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Abstract: Single shot diffraction imaging experiments via X-ray free-
electron lasers can generate as many as hundreds of thousands of diffraction
patterns of scattering objects. Recovering the real space contrast of a scat-
tering object from these patterns currently requires a reconstruction process
with user guidance in a number of steps, introducing severe bottlenecks in
data processing. We present a series of measures that replace user guidance
with algorithms that reconstruct contrasts in an unsupervised fashion. We
demonstrate the feasibility of automating the reconstruction process by
generating hundreds of contrasts obtained from soot particle diffraction
experiments.

© 2013 Optical Society of America
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1. Introduction

Single-shot diffraction imaging via X-ray free-electron lasers [1] has emerged as a potentially
significant tool for studying particles in the nanometer regime, from biological samples [2, 3] to
nanocrystals [4]. As particles of interest are propelled into the path of short X-ray pulses of high
fluence such as those generated at the Linac Coherent Light Source (LCLS), their interaction
diffracts a small fraction of the photons off the particle before the onset of significant radiation
damage. The resulting far-field diffraction patterns, recorded on X-ray detectors, can be used
to reconstruct real space contrasts of the diffracting particles via iterative phase retrieval meth-
ods [5]. Since the pulse-particle interactions occur mid-flight, imaging individual particulate
matter such as sootin situ at nanometer resolution is made possible, allowing for morpholog-
ical studies of in-flight particles [6, 7] that have in the past relied on other imaging techniques
such as transmission electron microscopy [8], where substrate deposition could potentially alter
particles’ morphologies.

A typical imaging experiment could generate hundreds of thousands of usable diffraction pat-
terns in a single day, compelling the need for an unsupervised contrast reconstruction process
requiring minimal user guidance. Due to experimental realities such as variable pulse profiles
and detector noise, however, there are significant differences in the quality of the data from
pattern to pattern. Simply automating existing tools for reconstruction would be problematic,
and in some cases insufficient, especially when these tools rely heavily on human supervision.
Any scalable protocol ought to replace user guidance and visual inspection with efficient unsu-
pervised algorithms.

In this paper, we present a series of measures that aim to facilitate the unsupervised contrast
reconstruction of a large collection of single shot diffraction patterns. We identified steps during
the reconstruction process that require user guidance and replaced them with reasonable algo-
rithms. Through these measures, we were able to successfully reconstruct hundreds of contrasts
with minimal guidance.

2. Experiment and data set

In this study we worked with highly variable diffraction patterns of soot particles of multiple
length scales. Data was collected at the Atomic, Molecular and Optical Science beam line at the
LCLS. Two different kinds of soot particles were considered for imaging: particles created by a
Palas GFG100 spark source generator [9] and NIST 2975 diesel soot particles [10]. In separate
runs, the Palas and NIST soot were propelled into the path of X-ray pulses by a differentially
pumped aerodynamic focusing inlet [11]. Some of the particles, when they reached the interac-
tion region with a velocity of 100−200 m/s, were intercepted by a single X-ray pulse focused
to an area of about 10µm2 with an average fluence of 4× 1012 photons, each with 1.24 keV
of energy, per pulse, assuming a transmission efficiency of 20%. The scattered photons were
recorded on a pair of pn-junction charge coupled device (pnCCD) panels installed in the CFEL
ASG Multi-Purpose (CAMP) instrument [12]. Each panel contained 512× 1024 pixels, each
of area 75×75µm2. A gap of 1.6mm between the panels and semicircular cutouts of 1.2 mm
diameter allowed for the passage of the pulse into a beam dump. Further details can be found
in Loh et al. [7].

Pulse generation and the detector readout rate coincided at 60 Hz, allowing for a theoretically
maximum data collection rate of 2.2×105 patterns per hour. In practice, however, the sample
hit rate was lower than the pulse generation rate because of random particle injection. In the
soot experiments, the hit rate was observed, on average, to be 0.09 Hz. A total of 953 successful
hits were identified and considered for reconstruction.
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3. Practical considerations

Any collection of diffraction patterns, even when sorted and classified [13], is bound to show
differences in quality from pattern to pattern. The pulse-particle interaction contributes to much
of this variability, as the profile of individual pulses can differ from each other. Wavefront aber-
rations in pulses can result in randomly shifted diffraction patterns which need to be corrected
[14]. Also, as each pulse’s transverse profile cannot be assumed to be a planar wave of constant
intensity, the position of each randomly injected particle during the pulse-particle interaction,
relative to the focus, has a noticeable effect on the signal-to-noise ratio of the resulting pattern,
a value that is already affected by the variability in the pulse fluence.

Given the incomplete nature of phasing algorithms, successful contrast reconstruction is not
guaranteed within a set number of iterations, even for ideal, noiseless patterns. As a result,
reconstructions from the same pattern can exhibit significant differences. Noise can further
frustrate the phasing process and encourage significant variability between reconstructions. A
reliable check for the confidence in a reconstruction is how often the algorithm will arrive at
the same, or similar solution, beginning from different initial conditions. This step, often done
visually, can be a major bottleneck in the reconstruction process.

In this section, we introduce techniques to address these various issues. In the first part,
we discuss ways of exploiting centrosymmetry to correctly center each pattern. In the next
part, we highlight a noise robust phasing algorithm that can handle patterns with low signal-
to-noise ratios. Then, we propose a technique for assessing the reliability of a reconstruction
algorithmically. Lastly, we suggest a strategy to check the degree to which the missing data
region could affect the final reconstruction.

3.1. Centering the diffraction pattern

While the detailed form of each X-ray pulse is lost as soon as it is absorbed into the beam
dump, the pulse variability is often noticeable in diffraction patterns. Random phase tilts in the
pulses is one such detail, and they were observed to translate diffraction patterns of polystyrene
nanospheres by as much as six pixels [14]. These translations, when uncorrected, could poten-
tially decrease the overall resolution of the reconstructed contrasts, especially when the speckle
features are roughly on the same scale as the translations. Thus, correctly centering diffraction
patterns before reconstruction is attempted is crucial.

The diffraction pattern of a real (i.e., not complex-valued) object can be approximated as
centrosymmetric when the extent of the Ewald sphere’s curvature is less than half a speckle
diameter,d/2, at the edge of the detector,

k0(1− cosθmax)≪ d/2, (1)

wherek0 = 2π/λ is the magnitude of the wave vector andθmax is the maximum scattering
angle. Equation (1) can be simplified to

θmax≪ 1/N, (2)

whereN= k0θmax/d is approximately the number of speckles that can be counted on a ray from
the origin to the edge of the detector.

When unshifted, the Fourier transform of the intensityI(q) is the autocorrelation of the par-
ticle contrastΨ. Mathematically,F [I(q)] should be real and centrosymmetric if absorption
effects are negligible. When shifted by an unknown amount,qunknown,

F [I(q−qunknown)] = F [I(q)]exp(−iqunknown·x) (3)

the Fourier transform of the shifted intensity is equal to the Fourier transfer of the unshifted
intensity multiplied by a linear phase ramp. To identify the shift that best approximatesqunknown,
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Fig. 1. To find the center of a diffraction pattern (left), square regions, translated by a set
of candidate shifts (exaggerated on the right), are tested for centrosymmetry. An identical
mask is applied to each of these square regions to mask out the missing central intensities.
The shifted square region that is most centrosymmetric (see text for details) is presumed to
be properly centered. This diffraction pattern was found to be shifted to left by two pixels.

the intensityI(q− qunknown) is shifted by a known amountqC. Once the Fourier transform is
then computed, the sum of the absolute values of its imaginary components

∑
x
|Im[F [I(q)]exp(−iqunknown·x)exp(−iqC ·x)]| (4)

will equal zero if

qC =−qunknown (5)

and the shifts are restricted to small values. Because actual recorded intensities are not perfectly
centrosymmetric due to noise and missing data regions, Eq. (4) will most often equal a nontriv-
ial value even when the proper shift is found. Still, the sum should be smaller for Eq. (5) than
for other shifts.

To implement the shift locator, square regions of the pattern centered at different offsetsqC

are cut out as shown in Fig. 1. A mask, fixed with respect to the square cutout, is applied to
cover up the CCD gap and the central, circular region of unreliable photon count. The mask
is made thicker so that it can be applied uniformly on any square cutout and still cover up the
appropriate regions. The Fourier transform of these square cutouts is computed, and the offset
with the lowest sum of the absolute value of the imaginary components is identified as the
correct shift.

3.2. Noise robust difference map

In far-field diffraction theory, the contrastΨ is the scattered wavefront immediately past the
scattering particle. It can be characterized byI via the inverse Fourier transform relation,

Ψ = F
−1[

√
I exp(iφ)], (6)
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whereφ is the associated phase of the complex exit wave. To recoverΨ, both the magnitude and
the phase of the observed wavefront must be known. However, since the phase is not recorded,
it is recovered using other information, such as the size and shape of the scattering particle.

Phase retrieval methods in use today employ iterative schemes to find aφ that best reflects all
available information regarding the scattering particle. This is done by finding aΨ that satisfies
the measuredI as well as an additional constraint based on the shapeS of the particle. Two
projection operators,PF andPS, known as the Fourier and support projections, respectively, are
defined as follows,

PF [Ψ] = F
−1 ◦MF ◦F [Ψ] (7)

where

MF [Ψ̂] =







√

I(q)
Ψ̂(q)

|Ψ̂(q)|
if I(q) is known and|Ψ̂(q)| 6= 0

Ψ̂(q) otherwise
(8)

rescales the Fourier magnitude of the input to match that of the square root of the measured
intensity and

PS[Ψ] =

{

Ψ(r) r ∈ SandΨ(r)≥ 0
0 otherwise

(9)

sets to zero any region that lies outside ofSand imposes positivity. Beginning with a random
initial contrastΨ0, phase retrieval methods search for solutions by projecting iterates onto the
constraint sets through a combination of the projection operations and follow the form

Ψn+1 = Ψn+ ε[Ψn], (10)

whereε[Ψn] is an additive update to the iterate which depends on the choice of the phasing
method. When the error metric||ε[Ψn]||2 falls below some fixed tolerance, the iterations are
stopped and the reconstruction is defined by the estimateΨ ≈ PF [Ψn+1].

We use theβ = 1 form of the difference map [15],

Ψn+1 = Ψn+PS[2PF [Ψn]−Ψn]−PF [Ψn] = Ψn+ εD[Ψn], (11)

which is equivalent to theβ = 1 form of Fienup’s hybrid input-output rule [16]. The difference
map is best suited for finding a true common element in the constraint sets, on the assump-
tion one exists. When dealing with measured diffraction patterns, however, the presence of
noise could shift the Fourier constraint set such that it does not exactly intersect the support
constraint set. As a result, the difference map’s propensity for guiding iterates away from near-
intersections to avoid stagnation works to its disadvantage as iterates are sent elsewhere to
look for solutions. Practically speaking, this results in a frustrated search where reconstructions
associated with each iterate fluctuate significantly in shape and size.

In the face of variable signal-to-noise ratios, the phase retrieval process should be robust so
that the search does not so easily stray from near-intersections [17, 18, 19]. Lohet al. [17]
propose an intermediate step whereΨn is updated by the formula

Ψ′
n = αΨn+(1−α)PF[Ψn], (12)

where 0≤ α ≤ 1 is a “leash” parameter that reins in the iterate such that it is brought closer to
the Fourier constraint set before it is run through the difference map:

Ψn+1 = Ψ′
n+ εD[Ψ′

n]. (13)
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Fig. 2. The stability of the modified difference map for variousα ’s around a solution can be
measured by the square root of the error metric,||εD[Ψ′

n]||. Starting with a final reconstruc-
tion (i.e.solution) as the initial contrast and using a fixed support previously generated with
Shrinkwrap [20], the modified difference map continues on its search in the neighborhood
of the solution. Anα slightly decreased from unity will significantly tighten the scope of
the search and improve the stability of the difference map around a solution.

In our trials,α = 0.85 was used. The choice forα reflects a desire to balance out the need for
preventing the search from deviating from a near-intersection too much while also preventing it
from settling too easily near a point which may not necessarily best reflect the near-intersection.
There is some latitude in the choice ofα as even a slight decrease from unity will significantly
tighten up the search neighborhood around a near-intersection, as Fig. 2 suggests.

3.3. Unsupervised reconstruction assessment

In iterative phase retrieval methods, convergence to a unique solution within a set number of
steps is not necessarily guaranteed, so the iterations are stopped when the difference between
iterates is small enough or a large number of iterations,tmax, is reached. Consequently, an indi-
vidual reconstruction will, at times, seem like it has not converged or perhaps even converged to
a seemingly different point when compared to a different reconstruction. When presented with
a collection of dissimilar reconstructions, visual inspection usually aids in assessing which re-
constructions are successful, but this would be time consuming when processing thousands of
diffraction patterns.

Since the particle’s contrast is not known beforehand, assessing the success of reconstruc-
tions presents another challenge as there are no training examples to aid in assessing. In prac-
tice, given a set ofm reconstructions, the largest subset that contain similar looking recon-
structions is usually deemed to be a successful collection. This practice, however, relies on the
assumption that the phasing algorithm can guide iterates to the correct near-intersection most
of the time.

The steps taken in visually assessing and rejecting reconstructions are used to devise an algo-
rithm that can perform the same task. Beginning with a set ofm individual reconstructions, their
corresponding supports, as found by Shrinkwrap [20], are compared. The supports are preferred
over the reconstructions as that will emphasize during comparison the overall low-resolution
shapes of the reconstructed contrasts as opposed to their subtle high-resolution features which
could vary greatly. Letyi be ann× n pixel array of binary values representing an individual
support appropriately translated and inverted and ¯y = ∑i yi/m be the mean of the supports.
Translations and inversions can be identified relative to a reference support, which can be any
of themsupports, by maximizing the cross-correlation of the individual and reference supports.
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s1=0.99 s2=2.12 s3=1.02 s4=3.83 s5=8.96

s6=8.10 s7=1.37 s8=6.74 s9=0.95 s10=1.76

Fig. 3. Ten individual reconstructed contrasts with overlaid outlines of their supports, as
found by Shrinkwrap, and their correspondingsi values. The reconstructions whosesi ’s
exceed the thresholdsmax= 5% are marked in red and were deemed failures.

188 nm

Fig. 4. A final reconstructionΨ (on the left) obtained from averaging ten acceptable indi-
vidual reconstructions. The measured diffraction patternI (in the middle) and reconstructed
intensity|Ψ̂|2 (on the right) demonstrate similar speckle structures in the low scattering an-
gle regions, but differ considerably in the higher scattering angle regions.

The % deviation from the mean,

si =
||yi − ȳ||
||ȳ|| ×100, (14)

where|| · || = ∑ j ,k |(·) jk| is summed over pixels, also known as theL1 norm, is obtained for
each reconstruction and ordered from least to greatest. In the event allm supports are similar,
all si ’s will generally be small. When some supports differ greatly from the majority, however,
the % deviations will increase across alli’s due to the inclusion of those dissimilar supports in
computing the mean. To mitigate the effects of these inflated % deviations, a new mean ¯ynew is
computed based on them/2 individual reconstructions with the lowestsi ’s, which we consider
to be the similar reconstructions. New % deviation valuessi ’s are then computed for each
reconstruction. An absolute rejection criterion,smax= 5%, is set such that all reconstructions
with si > smax are rejected, as shown in Fig. 3.

As subtle differences in shape and density can exist between similar individual reconstruc-
tions, these subtleties can be averaged away by adding the reconstructions. The approach taken
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in this paper averagesm= 10 reconstructions from different phasing runs with random initial
contrasts and different initial circular supports of varying radii. For dissimilar reconstructions
in the collection, new reconstructions are attempted using the same initial circular support with
which the reconstruction began but with a different initial contrast. After the new reconstruc-
tions are obtained, thesi ’s are computed again for the set of ten individual reconstructions
consisting of the new as well as the previously unrejected reconstructions, and those failing to
meet the rejection criterion are again discarded. This method is repeated until all thesi ’s fall
belowsmax. Once ten acceptable reconstructions are obtained, they are then averaged to obtain
a final reconstruction, as shown in Fig. 4.

3.4. Missing data

Diffraction patterns will often have significant regions of missing data mainly due to the gap
between the CCDs and pixel saturation. When using information about the particle’s support in
phase retrieval, these missing data regions can be problematic as they could give rise to uncon-
strained modes, which are spurious features with enough power to exist in the support in real
space and the missing data region in Fourier space [21]. Depending on the size of the missing
data regions relative to the speckles, unconstrained modes could become problematic as they
superimpose themselves over the true particle contrasts and result in inaccurate reconstructions.

Fig. 5. A weakly constrained featuref in real space, shown in greyscale, with most of its
power contained within the support, regions not colored in red (left). In Fourier space, the
same feature, again shown in grayscale, has most of its power contained within the missing
data region, again regions not colored in red (right).

The degree to which modes may be unconstrained can be measured by the rate at which they
lose power during the phase retrieval process. Given some unconstrained feature in real space
f we define its unconstrained power to be

W[ f ] =
1
2

(

∫

S
| f |2 dr +

∫

M
| f̂ |2dq

)

(15)

whereS is the (previously defined) particle’s support in real space andM is the missing data
region in Fourier space.

Measuring the degree to which these features are constrained can be done by separately
running a variation of the phase retrieval process. We define the missing data projection,

PM[Ψ] = F
−1 ◦SM ◦F [Ψ] (16)

where

SM[Ψ̂] =

{

Re[Ψ̂(q)] q∈ M
0 q /∈ M

(17)
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Fig. 6. The power of an unconstrained feature as it is iteratively updated via the variation
of the modified difference map withS andM from Fig. 5. The feature’s power decreases
by six decades in∼ 60 iterations before it abruptly falls effectively to zero. This suggests
any unconstrained features that arise during the reconstruction process will effectively be
suppressed if the time scales of their decay are much less than the time scales of the overall
reconstruction process.

and substitute the Fourier projectionPF with PM in the modified difference map, while keeping
everything else, such as theα parameter, the same. Beginning with a random initial contrast
f0, the modified difference map with the missing data projection will search for features whose
power are not constrained within theS andM in real and Fourier space, respectively. When
there are no modes with significant unconstrained power, we expect any initial contrast to decay
quickly when the above scheme is iterated.

The rate of power loss gives a sense of how constrained the features are during the phase
retrieval process and of how severely they could distort the final reconstruction. For power loss
as shown in Fig. 6, the decrease of six decades in about sixty iterations followed by the abrupt
drop to zero in total power suggests that the support and missing data regions are too restrictive
in allowing any significant unconstrained features to persist. For phase retrieval runs consisting
of thousands of iterations, it can be expected that features as those described in Fig. 5 will not
contribute significantly to the final reconstruction’s total power.

4. Results

The reconstruction process consists of the following steps: centering the diffraction patterns,
generating ten acceptable individual reconstructions, and checking whether unconstrained
modes and features could exist in the reconstructions. All computations were performed on
a standard desktop computer equipped with a quad-core Intel i7-2600 with a clock cycle of
3.4 GHz and 8 GB RAM. Each individual reconstruction run withtmax= 2000 iterations took
approximately 15 minutes on a single thread. By taking advantage of multithreading, up to five
threads ran simultaneous individual reconstructions, shortening the computation of ten indi-
vidual reconstructions to a minimum of 30 minutes. A maximum of four attempts were made
with each initial support. In the event an individual reconstruction attempt was rejected a fourth
time, the whole reconstruction process was deemed a failure.

The diffraction images recorded at the LCLS underwent preprocessing where the running
background was subtracted. They were then subjected to an intensity-based thresholding rou-
tine to identify those that contained sufficient photon signal likely to result from particle-pulse
diffraction events and did not exhibit pixel saturation effects. A collection of 953 patterns was
generated, and 309 of those patterns were chosen for phasing through visual inspection based
on the size of the speckles and good signal-to-noise ratio. An investigation on unbiased pattern
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Fig. 7. A selection of reconstructed soot contrasts, arranged by increasing shape eccentric-
ity. The length of each square box is 573 nm.

selection is underway.
The top and bottom halves of the patterns were added after centering to increase the signal-

to-noise ratio and to constrain the contrasts to be real, assuming the patterns largely obeyed
centrosymmetry. Given the maximum scattering angle,θmax = 0.075 rads, the condition for
centrosymmetry as described in Eq. (2) to hold requires that the distance from the center of
the detector to the edge not exceed 13 speckles. A number of patterns did exceed that count by
a couple of speckles, but in most of those cases, noise made it difficult to clearly discern any
speckles close to the edge, making the effective maximal scattering angle less than what the
detector allows for.

Of those chosen, 36 patterns failed to produce 10 similar individual reconstructions. In 30
out of those 36 instances, at least 8 individual reconstructions were deemed similar. A total
of 273 patterns yielded averaged reconstructions, and some these reconstructions are shown in
Fig. 7. The quality of the reconstructions was assessed by computing the phase retrieval transfer
function (PRTF) and an effective resolution was characterized by where the PRTF drops to 1/e
[22]. There was great variability in the quality of the reconstruction, as shown in Fig. 8, with a
resolution range of 18 nm to 89 nm.

Many of the diffraction patterns were shifted by various amounts as shown in Fig. 9. A
considerable number of them demonstrated shifts as much as 4 pixels and only 19 patterns
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were unshifted by the pulse. None of the averaged reconstructions had significant missing data
problems as unconstrained features all experienced power decay to zero when run through the
procedure outlined in Sec. 3.4 using averaged supports. Only in 3 cases did the decay take over
100 iterations. Even then, the longest time it took for complete power loss was 258 iterations.
Since the overwhelming majority of patterns chosen had speckles larger than the missing data
region, which was indirectly a consequence of Eq. (1), this was to be expected.
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Fig. 8. Histogram of the effective resolution of the 273 reconstructions, quantified by where
the phase retrieval transfer function dips below 1/e. The smallest effective resolution was
determined to be 18 nm, and the largest was 89 nm.

6

6

1

3

2

3

6

8

1

3

115

7 9

7

1

7

19

7

5

19

1

3

7

7

3

15

4

8

6 1

1

7

3

3

13

2

18

1

1

6

8

2

1

4

1

1

1

5

5

10

5 1

1

8 3

11

1

1

1

1

1

-0.6 -0.4 -0.2 0. 0.2

-
0.

6
-

0.
4
-

0.
2

0.
0.

2
0.

4

horizontal deviationHmradL

ve
rt

ic
al

de
vi

at
io

nH
m

ra
dL

Fig. 9. 2D histogram of the offsets, measured as outlined in Sec. 3.1, in the 309 patterns due
to random phase tilts in the X-ray wavefront. The distribution of offsets displays a strong
spread in horizontal deviations, particularly those with no vertical deviations.

5. Conclusion

Data collection rate at facilities such as the LCLS makes it infeasible to carry out a user guided
reconstruction for each diffraction pattern. The ability to analyze and extract meaningful results
from single shot diffraction imaging experiments will invariably require a speedy and reliable
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contrast reconstruction process, ideally with no supervision. We presented measures aimed at
facilitating data processing and the contrast reconstruction steps, and they have shown that
high throughput, unsupervised reconstructions are possible. A desktop implementation of our
methods quickly reaches its computational limits, however, and orders of magnitude speedup
is necessary for the data collection and processing rates to reach parity. Graphical processing
units (GPUs) [23] and other “multicore” computing solutions show promise in providing the
necessary speedup.

The ability to generate a large collection of images via single shot diffraction imaging en-
ables the possibility for morphological studies analogous to those performed on collections of
images obtained through other imaging techniques such as transmission electron microscopy.
Diffraction imaging has an advantage over those imaging techniques as it allows for observa-
tion in situof airborne particles such as soot. A whole host of other aerosols, such as medicinal
nanoparticles to cloud seeds, could benefit from study via single shot diffraction imaging as
their airborne structures could yield new insight into their function.
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by R. Andritschke, K. Gärtner, O. Hälker, S. Herrmann, A. Hömke, Ch. Kaiser, K.-U. Kühnel,
W. Leitenberger, D. Miessner, D. Pietschner, M. Porro, R. Richter, G. Schaller, C. Schmidt, F.
Schopper, C.-D. Schröter, Ch. Thamm, A. Walenta, A. Ziegler, and H. Gorke. We thank the
staff of the LCLS for their support in the experiments that provided the data for this study.

#195785 - $15.00 USD Received 19 Aug 2013; revised 26 Oct 2013; accepted 27 Oct 2013; published 14 Nov 2013
(C) 2013 OSA 18 November 2013 | Vol. 21,  No. 23 | DOI:10.1364/OE.21.028729 | OPTICS EXPRESS  28742




