 0 < C5 < C4 < 1 small enough, for example C4 < (10 Lip(Φ))−1, then for any
C5ρ ≤ t ≤ C4ρ ≤ ρ/Lip(Φ) − C1(Cρ)1+α, we have that M1 ∩ B(Φ(x), t) ⊆ Φ(E1 ∩ B(x, ρ))
and

[Φ(y) +DΦ(y)X] ∩B(Φ(x), t) ⊆ {Φ(y) +DΦ(y)v : v ∈ X, y + v ∈ B(x, ρ)}.

We get, from (7) and (7), so that

dΦ(x),t(M1,Φ(y) +DΦ(y)X) ≤ C6ρ
β ≤ C7t

β,

and
|Φ(x)− Φ(y)| ≤ Lip(Φ)|x− y| ≤ (Lip(Φ)CC−1

5 )t.

Hence
dΦ(x),t(M1,Φ(y) +DΦ(y)X) ≤ C7t

β, for any 0 < t < C4ρ1,

where ρ1 ∈ (0, 2r) satisfy that C1C
1+αρ1 ≤ Lip(Φ)−1 − C4.

We take ρ2 > 0 such that, for any x ∈ E1 ∩ Φ(B(x0, ρ2)) and 0 < ρ < 2ρ2, Zx,ρ can be
expressed as Zx,ρ = y + Tan(E1, y) with y ∈ E1 ∩ U . Since DΦ(y)X = DΦ(y) Tan(E1, y) =
Tan(M1,Φ(y)) in case y ∈ E1 ∩ U , by putting ρ3 = min{ρ2, C4ρ1/2, R}, we have that, for
any z ∈M1 ∩B(0, ρ3) and 0 < t < 2ρ3, there exist cone Z ′(z, t) in Ω0 with sliding boundary
L0 = ∂Ω0, such that

dx,t(M1, Z
′(z, t)) ≤ C7t

β.

For such cone Z ′(z, t), we have that Z ′(z, t) = w + Tan(M1, w), w ∈ M1, |w − z| ≤ C8t, and
w ∈ L0 ∩ B(z, C8t) in case t ≥ dist(z, L0)/2. Z ′(z, t) may not pass through z, but the cone
Z(z, t) = Z ′(z, t)− w + z pass through z, and

dx,t(M1, Z(z, t)) ≤ C7t
β + C8t ≤ C9t

β.

Proof of Theorem 1.2. Let M1 be the same as in Lemma 7.12, and let M = Ψ−1(E ∩ U).
Then by Lemma 7.12, we have that for any x ∈ M1 ∩ B(0, ρ3) and 0 < r < 2ρ3, there exist
cone Z(x, r) such that

dx,r(M1, Z(x, r)) ≤ Crβ,
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where Z(x, r) is a minimal cone in R3 of type P or Y in case x 6∈ L0 and t ≤ dist(x, L0); and
Z(x, r) is a sliding minimal cone in Ω0 with sliding boundary L0 of type P+ or Y+ in other
case. We apply Theorem 5.1 to get that there exist ρ4 > 0, a sliding minimal cone Z ′ centered
at 0, and a mapping Φ1 : Ω0∩B(0, ρ4)→ Ω0, which is a C1,β-differential, such that Φ1(0) = 0,
Φ1(∂Ω0 ∩B(0, ρ4)) ⊆ L0, ‖Φ− id‖ ≤ 10−1ρ4 and

M1 ∩B(0, ρ4) = Φ(Z ′) ∩B(0, ρ4).

We take Z = Z ′ ∪ L0, then we get that

M ∩B(0, ρ4) = Φ(Z) ∩B(0, ρ4).

8 Existence of the Plateau problem with sliding boundary con-
ditions

The Plateau Problem with sliding boundary conditions arise in [6], due to Guy David. That
is, given an initial set E0, and boundary Γ, to find the minimizers among all competitors. The
author of the paper [6] also gives some hint to the existence in Section 6, and later on in [5],
he pave the way. We will give an existence result in case the boundary is nice enough.

Let Ω ⊆ R3 be a closed domain such that the boundary ∂Ω is a 2-dimensional manifold of
class C1,α for some α > 0. Let E0 ⊆ Ω be a closed set with E0 ⊇ ∂Ω. We denote by C (E0)
the collection of all competitors of E0.

Theorem 8.1. If there is a bounded minimizing sequence of competitors. Then there exists
E ∈ C (E0) such that

H2(E \ ∂Ω) = inf{H2(S \ ∂Ω) : S ∈ C (E0)}

Proof. We put
m0 = inf{H2(S \ ∂Ω) : S ∈ C (E0)}.

If m0 = +∞, we have nothing to do. We now assume that 0 ≤ m0 < +∞.
Let {Si} ⊆ C0 be a sequence of competitors bounded by B(0, R) such that

lim
i→∞
H2(Si \ ∂Ω) = m0.

Apply Lemme 5.2.6 in [10], we can fined a sequence of open sets {Ui} and a sequence of
competitors {Ei} ⊆ C (E0) of E0 bounded by B(0, R+ 1) such that

• Ui ⊆ Ui+1, ∪i≥1Ui = B(0, R+ 2) \ ∂Ω;

• Ei ∩ Ui ∈ QM(Ui,M, diam(Ui)) for constant M > 0;

• H2(Ei) ≤ H2(Si) + 2−i.

We assume that Ei converge locally to E in B(0, R + 2), pass to subsequence if necessary,
then by Corollary 21.15 in [5], we get that E is sliding minimal.

We get, from Theorem 1.2 and Theorem 1.15 in [4], that E is a Lipschitz neighborhood
retract. But we see that Ei converges to E, we get so that E contains a competitor.
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