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Nobody doubts that infections have imposed specialisations

on the mammalian genome. However sufficient information is

usually missing to attribute a specific genomic modification to

pressure from a specific pathogen. Recent studies on

mechanisms of mammalian resistance against the ubiquitous

protozoan parasite, Toxoplasma gondii, have shown that the

small rodents presumed to be largely responsible for

transmission of the parasite to its definitive host, the domestic

cat, possess distinctive recognition proteins, and interferon-

inducible effector proteins (IRG proteins) that limit the potential

virulence of the parasite. The phylogenetic association of the

recognition proteins, TLR11 and TLR12, with T. gondii

resistance is weak, but there is evidence for reciprocal

polymorphism between parasite virulence proteins and host

IRG proteins that strongly suggests current or recent

coevolution.
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Infection modifies genomes
The mammalian genome has clearly been influenced by

infection. The extraordinary genomic complexity of the

rearranging receptors of lymphocytes and the complex

array of immune functions assembled in the mammalian

MHC are testimony to millions of years of pathogen

pressure.

Less straightforward is to document where and how

specific pathogens have triggered specific genomic

effects. Recent fatal pandemics have left their marks

on the human genome, for example in the shape of a
www.sciencedirect.com 
number of more or less dysgenic alleles of a-globin and

b-globin for malaria, witnessing the urgency and intensity

of selection by novel pathogens. In mice the superanti-

genic ORF proteins of endogenous mammary tumor

viruses appear to have taken a toll of T cell receptor

Vb families [1] as the selective priorities for the mouse

seem to have favoured a sub-optimal T cell repertoire

over the risk of inflammatory death.

The strongest evidence for a definite recent causal rela-

tionship between specific features of pathogen and host

genomes is reciprocal polymorphism with an experimen-

tally demonstrable causal chain. Apart from the classic

examples noted above, this level of analysis has only

occasionally been achieved, and most notably in plant

disease resistance [2��]. When experimental data has

been substantiated by ecological evidence, one may fairly

describe such a scenario as co-evolution.

The evolutionarily significant host (ESH)
The pattern of host–pathogen co-evolution depends on

the extent to which host resistance reduces pathogen

transmission. Fast-evolving pathogens counter this cost

by rapid evasive evolution. These familiar ‘Red Queen’-

like processes can result in polymorphic variation in host

and pathogen as each attempts to sidestep the other.

Toxoplasma gondii (T. gondii) is an extremely promiscuous

pathogen, generating recombinational diversity through

gametogenesis in all species of true cats, and all warm-

blooded animals are potentially intermediate hosts (see

Figure 1). Evolutionary significance of hosts for T. gondii
is therefore not yes or no, but a quantitative parameter.

Some species are certainly in this sense important hosts

for transmission of the pathogen, others probably not, a

distinction applying equally to definitive and intermedi-

ate hosts. In a comparison between important and less

important hosts we might identify genomic signatures of

the immune resistance machinery that reflect selective

pressure from the parasite on the ESH.

The evolution of T. gondii will be driven in the fore-

seeable future by its relationship with the domestic cat

as definitive host, but the absolute dominance of the

domestic cat is recent and it is unknown whether any

genomic coadaptation has already occurred. The limit-

ed genotypic diversity of T. gondii in the Old World

compared with S. America may reflect an ancient S.

American origin for the species [3] although there are

arguments against this view [4]. In any case, the original

genetic diversity of Old World T. gondii may have been
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Figure 1
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The Toxoplasma gondii life cycle, highlighting the distinction between evolutionarily relevant hosts and irrelevant hosts. The infected domestic cat

excretes oocysts into the environment with the feces where they are inadvertently ingested by foraging animals. Humans may be infected via

contact with cat feces in the domestic environment and in other ways. After a brief proliferative phase (tachyzoite) immunity may develop and

restricts further growth. In this case the parasite undergoes a phase change to a slowly-replicating form (bradyzoite), building cysts in brain and

muscle that persist for the life of the intermediate host. If the intermediate host is in the food-chain of domestic cats, as common birds and small

mammals are, then it is relevant for transmission and of evolutionary relevance to the parasite. Infected hosts outside the food chain of the

domestic cat, like humans, are irrelevant for transmission. The parasite must stimulate an effective immunity shortly after infection to ensure

avirulence; failure to do so allows uncontrolled proliferation and the early death of the host. Virulence is clearly costly for the host and in mice and

probably other small rodents. The highly polymorphic IRG system of IFNg-inducible GTPases provides resistance against T. gondii strains of

difference virulence without achieving sterile immunity. Presumably the selective advantage of the high virulence for mice, seen in some strains of

T. gondii, reflects pressure on the parasite from other evolutionarily relevant hosts that can indeed achieve sterile immunity during primary

infection. So far, high virulence has always been attributed to the ROP5/ROP18 complex of virulence proteins, known to target IRG proteins (see

Figure 2), so it is likely IRG proteins are also required for the induction of sterile immunity in such hosts.
larger and the recent expansion of the domestic cat, an

Old World species until the sixteenth century, may

have favoured a specific subset of pre-adapted geno-

types.

The identification of dominant ESH species as interme-

diate hosts is more complex, but mammal or bird species

that are rare or inaccessible as prey for domestic cats

must be low down on the hierarchy, while species that

are abundant and accessible are high up. Humans, on the

other hand, while abundant and globally infected by

T. gondii at a rate over 1% per year of age [5�], are

inaccessible as prey for domestic cats and can be elimi-

nated as an ESH. The parasite is completely uninter-

ested in defeating, or being defeated by, human

immunity. In the event, while human immunity is

normally sufficient to reduce morbidity from T. gondii
infection to very low levels, the parasite’s exceptional

ability to use host immunity in general as a trigger for

bradyzoite conversion means that infected humans do

carry cysts and so far no immunity sufficient for parasite

elimination has yet been recorded in man. What we may

fairly say is that no components of human immunity
Current Opinion in Microbiology 2016, 32:19–25 
seem to be specifically dedicated to resistance against

T. gondii. The human genome thus seems to provide a

reasonably reliable negative control.

What about the strong ESH candidates? Cat and mouse

are global species and sympatric. Furthermore, foraging

mice should have a significant chance of ingesting oocysts

spread in cat feces. Infection rates in urban Mus musculus
above 50% have been reported in the UK [6], but much

lower rates (0–5%) are more general [7–10]. In US studies,

infection of wild M. musculus is reported to be in the low

range (0–3% [11,12]) and values for the US native mouse,

Peromyscus, are similar [13]. Since unconfined domestic

cats defecate and hunt in the natural environment adja-

cent to their homes, rather than at home, the ecology of

Apodemus and other local wild-life may be more relevant

to the evolution of modern T. gondii in Europe than that of

M. musculus. Significant infection rates have been

reported in the European field mouse, Apodemus
[14,15] as well as in voles and shrews [8,16], abundant

Eurasian small mammals often found near human habi-

tation but scarcely overlapping in range with the domestic

mouse. Likewise, domestic cats regrettably catch the
www.sciencedirect.com
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common wild songbirds that live with us, as well as

unloved but abundant urban feral rock pigeons. These

may also be important ESH species, but it is certain that a

significant proportion of T. gondii pass through M. musculus
during the generational cycle and the mouse is certainly

the best-known candidate for a species with significant

ESH credentials.

Immune mechanisms against Toxoplasma in
mice and humans
Two striking differences between mouse and man have

been highlighted, a recognition mechanism and an effec-

tor mechanism. In mice, innate recognition of T. gondii
infection depends on two members of the TLR (Toll-like

receptor) family, TLR11 and TLR12, probably forming a

heterodimer [17], and the trigger was identified as

T. gondii-profilin [18]. Both TLR proteins are absent in

human [18,19]. Without them, mice are susceptible to

normally avirulent T. gondii strains. Secondly, members of

a family of 10–20 interferon-g-inducible GTPases, the

IRG proteins [20], assemble on and disrupt the parasito-

phorous vacuole membrane [21]. IRG proteins are essen-

tial for mouse survival from normally avirulent T. gondii
infection [22,23]. Humans express only one non-induc-

ible IRG fragment, IRGM, of uncertain function. A

further family of interferon-inducible GTPases, the

65 kDa guanylate binding proteins (GBP), is present in

both species. In the mouse GBPs assemble on a propor-

tion of IRG-loaded parasitophorous vacuoles [24] and

contribute to the strength of IFNg-inducible resistance

[25–27]. In the human, GBPs do not assemble on para-

sitophorous vacuoles although a resistance function dis-

tant from the vacuole has been proposed [28�].

Much of the immune machinery involved in resistance

against T. gondii is, however, common to man and mouse,

forming the general innate-adaptive response axis: macro-

phages, dendritic cells, IL-12, IFNg, CD4 and CD8

T cells, CD40, the MHC, as well as NO and active

oxygen radicals are all implicated in resistance against

T. gondii [29,30]. It was shown recently that polyubiquitin

is deposited on the vacuolar membrane in both mouse and

human cells [31�,32�,33�]. Human resistance against

T. gondii is remarkably effective despite the absence of

TLR11/12 and IRG proteins. Tryptophan depletion by

the catabolic action of an IFNg-inducible indoleamine

dioxygenase has been implicated in restricting T. gondii
growth in human cells [34], but this has not been gener-

alizable over cell types and culture conditions [35]. The

human NLRP1 inflammasome has also been implicated

as an initiator of some cell-autonomous immunity in

human macrophages in the absence of IFNg [36], but

the effector mechanism is unknown. Human TLR5 has

recently been shown to be triggered by T. gondii-profilin

[37], arguably replacing TLR11/12. Perhaps immunity of

humans against T. gondii is the sum of small effects.

Certainly the human mechanism in its entirety does
www.sciencedirect.com 
not exist in mice since loss of IRG or TLR11/12 proteins

is fatal. Thus we have a clear dichotomy: mice have

the essential TLR11/12 and IRG mechanisms but not

the human mechanisms, while humans have their mech-

anisms, whatever they may be, but not the TLR11/12 and

IRG mechanism.

What do these differences mean?
The known specializations of the mouse accompany its

ESH status [38,39�]. It was further recently found that

IL-12 production in mice is triggered by live parasite

invasion, in human by phagocytosis [40] and the authors

state: ‘possibly reflecting a direct involvement of rodents

and not humans in the parasite life cycle.’ However while

mouse is an ESH and human not, no causal connection

has been offered. Gazzinelli and colleagues [39] tried to

strengthen the link, both for TLR11/12 and for IRG

proteins, by looking at a wider range of species, but no

convincing correlation emerged. IRG genes were certain-

ly most abundant in small rodents, but nearly absent in

rabbits. Horses, an unlikely prey for small cats, have no

recorded IRG genes but their relative abundance in

elephants and manatees stretches the correlative argu-

ment too thin. The same problem afflicts the TLR11/12

distribution, present in rodents and lagomorphs, but also

in horses, rhinos, elephants and manatees. Absent or

pseudogenised in humans, orcas, dogs and cats, the ex-

pression of TLR11/12 seems to associate inversely with

carnivory, but this correlation too is destroyed by their

absence also from the obligate herbivore, the giant panda.

Reciprocal polymorphism strengthens the
argument
The correlative argument contains no causal link. If,

however, host and pathogen show reciprocal polymor-

phism in virulence and resistance, it would suggest that

the system is under selection. In the TLR11/12 recogni-

tion/response mechanism against T. gondii-profilin, no

relevant polymorphism was found correlating with infec-

tion status in Apodemus [41�]. However in the IRG system

in mice, there is functional reciprocal polymorphism with

T. gondii virulence proteins [42]. Eurasian T. gondii strains

designated type I are virulent for laboratory mice, for

example, C57BL/6. Differential virulence of T. gondii
strains is due to allelic variation in two homologous,

polymorphic secreted proteins, a kinase (ROP18) and a

pseudokinase (ROP5). Together, these phosphorylate

two conserved threonines on effector IRG proteins and

inactivate them [43]. Type I strains are, however, resisted

by a wild-derived mouse strain, CIM, from South India

[42]. In crosses between CIM and C57BL/6, all the resis-

tance maps to a highly polymorphic IRG gene cluster on

chromosome 11. The polymorphic surface of the pseudo-

kinase ROP5 binds the nucleotide-binding domain of

Irga6 adjacent to the target threonines [42,44]. This sur-

face region, on the homologous Irgb2-b1 protein encoded

on chromosome 11, is the same region that shows evidence
Current Opinion in Microbiology 2016, 32:19–25
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Figure 2
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Susceptibility and resistance of mouse genotypes against type I virulent strains of T. gondii. A typical laboratory inbred strain such as C57BL/6

(left panel) expresses effector IRG proteins such as Irga6 that are phosphorylated and inactivated by a kinase complex of ROP5 and ROP18

secreted by the parasite. Immunity against T. gondii fails and the mice die within a few days of infection. Such susceptible IRG alleles are

segregating in wild mouse populations with other IRG alleles that confer resistance to the virulent kinase complex (right panel). In particular, the

highly polymorphic ‘tandem’ IRG protein, Irgb2-b1, of such resistant strains (e.g. CIM) acts as a decoy, diverting the active kinase complex from

effector IRG proteins and allowing adequate immunity to develop to control the tachyzoite growth phase. In a mouse with such a genotype,

‘virulent’ T. gondii strains become avirulent, form cysts, and can be transmitted. Other wild strains (such as DDO from Denmark and DEB from

Spain) carry susceptible b2b1 haplotypes [48] and will be as vulnerable as C57BL/6. We hypothesize that ROP kinases highly virulent for mice

arise under pressure from evolutionarily relevant intermediate hosts that express IRG proteins capable of yielding sterile immunity to a primary

infection. So far, sterile immunity is unknown in mice: we presently view the origin of the highly resistant Irgb2-b1 alleles of mice as a response to

pressure from highly virulent T. gondii strains.
of recent directional selection. Irgb2-b1 from the CIM

mouse transfected into C57BL/6 cells blocks phosphory-

lation of Irga6 by a virulent type I strain of T. gondii.

In this analysis, the argument favouring a causal chain

from virulence to resistance is complete. The polymor-

phic variation of Irgb2-b1 ‘matches’ the polymorphic

variation of parasite ROP5 and the results have biological

meaning. Type I strains that are virulent in mice carrying

the laboratory mouse allele of Irgb2-b1 kill their host

within a few days and thereby essentially eliminate the

chance of their own transmission. In mice carrying the

CIM allele of Irgb2-b1, however, both parasite and host

profit; the parasite can encyst in a resistant host, while the

host lives out a normal life (Figure 2).

These results leave us with a number of questions. It has

recently been shown that much of the virulence of

S. American T. gondii strains for laboratory mice is also
Current Opinion in Microbiology 2016, 32:19–25 
due to alleles expressed at ROP5 [45��]. Can we conclude

that the allelic variation in ROP5 across multiple parasite

strains globally is all directed at allelic variants of IRG

proteins? Or are different ROP5 alleles directed at en-

tirely different target proteins relevant to different ESH

species? The house mouse is a Eurasian species, yet most

of the polymorphic variation in ROP5 is found among the

enormous diversity of S. American strains [35]. Which

species are ESHs in S. America and what if any IRG

proteins do they have? Since the resistant allele of Irgb2-

b1 is advantageous to both host and parasite at least in

Eurasia, why is it not fixed? What selection pressure has

led to the evolution of the susceptible Irgb2-b1 allele of

the laboratory mouse strains and to its greatly reduced

expression level (unpublished results Lilue & Müller)?

Just as the polymorphic virulence factors of T. gondii may

have different molecular targets in different ESH species,

so the IRG resistance system is certainly not directed
www.sciencedirect.com



The impact of Toxoplasma gondii on the mammalian genome Müller and Howard 23
exclusively at T. gondii. Polymorphic variants of the IRG

system found among laboratory mouse strains also regu-

late resistance to Chlamydia trachomatis [46] and Chlamydia
psittaci [47], while IRG proteins are also essential for

resistance of mouse cells against the microsporidian fun-

gus, Encephalitozoon cuniculi, although differential resis-

tance has not been shown for IRG alleles [48]. Both

Chlamydiales and Microsporidia are ubiquitous and

abundant pathogen classes and may well be more impor-

tant for the evolutionary dynamics of the IRG system

than Toxoplasma.

The struggle for avirulence
The strategy of T. gondii as a parasite is based on a quest

for avirulence, a capacity to attenuate but not to destroy

the immune resistance of the host, thus securing the

permanent residence required to await transmission.

How the parasite achieves this ideal state in thousands

of potential hosts, with strikingly different immune sys-

tems is the major unknown in T. gondii biology. This

power is analogous to the ability of the adaptive immune

system of vertebrates to resist thousands of different

pathogens. The adaptive immune system shows little

co-adaptation at a genomic level to different pathogens;

it is a general anti-pathogen machine. Likewise, T. gondii
has a general anti-host machine, not perfect, but able to

titrate host immunities of many different kinds against

the self-destructive potential of its own replicative

powers. Armed with this instrument, whatever it consists

of, it is presumably irrelevant whether a specific host

species is an ESH or not. Polymorphic variation in ROP5

and ROP18 is essential in mice, that use the IRG system,

but irrelevant in humans, that do not [35]. Presumably the

polymorphism and regulation of other genetic systems are

essential against different immune resistance mecha-

nisms favoured by other host species. T. gondii sometimes

fails to achieve its goal of avirulence in geographically

incoherent infections; some strains of S. American

T. gondii are highly virulent in humans [49], a non-native

species, and many S. American strains are highly

virulent for laboratory mice, which represent W. Europe-

an M. m. domesticus >90% genetically [50]. Likewise, the

type I Eurasian strains relatively frequent in the far East

are highly virulent for laboratory mouse strains but aviru-

lent for M. m. castaneus strains from the East Asian region.

These instances hint at further co-evolution between

T. gondii and its intermediate hosts.

Conclusion
For the moment the proven relationship between poly-

morphic virulence alleles of T. gondii and the proven

resistance alleles of the IRG system of mice presents

the strongest evidence that this host pathogen-pair are

now or have recently been in a dynamic co-evolutionary

relationship of sufficient intensity to contribute to ge-

nome modification through allelic diversification by both

partners. The weak correlation in species distribution of
www.sciencedirect.com 
the TLR11/12 pair possibly suggests that this recognition

system also helps or has recently helped several mammals

in immunity against T. gondii, but does not tell us that

selection by this organism has brought it into existence,

any more than that it is likely that H-2Ld, for example,

which is known to present several T. gondii peptides to

T cells [51,52] owes its existence to the parasite, and

there is no evidence yet in either case of a dynamic co-

evolutionary process at work.

T. gondii has evolved a complex orchestra of actions that

play on vertebrate pathogen resistance machinery and

except in the case of the IRG system there is little reason

to believe that host resistance machinery is anything

other than beneficial to both host and parasite in enabling

the avirulent state and encystment. The polymorphism of

Irgb2-b1 and its intimate association with the virulence

polymorphism of ROP5 and ROP18 raises the question,

what selection generates type I virulence in T. gondii
strains where M. musculus is an ESH? Avirulent types

II and III strains can also encyst in the highly resistant

CIM mice so there is no ‘need’ for extra virulence.

Arguably, the type I virulent strains are preferentially

adapted to another important ESH species, perhaps a rat,

whose IRG system is capable of enforcing sterile immu-

nity on strains lacking the virulent alleles of ROP5 and

ROP18. The Irgb2-b1 allele of mice would then be

accounted for as an essential adaptation for mice living

within the range of such virulent strains, perhaps typically

in the Far East. Polymorphic variation in the IRG system

is probably also driven by other parasites as well, for

example Chlamydia or Microsporidia. Allelic frequencies

will depend on the ratio of the intensity of selection

pressures from the parasites.

Much work will be required and at many different ana-

lytical levels, genetic, biochemical, structural, ecological

and immunological, to clarify these issues.
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